EP0644980B1 - Eckbereich eines dichtungsrahmens für einen tunneltübbing - Google Patents
Eckbereich eines dichtungsrahmens für einen tunneltübbing Download PDFInfo
- Publication number
- EP0644980B1 EP0644980B1 EP94911044A EP94911044A EP0644980B1 EP 0644980 B1 EP0644980 B1 EP 0644980B1 EP 94911044 A EP94911044 A EP 94911044A EP 94911044 A EP94911044 A EP 94911044A EP 0644980 B1 EP0644980 B1 EP 0644980B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- corner
- recesses
- cavities
- corner piece
- piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 description 13
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
- E21D11/385—Sealing means positioned between adjacent lining members
Definitions
- the invention relates to a corner region of a sealing frame for a tunnel tubbing, which consists of the ends of two sides of the sealing frame running at an angle to one another, consisting of sealing profile strips, and of a corner piece connecting these ends, the sealing profile strips in cross-section with in their longitudinal direction up to Ends are continuous grooves and cavities provided and the corner piece has recesses which run at an angle to the grooves and cavities of one end and the other and are at least open to the inside of the sealing frame.
- Tunnel tubbings are rectangular, often slightly curved, concrete slabs that are used to cover a tunnel that has just broken out.
- each tubbing has a circumferential groove on its four narrow sides, into which a sealing profile frame is inserted, which protrudes slightly from it.
- the segments are assembled under pressure so that they touch; this causes the sealing frames to come into contact with each other on each of their sides under high pressure, whereby they are pressed completely into the segment groove. In this way, they form an actual sealing network in the tunnel, which extends both over the arch of the tunnel and in the longitudinal direction of the tunnel.
- the sealing profile strips themselves are industrially preformed by extruding them into any length and then cutting them to the size that the side length of square segments. corresponds to the respective side length for rectangular segments.
- the seal cross-section should be relatively large.
- the tubbing groove becomes more sensitive to injury the larger it is, so it should be possible to keep it as small as possible.
- relatively large sealing pressures are necessary, which in turn are more likely to be achieved by a large profile cross-section; on the other hand, the smallest possible sealing material cross section is sought for reasons of cost.
- the profile strip cross-section and the groove cross-section in the tubbing are coordinated with one another in such a way that an optimally coordinated and profiled strip cross-section can be formed into the smallest possible groove cross-section.
- the concrete groove flanks of the tubbing may be blown off when the segments are pressed in, which sometimes happens with very considerable forces.
- corner areas of the frame which is cut from the individual pieces of the profile strip strand.
- the corner areas are produced by inserting the pieces into a mold and then injecting unvulcanized rubber into the free mold corners; the rubber is vulcanized by pressure and heat.
- special attention must also be paid to the design of the corner areas. This is easiest if the sealing profile strip is arched in cross section, but without cavities. Then this cross section remains unchanged in the corner. The same is not possible in the case of profiles with hollow chambers or heavily undercut areas, since the inserted parts in the hollow chamber area cannot be removed from the mold at all and only very difficult to remove from undercuts after vulcanization.
- a solution must therefore be found that allows the material cross section in the corner area to be reduced to such an extent that, as in the profile area, the material cross section is not greater than the volume available from the joint cross section.
- a larger material cross-section also leads to an explosive effect, which causes the weaker joint flank of the segment to flake off.
- the corner area according to the invention is characterized by the features of claim 1.
- Fig. 1 shows a tunnel tubbing as hundreds are used for the covering of tunnels that have just been excavated. It carries a sealing frame 1 on its narrow sides, which is embedded in a groove (not visible here) in these sides.
- the segments are both along the arch and in The longitudinal direction of the tunnel is lined up like a checkerboard, under pressure, so that the sealing frames are pressed together and seal in this way.
- Each sealing frame 1 is composed of sides 2 and corner pieces 3 connecting them.
- Each corner piece 3 forms, with the ends 4 of the relevant sides 2 abutting thereon, a corner area 5 which, because of the conditions mentioned in the introduction, in particular because of the assembly of the segments, under pressure, must be specially designed, as described below.
- Such a corner area 5 is shown in FIG. 2 in a view from the inside of the sealing frame 1, specifically, as can easily be seen, in the viewing direction along a diagonal of the frame. It can be seen that the sides 2 consist of sections of a sealing profile strip extruded in any length. The cross section of the same can also be seen from this figure, since only the ends 4 of the sides are shown. Which section of each page 2 is to be regarded as the end 4 is initially irrelevant; but it is essential for the following explanations to speak of such ends.
- the sealing profile strip or the sides 2 cut from it have grooves 6 and cavities 7, 8 extending in the longitudinal direction. While the grooves 6 abut the already mentioned groove during tubbing and partly also serve for drainage, both the internal cavities 7 and the external cavities 8 are only there for the deformation of the sealing frame 1 under the pressure of the same frame of another To enable tubbings and thus to ensure a perfect seal. Due to the extrusion process, the grooves 6 are of course also continuous, like the cavities 7, 8, i.e. they extend into the ends 4.
- the corner piece 3 is manufactured in such a way that two sides 2 each are in a shape at an angle to one another, usually at 90 °, be inserted.
