EP0654097B1 - Streckrollenaggregat - Google Patents

Streckrollenaggregat Download PDF

Info

Publication number
EP0654097B1
EP0654097B1 EP94916118A EP94916118A EP0654097B1 EP 0654097 B1 EP0654097 B1 EP 0654097B1 EP 94916118 A EP94916118 A EP 94916118A EP 94916118 A EP94916118 A EP 94916118A EP 0654097 B1 EP0654097 B1 EP 0654097B1
Authority
EP
European Patent Office
Prior art keywords
vibration damper
casing
roller unit
drawing roller
play
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94916118A
Other languages
English (en)
French (fr)
Other versions
EP0654097A1 (de
Inventor
Armin Wirz
Kurt Wetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0654097A1 publication Critical patent/EP0654097A1/de
Application granted granted Critical
Publication of EP0654097B1 publication Critical patent/EP0654097B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers

Definitions

  • the invention relates to a draw reel assembly for draw-bobbin, spin-draw and draw-twine machines according to the preamble of the first claim.
  • Such stretching roller units are known, for example from European patent applications with the publication numbers 0 349 829 A2 and 0 454 618 A1, both applications of the applicant of the current patent application.
  • Such stretching roller units have a high operating speed, for example to convey and heat filament threads up to 6000 m / min and more on the heated godets.
  • a godet alone can have a weight of, for example, 25 kg, so that the combination of mass and high speed inevitably leads to vibrations which are transmitted within the stretching roller unit and resonances can arise which can cause malfunctions in operation.
  • vibrations can be prevented in various ways, including measures relating to the weight and rigidity of the parts that start to vibrate or, on the other hand, by appropriate provision of vibration-damping elements at suitable points.
  • the rotating parts are mounted so that they are damped in such a way that no vibrations are transmitted to the stationary parts, which, depending on the design, can lead to complicated and expensive solutions.
  • stationary parts can also generate natural vibrations, for example if there are inductors within godets, by means of which the jacket wall of the godets is heated.
  • the advantage of the invention is that it is an effective, yet simple solution.
  • a stretching roller unit 1 with a godet 2 and an electric motor 3 with a shaft 8, which at the end of the godet is provided with a conical end section 13 for receiving a hub 12 and is part of an end wall 11 of the godet 2.
  • a jacket wall 10 is connected to the end wall 11, on which the filament (not shown) rests in several loops in a manner known per se during operation.
  • An inductor 16 with an intermediate space 15 to the jacket wall 10 is provided within the jacket wall 10 around the shaft 8 and is received by a support cylinder 18.
  • deflections of the godet which are caused by radial forces due to the rotation of the godet and the resulting vibrations and natural vibrations of the inductor, are shown purely schematically with the arrows N and M shown.
  • the support cylinder 18 has at its end opposite the motor 3 a support cylinder flange 9 which is centered in the radial direction by means of a centering ring 24 belonging to a motor housing 23.
  • an annular or a number of annularly arranged vibration dampers is provided between the support cylinder flange 9 and a motor housing end wall 32 in order to avoid vibrations being transmitted mainly in the axial direction from the motor housing 23 to the support cylinder 18 and thus to the inductor 16.
  • the support cylinder flange 9 is by means of a compression spring 25 which is provided between the support cylinder flange 9 and a screw 26 and which exerts a force in the axial direction against the support cylinder flange 9 when the screw 26 is tightened up to a stop 35 shown in FIGS. 5 and 6, pressed against the motor housing end wall 32.
  • a rotor 22 is received within the motor housing 23 by the shaft 8, which in turn is rotatably supported within the motor housing 23 by means of roller bearings 20 and 21.
  • the godet 2 is firmly connected to the shaft 8 by means of a screw 14.
  • FIG. 2 shows that a vibration damper ring 30 is additionally provided between the centering ring 24 and the support cylinder flange 9, or alternatively a number of ring-shaped vibration dampers are provided, which in addition to the axially directed vibration damping by the vibration damper 27 damping or damping radially directed vibrations.
  • FIG. 3 shows a variant of a stretching roller unit, which is identified here by 1.1.
  • the motor 3.1 is not arranged directly next to the godet 2, but is fastened to a housing 17 in which the shaft 8 is rotatably mounted by means of the roller bearings 4, 5, 6 and 7.
  • the axis of symmetry of the inductor 16 lies coaxially with the axis of rotation 29 of the shaft 8, which is shown with the geometric axis 34.
  • FIG. 4 shows a detail from FIG. 3, in particular with a vibration damper 30.1, which, like the vibration damper 30 of FIG. 2, dampens the deflections in the radial direction and is provided between a cylinder part 31 of the support cylinder flange 9 and the bearing housing end wall 49.
  • a vibration damper 30.1 which, like the vibration damper 30 of FIG. 2, dampens the deflections in the radial direction and is provided between a cylinder part 31 of the support cylinder flange 9 and the bearing housing end wall 49.
  • FIG. 4 does not have a compression spring 25, as shown in FIGS. 1 to 3, but a vibration damper 33, which is provided between each screw 26 and the support cylinder flange 9 .
  • This vibration damper on the one hand has the function of the compression spring 25 and on the other hand additionally dampens the function of certain axially directed vibrations.
  • Fig. 7 shows a spring pin 38, which is fixedly inserted with its rear part in the support cylinder flange 9.1, and which carries on the front part a radial-acting vibration damper 30.2 consisting of a hollow cylindrical damping element, which in a bore provided in the end wall 49.1 of the bearing housing Housing 17 is inserted.
  • the spring pin 38 and the vibration damper 30.2 form a vibration damper unit 30.A.
  • annular disk-shaped vibration damper 27.2 acting in the axial direction of the shaft 8 is provided between the end wall 49.1 of the bearing housing and the support cylinder flange 9.1.
  • the support cylinder flange 9.1 is pressed against the bearing housing end wall 49.1 by means of the screw 26 and the compression spring 25 provided on the screw 26, but only in such a way that the vibration damper 27.2 is capable of transmitting the radial vibrations to the spring pin 38 or to the vibration damper 30.2 to transmit, that is, a relative movement between the support cylinder flange 9.1 and the bearing housing end wall 49.1 is possible.
  • At least three of the units 30.A formed from the spring pin 38 and the vibration damper 30.2 are uniformly distributed over the circumference, the screw 26 being shown directly above this unit in FIG. 7, but expediently between two circumferentially distributed units consisting of spring pin 38 and Vibration damper 30.2 is provided, which also applies to all circumferentially distributed vibration dampers.
  • FIG. 8 shows, instead of the two-part radial and axial damping means shown in FIG. 7, a damping means consisting of a single annular element which, on the one hand, consists of a radially acting ring-shaped vibration damper 30.3 of essentially octagonal cross-section and, on the other hand, from the axially acting ring-shaped vibration damper 27.3 composed.
  • the octagonal cross-section of the vibration damper 30.3 is contained in annular grooves 61, one annular groove in the bearing housing end wall 49.2 and the other in the support cylinder flange 9.2 of the support cylinder 18.
  • FIG. 8a shows separately the vibration-damping element shown in FIG. 8, consisting of the ring-shaped vibration damper 27.3, which is the axially directed one Dampens vibrations, and the vibration damper 30.3 connected to the circumference thereof, which dampens the radially directed vibrations.
  • 8b is a top view of FIG. 8a in viewing direction A with the vibration dampers 27.3 and 30.3 being shown.
  • Fig. 9 shows a variant of the radial and axial damping element of Fig. 8, which is also made from one piece, which is here instead of the octagonal radially acting damping element 30.3 is a vibration damper with opposite cylindrical knobs 30.4, which is uniform on the circumference are distributed and arranged opposite the annular vibration damper 27.4.
  • the knobs 30.4 are each held in bores 50 of the same diameter, which are each provided in accordance with the number of knobs 30.4 in the bearing housing end wall 49.3 and in the support cylinder flange 9.3. At least three such pairs of nubs are evenly provided on the circumference.
  • the knobs 30.4 absorb the radial vibrations and the annular vibration damper 27.4 the axial vibrations.
  • the bearing housing end wall 49.3 is clamped together with the support cylinder flange 9.3 by means of the screws 26 and the compression springs 25, which is only schematically indicated here with the screw axis 37, the distribution of these screws on the circumference being as symmetrical as the distribution of the knobs 30.4.
  • FIG. 9a shows separately the vibration damper according to the invention, namely the ring disk with the identification 27.4 as vibration damper for receiving axially directed vibrations and the knob-like cylinder with the Marking 30.4, which vibration dampers are for absorbing radially directed vibrations.
  • the vibration damper 30.4 are firmly connected to the vibration damper ring 27.4.
  • the radially acting vibration damper is a hollow cylindrical damping element 30.5, which on the one hand, with its outer cylindrical surface, is free of play in a bore (not marked ) is accommodated in the support cylinder flange 9.4 of the support cylinder 18 and, on the other hand, receives an end part of a support bolt 39 without play, the other end part of which is accommodated in the bearing housing end wall 49.4 of the housing 17 without play.
  • the vibration damper 30.5 and the support pin 39 form a vibration damper unit 30.B.
  • the axial vibrations are absorbed by an annular vibration damper 27.5, which is held between the bearing housing end wall 49.4 and the support cylinder flange 9.4 and is held by means of the screws 26 and the springs 25 a predetermined preload.
