EP0641414B1 - Steuersystem für die kraftstoffzumessung einer brennkraftmaschine - Google Patents

Steuersystem für die kraftstoffzumessung einer brennkraftmaschine Download PDF

Info

Publication number
EP0641414B1
EP0641414B1 EP94907495A EP94907495A EP0641414B1 EP 0641414 B1 EP0641414 B1 EP 0641414B1 EP 94907495 A EP94907495 A EP 94907495A EP 94907495 A EP94907495 A EP 94907495A EP 0641414 B1 EP0641414 B1 EP 0641414B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
temperature
control system
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94907495A
Other languages
English (en)
French (fr)
Other versions
EP0641414A1 (de
Inventor
Jürgen GRAS
Siegfried Hertzler
Jan-Tian Tjoa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0641414A1 publication Critical patent/EP0641414A1/de
Application granted granted Critical
Publication of EP0641414B1 publication Critical patent/EP0641414B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Definitions

  • the invention is based on a control system for metering fuel an internal combustion engine according to the preamble of the main claim.
  • DE 30 24 also shows 606 Al a "control device for the composition of the in a Internal combustion engine coming for combustion ". This Document teaches lambda control at two different exhaust gas temperatures turn on depending on whether idle is given or not.
  • control system according to the invention with the features of the main claim has the advantage over the known systems in the frame an optimization with good driving behavior of the internal combustion engine Switching on the lambda control at a very early point in time and thereby further reduce pollutant emissions.
  • FIG. 1 shows an overview a control system of an internal combustion engine
  • Figure 2 is a flowchart to determine the switch-on point of the lambda control
  • Figure 3 shows an example of values in connection with the flow chart of Figure 2.
  • FIG. 1 shows an overview of the in connection with system components and operational parameters of the present invention.
  • the internal combustion engine itself is designated 10, her intake pipe with 11 and her exhaust pipe with 12.
  • In the intake pipe 11 lie one behind the other an air mass or Air quantity sensor 14, a throttle valve 15 and an injection valve 16.
  • a lambda probe 18 is attached, which in itself known manner after reaching their operating temperature on the occurrence reacted by oxygen in the exhaust gas.
  • an exhaust gas temperature sensor 25 be attached in the exhaust pipe.
  • the internal combustion engine 10 itself is also a speed sensor 19 as well assigned a temperature sensor 20.
  • a control unit 22 receives Input signals from one connected to the throttle valve 15 standing throttle sensor 24, the air flow sensor 14, the Lambda probe 18, the optionally available exhaust gas temperature sensor 25 and the two sensors 19 and 20 for speed and internal combustion engine temperature TMot. Both the exhaust gas temperature and the The temperature of the catalytic converter can also be modeled within the control unit calculated from other operating parameters of the internal combustion engine will.
  • the control unit 20 At least on the output side, the control unit 20 an injection signal for the at least one injection valve 16 and Ignition signals for the spark plugs of the internal combustion engine not specifically specified to disposal.
  • the structure of a control system for a Internal combustion engine is known, also its mode of operation.
  • Dependent load and speed as well as other operating parameters such as Engine temperature and throttle sensor 24 signal forms the control unit 22 pulse width modulated signals for the at least an injection valve 16 and the ignition signals for the individual Spark plugs.