- the mold is then closed and unvulcanized rubber is injected. Under heat and pressure, this vulcanises in a very short time and connects to pages 2 and their ends 4.
- each side 2 must be deformable to the extent that it can completely disappear into the segment groove. Because of the very low compressibility of the rubber, which has also already been mentioned, rubber cannot be simply injected into the mold in accordance with the mold volume. This would make the corner piece 3 to be formed a full body, with the already mentioned risk that the edge of the tubbing adjacent to the tubbing groove would then be blown away perpendicular to the plane of the latter when the sealing frame was compressed. So you have to make sure that the total volume of injected rubber is at most as large as the volume of the corresponding corner of the segment groove. Recesses must therefore be provided. The mold cores required for this must be arranged in such a way that they can be easily removed after injection. One can already see from this requirement that the above-mentioned recesses cannot simply be continuations of the grooves 6 or the cavities 7, 8, otherwise demoulding would be impossible.
- the invention therefore provides for the recesses, hereinafter referred to as 9 or 9 ', to be placed essentially at an angle to the grooves 6 and cavities 7, 8 and to keep them open against the inside of the frame 1.
- the inside is more suitable because the outside forms the sealing surface and therefore does not allow any unevenness.
- These recesses, 9 in the embodiment according to FIGS. 3, 9 'in the embodiment according to FIG. 4, are clearly visible there and in FIG. 2. Since the corner areas 3 are rectangular due to the generally square or rectangular segments, it is expedient to place the recesses 9, 9 'at 45 ° to the grooves 6 and the cavities 7, 8 of the adjacent end 4.
- FIGS. 3 and 4 differ in two details.
- Fig. 3 shows the preferred, but somewhat more complex to manufacture, in which the recesses 9 each end in a plane 12 which extends at an angle to the corresponding outer side 13 of the corner piece 3 in such a way that the wall thickness d is close corner 10 is the lowest and increases steadily from there.
- the plane 12 ' runs parallel to the outside 13, and therefore the wall thickness d is constant. It is a great advantage if this wall thickness resp. 3, the smallest wall thickness is at least one third of the diameter of the recesses 9, 9 '. If these are not circular in cross-section, but e.g. elliptical as in Fig. 2, the mentioned value is related to the smaller diameter.
- the second difference between the two embodiments is how the ends 4 are cut.
- this cutting takes place exactly at right angles to the longitudinal axis of the side 2, which is easier in terms of production technology, but leads to more mass in the corner piece 3.
- the cutting is therefore carried out at an angle before insertion into the mold, and expediently at 45 ° in such a way that the end faces 14 thus created run parallel to the longitudinal axes 15 of the recesses 9. This considerably reduces the volume of the corner piece 3, as a comparison of FIGS. 3 and 4 shows.
- the cavities 7, 8 are open at the end faces 4 mentioned. Since the injection process must take place under a certain minimum pressure or above in order to achieve a good connection of the corner piece 3 to the adjacent ends 4, part of the injected material would flow into the cavities 7, 8 and fill them over a longer distance, which would result in a significant increase in volume of the ends 4 and thus leads to a sharp reduction in the deformability. To avoid this, according to FIGS. 3 and 4, plugs 16 are inserted into the mouths of the cavities 7, 8 (only those for the cavities 8 are shown) and before the sides 2 are inserted into the mold.
- the still protruding ends of the plugs 16 are cut off in accordance with the course of the respective end face, that is to say obliquely in FIG. 3 as the end face 14.
- the oblique cut-off has a great advantage over the straight cut-off according to FIG. 4 are explained. If the rubber is put under pressure into the injection mold to form the corner piece 3, a force P acts on each stopper 16 perpendicular to the end face and thus perpendicularly on the oblique end of the stopper 16.
- This force P can be broken down into two components , ie in a component P1 in the longitudinal axis of the stopper and in a component P2 transversely to it. The latter presses the plug 16 even more strongly against the wall of the cavity than would be the case simply by inserting it.
- Rubber cords can be used for the stopper 16, the volume of which is somewhat larger (approx. 10%) than the cavity volume filled by the stopper. This already results in compression when the mold is closed, which prevents the plug from being pushed away along the cavity during the subsequent injection.
- This static friction can be increased if, instead of the profile cords, small molded parts with a recess conical to the injection area are used, so that the static friction component is reinforced.
- the static friction component can be strengthened again by using profile cords to plug the cavities, which have the roughest possible surface due to the choice of material or production.
- the combination of the measures namely the cylindrical diagonal recesses in the corner area and the closing of the cavity ends, means that the total material volume in the corner area is not greater than the available volume of the segment groove in the corner area.