  • This preload is such that no play can occur between the bearing housing end wall 49.4 and the support cylinder flange 9.4 and the annular vibration damper 27.5.
  • the vibration damper unit 30.B is distributed over a circumference with a predetermined regularity, for example evenly with three units.
  • FIG. 11 further shows that the radially acting vibration damper is a hollow cylindrical damping element 30.5, which is firmly embedded in a bore (not marked) in the bearing housing end wall 49.5 of the housing 17. and that the damping element 30.5 accommodates a spring part 42 , wherein at one end of the spring part 42 a support pin 41 is fixedly connected, which is play-free in the support cylinder flange 9.5 of the support cylinder 18 and at the other end a support pin 41.1, which is embedded free of play in the housing 17.
  • the support bolts 41 and 41.1 and the spring part together with the vibration damper 30.5 form a vibration damper unit 30.C.
  • annular vibration damper 27.6 is provided, which, like already for the other annular vibration dampers, is provided pretensioned between the end wall 49.5 of the bearing housing and the support cylinder flange 9.5. This bias, as described earlier, generated by the screw 26 and the springs 25.
  • these damping elements consisting of the elements 41, 41.1, 42 and 30.5 are also distributed uniformly, circumferentially, preferably three such units being distributed over the circumference, which does not rule out a plurality of them.
  • the screws 26 are also distributed circumferentially with the same or a different regularity.
  • the space between the two O-rings 30.6 is limited in addition to the O-rings themselves by an annular flange 44 and by the bearing housing end wall 49.6, the annular flange 44 being part of the support cylinder flange 9.6.
  • the ring flange 44 is shown in the axial direction and parallel to it a cylindrical inner surface of the bearing housing end wall 49.6, it being only essential that the ring flange 44 and said cylindrical inner surface lie essentially parallel to one another, on the other hand one exact axial alignment of these two opposing parallel surfaces is not necessary.
  • the two O-rings 30.6 and the spring pin 40 together with the oil form a vibration damper unit 30.D.
  • the axially directed vibrations are absorbed by a 0-ring-shaped vibration damper 27.7, which is provided with a certain preload between the bearing housing end wall 49.6 and the support cylinder flange 9.6.
  • the bias is, as mentioned earlier, generated by the screw 26 and the springs 25, which is shown schematically as an alternative to the axis 37.
  • the screws 26 can be provided evenly distributed over the circumference.
  • FIG. 13 shows an annular vibration damper 27.8, for damping the axially directed vibrations, which is held between the support cylinder flange 9.7 and the bearing housing end wall 49.7 as described above with a predetermined preload.
  • the vibration damper 27.8 has a passage 57 for a spring pin 38 which is fixedly received at one end in the support cylinder flange 9.7 and at the other end carries a slot sleeve 45 shown enlarged in FIG. 13a and provided with slots 58.
  • This slot sleeve 45 is surrounded by O-rings 51 with a predetermined preload such that the spring pin 38 receives the slot sleeve 45 without play.
  • Each O-ring is received in a groove 60 (not marked) embedded in the circumference of the slot sleeve in order not to change its position on the slot sleeve 45 even if the O-rings 51 together with the slot sleeve 45 are in a cylindrical recess 46, which is formed by a bore 52 provided in the end wall of the bearing housing (shown by dash-dotted lines in FIG. 13a).
  • the inside diameter of the bore 52 is provided in such a way that the inserted O-rings are pressed in the radial direction into the said grooves 60 and are thus held therein with a predetermined pretension, so that in combination, on the one hand, the spring pin 38, as described above, without play the slot sleeve 45 and on the other hand the O-rings are held in the bore 52 without play.
  • the slot sleeve 45 and the O-rings form a radially acting vibration damper 30.7 and together with the spring pin they form a vibration damper unit 30.E. At least three such vibration damper units 30.7 are distributed over the circumference, but there may be more if required.
  • vibration damper unit 30 E The advantage of such a vibration damper unit 30 E is that the end of the spring pin 38 located in the end wall 49.7 of the bearing housing can move, but without causing any play at all, since the preload in the O-rings is neither a play between the cylindrical ones Bore 52 and the O-rings still allow between the spring pin 38 and the slot sleeve 45.
  • FIG. 13b shows the vibration damper 30.7 in viewing direction C, in which the elements with the same functions as in FIG. 13a are identified with the same characteristics.
  • FIG. 14 provides a variant of FIG. 3 between the housing 17 and the roller bearings 4, 5, 6 and 7, each with radially acting damping elements 30.12, in order to dampen the radial movements of the shaft 8 within the housing 17. 14 serves as a general starting point for the following description of FIGS. 15 and 16.
  • the adapter 53 is provided between the support cylinder flange 9.8 and a bearing housing end wall 49.8 belonging to the housing 17.
  • the adapter 53 has one end, seen in the axial direction of the shaft, against the Carrier cylinder flange 9.8 directed and is at the other end, that is, with the adapter flange 54 on the bearing housing end wall 49.8.
  • An annular vibration damper 27.8 is provided between the support cylinder flange 9.8 and the aforementioned end of the adapter 53 which dampens the axial vibrations.
  • the vibration damper 27.8 is provided with bores 55, which are provided coaxially with depressions 46.1, which each result from a bore 52.1 and have the same diameter as these depressions 46.1.
  • depressions 46.1 each serve to receive a radially acting vibration damper 30.7 known from FIG. 13.
  • the depression 46.1 corresponds to the depression 46 delimited by dash-dotted lines in FIG. 13a.
  • this figure is also a radially acting vibration damper unit 30.E, which corresponds to that for FIG. 13, this vibration damper is also identified with 30.7 in this figure. Furthermore, at least three such vibration damper units 30E are arranged distributed over the circumference, but there may also be more if required.
  • the support cylinder flange 9.8 is held together by means of screws 26 and spring elements 25 with such a preload in the ring-shaped vibration damper 27.8 with the adapter 53 that the vibration damper 27.8 is able to process the axial vibrations.
  • the damped mounting of the shaft 8 is based on the same principle of vibration damping as for the support cylinder 18 provided that a spring pin 38 of a vibration damper 30.8 is firmly received in a bearing housing 48 which serves to receive the shaft bearings 6 and 7.
  • the vibration damper unit is marked here with 30.F.
  • the spring pin 38 receives a slot sleeve with O-rings 51, which is constructed analogously to FIG. 13a.
  • This slot sleeve-O-ring combination is also seated in a recess 46.2, which corresponds in principle to the recess 46.1.
  • An adapter flange 54 belonging to the adapter 53 lies directly against the end wall 49.8 of the bearing housing and is connected to it by means of screws 26 and spring elements 25, which is shown schematically with the center line 37.1.
  • At least three vibration damping elements 30.7 or 30.8 should be provided in a uniform distribution over the circumference, the screw connections by means of the screws 25 not necessarily having to be arranged in the same place as the provision of the vibration dampers, but in a predetermined manner in between, which incidentally applies to everyone in the Connection with FIGS. 7, 10, 11, 13 or 15 and 16 shown and described screw connections applies.
  • FIG. 16 shows a variant of FIG. 15, in that the damping between the support cylinder 18 and the bearing housing 17 is carried out by means of an axially acting damping element 27.9, the damping element 27.9 being arranged between the support cylinder flange 9.9 and the bearing housing end wall 49.9 and in Principle corresponds to the damping element 27.3 already described for FIG. 8, that is to say that the trapezoidal elevations 30.10 are radial acting vibration damper between the support cylinder flange and bearing housing end wall.
  • the radial damping of the bearings 6 and 7 takes place by means of a radially acting vibration damper unit 30.C from FIG. 11, the vibration damper here being identified with 30.9 and the vibration damper unit with 30.G.
  • the bearings 6 and 7 are accommodated in a bearing housing 48.1, a support bolt 41 being fixedly arranged in the bearing housing 48.1, the opposite end 41.1 of which is accommodated in the housing 17 without play.
  • a reduced-diameter part 42 is provided, which together with the support bolts 41.1 and 41.2 forms a cooperating part, the part 42 receiving the radially acting vibration damper 30.9, which on the one hand on a cylindrical inner wall 56 of the housing 17 and on the other hand rests on the bearing housing part 59 and thereby radially dampens the vibrations caused by the shaft.
  • bearing damping can also be provided at the other end of the bearing housing, not shown here, in a mirror-image arrangement, specifically for bearings 4 and 5 (see Fig. 14).
  • FIGS. 1 and 2 there is no bearing housing, but that the shaft is mounted directly in the motor housing, and that the damping in the manner shown in FIGS Motor housing can be carried out. This means that the bearings 20 and 21 of FIG. 1 would be stored in the manner shown in FIGS. 15 and 16.
  • FIGS. 7 to 16 can also be used with the motor housing 3 shown with FIGS. 1 and 2 and 5 and 6.

Abstract

Um Schwingungen, welche durch das Drehen einer Galette (2) erzeugt werden, nicht auf eine Induktor (16) zur Beheizung der Galette zu übertragen, ist der Induktor (16) mittels eines Schwingungsdämpfers (27) schwingungsfrei gelagert. Der Schwingungsdämpfer (27) ist zwischen einem Tragzylinderflansch (9) eines Tragzylinders (18) zur Aufnahme des Induktors (16) und einer Gehäusestirnwand (32) angeordnet. Zur radialen Dämpfung des Induktors (16) ist zusätzlich zwischen einem Zentrierring (24) ein weiterer Schwingungsdämpferring (30) vorgesehen. Mittels Schrauben (26) wird der Flansch (9) gegen den Schwingungsdämpfer (27) gepresst, wobei zwischen der Schraube (26) und dem Flansch (9) eine Druckfeder (25) vorgesehen ist, welche gegen Flansch (9) drückt.