  • the present invention now specifies measures, such as with regard to a Lambda control starting as quickly as possible in the sense of a possible Low-pollution exhaust measures are taken to the greatest extent possible to achieve optimal results. It is on the beginning mentioned prior art built.
  • Figure 2 shows a flow chart for the determination of the onset point the lambda control based on a control operation afterwards to a starting process.
  • the query is whether a start process is present, designated 30. If there is a starting process, then the following characteristic curves 31 each become two threshold values depending on the engine temperature prevailing at the start time TMot-Start (start temperature) read out.
  • the two threshold values are X0LL for idling (LL) and X0NLL (non-idle case). From a subsequent characteristic curve 32 a duration value TV0 is also dependent on that at the start time prevailing internal combustion engine temperature TMot-Start read out. The subsequent query 33 determines whether since the start time the predetermined period of time TV0 has expired.
  • the mode of operation of the flow chart according to FIG. 2 is explained expediently on the basis of the signal curves shown in FIG. 3.
  • the internal combustion engine temperature is there over the abscissa plotted at the time of the start (start temperature, TMot start).
  • the ordinates form time period TV and a value XO.
  • dashed lines Line are given duration values in their course.
  • two curves are drawn with solid lines, where X0LL for is a temperature curve when idling and X0NLL for one Temperature curve in the case of non-idling.
  • the time duration values TV0 shown in FIG. 3 correspondingly become read from the characteristic curve 32 of the flow chart of FIG. 2. It can be seen that the predeterminable time period increases with increasing Temperature of the internal combustion engine selected to be lower at the start time becomes.
  • a look at Figure 2 illustrates in connection with the curves of Figure 3, the operation of the control system according to the invention.
  • block 31 becomes two characteristic curves the value for the given start temperature Idle case (X0LL) and the value for the non-idle case (X0LL) read out.
  • the readout then takes place in accordance with block 32 a value for a period of time TVO, which also depends on the start temperature is dependent.
  • Query 34 clarifies the question of whether at the time of the corresponding Program run idle case or not.
  • Block 41 of FIG. 2 illustrates various appropriate measures during control operation (block 38). So has turned out to be special expediently highlighted the idle speed setpoint in the warm-up phase to increase a certain delta, further - alternatively or in addition - the reinsertion speed to release the Fuel supply after fuel cut-off in push mode to raise or adjust the ignition late.
  • Block 42 in the flow chart according to FIG. 2 illustrates the possibility of when the control mode is switched on or during the delay its effectiveness a warm-up enrichment factor WL time and / or dependent on the ignition via a ramp or alternatively or additionally in the case of the possibility of adding secondary air, this First switch off the secondary air supply and only then with selectable delay the regulation in block 39 come into effect to let.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einem Steuersystem für die Kraftstoffzumessung einer Brennkraftmaschine nach der Gattung des Hauptanspruchs. Bekannt ist aus der DE 28 05 805 C2 ein Verfahren sowie eine Einrichtung zum Betrieb einer Kraftstoffversorgungsanlage mit Lambda-Regelung. Dort ist vorgesehen, die Lambda-Regelung dann einzuschalten, wenn neben der Betriebsbereitschaft der Sonde auch eine bestimmte Brennkraftmaschinentemperatur erreicht worden ist. Die Größe dieser Temperatur ist mit "vorzugsweise 50 bis 85°"angegeben. Ferner zeigt die DE 30 24 606 Al eine "Regeleinrichtung für die Zusammensetzung des in einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches". Dieses Dokument lehrt die Lambda-Regelung bei zwei unterschiedlichen Abgastemperaturen einzuschalten und zwar abhängig davon, ob Leerlauffall gegeben ist oder nicht.