- the length l of a plug 16 or. its shortest length in the inclined section advantageously corresponds minimally to the smallest diameter D of the cavity blocked by it at the relevant end. On the one hand, a good adhesion of the plug is achieved, but on the other hand, the deformability of the end 4 is only insignificantly impaired.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Lining And Supports For Tunnels (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Body Structure For Vehicles (AREA)
Description
- Die Erfindung betrifft einen Eckbereich eines Dichtungsrahmens für einen Tunneltübbing, der aus den Enden zweier unter einem Winkel gegeneinander laufenden, aus Dichtungsprofilleisten bestehenden Seiten des Dichtungsrahmens und aus einem diese Enden verbindenden Eckstück besteht, wobei die Dichtungsprofilleisten in ihrem Querschnitt mit in ihrer Längsrichtung bis in die Enden hinein durchgehend verlaufenden Nuten und Hohlräumen versehen sind und das Eckstück Ausnehmungen aufweist, die unter einem Winkel zu den Nuten und Hohlräumen des einen wie des anderen Endes verlaufen und wenigstens gegen die Innenseite des Dichtungsrahmens hin offen sind.
- Tunneltübbinge sind rechteckige, oft leicht gebogene Platten aus Beton, mit denen ein soeben ausgebrochener Tunnel verkleidet wird. Um zu verhindern, dass Wasser aus dem Berg in den Tunnel hineintropft, weist jeder Tübbing an seinen vier Schmalseiten eine umlaufende Nut auf, in die ein Dichtungsprofilleistenrahmen eingelegt wird, der etwas aus ihr herausragt. Die Tübbinge werden unter Druck so montiert, dass sie sich berühren; dadurch kommen dann die Dichtungsrahmen auf jeder ihrer Seiten unter hohem Druck aneinander zu liegen, wobei sie vollständig in die Tübbingnut hineingedrückt werden. Sie bilden so im Tunnel ein eigentliches Dichtungsnetzwerk, das sich sowohl über den Tunnelgewölbebogen als auch in Tunnellängsrichtung erstreckt. Die Dichtungsprofilleisten selber werden industriell vorgeformt, indem sie in beliebiger Länge extrudiert und dann auf das Mass zugeschnitten werden, das der Seitenlänge bei quadratischen Tübbingen bezw. der jeweiligen Seitenlänge bei rechteckigen Tübbingen entspricht.
- Der Querschnitt der Nuten im Tübbing und derjenige der Dichtungsprofilleiste sowie die Eigenschaften ihres Gummimaterials müssen sorgfältig aufeinander abgestimmt werden, weil einander widersprechende Bedingungen erfüllt werden müssen, um den Tunnel einwandfrei abzudichten. So ist vorerst die Tatsache zu beachten, dass Gummi zwar gut deformierbar, andererseits aber entgegen einer weitverbreiteten Meinung praktisch inkompressibel ist. Sein Gesamtvolumen lässt sich unter Druck nur unwesentlich verkleinern. Die Dichtungsprofilleisten müssen daher mit in ihrem Innern angeordneten Hohlräumen versehen sein, die sich bei der unter Druck erfolgenden Montage deformieren lassen, um so die Profilleisten dennoch in die Nuten hineindrücken zu können. Dies ist auch deswegen wichtig, weil beim Aneinanderreihen der Tübbinge immer wieder Toleranzen in den Abmessungen zu berücksichtigen sind.
- Es sind aber noch weitere Bedingungen zu beachten. Um möglichst grosse Toleranzen aufnehmen zu können, sollte der Dichtungsquerschnitt relativ gross sein. Die Tübbingnut wird aber umso verletzungsempfindlicher, je grösser sie ist, sie sollte also möglichst klein gehalten werden können. Zur Erreichung einer hohen Dichtigkeit sind relativ grosse Dichtdrücke notwendig, die hinwiederum eher von einem grossen Profilleistenquerschnitt erreicht werden; andererseits wird aus Kostengründen ein möglichst kleiner Dichtungsmaterialquerschnitt angestrebt.
- Aus diesem Grund werden der Profilleistenquerschnitt und der Nutquerschnitt im Tübbing so aufeinander abgestimmt, dass in einen möglichst kleinen Nutquerschnitt ein optimal abgestimmter und profilierter Leistenquerschnitt hineindeformiert werden kann.
- Ist der Leistenquerschnitt grösser als der kleinstmögliche Nutquerschnitt unter Einbeziehung aller möglichen Toleranzen, kann es beim Verpressen der Tübbinge, das zum Teil mit ganz erheblichen Kräften geschieht, zu einem Absprengen der Betonnutflanken des Tübbings kommen.
- Alle diese Bedingungen haben einen Einfluss auf die Eckbereiche des Rahmens, der aus den einzelnen Stücken des Profilleistenstranges geschnitten wird. Die Eckbereiche werden durch Einlegen der Stücke in eine Form und anschliessendes Injizieren von unvulkanisiertem Gummi in die freien Forniecken hergestellt; der Gummi wird hierbei durch Druck und Hitze vulkanisiert. Im Hinblick auf die vorhin erwähnten Bedingungen muss daher auch der Ausbildung der Eckbereiche besondere Beachtung geschenkt werden. Diese ist am einfachsten, wenn die Dichtungsprofilleiste im Querschnitt bogenförmig, aber ohne Hohlräume ist. Dann bleibt dieser Querschnitt auch in der Ecke unverändert. Das gleiche ist bei Profilen mit Hohlkammern oder stark hinterschnittenen Bereichen nicht möglich, da im Hohlkammerbereich angebrachte Einlegeteile in der Form gar nicht und bei Hinterschneidungen nur sehr schwer nach der Vulkanisation wieder entformt werden können.