Description

  • Die Erfindung betrifft ein Streckrollenaggregat für Streckspul-Spinnstreckspul- und Streckzwirnmaschinen gemäss Oberbegriff des ersten Anspruches.
  • Solche Streckrollenaggregate sind bekannt, bspw. aus den europäischen Patentanmeldungen mit den Veröffentlichungsnummern 0 349 829 A2 und 0 454 618 A1, beide Anmeldungen der Anmelderin der jetzigen Patentanmeldung.
  • Solche Streckrollenaggregate weisen eine hohe Betriebsgeschwindigkeit auf, um bspw. auf den beheizten Galetten Filamentfäden bis zu 6000 m/min und mehr zu fördern und zu erwärmen. Dabei kann eine Galette allein ein Gewicht von bspw. 25 kg aufweisen, so dass die Kombination von Masse und hoher Geschwindigkeit zwangsläufig zu Schwingungen führt, welche innerhalb des Streckrollenaggregates übertragen werden und dabei Resonanzen entstehen können, welche Störungen im Betrieb hervorrufen können.
  • Das Unterbinden solcher Schwingungen kann auf verschiedene Weise erfolgen, inkl. durch Massnahmen in bezug auf Gewicht und Steifigkeit der in Schwingung geratenden Teile oder andererseits durch entsprechendes Vorsehen von schwingungsdämpfenden Elementen an geeigneten Stellen.
  • Das Finden solcher Stellen ist allerdings nicht einfach und erfordert Fantasie im Analysieren und Feststellen möglicher Schwingungen, um dadurch mögliche Schwingungsherde zu erfassen und diese durch Plazieren geeigneter Dämpfungsmittel im wesentlichen zu inaktivieren.
  • In der Regel werden die rotierenden Teile derart gedämpft gelagert, dass möglichst keine Schwingungen an die stationären Teile übertragen werden, was jedoch je nach Konstruktion zu komplizierten und teuren Lösungen führten kann. Ausserdem können auch stationäre Teile Eigenschwingungen erzeugen, beispielsweise wenn es sich um Induktoren innerhalb von Galetten handelt, mittels welchen die Mantelwand der Galetten erwärmt wird.
  • Es war deshalb Aufgabe, neue Wege zu finden, um Schwingungen an stationären Teilen zu unterbinden, welche durch rotierende Elemente oder genannte Eigenschwingungen von stationären Teilen ausgelöst werden können. Erfindungsgemäss wurde die Aufgabe durch die im Kennzeichen des 4. und 16. Anspruches aufgeführten Merkmale gelöst.
  • Vorteilhafte weitere Ausführungsformen sind in den abhängigen Ansprüchen aufgeführt.
  • Der Vorteil der Erfindung besteht darin, dass es sich um wirksame und trotzdem einfache Lösungen handelt.
  • Die Erfindung wird anhand beispielhafter Ausführungsformen näher beschrieben.
  • Es zeigen:
  • Fig. 1
    ein erfindungsgemässes Streckrollenaggregat im Längsschnitt, schematisch dargestellt,
    Fig. 2
    eine Variante von Fig. 1,
    Fig. 3
    ein weiteres Beispiel eines erfindungsgemässen Streckrollenaggregates,
    Fig. 4
    eine Variante eines Details des Streckrollenaggregates von Fig. 3,
    Fig. 5
    ein Detail des Streckrollenaggregates von Fig. 1 und 2, vergrössert dargestellt,
    Fig. 6
    eine Variante des Details von Fig. 5,
    Fig. 7 bis 13
    je ein erfindungsgemässes Detail des Streckrollenaggregates von Fig. 3,
    Fig. 8a
    das erfindungsgemässe Detail von Fig. 8, separat und im Schnitt gemäss den Schnittlinien I (Fig. 8b) dargestellt
    Fig. 8b
    das Detail von Fig. 8a in Blickrichtung A (Fig. 8a) dargestellt
    Fig. 9a
    das erfindungsgemässe Detail von Fig. 9, separat und in Seitenansicht dargestellt
    Fig. 9b
    das Detail von Fig. 9a in Blickrichtung B (Fig.9a) dargestellt
    Fig. 12a
    eine Variante eines Details der Fig. 12,
    Fig. 13a
    eine vergrösserte Darstellung des erfindungsgemässen Details von Fig. 13,
    Fig. 13b
    das Detail von Fig. 13a in Blickrichtung C (Fig.13a) dargestellt
    Fig. 14
    eine Variante des Streckrollenaggregates von Fig.3,
    Fig. 15
    erfindungsgemässe Details angewendet im Streckrollenaggregat der Fig. 14, vergrössert dargestellt,
    Fig. 16
    eine erfindungsgemässe Variante der Fig. 15, nur die obere Hälfte, mit Blick auf Fig. 15 gesehen, dargestellt.
  • Die Fig. 1 zeigt ein Streckrollenaggregat 1 mit einer Galette 2 und einem Elektromotor 3 mit einer Welle 8, welche am galettenseitigen Ende mit einem konischen Endabschnitt 13 zur Aufnahme einer Nabe 12 versehen und Bestandteil einer Stirnwand 11 der Galette 2 ist. Mit der Stirnwand 11 ist im weiteren eine Mantelwand 10 verbunden, auf welcher im Betrieb das Filament (nicht gezeigt) in an sich bekannter Weise in mehreren Schleifen aufliegt.
  • Innerhalb der Mantelwand 10 ist um die Welle 8 herum ein Induktor 16 mit einem Zwischenraum 15 zur Mantelwand 10 vorgesehen, welcher von einem Tragzylinder 18 aufgenommen ist. In dieser Fig. 1 sind Ausschläge der Galette, welche durch radiale Kräfte aufgrund der Rotation der Galette und dadurch entstehender Schwingungen und Eigenschwingungen des Induktors entstehen, mit den gezeichneten Pfeilen N und M rein schematisch dargestellt.
  • Mit diesen Ausschlägen sei gezeigt, dass im Betrieb die schematisch mit Auslenkung dargestellte Symmetrieachse 28 des Induktors 16 nicht koaxial mit der ebenfalls schematisch mit Gegenauslenkung dargestellten Rotationsachse 29 der Welle 8 liegen muss, was zu Störungen führen kann. Eine koaxiale Lage dieser beiden Achsen mit der geometrischen Achse ist mit der Achse 34 dargestellt.
  • Der Tragzylinder 18 weist an seinem dem Motor 3 gegenüberliegenden Ende einen Tragzylinderflansch 9 auf, welcher in radialer Richtung mittels einem zu einem Motorgehäuse 23 gehörenden Zentrierring 24 zentriert wird.
  • In axialer Richtung ist zwischen dem Tragzylinderflansch 9 und einer Motorgehäuse-Stirnwand 32 ein ringförmiger oder eine Anzahl ringförmig angeordneter Schwingungsdämpfer vorgesehen, um zu vermeiden, dass Schwingungen hauptsächlich in axialer Richtung vom Motorgehäuse 23 auf den Tragzylinder 18 und damit an den Induktor 16 übertragen werden.
  • Der Tragzylinderflansch 9 wird mittels einer Druckfeder 25, welche zwischen dem Tragzylinderflansch 9 und einer Schraube 26 vorgesehen ist und welche beim Anziehen der Schraube 26 bis zu einem in Fig. 5 und 6 gezeigten Anschlag 35 eine Kraft in axialer Richtung gegen den Tragzylinderflansch 9 ausübt, in Richtung gegen die Motorgehäuse-Stirnwand 32 gepresst.
  • Ein Rotor 22 ist innerhalb des Motorgehäuses 23 von der Welle 8 aufgenommen, welche ihrerseits innerhalb des Motorgehäuses 23 mittels Wälzlager 20 und 21 drehbar gelagert ist.
  • Mittels einer Schraube 14 ist die Galette 2 mit der Welle 8 fest verbunden.
  • Die Fig. 2 zeigt im Vergleich zu Fig. 1, dass zwischen dem Zentrierring 24 und dem Tragzylinderflansch 9 zusätzlich ein Schwingungsdämpferring 30 vorgesehen ist oder alternativ eine Anzahl ringförmig angeordneter Schwingungsdämpfer vorgesehen sind, welcher bzw. welche zusätzlich zu den axial gerichteten Schwingungsdämpfungen durch den Schwingungsdämpfer 27 noch radial gerichtete Schwingungen dämpft bzw. dämpfen.