Abhängigkeiten der Umschaltschwelle zwischen Steuerung und Regelung und der Starttemperatur werden auch in der US 4,930,480 und im Abstract der JP 580 726 28 offenbart. Nach dem Abstract wird die Temperatur der Brennkraftmaschine beim Start festgestellt, dann wird ein vorbestimmter Wert hinzuaddiert und es wird dann von Steuerung auf Regelung umgeschaltet, wenn die gemessene Brennkraftmaschinentemperatur die Summe aus Starttemperatur und hinzuaddiertem Wert überschreitet.
Es hat sich nun gezeigt, daß diese bekannten Verfahren nicht in allen Betriebszuständen optimal zu arbeiten vermögen. Aufgabe der Erfindung ist es deshalb, ausgehend von diesem Stand der Technik ein Steuersystem für die Kraftstoffzumessung einer Brennkraftmaschine zu schaffen, das vor allem flexibler ist im Vergleich zu den bisher bekannten.
Vorteile der Erfindung
Das erfindungsgemäße Steuersystem mit den Merkmalen des Hauptanspruchs hat gegenüber den bekannten Systemen den Vorteil, im Rahmen einer Optimierung bei gutem Fahrverhalten der Brennkraftmaschine die Lambda-Regelung bereits zu einem sehr frühen Zeitpunkt einzuschalten und dadurch die Schadstoffemission weiter zu verringern.
Weitere Vorteile der Erfindung ergeben sich in Verbindung mit den Unteransprüchen aus der nachfolgenden Beschreibung eines Ausführungsbeispiels.
Zeichnung
Ein Ausführungsbeispiel der Erfindung (mit Alternativlösungen) ist in der Zeichnung dargestellt und wird im nachfolgenden näher beschrieben und erläutert. Es zeigen Figur 1 eine Übersichtsdarstellung eines Steuersystems einer Brennkraftmaschine, Figur 2 ein Flußdiagramm zur Bestimmung des Einschaltpunktes der Lambda-Regelung und Figur 3 ein Beispiel für Werte in Verbindung mit dem Flußdiagramm von Figur 2.
Beschreibung des Ausführungsbeispieles
Figur 1 zeigt in einer Übersichtsdarstellung die im Zusammenhang mit der vorliegenden Erfindung wesentlichen Systemkomponenten und Betriebskenngrößen. Dabei ist die Brennkraftmaschine selbst mit 10 bezeichnet, ihr Ansaugrohr mit 11 und ihr Abgasrohr mit 12. Im Ansaugrohr 11 liegen in Flußrichtung hintereinander ein Luftmassen- oder Luftmengensensor 14, eine Drosselklappe 15 sowie ein Einspritzventil 16. Im Abgasrohr ist eine Lambda-Sonde 18 angebracht, die in an sich bekannter Weise nach Erreichen ihrer Betriebstemperatur auf das Vorkommen von Sauerstoff im Abgas reagiert. Zusätzlich kann ein Abgastemperatursensor 25 im Abgasrohr angebracht sein.
Der Brennkraftmaschine 10 selbst ist noch ein Drehzahlsensor 19 sowie ein Temperatursensor 20 zugeordnet. Ein Steuergerät 22 erhält Eingangssignale von einem mit der Drosselklappe 15 in Verbindung stehendem Drosselklappensensor 24, dem Luftmengensensor 14, der Lambda-Sonde 18, dem optional vorhandenen Abgastemperatursensor 25 sowie den beiden Sensoren 19 und 20 für Drehzahl und Brennkraftmaschinentemperatur TMot. Sowohl die Abgastemperatur als auch die Temperatur des Katalysators kann auch innerhalb des Steuergeräts modellhaft aus anderen Betriebskenngrößen der Brennkraftmaschine berechnet werden. Ausgangseitig stellt das Steuergerät 20 wenigstens ein Einspritzsignal für das wenigstens eine Einspritzventil 16 sowie Zündsignale für die nicht speziell angegebenen Zündkerzen der Brennkraftmaschine zur Verfügung.