- Bereits bei gleichem Querschnitt im Eck- und Profilbereich kommt es durch die Deformation während der Montage in der Ecke zu einer Querschnittsvergrösserung, da beide Schenkel in Profillängsrichtung gestaucht werden, was sich in einer Querschnitterweiterung ausdrückt. Dieser Effekt wird noch grösser, wenn der Materialquerschnitt im Eckbereich bereits durch das Herstellverfahren vergrössert wird.
- Es muss deshalb eine Lösung gefunden werden, die es gestattet, den Materialquerschnitt im Eckbereich soweit zu reduzieren, dass auch hier, wie im Bereich des Profils, der Materialquerschnitt nicht grösser ist, als das vom Fugenquerschnitt her zur Verfügung stehende Volumen. Ein grösserer Materialquerschnitt führt auch hier zu einer Sprengwirkung, die die schwächere Fugenflanke des Tübbings zum Abplatzen bringt.
- In der europäischen Veröffentlichungsschrift 0 414 617 wird der Vorschlag gemacht, das Eckstück ebenfalls mit Ausnehmungen zu versehen. Diese werden aber nur in der dort als Erfindungszweck dargestellten Klebplatte oder Sohle angebracht, sofern diese auch im Eckstück vorhanden ist; sie kann dort nach einer anderen Ausführungsform auch fehlen. Das entweder durch die Ausnehmungen oder durch das Fehlen der Sohle freiwerdende Volumen ist jedoch völlig ungenügend, um die vorhin erwähnte Reduktion des Materialquerschnittes in ausreichendem Mass herbeizuführen. Somit sind Materialanhäufungen im Eckstück, die sich, wie schon erwähnt, durch die Montage des Dichtungsrahmens am Tübbing ergeben, unvermeidbar.
- Die Erfindung vermeidet diese Nachteile und berücksichtigt zudem die eingangs erwähnten Bedingungen. Der erfindungsgemässe Eckbereich ist durch die Merkmale des Anspruches 1 gekennzeichnet.
- Ausführungsbeispiele des erfindungsgemässen Eckbereichs sind in den beiliegenden Zeichnungen dargestellt; es zeigen
- Fig. 1
- einen Tübbing mit seinem Dichtungsrahmen,
- Fig. 2
- eine Ansicht eines Eckbereiches dieses Dichtungsrahmens von der Rahmeninnenseite her gesehen,
- Fig. 3
- einen Schnitt längs der Linie A - A in Fig. 2, in einer ersten Ausführungsform,
- Fig. 4
- denselben Schnitt, aber in einer andern Ausführungsform, und
- Fig. 5
- einen Ausschnitt aus Fig. 3 zur Darstellung von Kräften.
- Fig. 1 zeigt einen Tunneltübbing, wie er zu hunderten für die Verkleidung von soeben ausgebrochenen Tunnels verwendet wird. Er trägt auf seinen Schmalseiten einen Dichtungsrahmen 1, der in einer hier nicht sichtbaren Nut in diesen Seiten eingelassen ist. Die Tübbinge werden sowohl entlang des Gewölbebogens als auch in Tunnellängsrichtung schachbrettartig aneinandergereiht und zwar unter Druck, sodass die Dichtungsrahmen aneinandergepresst werden und derart dichten. Jeder Dichtungsrahmen 1 setzt sich aus Seiten 2 und aus sie verbindenden Eckstücken 3 zusammen. Je ein Eckstück 3 bildet mit den daran anstossenden Enden 4 der betreffenden Seiten 2 einen Eckbereich 5, welcher wegen den in der Einleitung erwähnten Bedingungen, insbesondere wegen der Montage der Tübbinge unter Druck, besonders ausgebildet sein muss, wie nachfolgend beschrieben.
- Ein solcher Eckbereich 5 ist in Fig. 2 in einer Ansicht aus dem Inneren des Dichtungsrahmens 1 heraus dargestellt, und zwar, wie leicht ersichtlich, in Blickrichtung entlang einer Diagonale des Rahmens. Man ersieht, dass die Seiten 2 aus Abschnitten einer in beliebiger Länge extrudierten Dichtungsprofilleiste bestehen. Der Querschnitt derselben ist aus dieser Figur ebenfalls ersichtlich, da nur die Enden 4 der Seiten dargestellt sind. Welcher Abschnitt jeder Seite 2 als Ende 4 betrachtet werden soll, ist vorerst unerheblich; es ist aber für die nachfolgenden Erläuterungen wesentlich, von solchen Enden zu sprechen.
- Die Dichtungsprofilleiste bezw. die aus ihr abgeschnittenen Seiten 2 weisen Nuten 6 und in Längsrichtung durchlaufende Hohlräume 7, 8 auf. Während die Nuten 6 beim Tübbing an der schon erwähnten Nut anliegen und zum Teil auch zur Entwässerung dienen, sind sowohl die innen liegenden Hohlräume 7 als auch die aussen liegenden Hohlräume 8 nur dazu da, die Deformation des Dichtungsrahmens 1 unter Druck eines gleichen Rahmens eines andern Tübbings zu ermöglichen und damit für eine einwandfreie Dichtung zu sorgen. Durch das Extrusionsverfahren sind natürlich die Nuten 6 ebenfalls, wie die Hohlräume 7, 8, durchlaufend, d.h. sie erstrecken sich bis in die Enden 4 hinein.