  • Die übrigen Elemente entsprechen den Elementen der Fig. 1 und sind dementsprechend mit denselben Bezugszeichen versehen.
  • Die Fig. 3 zeigt eine Variante eines Streckrollenaggregates, welches hier mit 1.1 gekennzeichnet ist. Dieselben Elemente, welche bereits im Zusammenhang mit der Fig. 1 und 2 beschrieben wurden oder dieselbe Funktion aufweisen, haben hier dieselben Bezugszeichen, ausgenommen dass der Schwingungsdämpfer 27 der Fig. 1 und 2 hier mit 27.1 gekennzeichnet ist und dass die Zentrierung des Tragzylinderflansches 9 mittels eines den Gehäuseflansch 49 umgreifenden, zum Tragzylinderflansch 9 gehörenden Zylinderteiles 31 erfolgt.
  • Ebenfalls ist der Motor 3.1 nicht unmittelbar neben der Galette 2 angeordnet, sondern an einem Gehäuse 17 befestigt, in welchem die Welle 8 mittels den Wälzlagern 4,5,6 und 7 drehbar gelagert ist.
  • Da in dieser Variante die Ausschläge durch die Kräfte N und M der Fig. 1 und 2 nicht dargestellt sind, liegt die Symmetrieachse des Induktors 16 koaxial mit der Rotationsachse 29 der Welle 8, was mit der geometrischen Achse 34 dargestellt ist.
  • Die Fig. 4 zeigt einen Ausschnitt aus der Fig. 3, insbesondere mit einem Schwingungsdämpfer 30.1, welcher analog zum Schwingungsdämpfer 30 der Fig. 2 die Ausschläge in radialer Richtung dämpft und zwischen einem Zylinderteil 31 vom Tragzylinderflansch 9 und der Lagergehäusestirnwand 49 vorgesehen ist.
  • Im weiteren weist die Fig. 4 zwischen der Schraube 26 und dem Tragzylinderflansch 9 nicht eine Druckfeder 25 auf, wie dies in den Fig. 1 bis 3 dargestellt ist, sondern einen Schwingungsdämpfer 33, welcher zwischen jeder vorgesehenen Schraube 26 und dem Tragzylinderflansch 9 vorgesehen ist.
  • Dieser Schwingungsdämpfer hat einerseits die Funktion der Druckfeder 25 und andererseits noch zusätzlich die Funktion gewisser axial gerichteter Schwingungen zu dämpfen.
  • Die Fig. 5 und 6 zeigen einen O-Ring 30 als radial wirkender Schwingungsdämpfer anstelle des rechteckigen Dämpfers 30 der Fig. 2, jedoch mit derselben Funktion.
  • In Fig. 6 ist im weiteren anstelle der Druckfeder 25 der in Fig. 4 gezeigte Schwingungsdämpfer 33 vorgesehen, mit den bereits vorgenannten Funktionen.
  • Die Fig. 7 zeigt einen Federstift 38, welcher mit seinem hinteren Teil im Tragzylinderflansch 9.1 fest eingelassen ist, und welcher auf dem vorderen Teil einen aus einem hohlzylindrischen Dämpfungselement bestehenden radialwirkenden Schwingungsdämpfer 30.2 trägt, der in einer in der Lagergehäuse-Stirnwand 49.1 vorgesehenen Bohrung des Gehäuses 17 eingefügt ist. Der Federstift 38 und der Schwingungsdämpfer 30.2 bilden eine Schwingungsdämpfereinheit 30.A.
  • Im weiteren ist ein ringscheibenförmiger, in axialer Richtung der Welle 8 wirkender Schwingungsdämpfer 27.2 zwischen der Lagergehäuse-Stirnwand 49.1 und dem Tragzylinderflansch 9.1 vorgesehen.
  • Mittels der Schraube 26 und der auf der Schraube 26 vorgesehenen Druckfeder 25 wird der Tragzylinderflansch 9.1 gegen die Lagergehäuse-Stirnwand 49.1 gepresst, jedoch nur derart, dass der Schwingungsdämpfer 27.2 in der Lage ist, die radialen Schwingungen an den Federstift 38 bzw. an den Schwingungsdämpfer 30.2 zu übertragen, das heisst, dass eine Relativbewegung zwischen Tragzylinderflansch 9.1 und Lagergehäusestirnwand 49.1 möglich ist.
  • In der Regel werden mindestens drei der aus dem Federstift 38 und dem Schwingungsdämpfer 30.2 gebildeten Einheiten 30.A gleichmässig umfänglich verteilt, wobei in Fig. 7 die Schraube 26 direkt oberhalb dieser Einheit gezeigt ist, jedoch sinnvollerweise zwischen zwei umfänglich verteilten Einheiten aus Federstift 38 und Schwingungsdämpfer 30.2 vorgesehen wird, was übrigens auch für alle umfänglich verteilten Schwingungsdämpfer gilt.
  • Die Fig. 8 zeigt anstelle der in Fig. 7 aufgeführten zweiteiligen radialen und axialen Dämpfungsmitteln ein Dämpfungsmittel, bestehend aus einem einzigen ringförmigen Element, welches sich einerseits aus einem radial wirkenden ringförmigen Schwingungsdämpfer 30.3 von im wesentlichen achteckigen Querschnitt und andererseits aus dem axial wirkenden ringförmigen Schwingungsdämpfer 27.3 zusammensetzt. Das heisst, dass der Schwingungsdämpfer 27.3 die axial gerichteten Schwingungen und der Schwingungsdämpfer 30.3 die radial gerichteten Schwingungen dämpft. Dabei ist der achteckige Querschnitt des Schwingungsdämpfers 30.3 in ringförmigen Nuten 61 gefasst, dabei ist eine ringförmige Nute in der Lagergehäuse-Stirnwand 49.2 und die andere im Tragzylinderflansch 9.2 des Tragzylinders 18 eingelassen.
  • In analoger Weise, wie für Fig. 7 gezeigt, werden auch hier die Flanschen 49.2 und 9.2 mittels Schrauben 26 und Federn 25 zusammengehalten, was jedoch in dieser wie auch in weiteren Figuren lediglich durch die Mittellinie 37, welche in Fig. 7 ebenfalls gekennzeichnet ist, schematisch dargestellt ist.
  • Die Fig. 8a zeigt separat das in Fig. 8 dargestellte schwingungsdämpfende Element, bestehend aus dem ringförmigen Schwingungsdämpfer 27.3, welcher die axial gerichteten Schwingungen dämpft, und dem am Umfang davon angeschlossenen Schwingungsdämpfer 30.3, welcher die radial gerichteten Schwingungen dämpft. Die Fig. 8b ist eine Draufsicht der Fig. 8a in Blickrichtung A mit der Darstellung der Schwingungsdämpfer 27.3 und 30.3.
  • Die Fig. 9 zeigt eine Variante des radialen und axialen Dämpfungselementes der Fig. 8, welches ebenfalls aus einem Stück gefertigt ist, wobei es sich hier anstelle des achteckigen radial wirkenden Dämpfungselementes 30.3 um einen Schwingungsdämpfer mit gegenüberliegenden zylindrischen Noppen 30.4 handelt, welche gleichmässig am Umfang verteilt und gegenüberliegend des ringförmigen Schwingungsdämpfers 27.4 angeordnet sind. Die Noppen 30.4 werden je in Bohrungen 50 von gleichem Durchmesser gefasst, welche je entsprechend der Anzahl Noppen 30.4 in der Lagergehäuse-Stirnwand 49.3 und im Tragzylinderflansch 9.3 vorgesehen sind. Mindestens drei solcher Noppenpaare sind gleichmässig am Umfang vorgesehen.
  • Dabei nehmen die Noppen 30.4 die radialen Schwingungen und der ringförmige Schwingungsdämpfer 27.4 die axialen Schwingungen auf.
  • Das Zusammenspannen der Lagergehäuse-Stirnwand 49.3 mit dem Tragzylinderflansch 9.3 geschieht mittels den Schrauben 26 und den Druckfedern 25, was hier lediglich hilfsweise mit der Schraubenachse 37 schematisch angedeutet ist, wobei die Verteilung dieser Schrauben am Umfang ebenso symmetrisch ist wie die Verteilung der Noppen 30.4.