Die in Figur 1 dargestellte Struktur eines Steuersystems für eine Brennkraftmaschine ist bekannt, ebenfalls ihre Wirkungsweise. Abhängig von Last und Drehzahl sowie weiteren Betriebskenngrößen wie Brennkraftmaschinentemperatur und Signal vom Drosselklappensensor 24 bildet das Steuergerät 22 pulsweitenmodulierte Signale für das wenigstens eine Einspritzventil 16 sowie die Zündsignale für die einzelnen Zündkerzen. Im betriebswarmen Zustand von Brennkraftmaschine und Lambda-Sonde findet eine Regelung der Kraftstoffzumessung auf einen bestimmten Lambda-Wert statt, vorzugsweise Lambda = 1. Die vorliegende Erfindung gibt nun Maßnahmen an, wie im Hinblick auf eine möglichst schnell einsetzende Lambda-Regelung im Sinne eines möglichst schadstoffarmen Abgases Maßnahmen getroffen werden, um möglichst optimale Ergebnisse zu erzielen. Dabei wird auf dem eingangs erwähnten Stand der Technik aufgebaut.
Figur 2 zeigt ein Flußdiagramm für die Bestimmung des Einsetzpunktes der Lambda-Regelung ausgehend von einem Steuerungsbetrieb im Anschluß an einen Startvorgang. Dabei ist die Abfrage, ob ein Startvorgang vorliegt, mit 30 bezeichnet. Liegt ein Startvorgang vor, dann werden aus nachfolgenden Kennlinien 31 jeweils zwei Schwellwerte abhängig von der zum Startzeitpunkt herrschenden Brennkraftmaschinentemperatur TMot-Start (Starttemperatur) ausgelesen.
Die beiden Schwellwerte sind X0LL für den Leerlauffall (LL) und X0NLL (Nicht-Leerlauffall). Aus einer nachfolgenden Kennlinie 32 wird ein Zeitdauerwert TV0 ebenfalls abhängig von der zum Startzeitpunkt herrschenden Brennkraftmaschinentemperatur TMot-Start ausgelesen. Die nachfolgende Abfrage 33 bestimmt, ob seit dem Startzeitpunkt die vorgegebene Zeitdauer TV0 abgelaufen ist.
Ist dies der Fall, wird im folgenden eine Aussage darüber getroffen, ob Leerlauf gegeben ist oder nicht (Abfrage 34). Im Falle eines Leerlaufbetriebs kommt die nachfolgende Abfrage 35 zum Tragen, wo ermittelt wird, ob ein bestimmter Wert X den aus der Kennlinie 31 ausgelesenen Schwellwert X0LL bereits erreicht hat oder nicht. Entsprechend ist eine Abfrage 36 vorgesehen, bei der im Falle des Fahrbetriebs, d. h. Nicht-Leerlaufbetrieb, der Wert X auf das Erreichen des Schwellwerts X0NLL festgestellt wird. Wurden die Schwellwerte in einer der beiden Abfragen 35 und 36 noch nicht erreicht, befindet sich das System weiterhin im Steuerbetrieb (Block 38), andernfalls wird auf Regelungsbetrieb (Block 39) übergegangen. Auf die weiteren Blöcke 41 und 42 wird später noch eingegangen werden.
Im Rahmen einer vereinfachten Ausführungsform der Erfindung ist es auch möglich, lediglich einen lastunabhängigen Schwellwert anstelle der beiden Schwellwerte X0LL oder X0NLL zu verwenden. Es ist auch möglich, die vorgebbare Zeitdauer zusammen oder alternativ mit dem wenigstens einen Schwellwert einer die Betriebsdauer der Brennkraftmaschine charakterisierenden Größe als Einschaltkriterium für die Lambdaregelung zu benutzen.
Weiterhin ist es auch möglich, eine die Betriebstemperatur des Katalysators kennzeichnende Größe, die modellhaft aus Betriebsgrößen der Brennkraftmaschine berechnet werden kann, als Einschaltkriterium zu verwenden.
Erläutert wird die Wirkungsweise des Flußdiagramms nach Figur 2 zweckmaßigerweise anhand der in Figur 3 dargestellten Signalverläufe. Dort ist über der Abszisse die Brennnkraftmaschinentemperatur zum Zeitpunkt des Starts aufgetragen (Starttemperatur, TMot-Start). Die Ordinate bilden Zeitdauer TV und ein Wert XO. In gestrichelter Linie sind Zeitdauerwerte in ihrem Verlauf angegeben. Ferner sind zwei Kurven mit ausgezogenen Linien eingetragen, wobei X0LL für einen Temperaturverlauf im Leerlauffall steht und X0NLL für einen Temperaturverlauf im Nicht-Leerlauffall.
Es sei betont, daß die angegebenen Kurvenverläufe nur als Beispiel dienen und sich die Werte im speziellen System an zweckmäßigen Werten bei einem bestimmten Brennkraftmaschinentyp zu orientieren haben.
Als wesentliche Aussage von Figur 3 bleibt festzuhalten, daß zu einzelnen Temperaturwerten zum Startzeitpunkt der Brennkraftmaschine (TMot-Start) unterschiedliche Brennkraftmaschinentemperaturen X0 für die Fälle Leerlauf (LL) und Nicht-Leerlauf (NLL) erreicht werden müssen, um die Lambda-Regelung zu aktivieren. Die Werte der beiden Kurven X0LL und X0NLL entstammen dabei den Kennlinien in Block 31 des Flußdiagrammes von Figur 2.