- Das Eckstück 3 wird so hergestellt, dass jeweils zwei Seiten 2 in eine Form unter einem Winkel zueinander, meist unter 90°, eingelegt werden. Die Form wird dann verschlossen und unvulkanisierter Gummi eingespritzt. Unter Hitze und Druck vulkanisiert dieser in kürzester Zeit aus und verbindet sich mit den Seiten 2 bezw. ihren Enden 4.
- Wie schon erwähnt, muss jede Seite 2 soweit deformierbar sein, dass sie vollständig in der Tübbingnut verschwinden kann. Wegen der ebenfalls schon erwähnten sehr geringen Kompressibilität des Gummis kann daher in die Form nicht einfach Gummi entsprechend dem Formvolumen eingespritzt werden. Das würde das zu bildende Eckstück 3 zu einem vollen Körper machen, mit der auch schon erwähnten Gefahr, dass dann beim Zusammendrücken des Dichtungsrahmens der an die Tübbingnut angrenzende Rand des Tübbings senkrecht zur Ebene des letzteren weggesprengt würde. an muss also darauf achten, dass das Gesamtvolumen an eingespritztem Gummi höchstens so gross ist wie das Volumen der entsprechenden Ecke der Tübbingnut. Es sind also Ausnehmungen vorzusehen. Die hierfür notwendigen Formkerne müssen aber so angeordnet sein, dass sie sich nach dem Einspritzen leicht herausnehmen lassen. Man ersieht schon aus dieser Forderung, dass die genannten Ausnehmungen nicht einfach Fortsetzungen der Nuten 6 oder der Hohlräume 7, 8 sein können, denn sonst wäre ein Entformen unmöglich.
- Die Erfindung sieht daher vor, die Ausnehmungen, im folgenden mit 9 bzw. 9' bezeichnet, im wesentlichen unter einem Winkel zu den Nuten 6 und Hohlräumen 7, 8 zu legen und sie gegen die Innenseite des Rahmens 1 offen zu halten. Die Innenseite ist hierfür besser geeignet, weil die Aussenseite die Dichtfläche bildet und daher keine Unebenheiten zulässt. Diese Ausnehmungen, 9 in der Ausführungsform nach Fig. 3, 9' in derjenigen nach Fig. 4, sind dort sowie in Fig. 2 deutlich ersichtlich. Da die Eckbereiche 3 wegen den in der Regel quadratischen oder rechteckigen Tübbingen rechtwinklig sind, ist es zweckmässig, die Ausnehmungen 9, 9' unter jeweils 45° zu den Nuten 6 und den Hohlräumen 7, 8 des angrenzenden Endes 4 zu legen. Um die Ausnehmungen aus Festigkeitsgründen nicht zu gross werden zu lassen und dennoch die gewünschte Volumenreduktion im Eckstück 3 herbeizuführen, werden sie zweckmässig beidseitig einer Diagonale angeordnet, die sich von der äusseren Ecke 10 des Eckstückes 3 zur inneren Ecke 11 erstreckt. Das ergibt dann, wie Fig. 2 zeigt, in diesem Fall je drei Ausnehmungen untereinander auf einer Seite der Diagonale, also gleichviele Ausnehmungen wie Nuten 6 der betreffenden Seite 2.
- Die Ausführungsformen nach den Fig. 3 und 4 unterscheiden sich in zwei Einzelheiten. Fig. 3 zeigt die bevorzugte, in der Herstellung aber etwas aufwendigere Ausführungsform, bei welcher die Ausnehmungen 9 in je einer Ebene 12 enden, die zur entsprechenden Aussenseite 13 des Eckstückes 3 unter einem Winkel verläuft und zwar derart, dass die Wandstärke d in der Nähe der Ecke 10 am geringsten ist und von dort aus stetig zunimmt. Bei der Ausführungsform nach Fig. 4 verläuft die Ebene 12' parallel zur Aussenseite 13, und daher ist die Wandstärke d konstant. Von grossem Vorteil ist es, wenn diese Wandstärke bezw. bei Fig. 3 die geringste Wandstärke mindestens einen Drittel des Durchmessers der Ausnehmungen 9, 9' beträgt. Sind diese im Querschnitt nicht kreisförmig, sondern z.B. elliptisch wie in Fig. 2, wird der genannte Wert auf den kleineren Durchmesser bezogen.
- Der zweite Unterschied zwischen den beiden Ausführungsformen besteht darin, wie die Enden 4 angeschnitten sind. In Fig. 4 erfolgt dieses Anschneiden genau rechtwinklig zur Längsachse der Seite 2, was herstellungstechnisch zwar einfacher ist, beim Eckstück 3 aber zu mehr Masse führt. In Fig. 3 erfolgt daher das Abschneiden vor dem Einlegen in die Form unter einem Winkel und zwar zweckmässig unter 45° derart, dass die so entstandenen Stirnflächen 14 parallel zu den Längsachsen 15 der Ausnehmungen 9 verlaufen. Dies reduziert das Volumen des Eckstückes 3 erheblich, wie ein Vergleich der Fig. 3 und 4 ergibt.