  • Die Fig. 9a zeigt separat die erfindungsgemässen Schwingungsdämpfer, nämlich die Ringscheibe mit der Kennzeichnung 27.4 als Schwingungsdämpfer zur Aufnahme von axial gerichteten Schwingungen und die noppenartigen Zylinder mit der Kennzeichnung 30.4, welche Schwingungsdämpfer zur Aufnahme von radial gerichteten Schwingungen sind. Dabei sind die Schwingungsdämpfer 30.4 fest mit dem Schwingungsdämpferring 27.4 verbunden. Es besteht jedoch auch die Möglichkeit, die Schwingungsdämpfer 30.4 lediglich in einer Bohrung (nicht dargestellt) im Schwingungsdämpfer 27.4 durchzuschieben, d.h. nicht fest mit diesem Ring 27.4 zu verbinden.
  • Die Fig. 10 zeigt eine weitere Variante der axialen und radialen Schwingungsdämpfung zwischen einem Tragzylinderflansch 9.4 und einer Lagergehäuse-Stirnwand 49.4, indem hier der radial wirkende Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement 30.5 ist, welches einerseits mit seiner äusseren zylindrischen Fläche spielfrei in einer Bohrung (nicht gekennzeichnet) im Tragzylinderflansch 9.4 des Tragzylinders 18 aufgenommen ist und andererseits ein Endteil eines Tragbolzens 39 spielfrei aufnimmt, dessen anderes Endteil spielfrei in der Lagergehäuse-Stirnwand 49.4 des Gehäuses 17 aufgenommen ist. Der Schwingungsdämpfer 30.5 und der Tragbolzen 39 bilden eine Schwingungsdämpfereinheit 30.B.
  • Die axialen Schwingungen werden durch einen ringförmigen Schwingungsdämpfer 27.5 aufgenommen, welcher zwischen der Lagergehäuse-Stirnwand 49.4 und dem Tragzylinderflansch 9.4 festgehalten ist und mittels den Schrauben 26 und den Federn 25 eine vorgegebene Vorspannung gehalten wird. Diese Vorrspannung ist derart, dass kein Spiel zwischen der Lagergehäuse-Stirnwand 49.4 und dem Tragzylinderflansch 9.4 und dem ringförmigen Schwingungsdämpfer 27.5 entstehen kann.
  • Die Schwingungsdämpfereinheit 30.B ist mit einer vorgegebenen Regelmässigkeit umfänglich verteilt, beispielsweise gleichmässig mit drei Einheiten.
  • Die Fig. 11 zeigt im weiteren, dass der radial wirkende Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement 30.5 ist, welches in einer Bohrung (nicht gekennzeichnet) in der Lager-Gehäusestirnwand 49.5 des Gehäuses 17.fest eingelassen ist , und dass das Dämpfungselement 30.5 einen Federteil 42 aufnimmt, wobei an einem Ende des Federteiles 42 ein Tragbolzen 41 fest angeschlossen ist, welcher spielfrei im Tragzylinderflansch 9.5 des Tragzylinders 18 und am anderen Ende ein Tragbolzen 41.1 fest angeschlossen ist, welcher spielfrei im Gehäuse 17 eingelassen ist. Der Tragbolzen 41 und 41.1 und der Federteil samt dem Schwingungsdämpfer 30.5 bilden eine Schwingungsdämpfereinheit 30.C.
  • Für die axiale Dämpfung ist ein ringförmiger Schwingungsdämpfer 27.6 vorgesehen, der wie bereits für die anderen ringförmigen Schwingungsdämpfer zwischen der Lagergehäuse-Stirnwand 49.5 und dem Tragzylinderflansch 9.5 vorgespannt vorgesehen ist. Dabei diese Vorspannung, wie bereits früher beschrieben, durch die Schraube 26 und die Federn 25 erzeugt.
  • Wie bereits für die Fig. 10 beschrieben, werden auch diese Dämpfungselemente bestehend aus den Elementen 41, 41.1, 42 und 30.5 gleichmässig, umfänglich verteilt, wobei vorzugsweise drei solcher Einheiten am Umfang verteilt vorgesehen werden, was eine Mehrzahl davon nicht ausschliesst. Wie bereits erwähnt, werden auch die Schrauben 26 mit einer gleichen oder anderen Regelmässigkeit umfänglich verteilt.
  • Die Fig. 12 weicht in bezug auf die genannte Schwingungsdämpfung in axialer und radialer Richtung von den bisher mit den Fig. 7 bis 11 gezeigten Varianten ab, indem insofern zusätzlich Oel als Dämpfungselement verwendet wird, indem zwischen zwei O-Ringen 30.6 über eine Bohrung 43 Oel mit einem vorgegebenen Druck, d.h. blasenfrei in diesen Raum gepresst wird, so dass die genannten O-Ringe 30.6 einerseits als Dichtungselemente verwendet werden und andererseits in axialer Richtung durch das bewegte Oel bis zu einem kleinen, jedoch unbekannten Mass verdrängt werden. Zur Hauptsache gechieht jedoch die Dämpfung durch das in Umfangsrichtung verdrängte Oel, welches dazu eine vorgegebene Viskosität aufweist.
  • Der Zwischenraum zwischen den beiden O-Ringen 30.6 wird nebst den O-Ringen selbst durch einen Ringflansch 44 sowie durch die Lagergehäuse-Stirnwand 49.6 begrenzt, wobei der Ringflansch 44 Teil des Tragzylinderflansches 9.6 ist. In der Fig. 12 ist der Ringflansch 44 in axialer Richtung gezeigt und parallel dazu eine zylindrische Innenfläche der Lagergehäuse-Stirnwand 49.6, wobei es lediglich wesentlich ist, dass sich der Ringflansch 44 und die genannte zylindrische Innenfläche einander im wesentlichen parallel liegen, andererseits ist eine genaue axiale Ausrichtung dieser beiden einander gegenüberliegenden parallelen Flächen nicht notwendig. Die beiden O-Ringe 30.6 und der Federstift 40 bilden zusammen mit dem Oel eine Schwingungsdämpfereinheit 30.D.
  • Die axial gerichteten Schwingungen werden durch ein 0-ringförmiger Schwingungsdämpfer 27.7 aufgenommen, welcher zwischen der Lagergehäuse-Stirnwand 49.6 und dem Tragzylinderflansch 9.6 mit einer gewissen Vorspannung vorgesehen ist. Die Vorspannung wird, wie früher erwähnt, durch die Schraube 26 und den Federn 25 erzeugt, was mit der Achse 37 schematisch ersatzweise dargestellt ist.
  • Dabei können die Schrauben 26 umfänglich gleichmässig verteilt vorgesehen werden.
  • Die Fig. 12a zeigt, dass anstelle der O-Ringe 30.6 und dem sich dazwischen befindlichen Oel ein voller Schwingungsdämpfer 30.6.1 vorgesehen werden kann.
  • Die Fig. 13 zeigt einen ringförmigen Schwingungsdämpfer 27.8, zur Dämpfung der axial gerichteten Schwingungen, welcher zwischen dem Tragzylinderflansch 9.7 und der Lagergehäuse-Stirnwand 49.7 wie vorbeschrieben mit einer vorgegebenen Vorspannung gehalten wird. Der Schwingungsdämpfer 27.8 weist einen Durchlass 57 für einen Federstift 38 auf, welcher mit dem einen Ende fest im Tragzylinderflansch 9.7 aufgenommen ist und am anderen Ende eine in Fig. 13a vergrössert dargestellte und mit Schlitzen 58 versehene Schlitzbüchse 45 trägt. Diese Schlitzbüchse 45 ist von O-Ringen 51 mit einer solchen vorgegebenen Vorspannung umfasst, dass der Federstift 38 die Schlitzbüchse 45 spielfrei aufnimmt.
  • Dabei ist jeder O-Ring in einer am Umfang der Schlitzbüchse eingelassenen Rille 60 (nicht gekennzeichnet) aufgenommen, um seine Stellung auf der Schlitzbüchse 45 auch dann nicht zu verändern, wenn die O-Ringe 51 samt Schlitzbüchse 45 in eine zylindrische Vertiefung 46, welche durch eine in der Lagergehäuse-Stirnwand vorgesehenen Bohrung 52 gebildet wird (in Fig. 13a mit strichpunktierten Linien dargestellt) eingeschoben werden. Dabei ist der Innendurchmesser der Bohrung 52 so vorgesehen, dass die eingeschobenen O-Ringe in radialer Richtung in die genannten Rillen 60 gepresst und damit mit einer vorgegebenen Vorspannung darin gehalten werden, so dass in Kombination, einerseits der Federstift 38, wie vorbeschrieben, spielfrei in der Schlitzbüchse 45 und andererseits die O-Ringe spielfrei in der Bohrung 52 gehalten werden.