Entsprechend werden die aus Figur 3 ersichtlichen Zeitdauerwerte TV0 aus der Kennlinie 32 des Flußdiagramms von Figur 2 ausgelesen. Dabei ist ersichtlich, daß die vorgebbare Zeitdauer mit steigender Temperatur der Brennkraftmaschine zum Startzeitpunkt geringer gewählt wird.
Ein Blick auf Figur 2 verdeutlicht in Verbindung mit den Kurvenverläufen von Figur 3 die Wirkungsweise des erfindungsgemäßen Steuersystems.
Liegt Startfall vor, dann wird entsprechend Block 31 aus zwei Kennlinien der für eine bestimmte Starttemperatur geltende Wert für den Leerlauffall (X0LL) sowie der Wert für den Nicht-Leerlauffall (X0LL) ausgelesen. Anschließend erfolgt entsprechend Block 32 das Auslesen eines Wertes für eine Zeitdauer TVO, die ebenfalls von der Start-temperatur abhängig ist. Nach Ablauf dieser Zeitendauer erfolgt mit der Abfrage 34 eine Klärung der Frage, ob zum Zeitpunkt des entsprechenden Programmdurchlaufs Leerlauffall gegeben ist oder nicht.
Liegt Leerlauf vor, doch ist ein Schwellwert XOLL noch nicht erfüllt, bleibt der Steuerungsbetrieb nach Block 38 erhalten. Entsprechend verhält es sich, wenn im Nicht-Leerlauffall ein Schwellwert XONLL noch nicht erreicht worden ist. Andernfalls wird auf Regelung mittels des Blocks 39 übergegangen.
Mit der Angabe X im Zusammenhang mit den Kennfeldwerten X0LL und X0NLL soll deutlich gemacht werden, daß für diese Werte unterschiedliche Größen einsetzbar sind. Als wesentlichste Größe ist hier die Temperatur zu nennen. Dies bedeutet, daß aus Block 31 über der Start-Temperatur Temperaturschwellwerte für den Leerlauffall und den Nicht-Leerlauffall auslesbar sind und in den Abfragen 35 und 36 ermittelt wird, der momentane Temperaturmeßwert die beiden Schwellwerte für den Leerlaufbetrieb und den Nicht-Leerlaufbetrieb bereits erreicht hat. Erst beim Überschreiten dieser Schwellwerte im Leerlauf- bzw. Nicht-Leerlauffall wird von Steuerung auf Regelung übergegangen.
Als weitere zu messende Größe statt Tmot kann ein Signal dienen, das mittelbar
oder unmittelbar den Energieumsatz in der Brennkraftmaschine seit dem Start wiedergibt. Dies bedeutet, daß mittelbar oder unmittelbar wenigstens eine der folgenden Größen erfaßt werden kann:
  • Anzahl der seit dem Start erfolgten Zündungen,
  • Summe der seit Start angesaugten Luftmasse, bzw. Luftmasse,
  • Summe der seit Start zugeführten Kraftstoffmasse, insbesondere Summe der ausgegebenen Einspritzzeiten,
  • Integral über dem Drosselklappenwinkel, was ebenfalls einem summierten Lastsignal entspricht.
  • die Katalysatortemperatur, die bspw. aus Betriebskenngrößen der Brennkraftmaschine modellhaft berechnet werden kann. Auch mit Hilfe der Abgastemperatur, die bspw. mit Hilfe des Abgastemperatursensors 25 gemessen oder in bekannter Weise aus dem Innenwiderstand der Lambdasonde 18 ableitbar ist, kann modellhaft auf die Katalysatortemperatur und damit auf die Betriebsbereitschaft des Katalysators geschlossen werden.
Block 41 von Figur 2 verdeutlicht verschiedene zweckmäßige Maßnahmen während des Steuerbetriebes (Block 38). So hat sich als besonders zweckmäßig herausgestellt, den Leerlaufdrehzahlsollwert in der Warmlaufphase um ein bestimmtes Delta zu erhöhen, ferner - jeweils alternativ oder ergänzend - die Wiedereinsetzdrehzahl zur Freigabe der Kraftstoffzufuhr nach der Kraftstoffabschaltung im Schiebebetrieb anzuheben bzw. die Zündung nach spät zu verstellen.
Block 42 im Flußdiagramm nach Figur 2 verdeutlich die Möglichkeit, beim Einschalten des Regelungsbetriebs oder während der Verzögerung seiner Wirksamkeit einen Warmlaufanreicherungsfaktor WL zeitund/oder zündungsabhängig über eine Rampe abzuregeln bzw. alternativ oder ergänzend im Falle der Möglichkeit einer Sekundärluftzugabe diese Sekundärluftzugabe zuerst abzuschalten und erst anschließend mit wählbarer Verzögerung die Regelung in Block 39 zur Wirkung kommen zu lassen.