- Beim erwähnten Spritzen des Eckstückes 3 in der Form ist nun auf einen weiteren Umstand zu achten, um eine unerwünschte Vergrösserung des eingespritzten Gummivolumens zu vermeiden. Wie erwähnt sind ja die Hohlräume 7, 8 an den genannten Stirnseiten der Enden 4 offen. Da der Einspritzvorgang unter einem gewissen Minimaldruck oder darüber erfolgen muss, um eine gute Verbindung des Eckstückes 3 zu den angrenzenden Enden 4 zu erreichen, würde ein Teil des eingespritzten Materials in die Hohlräume 7, 8 einströmen und sie über eine längere Strecke ausfüllen, was zu einem erheblichen Volumenanstieg der Enden 4 und damit zu einer starken Verringerung der Deformationsfähigkeit führt. Um dies zu vermeiden, werden gemäss Fig. 3 und 4 Stopfen 16 in die Mündungen der Hohlräume 7, 8 eingeführt (dargestellt sind nur diejenigen für die Hohlräume 8) und zwar vor dem Einlegen der Seiten 2 in die Form. Die noch herausragenden Enden der Stopfen 16 werden entsprechend dem Verlauf der jeweiligen Stirnseite abgeschnitten, in Fig. 3 also schräg wie die Stirnseite 14. Das schräge Abschneiden hat einen grossen Vorteil gegenüber dem geraden Abschneiden nach Fig. 4. Dies soll anhand der Fig. 5 erläutert werden. Wird nämlich der Gummi unter Druck in die Einspritzform eingegeben, um das Eckstück 3 zu bilden, so wirkt auf jeden Stopfen 16 eine Kraft P senkrecht zur Stirnseite und damit senkrecht auf das schräge Ende des Stopfens 16. Diese Kraft P kann in zwei Komponenten zerlegt werden, also in eine Komponente P1 in der Längsachse des Stopfens und in eine Komponente P2 quer dazu. Die letztere drückt den Stopfen 16 noch stärker an die Wand des Hohlraumes als dies vom blossen Einschieben allein der Fall wäre.
- Für die Stopfen 16 können Gummischnüre verwendet werden, deren Volurnen etwas grösser ist (ca. 10 %) als das vom Stopfen ausgefüllte Hohlraumvolumen. Dadurch ergibt sich bereits beim Schliessen der Form eine Verpressung, die beim nachfolgenden Einspritzen ein Wegdrücken des Stopfens entlang des Hohlraumes verhindert. Diese Haftreibung kann noch verstärkt werden, wenn anstelle der Profilschnüre kleine Formteile mit einer zum Einspritzbereich kegelförmigen Ausnehmung verwendet werden, sodass die Haftreibungskomponente verstärkt wird.
- Die Haftreibungskomponente kann nochmals verstärkt werden, indem zum Stopfen der Hohlräume Profilschnüre verwendet werden, die durch die Wahl des Materials oder der Herstellung eine möglichst rauhe Oberfläche aufweisen.
- Durch die Kombination der Massnahmen, nämlich durch die zylinderförmigen diagonalen Ausnehmungen im Eckbereich und durch das Verschliessen der Hohlraumenden kann erreicht werden, dass das Gesamtmaterialvolumen im Eckbereich nicht grösser ist als das zur Verfügung stehende Volumen der Tübbingnut im Eckbereich.
- Bei der Betrachtung der Querschnitte der Seiten 2 bezw. der Enden 4 der Eckstücke 3 ergeben sich drei unterschiedliche Querschnitte, die in der Materialwahl und vor allen Dingen in dem Dehnungsverhalten so aufeinander abgestimmt werden müssen, dass unter dein hohen Deformationsdruck das Material vom Ueberschuss hin in Richtung des kleineren Materialvolumens dringen, bezw. fliessen kann.
- Die Länge ℓ eines Stopfens 16 bezw. seine bei Schrägabschnitt kürzeste Länge entspricht mit Vorteil minimal dem kleinsten Durchmesser D des von ihm am betreffenden Ende verstopften Hohlraumes. Damit wird einerseits eine gute Haftung des Stopfens erreicht, andererseits aber die Deformationsfähigkeit des Endes 4 nur unwesentlich beeinträchtigt.
Claims (7)
- Eckbereich eines Dichtungsrahmens für einen Tunneltübbing, der aus den Enden zweier unter einem Winkel gegeneinander laufenden, aus Dichtungsprofilleisten bestehenden Seiten (2) des Dichtungsrahmens (1) und aus einem diese Enden (4) verbindenden Eckstück (3) besteht, wobei die Dichtungsprofilleisten in ihrem Querschnitt mit in ihrer Längsrichtung bis in die Enden hinein durchgehend verlaufenden Nuten (6) und Hohlräumen (7, 8) versehen sind und das Eckstück (3) Ausnehmungen (9, 9') aufweist, die unter einem Winkel zu den Nuten (6) und Hohlräumen (7, 8) des einen wie des anderen Endes (4) verlaufen und wenigstens gegen die Innenseite des Dichtungsrahmens (1) hin offen sind, dadurch gekennzeichnet, dass die Ausnehmungen (9, 9') im Eckstück (3) unter jeweils 45° zu den Hohlräumen (7, 8) verlaufen und dass beidseits einer von der äusseren Ecke (10) zur inneren Ecke (11) des Eckstückes (3) führenden Diagonale jeweils soviele Ausnehmungen (9, 9') übereinander liegen, wie jede Seite (2) Nuten (6) aufweist.