  • Die Schlitzbüchse 45 und die O-Ringe bilden einen radial wirkenden Schwingungsdämpfer 30.7 und diese bilden zusammen mit dem Federstift eine Schwingungsdämpfereinheit 30.E. Mindestens drei solche Schwingungsdämpfereinheiten 30.7 werden umfänglich verteilt angeordnet, es können jedoch je nach Bedarf auch mehr sein.
  • Der Vorteil einer solchen Schwingungsdämpfereinheit 30 E besteht darin, dass das sich in der Lagergehäuse-Stirnwand 49.7 befindliche Ende des Federstiftes 38 bewegen kann, jedoch ohne je irgend ein Spiel zu verursachen, da die Vorrspannung in den O-Ringen weder ein Spiel zwischen der zylindrischen Bohrung 52 und den O-Ringen noch zwischen dem Federstift 38 und der Schlitzbüchse 45 zulässt.
  • Die Fig. 13b zeigt den Schwingungsdämpfer 30.7 in Blickrichtung C, worin die Elemente mit denselben Funktionen wie in Fig. 13a mit denselben Kennzeichen gekennzeichnet sind.
  • Die Fig. 14 sieht als Variante zu Fig. 3 zwischen dem Gehäuse 17 und den Wälzlagern 4,5,6 und 7 je radial wirkende Dämpfungselemente 30.12 vor, um die radialen Bewegungen der Welle 8 innerhalb des Gehäuses 17 zu dämpfen. Diese Fig. 14 dient als allgemeine Ausgangsbasis für die nachfolgende Beschreibung der Figuren 15 und 16.
  • Die Fig. 15 zeigt eine Kombination der gedämpften Lagerung des Tragzylinders 18 gegenüber einem Adapter 53 sowie der gedämpften Lagerung der Welle 8 gegenüber dem Lagergehäuse 17.
  • Dabei ist der Adapter 53 zwischen dem Tragzylinderflansch 9.8 und einer zum Gehäuse 17 gehörenden Lagergehäuse-Stirnwand 49.8 vorgesehen. Der Adapter 53 ist mit einem Ende, in axialer Richtung der Welle gesehen, gegen den Tragzylinderflansch 9.8 gerichtet und liegt mit dem anderen Ende, das heisst mit dem Adapterflansch 54 an der Lagergehäuse-Stirnwand 49.8 an.
  • Zwischen dem Tragzylinderflansch 9.8 und dem vorgenannten dagegen gerichteten Ende des Adapters 53 ist ein ringförmiger Schwingungsdämpfer 27.8 vorgesehen, der die axialen Schwingungen dämpft. Der Schwingungsdämpfer 27.8 ist mit Bohrungen 55 versehen, welche koaxial mit Vertiefungen 46.1 versehen sind, die sich je durch eine Bohrung 52.1 ergeben und denselben Durchmesser aufweisen wie diese Vertiefungen 46.1.
  • Diese Vertiefungen 46.1 dienen, um je einen aus Fig. 13 bekannten radial wirkenden Schwingungsdämpfer 30.7 aufzunehmen. Dabei entspricht die Vertiefung 46.1 der in Fig. 13a mit strichpunktierten Linien begrenzte Vertiefung 46.
  • Da es sich auch in dieser Figur um eine radial wirkende Schwingungsdämpfereinheit 30.E handelt, welche derjenigen für Fig. 13 entspricht, ist auch in dieser Figur dieser Schwingungsdämpfer mit 30.7 gekennzeichnet. Im weiteren werden mindestens drei solcher Schwingungsdämpfereinheiten 30.E umfänglich verteilt angeordnet, es können aber auch je nach Bedarf mehr sein.
  • Entsprechend der eingezeichneten Schraubenachse 37 wird der Tragzylinderflansch 9.8 mittels Schrauben 26 und Federelementen 25 mit einer solchen Vorspannung im ringförmigen Schwingungsdämpfer 27.8 mit dem Adapter 53 zusammengehalten, dass der Schwingungsdämpfer 27.8 in der Lage ist, die axialen Schwingungen zu verarbeiten.
  • Die gedämpfte Lagerung der Welle 8 ist auf demselben Prinzip der Schwingungsdämpfung wie für den Tragzylinder 18 vorgesehen, indem ein Federstift 38 eines Schwingungsdämpfers 30.8 einerseits in einem Lagergehäuse 48 fest aufgenommen ist, welches zur Aufnahme der Wellenlager 6 und 7 dient. Die Schwingungsdämpfereinheit it hier mit 30.F gekennzeichnet.
  • Der Federstift 38 nimmt an seinem linken Ende, mit Blick auf die Fig. 15 gesehen, eine Schlitzbüchse mit O-Ringen 51 auf, welche analog Fig. 13a aufgebaut ist.
  • Ebenfalls sitzt diese Schlitzbüchs-O-Ring-Kombination in einer Vertiefung 46.2, welche im Prinzip der Vertiefung 46.1 entspricht. Ein zum Adapter 53 gehörender Adapterflansch 54 liegt unmittelbar an der Lagergehäuse-Stirnwand 49.8 an und ist mit dieser mittels Schrauben 26 und Federelementen 25 verbunden, was schematisch mit der Mittellinie 37.1 dargestellt ist.
  • Dabei sollen mindestens drei Schwingungsdämpfungselemente 30.7 bzw. 30.8 in einer gleichmässigen Verteilung umfänglich vorgesehen werden, wobei die Schraubverbindungen mittels den Schrauben 25 nicht unbedingt an derselben Stelle wie das Vorsehen der Schwingungsdämpfer angeordnet werden müssen, sondern in einer vorgegebenen Weise dazwischen, was übrigens für alle im Zusammenhang mit den Fig. 7, 10, 11, 13 oder 15 und 16 gezeigten und beschriebenen Schraubverbindungen gilt.
  • Die Fig. 16 zeigt eine Variante der Fig. 15, indem die Dämpfung zwischen dem Tragzylinder 18 und dem Lagergehäuse 17 mittels eines axial wirkenden Dämpfungselementes 27.9 durchgeführt wird, wobei das Dämpfungselement 27.9 zwischen dem Tragzylinderflansch 9.9 und der Lagergehäuse-Stirnwand 49.9 angeordnet ist und im Prinzip dem bereits für die Fig. 8 beschriebenen Dämpfungselement 27.3 entspricht, das heisst, dass die trapezförmigen Erhebungen 30.10 die radial wirkenden Schwingungsdämpfer zwischen Tragzylinderflansch und Lagergehäuse-Stirnwand sind.
  • Im weiteren geschieht die radiale Dämpfung der Lager 6 und 7 mittels einer radial wirkenden Schwingungsdämpfereinheit 30.C von Fig. 11 wobei der Schwingungsdämpfer hier mit 30.9 und die Schwingungsdämpfereinheit mit 30.G gekennzeichnet ist.
  • Dabei sind die Lager 6 und 7 in einem Lagergehäuse 48.1 aufgenommen, wobei im Lagergehäuse 48.1 ein Tragbolzen 41 fest angeordnet ist, dessen gegenüberliegendes Ende 41.1 im Gehäuse 17 spielfrei aufgenommen ist.
  • Zwischen den Tragbolzen 41 und 41.1 ist ein im Durchmesser reduzierter Teil 42 vorgesehen, der zusammen mit den Tragbolzen 41.1 und 41.2 ein zusammenwirkendes Teil bildet, wobei das Teil 42 den radial wirkenden Schwingungsdämpfer 30.9 aufnimmt, der einerseits an einer zylindrischen Innenwand 56 des Gehäuses 17 und anderseits am Lagergehäuseteil 59 anliegt und dadurch die von der Welle verursachten Schwingungen radial dämpft.
  • Es sei noch erwähnt, dass eine solche Lagerdämpfung ebenfalls am anderen, hier nicht dargestellten Ende des Lagergehäuses in spiegelbildlicher Anordnung vorgesehen werden kann, und zwar für die Lager 4 und 5 (s.Fig.14).
  • Letzlich sei noch erwähnt, dass wie in den Fig. 1 und 2 gezeigt kein Lagergehäuse vorhanden ist, sondern dass die Lagerung der Welle direkt im Motorengehäuse stattfindet, und dass die Dämpfung in der Art, wie es in den Fig. 15 und 16 direkt im Motorengehäuse durchgeführt werden kann. Das heisst, dass die Lager 20 und 21 der Fig. 1 in der Art gelagert würden, wie es mit den Fig. 15 und 16 gezeigt ist.
  • Ebenfalls können die mit den Figuren 7 bis 16 gezeigten Dämpfungsarten auch mit dem mit den Figuren 1 und 2 sowie 5 und 6 gezeigten Motorengehäuse 3 angewendet werden.