Claims (5)

  1. Steuersystem einer Brennkraftmaschine für die Kraftstoffzumessung abhängig von Betriebskenngrößen wie Last, Drehzahl, und Temperatur, mit Mitteln zur Regelung der Kraftstoffzumessung abhängig vom Ausgangssignal einer im Abgasrohr der Brennkraftmaschine befindlichen Sonde und mit Mitteln zur Umschaltung zwischen Steuer- und Regelbetrieb abhängig von einer Betriebskenngröße, die abhängig von der Temperatur der Brennkraftmaschine zum Startzeitpunkt gesetzt wird, dadurch gekennzeichnet, daß die Betriebskenngröße eine Zeitdauer ist, und/oder daß die Betriebskenngröße ein Schwellwert für wenigstens eine der folgenden Größen ist:
    Anzahl der seit dem Start erfolgten Zündungen,
    Summe der seit Start angesaugten Luftmasse bzw. Luftmenge,
    Summe der seit Start zugeführten Kraftstoffmasse, insbesondere Summe der ausgegebenen Einspritzzeiten,
    Integral über dem Drosselklappenwinkel,
    Integral über dem Saugrohrdruck,
    Wert der Abgastemperatur,
    Wert der Katalysatortemperatur.
  2. Steuersystem nach Anspruch 1, dadurch gekennzeichnet, daß bis zum Einschalten des Regelbetriebes wenigstens eine der folgenden Maßnahmen getroffen werden:
    Erhöhung der Leerlauf-Soll-Drehzahl,
    Erhöhung der Wiedereinsetzdrehzahl zur Freigabe der Kraftstoffzufuhr nach der Kraftstoffabschaltung im Schiebebetrieb,
    Spätverstellung der Zündung.
  3. Steuersystem nach wenigstens einem der Ansprüche 1 - 2, dadurch gekennzeichnet, daß in Verbindung mit dem Übergang auf Regelbetrieb wenigstens eine der folgenden Maßnahmen zur Wirkung kommt:
    Abregelung des Warmlaufanreicherungsfaktors zeitund/oder zündungsabhängig über eine Rampe,
    Verzögern des Regelbeginns bis zum Abschalten der Sekundärluftzugabe.
  4. Steuersystem nach wenigstens einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die vorgebbare Zeitdauer mit steigender Temperatur der Brennkraftmaschine zum Startzeitpunkt geringer gewählt wird.
  5. Steuersystem nach wenigstens einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß für die die Betriebsdauer der Brennkraftmaschine charakterisierende Größe wenigstens für zwei unterschiedliche Lastzustände unterschiedliche Schwellwerte gewählt werden und daß ferner von Steuerung auf Regelung umgeschaltet wird, wenn die charakterisierende Größe beim dann gegebenen Lastzustand den lastabhängigen Schwellwert erreicht hat und/oder die vorgebbare Zeitdauer abgelaufen ist.
EP94907495A 1993-03-19 1994-02-19 Steuersystem für die kraftstoffzumessung einer brennkraftmaschine Expired - Lifetime EP0641414B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4308813A DE4308813A1 (de) 1993-03-19 1993-03-19 Steuersystem für die Kraftstoffzumessung einer Brennkraftmaschine
DE4308813 1993-03-19
PCT/DE1994/000175 WO1994021909A1 (de) 1993-03-19 1994-02-19 Steuersystem für die kraftstoffzumessung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0641414A1 EP0641414A1 (de) 1995-03-08
EP0641414B1 true EP0641414B1 (de) 1998-06-03