- Eckbereich nach Anspruch 1, dadurch gekennzeichnet, dass die Ausnehmungen (9') vor derjenigen Aussenseite (13) des Eckstückes (3) in einer Ebene (12') enden, die parallel zu dieser Aussenseite (13) verläuft, um eine konstante Wanddicke (d) des Endstückes zu erreichen.
- Eckbereich nach Anspruch 1, dadurch gekennzeichnet, dass die Ausnehmungen (9) vor der jeweiligen Aussenseite (13) des Eckstückes (3) in einer Ebene (12) enden, die zu dieser Aussenseite (13) unter einem Winkel verläuft und zwar derart, dass die Wandstärke (d) des Eckstückes (3) von seiner Ecke (10) aus gegen die Enden (4) der Rahmenseiten (2) hin zunimmt.
- Eckbereich nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Wandstärke bezw. die minimale Wandstärke (d) mindestens einen Drittel des Durchmessers einer Ausnehmung (9, 9') bezw. des kleinsten Durchmessers einer im Querschnitt nicht kreisförmigen Ausnehmung beträgt.
- Eckbereich nach Anspruch 1, dadurch gekennzeichnet, dass die Enden (4) der Rahmenseiten (2) unter 45° derart abgeschnitten sind, dass ihre Stirnflächen (14) parallel zu den Längsachsen der Ausnehmungen (9, 9') des Eckstückes (3) verlaufen.
- Eckbereich nach Anspruch 1, dadurch gekennzeichnet, dass die Hohlräume (7, 8) an den Stirnflächen mit Stopfen (16) verschlossen sind.
- Eckbereich nach Anspruch 6, dadurch gekennzeichnet, dass jeder Stopfen (16) eine Minimal länge (ℓ) aufweist, die dem kleinsten Durchmesser (D) des von ihm am betreffenden Ende verstopften Hohlraumes entspricht.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1166/93 | 1993-04-16 | ||
CH01166/93A CH686900A5 (de) | 1993-04-16 | 1993-04-16 | Eckbereich eines Dichtungsrahmens fuer einen Tunneltubbing. |
PCT/CH1994/000072 WO1994024417A1 (de) | 1993-04-16 | 1994-04-11 | Eckbereich eines dichtungsrahmens für einen tunneltübbing |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0644980A1 EP0644980A1 (de) | 1995-03-29 |
EP0644980B1 true EP0644980B1 (de) | 1997-07-23 |
Family
ID=4204022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94911044A Expired - Lifetime EP0644980B1 (de) | 1993-04-16 | 1994-04-11 | Eckbereich eines dichtungsrahmens für einen tunneltübbing |
Country Status (6)
Country | Link |
---|---|
US (1) | US5660501A (de) |
EP (1) | EP0644980B1 (de) |
AT (1) | ATE155849T1 (de) |
CH (1) | CH686900A5 (de) |
DE (1) | DE59403441D1 (de) |
WO (1) | WO1994024417A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1887183A1 (de) * | 2006-08-01 | 2008-02-13 | Ein Shemer Rubber Industries | Eckstück eines Dichtungsrahmens für einen Tunneltübbing |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039503A (en) * | 1998-01-29 | 2000-03-21 | Silicone Specialties, Inc. | Expansion joint system |
DE50012815D1 (de) * | 2000-01-04 | 2006-06-29 | Volker Hentschel | Tunnelauskleidung |
DE50205176D1 (de) | 2001-10-11 | 2006-01-12 | Daetwyler Ag | Dichtungsprofil für Tunnel-Segmente |
EP4108881A1 (de) * | 2021-06-21 | 2022-12-28 | CTS Cordes tubes & seals GmbH & Co. KG | Ausgeklinkte tübbingecke |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH629869A5 (de) * | 1978-03-23 | 1982-05-14 | Daetwyler Ag | Fugendichtung mit dichtungsstreifen bei stossfugen zwischen einzelnen bauelementen. |
DE3540494A1 (de) * | 1985-11-15 | 1987-05-21 | Phoenix Ag | Dichtungsprofil fuer segmente von tunnelroehren |
FR2602543B1 (fr) * | 1986-08-08 | 1988-11-04 | Phoenix Ag | Joint d'etancheite profile pour segments de tube destines a etre assembles en un tunnel |
GB2209568B (en) * | 1987-09-05 | 1991-10-23 | Phoenix Ag | Sealing profile for tunnel segments |
DE3779123D1 (de) * | 1987-09-10 | 1992-06-17 | Joint Francais | Dichtungselement fuer tunnelausbausegmente. |
FR2651275B1 (fr) * | 1989-08-25 | 1991-12-06 | Joint Francais | Joint d'etancheite profile en elastomere pour voussoir de tunnel. |
CH679510A5 (de) * | 1989-11-10 | 1992-02-28 | Daetwyler Ag | |
FR2655374B1 (fr) * | 1989-12-04 | 1992-04-03 | Joint Francais | Joint d'etancheite en elastomere pour voussoir de tunnel. |
-
1993
- 1993-04-16 CH CH01166/93A patent/CH686900A5/de not_active IP Right Cessation
-
1994
- 1994-04-11 US US08/356,234 patent/US5660501A/en not_active Expired - Lifetime
- 1994-04-11 EP EP94911044A patent/EP0644980B1/de not_active Expired - Lifetime
- 1994-04-11 WO PCT/CH1994/000072 patent/WO1994024417A1/de active IP Right Grant