Claims (26)

  1. Streckrollenaggregat für Streckspul-Spinnstreckspul- und Streckzwirnmaschinen mit einem Induktor (16) zum Beheizen einer Galette (2), mit einer in Lagern (20,21; 4-7) gelagerten Antriebswelle (8) zur Aufnahme der Galette (2) und einem Gehäuse (3;17) zur Aufnahme eines den Induktor (16) aufnehmenden Tragzylinders (18), und der Lager (20,21; 4-7) der Antriebswelle (8),
    dadurch gekennzeichnet,
    dass für die Dämpfung der durch den Betrieb des Streckrollenaggregates erzeugten Schwingungen zwischen dem Tragzylinder (18) und dem Gehäuse (3;17) mindestens ein Schwingungsdämpfer und vorzugsweise in Kombination dazu mindestens ein radial wirkender Schwingungsdämpfer zwischen den Lagern (20,21; 4-7) und dem Gehäuse (3;17) vorgesehen ist.
  2. Streckrollenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Tragzylinder (18) und dem Gehäuse (3;17) ein in axialer Richtung wirkender Schwingungsdämpfer (27-27.9) vorgesehen ist.
  3. Streckrollenaggregat nach Anspruch 2, dadurch gekennzeichnet, dass zusätzlich zwischen dem Tragzylinder (18) und dem Gehäuse (3;17) ein in radialer Richtung wirkender Schwingungsdämpfer (30-30.9) vorgesehen ist.
  4. Streckrollenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass der zwischen dem Tragzylinder (18) und dem Gehäuse (3;17) vorgesehene Schwingungsdämpfer ein axial und radial kombiniert wirkender Schwingungsdämpfer (27.3,30.3; 27.9,30.10) ist.
  5. Streckrollenaggregat nach Anspruch 2, dadurch gekennzeichnet, dass der axial wirkende Schwingungsdämpfer ein zwischen dem Gehäuse (17) und dem den Induktor (16) aufnehmenden Tragzylinder (18) eingespanntes ringscheibenförmiges Dämpfungselement (27.1-27.6 und 27.8 und 27.9) oder ein ringförmiges Dämpfungselement (27.7) ist.
  6. Streckrollenaggregat nach Anspruch 3, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.2) umfasst, welches einerseits fest auf einem Ende eines Federstiftes (38) und andererseits mit dem äusseren Umfang spielfrei in einer Bohrung des Gehäuses (17) sitzt sowie, dass das andere Ende des Federstiftes (38) fest im Tragzylinder (18) eingelassen ist und, dass mindestens drei solcher Dämpfungselemente (30.2) in genannter Kombination mit dem Federstift (38) umfänglich gleichmässig verteilt vorgesehen sind.
  7. Streckrollenaggregat nach Anspruch 3 und 4, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer ein im Querschnitt achteckiger Ring (30.3) ist, welcher anschliessend an den axial wirkenden Schwingungsdämpfer (27.3) vorgesehen ist und dass der im Querschnitt achteckige Ring (30.3) in angepassten ringförmigen Nuten (61) im Gehäuse (17) und dem Tragzylinder (18) eingelegt ist.
  8. Streckrollenaggregat nach Anspruch 3 und 4, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer gegenüberliegende zylindrische Noppen (30.4) sind, welche gegenüberliegend beidseits des axial wirkenden Schwingungsdämpfers (27.4) liegen und mindestens drei solcher Noppenpaare gleichmässig am Umfang verteilt vorgesehen sind, und dass jeder zylindrische Noppen (30.4) in einer Bohrung (50) von gleichem Durchmesser eingelassen ist, und zwar in einer Bohrung im Gehäuse (17) und im Tragzylinder (18).
  9. Streckrollenaggregat nach Anspruch 3, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.5) umfasst, welches einerseits in einer Bohrung (nicht gekennzeichnet) im Tragzylinder (18) fest eingelassen ist, und andererseits ein Endteil eines Tragbolzens (39) spielfrei aufnimmt, dessen anderes Endteil spielfrei im Gehäuse (17) eingelassen ist, sowie dass mindestens drei solcher Dämpfungselemente (30.5) in Kombination mit dem genannten Tragbolzen (39) am Umfang gleichmässig verteilt vorgesehen sind.
  10. Streckrollenaggregat nach Anspruch 3, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.5) umfasst, welches in einer Bohrung (nicht gekennzeichnet) des Gehäuses (3;17) fest eingelassen ist, und dass das Dämpfungselement (30.5) einen Federteil (42) aufnimmt, wobei an einem Ende des Federteils (42) ein Tragbolzen (41) fest angeschlossen ist, welcher spielfrei im Tragzylinder (18) und am anderen Ende ein Tragbolzen (41.1) fest angeschlossen ist, welcher spielfrei im Gehäuse (17) eingelassen ist, sowie dass mindestens drei solcher Dämpfungselemente (30.5) in Kombination mit dem genannten Tragbolzen (41) am Umfang gleichmässig verteilt vorgesehen sind.
  11. Streckrollenaggregat nach Anspruch 3, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer zwei O-Gummiringe (30.6) beinhalten, welche mit gegenseitigem Abstand zwischen einem Ringflansch (44) des Tragzylinders (18) und einer diesem gegenüberliegenden zylindrischen Innenfläche (nicht gekennzeichnet) eingespannt sind und der Raum (nicht gekennzeichnet) zwischen den O-Ringen (30.6) mit einem Fluid gefüllt ist oder dass im Raum anstelle der O-Ringe und des Fluides ein volles elastischen Dämpfungselement (30.6.1) vorgesehen ist, sowie dass im weiteren mindestens drei Federstifte (40) am Umfang gleichmässig verteilt ausserhalb des Raumes im Tragzylinder (18) und im Gehäuse (17) fest vorgesehen sind.
  12. Streckrollenaggregat nach Anspruch 3 und 5, dadurch gekennzeichnet, dass der radial wirkende Schwingungsdämpfer (30.7) eine von einem Ende eines Federstiftes (38) spielfrei aufgenommene Schlitzbüchse (45) ist, an welcher Rillen (60) zur Aufnahme von O-Ringen (51) vorgesehen sind, mittels welchen einerseits die Schlitzbüchse (45) derart zusammengedrückt wird, dass die vorgenannte Spielfreiheit entsteht, andererseits werden die O-Ringe (51) samt Federstift (38) in einer zylindrischen Vertiefung (46) des Gehäuses (17) gehalten, während das andere Ende des Federstiftes (38) fest im Tragzylinder (18) eingelassen ist und, dass vorzugsweise das scheibenförmige Dämpfungselement (27.8) Durchlassöffnungen (57) für den Durchlass des Federstiftes (38) aufweist.
  13. Streckrollenaggregat nach Anspruch 1 und 12, dadurch gekennzeichnet, dass ein analog zum radial wirkenden Schwingungsdämpfer (30.7) des Anspruches 13 als radial wirkender Schwingungsdämpfer (30.8) zur Dämpfung der Schwingungen zwischen der Antriebswelle (8) und dem Induktor (16) vorgesehen ist.
  14. Streckrollenaggregat nach Anspruch 1 und 10, dadurch gekennzeichnet, dass ein analog zum radial wirkenden Schwingungsdämpfer (30.5) des Anspruches 10 als radial wirkender Schwingungsdämpfer (30.9) zur Dämpfung der Schwingungen zwischen den Wellenlagern (20,21; 4-7) und dem Gehäuse (3,17) vorgesehen ist.
  15. Streckrollenaggregat nach mindestens einem der vorangehenden Ansprüche 6 bis 13, dadurch gekennzeichnet, dass die radial wirkenden Schwingungsdämpfer (30.2 bis 30.7) je zur alleinigen Dämpfung der Schwingungen zwischen den Lagern (20,21; 4-7) und dem Gehäuse (3,17) mit Hilfe der in mindestens einem der vorangehenden Ansprüche aufgeführten Merkmale vorgesehen werden.
  16. Streckrollenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass zwischen einem Befestigungsmittel 26 für das Befestigen des Induktors (16) am Gehäuse (3;17) und dem Induktor (16) mindestens ein elastisches Element (25;33) vorgesehen ist.
  17. Streckrollenaggregat nach Anspruch 16, dadurch gekennzeichnet, dass das elastische Element eine Druckfeder (25) ist.
  18. Streckrollenaggregat nach Anspruch 16, dadurch gekennzeichnet, dass das elastische Element ein Schwingungsdämpfer (33) ist.
  19. Streckrollenaggregat für Streckspul-, Spinnstreckspul- und Streckzwirnmaschinen mit einem Induktor (16) zum Beheizen einer Galette (2) mit einer in Lagern (20,21;4-7) gelagerten Antriebswelle (8) zur Aufnahme der Galette (2) und einem Gehäuse (3,17) zur Aufnahme eines den Induktor (16) aufnehmenden Tragzylinders (18) und der Lager (20,21;4-7) der Antriebswelle (8), dadurch gekennzeichnet, dass für die Dämpfung der durch den Betrieb des Streckrollenaggregates erzeugten Schwingungen zwischen dem Tragzylinder und der die Antriebswelle aufnehmenden Lager, zwischen mindestens einem die Lager aufnehmenden Lagergehäuse und dem Gehäuse (3, 17) mindestens ein Schwingungsdämpfer vorgesehen ist.
  20. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.2) umfasst, welches einerseits fest auf einem Ende eines Federstiftes (38) und andererseits mit dem äusseren Umfang spielfrei in einer Bohrung des Gehäuse (3,17) sitzt, sowie, dass das andere Ende des Federstiftes (38) fest im Lagergehäuse eingelassen ist und, dass mindestens drei solcher Dämpfungselemente (30.2) in genannter Kombination mit dem Federstift (38) umfänglich gleichmässig verteilt vorgesehen sind.
  21. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer ein im Querschnitt achteckiger Ring (30.3) ist, welcher anschliessend an einen axial wirkenden Schwingungsdämpfer (27.3) vorgesehen ist und, dass der im Querschnitt achteckige Ring (30.3) in angepassten ringförmigen Nuten im Gehäuse (3,17) und im Lagergehäuse eingelegt ist.
  22. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer gegenüberliegende zylindrische Noppen (30.4) umfasst, welche gegenüber liegend beidseits eines axial wirkenden Schwingungsdämpfers (27.4) liegen und mindestens drei solcher Noppenpaare gleichmässig am Umfang verteilt vorgesehen sind und, dass jeder zylindrische Noppen (30.4) in einer Bohrung (50) von gleichem Durchmesser eingelassen ist und zwar in einer Bohrung im Gehäuse (3,17) und im Lagergehäuse.
  23. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.5) umfasst, welches einerseits in einer Bohrung (nicht gekennzeichnet) im Lagergehäuse fest eingelassen ist und andererseits ein Endteil eines Tragbolzens (39) spielfrei aufnimmt, dessen anderes Endteil spielfrei im Gehäuse (3,17) eingelassen ist, sowie dass mindestens drei solcher Dämpfungselemente (30.5) in Kombination mit dem genannten Tragbolzen (39) am Umfang gleichmässig verteilt vorgesehen sind.
  24. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer ein hohlzylindrisches Dämpfungselement (30.5) umfasst, welches in einer Bohrung (nicht gekennzeichnet) des Gehäuses (3,17) fest eingelassen ist und, dass das Dämpfungselement (30.5) einen Federteil (42) aufnimmt, wobei an einem Ende des Federteils (42) ein Tragbolzen (41) fest angeschlossen ist, welcher spielfrei im Lagergehäuse und am anderen Ende ein Tragbolzen (41.1) fest angeschlossen ist, welcher spielfrei im Gehäuse (3,17) eingelassen ist, sowie dass mindestens drei solcher Dämpfungselemente (30.5) in Kombination mit dem genannten Tragbolzen (41) am Umfang gleichmässig verteilt vorgesehen sind.
  25. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer zwei O-Gummiringe (30.6) beinhaltet, welche mit gegenseitigem Abstand zwischen dem Lagergehäuse und einer diesem gegenüberliegenden zylindrischen Innenfläche (nicht gekennzeichnet) eingespannt sind und der Raum (nicht gekennzeichnet) zwischen den O-Ringen (30.6) mit einem Fluid gefüllt ist oder dass im Raum anstelle der O-Ringe und des Fluides ein volles elastisches Dämpfungselement (30.6.1) vorgesehen ist, sowie dass im weiteren mindestens drei Federstifte (40) am Umfang gleichmässig verteilt ausserhalb des Raumes am Lagerflansch und im Gehäuse (3,17) fest vorgesehen sind.
  26. Streckrollenaggregat nach Anspruch 19, dadurch gekennzeichnet, dass der Schwingungsdämpfer (30.7) eine von einem Ende eines Federstiftes (38) spielfrei aufgenommene Schlitzbüchse (45) ist, an welcher Rillen (60) zur Aufnahme von O-Ringen (51) vorgesehen sind, mittels welchen einerseits die Schlitzbüchse (45) derart zusammengedrückt wird, dass die vorgenannte Spielfreiheit entsteht, andererseits werden die O-Ringe (51) samt Federstift (38) in einer zylindrischen Vertiefung (46) des Gehäuses (3,17) gehalten, während das andere Ende des Federstiftes (38) fest im Lagerflansch eingelassen ist und, dass vorzugsweise das scheibenförmige Dämpfungselement (27.8) Durchlassöffnungen (57) für den Durchlass des Federstiftes (38) aufweist.
EP94916118A 1993-06-04 1994-06-02 Streckrollenaggregat Expired - Lifetime EP0654097B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH1680/93 1993-06-04
CH168093 1993-06-04
CH92594 1994-03-28
CH925/94 1994-03-28
PCT/CH1994/000104 WO1994029500A1 (de) 1993-06-04 1994-06-02 Streckrollenaggregat

Publications (2)

Publication Number Publication Date
EP0654097A1 EP0654097A1 (de) 1995-05-24
EP0654097B1 true EP0654097B1 (de) 1997-09-17

Family

ID=25686124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916118A Expired - Lifetime EP0654097B1 (de) 1993-06-04 1994-06-02 Streckrollenaggregat

Country Status (5)

Country Link
US (1) US5763859A (de)
EP (1) EP0654097B1 (de)
JP (1) JPH07509758A (de)
DE (1) DE59404089D1 (de)
WO (1) WO1994029500A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804783A (zh) * 2019-10-18 2020-02-18 桐乡越顺经编有限公司 一种用于纺织纱线加工的牵伸定型机构
DE102021002068A1 (de) 2020-05-14 2021-11-18 Oerlikon Textile Gmbh & Co. Kg Galettendämpfer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061692A1 (de) * 1998-05-28 1999-12-02 Barmag Ag Galette zum führen, erwärmen und fördern eines fadens
IT1309989B1 (it) * 1999-06-29 2002-02-05 Gd Spa Dispositivo di movimentazione di rulli in macchine automatiche.
CN100396832C (zh) * 2000-08-10 2008-06-25 苏拉有限及两合公司 导丝辊单元
JP3902935B2 (ja) * 2001-10-15 2007-04-11 キヤノン株式会社 像加熱装置、および画像形成装置
DE10328557B4 (de) * 2003-06-24 2005-04-14 Walzen Irle Gmbh Walze
FR2857985B1 (fr) * 2003-07-22 2006-02-10 Rieter Icbt Machine pour le cablage / torsion et la fixation en continu de fils
US7323666B2 (en) 2003-12-08 2008-01-29 Saint-Gobain Performance Plastics Corporation Inductively heatable components
JP2006351208A (ja) * 2005-06-13 2006-12-28 Tokuden Co Ltd 誘導発熱ローラ装置
DE102007058366A1 (de) * 2007-12-03 2009-08-06 Müller Weingarten AG Schwingungsisolierende Befestigungsvorrichtung
JP2010277981A (ja) * 2009-04-28 2010-12-09 Tokuden Co Ltd 誘導発熱ローラ装置
WO2011009497A1 (de) * 2009-07-22 2011-01-27 Oerlikon Textile Gmbh & Co. Kg Verfahren zum abziehen und zum verstrecken eines synthetischen fadens sowie eine vorrichtung zur durchführung des verfahrens
DE102010047103A1 (de) * 2010-09-29 2012-03-29 Carl Zeiss Jena Gmbh Flansch zum Abschluss eines optischen Geräts gegenüber einem Probenstrom und optisches Gerät zur teilweisen Anordnung in einem Probenstrom
EP2899414A1 (de) * 2014-01-23 2015-07-29 Siemens Aktiengesellschaft Gedämpfte Lagerung einer Rotorwelle
ITUA20161409A1 (it) * 2016-03-07 2017-09-07 M A E S P A Giunto di trasmissione per un organo di avanzamento ed organo di avanzamento di materiale in fibra in una linea di filatura da laboratorio
US10156204B2 (en) * 2017-04-24 2018-12-18 Sunpower, Inc. Attachment of cylinders in the housing of free-piston stirling machines

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH513380A (de) * 1968-10-25 1971-09-30 Mitsubishi Heavy Ind Ltd Verfahren zur Heizung einer drehbaren Walze
FR2026051A1 (de) * 1968-12-13 1970-09-11 Rieter Ag Maschf
NL6912025A (de) * 1969-08-07 1970-09-23
DE1948525C3 (de) * 1969-09-25 1975-09-25 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Induktiv beheizte Galette für Textilmaschinen oder dergl
GB1319318A (en) * 1970-07-01 1973-06-06 Platt International Ltd Inductively heatable roller having a temperature sensor
DE2647540C2 (de) * 1976-10-21 1978-10-12 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Induktiv-beheizbare Galette
JPS5376267A (en) * 1976-12-17 1978-07-06 Sanwa Tekki Corp Reciprocating pin type friction buffer
US4342488A (en) * 1979-06-28 1982-08-03 The United States Of America As Represented By The Secretary Of The Navy Self-aligning rolling contact thrust bearing/vibration reducer element
DE3509613A1 (de) * 1985-03-16 1986-09-18 Kocks Technik Gmbh & Co, 4010 Hilden Lagerung fuer eine umlaufende welle
DE3639009A1 (de) * 1986-11-14 1988-05-26 Kuesters Eduard Maschf Walze fuer die druckbehandlung von warenbahnen
US5159166A (en) * 1988-06-30 1992-10-27 Rieter Machine Works, Ltd. Drawroll unit
EP0349829B1 (de) * 1988-06-30 1996-04-17 Maschinenfabrik Rieter Ag Galette mit breitem Drehzahlbereich
US4884666A (en) * 1989-01-27 1989-12-05 Stahl Carl R Torsional damper and mounting adapter
EP0454618B1 (de) * 1990-04-26 1994-05-18 Maschinenfabrik Rieter Ag Streckrollenaggregat
DE4107719A1 (de) * 1991-03-11 1992-09-17 Barmag Barmer Maschf Lange galette
EP0501327B1 (de) * 1991-02-26 1995-02-15 Barmag Ag Galette

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804783A (zh) * 2019-10-18 2020-02-18 桐乡越顺经编有限公司 一种用于纺织纱线加工的牵伸定型机构
DE102021002068A1 (de) 2020-05-14 2021-11-18 Oerlikon Textile Gmbh & Co. Kg Galettendämpfer

Also Published As

Publication number Publication date
US5763859A (en) 1998-06-09
WO1994029500A1 (de) 1994-12-22
EP0654097A1 (de) 1995-05-24
JPH07509758A (ja) 1995-10-26
DE59404089D1 (de) 1997-10-23

Similar Documents

Publication Publication Date Title
EP0654097B1 (de) Streckrollenaggregat
DE10206950B4 (de) Hochgeschwindigkeitsrotationstestvorrichtung
DE19501392C2 (de) Kugelumlaufspindelvorrichtung sowie Tischantriebsvorrichtung mit einer derartigen Kugelumlaufspindelvorrichtung
DE102018116867A1 (de) Elektromechanischer Aktuator und Hinterachslenkung
EP0058911A1 (de) Gummifeder für die elastische Lagerung von Maschinen
EP0571580B1 (de) Friktionsfalschdrallaggregat
DE102021003240A1 (de) Verfahren und System zum Herstellen eines Getriebes
EP0349829B1 (de) Galette mit breitem Drehzahlbereich
EP0289898A1 (de) Rotationslager für hohe Geschwindigkeiten
DE102006062284A1 (de) Walze mit Schwingungsdämpfer sowie Verfahren zur Dämpfung von Schwingungen einer Walze
CH444584A (de) Spindelanordnung
EP3884093B1 (de) Spindel einer ringspinnmaschine
DE10037201A1 (de) Aufspulvorrichtung
DE10132990C1 (de) Axiale Abstützung für eine im Ultraschallbereich in Eigenfrequenz schwingende Matrize, insbesondere zum Draht-, Stangen- oder Rohrziehen
DE4026204C2 (de)
DE102005053622B4 (de) Axial-Radial-Lager, insbesondere für einen Rundtisch einer Werkzeugmaschine
DE102020208512A1 (de) Spindelantrieb für einen Aktuator einer Steer-by-wire-Lenkvorrichtung eines Kraftfahrzeuges sowie Steer-by-wire-Lenkvorrichtung
DE102008032952A1 (de) Friktionsfalschdrallaggregat
DE1675153A1 (de) Elastische Kupplung zur Verbindung von Wellenenden
DE19604804A1 (de) Vibrationsdämpfung
EP0636718A1 (de) Textilspindel
EP1407846A1 (de) Werkzeugspanner
DE102017006865A1 (de) Aufspulmaschine
DE102017203714A1 (de) Mechanische Dämpfereinrichtung für ein Fahrzeug
DE928019C (de) Vorrichtung zur federnden Halterung eines kalottenfoermigen Gleitlagers, insbesondere fuer elektrische Maschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961031

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970917

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404089

Country of ref document: DE

Date of ref document: 19971023

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980525

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980602

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050602