Family

ID=6483233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94907495A Expired - Lifetime EP0641414B1 (de) 1993-03-19 1994-02-19 Steuersystem für die kraftstoffzumessung einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US5533491A (de)
EP (1) EP0641414B1 (de)
JP (1) JP3466192B2 (de)
DE (2) DE4308813A1 (de)
WO (1) WO1994021909A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435419A1 (de) * 1994-10-04 1996-04-11 Bosch Gmbh Robert Steuersystem für die Kraftstoffzumessung einer Brennkraftmaschine
DE19545418C2 (de) * 1995-12-06 1997-09-18 Bosch Gmbh Robert Elektronische Steuereinrichtung für die Kraftstoffzumessung bei einer Brennkraftmaschine
TW340067B (en) * 1996-11-13 1998-09-11 Ishikawajima Harima Heavy Ind Rolled strip joining device and a hot strip mill having such a device
DE19728926C1 (de) * 1997-07-07 1999-01-21 Bosch Gmbh Robert Verfahren und elektronische Steuereinrichtung zur Nachstartverschiebung der lambda-Regelung bei einem Verbrennungsmotor mit lambda-Regelung
FR2765914B1 (fr) * 1997-07-08 1999-09-03 Renault Procede de controle d'un moteur a combustion interne
US6226981B1 (en) 1999-02-02 2001-05-08 Caterpillar Inc. Air to fuel ratio control for gas engine and method of operation
DE10101006A1 (de) * 2001-01-11 2002-07-18 Volkswagen Ag Verfahren zur Steuerung einer eingespritzten Kraftstoffmenge während eines Startvorganges einer Verbrennungskraftmaschine
JP4321647B2 (ja) * 2007-09-21 2009-08-26 トヨタ自動車株式会社 内燃機関異常時出力制限装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918257A (en) * 1970-12-30 1975-11-11 Toyo Kogyo Co Exhaust gas purifying device for an internal combustion engine
DE2522283C3 (de) * 1975-05-20 1981-02-19 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur Start- und/oder Nachstartanreicherung des einer Brennkraftmaschine zugeführten, mittels einer elektrischen Kraftstoffeinspritzanlage gebildeten Kraftstoff-Luft-Gemisches
DE2805805C2 (de) * 1978-02-11 1989-07-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Einrichtung zum Betrieb einer Kraftstoffversorgungsanlage mit Lambda-Regelung
DE3024606A1 (de) * 1980-06-28 1982-01-28 Robert Bosch Gmbh, 7000 Stuttgart Regeleinrichtung fuer die zusammensetzung des in einer brennkraftmaschine zur verbrennung kommenden betriebsgemisches
JPS5827844A (ja) * 1981-08-13 1983-02-18 Toyota Motor Corp 内燃機関の燃料供給量制御方法及びその装置
JPS5872628A (ja) * 1981-10-26 1983-04-30 Toyota Motor Corp 電子制御機関の空燃比の帰還制御方法
JPS59196932A (ja) * 1983-04-25 1984-11-08 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JPS60259743A (ja) * 1984-06-05 1985-12-21 Honda Motor Co Ltd 内燃エンジンのアイドル回転数制御方法
JPS6456953A (en) * 1987-08-25 1989-03-03 Fuji Heavy Ind Ltd Trouble diagnosing device for exhaust gas recirculation device
JPH01280651A (ja) * 1988-04-30 1989-11-10 Suzuki Motor Co Ltd 空燃比制御装置
DE3929746A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine

Also Published As

Publication number Publication date
WO1994021909A1 (de) 1994-09-29
JPH07506886A (ja) 1995-07-27
DE59406118D1 (de) 1998-07-09
EP0641414A1 (de) 1995-03-08
DE4308813A1 (de) 1994-09-22
US5533491A (en) 1996-07-09
JP3466192B2 (ja) 2003-11-10

Similar Documents

Publication Publication Date Title
DE3039435C2 (de) Vorrichtung zur Regelung der Leerlauf-Drehzahl von Brennkraftmaschinen
DE3408223C2 (de)
EP0760056B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE3504197A1 (de) Verfahren und vorrichtung zur regelung der ansaugluftmenge einer brennkraftmaschine in abhaengigkeit von der ausgangsdrehzahl
DE4343353C2 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE3903580C2 (de) System zum Steuern des Betriebs einer Brennkraftmaschine
DE19629068A1 (de) Vorrichtung zum Steuern der Motorleerlaufdrehzahl
EP0641414B1 (de) Steuersystem für die kraftstoffzumessung einer brennkraftmaschine
DE19538682C2 (de) Motorsteuervorrichtung
EP0456778B1 (de) System zur regelung eines betriebsparameters einer brennkraftmaschine eines kraftfahrzeugs
DE102006035372B4 (de) Motorsteuergerät
EP0130341A2 (de) Verfahren und Vorrichtung zur Steuerung des Schubbetriebs einer Brennkraftmaschine
DE4417802B4 (de) Vorrichtung zur Regelung der Motorleistung oder der Fahrgeschwindigkeit eines Fahrzeugs
EP1085187A2 (de) Verfahren und Vorrichtung zur Erhöhung des Drehmoments bei einer direkteinspritzenden Brennkraftmaschine mit einem Abgasturbolader
DE19949769B4 (de) Vorrichtung und Verfahren zum Steuern der Kraftstoffeinspritzung für eine Direkteinspritz-Brennkraftmaschine
EP1111208B1 (de) Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine eines Kraftfahrzeuges während einer Regeneration eines in einem Abgaskanal angeordneten Speicherkatalysators
EP1045966B1 (de) Verfahren und vorrichtung zum betreiben und zur überwachung einer brennkraftmaschine
EP1165953B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1035313B1 (de) Verfahren und Vorrichtung zur Abgastemperaturerhöhung
EP1003960B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE3827780C2 (de) Verfahren zum Regeln des Luft/Brennstoff-Verhältnisses eines einer Brennkraftmaschine zuzuführenden Luft/Brennstoff-Gemisches
DE4234970C2 (de) Vorrichtung und Verfahren zum Steuern einer Brennkraftmaschine
DE3926096A1 (de) Gemischsteuersystem fuer eine brennkraftmaschine
EP0614003B1 (de) Verfahren zur Steuerung des Schubbetriebes einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TJOA, JAN-TIAN

Inventor name: HERTZLER, SIEGFRIED

Inventor name: GRAS, JUERGEN

17P Request for examination filed

Effective date: 19950329

17Q First examination report despatched

Effective date: 19960430

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59406118

Country of ref document: DE

Date of ref document: 19980709

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130426

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59406118

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140220