- 1994-04-11 DE DE59403441T patent/DE59403441D1/de not_active Expired - Lifetime
- 1994-04-11 AT AT94911044T patent/ATE155849T1/de active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1887183A1 (de) * | 2006-08-01 | 2008-02-13 | Ein Shemer Rubber Industries | Eckstück eines Dichtungsrahmens für einen Tunneltübbing |
Also Published As
Publication number | Publication date |
---|---|
DE59403441D1 (de) | 1997-09-04 |
ATE155849T1 (de) | 1997-08-15 |
EP0644980A1 (de) | 1995-03-29 |
US5660501A (en) | 1997-08-26 |
CH686900A5 (de) | 1996-07-31 |
WO1994024417A1 (de) | 1994-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1391640B1 (de) | Dichtungsring | |
DE2910090A1 (de) | Dichtungsstreifen zum abdichten von stossfugen und kreuzungsstellen zwischen bauelementen | |
DE4332589C2 (de) | Injektionsschlauch für Arbeitsfugen an Betonbauwerken | |
EP0807204B1 (de) | Dichtanordnung für insbesondere tunnelrohrsegmente | |
EP0644980B1 (de) | Eckbereich eines dichtungsrahmens für einen tunneltübbing | |
AT391518B (de) | Verfahren und strangdichtung zum abdichten von scheiben aus glas und dgl. in raumabschlussorganen | |
EP0348870B1 (de) | Aus mehreren Stahlbetonfertigteilen zusammengefügter Baukörper in einer Spannbetonbauweise | |
DE29722564U1 (de) | Dichtungsprofil für Fenster oder Türen | |
EP0578797B1 (de) | Vorrichtung und verfahren zur herstellung der ecken von dichtungsrahmen | |
EP0453521B1 (de) | Dichtungsprofilleiste aus elastischem material für die abdichtung von tunnelgewölben | |
DE202017103363U1 (de) | Dichtung eines Tunneltübbings | |
DE4336379A1 (de) | Abdichtungsprofil für Fugen zwischen Betonplatten und Verfahren zur Fugenabdichtung einer Fuge zwischen zwei Betonplatten mit einem derartigen Abdichtungsprofil | |
DE3339576C1 (de) | Kunststoff-Hohlprofilstab und Verfahren zu seiner Herstellung | |
CH686383A5 (de) | Verfahren zur Herstellung einer nicht verschiebbaren Dichtungsprofilleiste und nach diesem Verfahren hergestellte Leiste. | |
CH669972A5 (en) | Profiled door-sealing strip - has two-section transverse flange with stiffening rib on inside | |
DE4240484A1 (en) | Corner binder made of weldable plastics - has inclined surface corresp. to corner mitring and acting as welding surface | |
DE69004381T2 (de) | Profildichtung aus Elastomer für Tunnelgewölbe. | |
DE9011069U1 (de) | Zugentlastung für ein Kabel | |
DE1129273B (de) | Elastisches Scheiben- oder Platteneinfassprofil, insbesondere zum Abdichten von Fensterscheiben gegenueber dem Rahmen | |
EP3619447A1 (de) | Flanschdichtungssystem und montageverfahren | |
EP0004666B1 (de) | Verbundprofilstab | |
DE202015106191U1 (de) | Verpressschlauch zum Abdichten von Bauwerksfugen | |
DE9217222U1 (de) | Abdichtung an zusammensteckbaren Betonfertigteilen | |
DE10025178C1 (de) | Dichtungsvorrichtung für eine Bewegungsfuge | |
DE202006004638U1 (de) | Verpreßschlauch für Beton-Baukörper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB LI |
|
17P | Request for examination filed |
Effective date: 19950329 |
|
17Q | First examination report despatched |
Effective date: 19960814 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB LI |
|
REF | Corresponds to: |
Ref document number: 155849 Country of ref document: AT Date of ref document: 19970815 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59403441 Country of ref document: DE Date of ref document: 19970904 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19971001 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALTSBUREAU R. A. MASPOLI |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120629 Year of fee payment: 19 Ref country code: CH Payment date: 20120427 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120530 Year of fee payment: 19 Ref country code: GB Payment date: 20120425 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120425 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 155849 Country of ref document: AT Kind code of ref document: T Effective date: 20130430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131101 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130411 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59403441 Country of ref document: DE Effective date: 20131101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |