EP0637056B1 - Lampe à décharge haute pression - Google Patents

Lampe à décharge haute pression Download PDF

Info

Publication number
EP0637056B1
EP0637056B1 EP94111177A EP94111177A EP0637056B1 EP 0637056 B1 EP0637056 B1 EP 0637056B1 EP 94111177 A EP94111177 A EP 94111177A EP 94111177 A EP94111177 A EP 94111177A EP 0637056 B1 EP0637056 B1 EP 0637056B1
Authority
EP
European Patent Office
Prior art keywords
getter
discharge vessel
boron
radiation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94111177A
Other languages
German (de)
English (en)
Other versions
EP0637056A1 (fr
Inventor
Dr. Dietrich Fromm
Dr. Richard Ullmann
Günther Söhring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0637056A1 publication Critical patent/EP0637056A1/fr
Application granted granted Critical
Publication of EP0637056B1 publication Critical patent/EP0637056B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/183Composition or manufacture of getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/26Means for absorbing or adsorbing gas, e.g. by gettering; Means for preventing blackening of the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.
  • Electrode corrosion significantly shortens the lifespan of halogen-containing lamps. It occurs when there is free halogen on the electrodes in the operating state at an electrode temperature at which the halogen of the wholly or partially dissociated metal halide filling component can react with the electrode material.
  • Residual oxygen which, for example, comes into the discharge vessel in the form of water as an impurity in the filling gases and the discharge vessel material or in the form of OH groups in the quartz glass, is crucially responsible for this harmful cycle. Higher oxygen concentrations accelerate electrode corrosion considerably.
  • the electrode material which is usually tungsten or thoriated tungsten
  • the electrode material which is usually tungsten or thoriated tungsten
  • the vaporous tungsten halide or tungsten oxyhalide is dissociated again in the discharge, the tungsten being released being deposited at the hot points of the electrode, at the tip of the electrode.
  • This process can take up lead to the electrodes breaking off at the point thinned by corrosion and thus to failure of the lamp.
  • This reaction scheme taking place in the case of electrode corrosion can be explained on the basis of the schematic illustration in FIG. 2.
  • the residual oxygen (O 2 ) first forms tungsten dioxide (WO 2 ), which reacts with the halogen (X 2 ) to form tungsten oxyhalide (WO 2 X 2 ).
  • the tungsten oxyhalide compound dissociates in the discharge, with the tungsten being deposited on the hot areas of the electrodes, while the oxygen (O 2 ) and the halogen (X 2 ) on the cooler electrode parts, where the tungsten removal takes place, for further cycles with the electrode material (W) are available.
  • Metal halide high-pressure discharge lamps are particularly affected by electrode corrosion, the metal halide filler additive predominantly containing sodium and tin halide, and UV lamps, the metal halide filler additive primarily containing mercury halides, iron and / or nickel halides.
  • the patent specification FR 2 342 553 describes a gas discharge lamp with a fill containing metal halide. Elemental phosphorus or a phosphorus compound is contained in the discharge space of this lamp. The phosphorus or the phosphorus compound act within the discharge vessel as a getter for the undesired water vapor.
  • Japanese Patent Application Laid-Open No. 55-133732 discloses a manufacturing method for a high pressure metal halide discharge lamp. While the discharge vessel is being evacuated and provided with the filling additives, the discharge space is connected to an auxiliary chamber in which a metallic getter is arranged. When the discharge space is heated, this getter binds oxygen and hydrogen impurities that were caused by the introduction of the metal halide. After heating, the secondary chamber is separated from the discharge vessel.
  • the getter according to the invention binds the residual oxygen introduced into the discharge vessel by impurities in the filling substances. As a result, the oxygen is no longer available for the harmful cycle shown in FIG. 2, i.e. the accelerated, catalytic effect of the oxygen on the chemical reaction of the halogens with the electrode material is eliminated. In this way, the halogen attack on the electrodes and thus the electrode corrosion are suppressed.
  • the getter substances are advantageously the chemical elements boron, aluminum, scandium or the rare earth metals and their halides, preferably iodides bromides or chlorides, and the tungsten-boron compounds WB and W 2 B and the tin-phosphorus compounds SnP, SnP 3 , Sn 4 P 3 and the phosphorus halides used. These getter substances bind the residual oxygen in the discharge vessel and, given the low dosage given below, do not influence the color locus of the lamp or damage the quartz glass wall of the discharge vessel.
  • the dosage of the getter substances in the high-pressure discharge lamps according to the invention is selected such that the proportion by weight of the active getter element (e.g. boron and aluminum) contained in the getter compounds mentioned above, based on the total weight of the metal halide fill additives used in the discharge lamp for light or radiation generation, is approx 0.05 to 1 weight percent, and preferably 0.05 to 0.5 weight percent.
  • the dose of getter substances in the discharge vessel is about 0.05 to about 1 percent by weight for the elements boron and aluminum and about 0.1 to 6 percent by weight for their halides.
  • the dosage is chosen such that the boron or phosphorus fraction is approximately 0.05 to 1 percent by weight.
  • the dosage is approximately 0.05 to 0.5 percent by weight and for their halides approximately 0.1 to 6 percent by weight.
  • All percentages by weight relate to the metal halide fill additives of the discharge lamp used to generate light or radiation.
  • getter With smaller amounts of getter, the usually free residual oxygen can no longer be completely bound, while a larger amount of getter than specified here can lead to blackening of the discharge vessel wall or to an influence on the emission spectrum of the lamp. If the getter content is too high, the halogen circuit which keeps the discharge vessel wall clean is also impaired.
  • the amount of getter introduced is so small that the getter substances have no influence on the emission spectrum and the color locus of the invention Use metal halide lamp.
  • This aspect is particularly important when halides of rare earth metals, which are well known as light or radiation emitting fill components, are used as getter substances for binding the free oxygen.
  • the getter can advantageously be added together with the metal halide filler additives serving to emit light or radiation in the form of a solid dosage.
  • FIG. 1 shows the structure of a metal halide lamp that is pinched on both sides according to the invention.
  • the lamp 1 has a gas-tight discharge vessel 2 made of quartz glass, which is surrounded by a glass outer bulb 3.
  • the discharge vessel 2 there are two tungsten electrodes 4, 5, between which a gas discharge is formed in the operating state.
  • the electrodes 4, 5 are sealed in a gas-tight manner in the squeezing ends of the discharge vessel 2 and are each electrically conductively connected via a molybdenum foil 6, 7 to a respective power supply 8, 9.
  • the power supply lines 8, 9 in turn produce an electrically conductive connection to the electrical connections 12, 13 of the lamp 1 via a respective molybdenum foil melt 10, 11 of the outer bulb 3.
  • Inside the outer bulb 3 there is a getter 14 which is attached to a squeezing end of the discharge vessel 2.
  • the discharge vessel ends both have a heat-reflecting coating 15, 16.
  • the first five exemplary embodiments of the invention are each a 70W metal halide high-pressure discharge lamp which generates a warm white light color.
  • the ionizable, light-emitting filling of this lamp consists of 125 mbar argon-krypton noble gas mixture, 14.2 mg mercury and 1.4 mg metal halide filler additives.
  • the metal halide fill contains 33.51 weight percent sodium iodide (NaI), 34.96 weight percent tin bromide (SnBr 2 ), 23.3 weight percent tin iodide (SnI 2 ), 7.8 weight percent thallium iodide (TlI) and 0.43 weight percent indium iodide (InI).
  • the getter substance is introduced into the discharge vessel together with the metal halide fill additives in the form of a solid dosage.
  • the exemplary embodiments one to five differ only in the type or the amount of the getter introduced.
  • the first exemplary embodiment has approximately 0.4 percent by weight phosphorus iodide (PI 3 ) as an oxygen-binding getter substance, while approximately 2.0 percent by weight phosphorus iodide (PI 3 ) are added to the second exemplary embodiment.
  • the getter amount refers to the amount of metal halide fill additives used to emit light.
  • boron iodide (BI 3 ) and in the fourth exemplary embodiment approximately 5.0 percent by weight of boron iodide (BI 3 ) are filled into the discharge vessel as oxygen getters.
  • the fifth exemplary embodiment contains approximately 0.4 percent by weight of aluminum iodide (AlI 3 ) as the getter substance.
  • the exemplary embodiments six to eight are each a double-sided squeezed 150W metal halide high-pressure discharge lamp which emits light of a warm white color.
  • the structure of such a lamp is shown schematically in FIG. 1.
  • the filling of these lamps consists of 2.8 mg metal halide, which is preferably filled into the discharge vessel as a solid dosage.
  • the metal halide fill contains 41.93 weight percent tin iodide (SnI 2 ), 25.32 weight percent sodium iodide (NaI), 17.41 weight percent sodium bromide (NaBr), 12.66 weight percent thallium iodide (TlI), 1.34 weight percent indium iodide (InI) and 1 , 34 percent by weight (LiBr).
  • the exemplary embodiments six to nine differ only in the admixed getter substances.
  • phosphoric iodide PI 3
  • PI 3 phosphoric iodide
  • the metal halide filling of the seventh exemplary embodiment is admixed with about 1.8 percent by weight of boron iodide (BI 3 ) as a getter.
  • BI 3 boron iodide
  • the eighth embodiment contains approximately 0.4 weight percent aluminum iodide (AlI 3 ).
  • the tin-phosphorus compound SnP is used as the getter.
  • the dosage here is 2.16 percent by weight of SnP the total weight of the metal halide filling components. This corresponds to a phosphorus content of approximately 0.5 percent by weight.
  • the invention is not limited to the exemplary embodiments explained in more detail above. So instead of the iodides of aluminum, boron and phosphorus, their bromides or chlorides can also be used. Scandium halide or halides, in particular iodides, bromides and chlorides, of the rare earth metals are also suitable as getter substances. It is also possible to use the substances aluminum, phosphorus, boron, scandium and the rare earth metals in elemental form instead of the getter compounds mentioned above. The rare earth metals or rare earth metal halides and scandium or scandium halide serving as getters are used in such small doses that the getter substances have no significant influence on the emission spectrum, in particular the color temperature, of the lamp. Successful experiments were also carried out with the tungsten-boron compounds WB and W 2 B as oxygen getters.
  • the getter substances mentioned above can advantageously also be used in metal halide lamps which emit primarily in the UV range.
  • the ionizable filling of these UV lamps contains metal halide additives, which mainly consist of halides (iodides and bromides) of the metals mercury, iron or nickel.

Claims (8)

  1. Lampe à décharge à haute pression comportant une enceinte de décharge qui renferme une atmosphère ionisable halogénée, qui sert à produire de la lumière ou un rayonnement, et ayant des électrodes en saillie dans le volume de l'enceinte de décharge, caractérisée en ce que l'enceinte de décharge contient un getter fixant l'oxygène, le getter contenant une ou plusieurs substances du groupe suivant: bore, aluminium, iodure de bore, bromure de bore, chlorure de bore, iodure d'aluminium, bromure d'aluminium, chlorure d'aluminium, les composés à base de tungstène et de bore WB et W2B.
  2. Lampe à décharge à haute pression comportant une enceinte de décharge qui renferme une atmosphère ionisable halogénée, qui sert à produire de la lumière ou un rayonnement, et ayant des électrodes en saillie dans le volume de l'enceinte de décharge, caractérisée en ce que l'enceinte de décharge contient un getter fixant l'oxygène, le getter étant introduit sous forme de scandium ou d'un métal des terres rares ou sous forme d'halogénures du scandium ou d'un métal des terres rares.
  3. Lampe à décharge à haute pression suivant les revendications 1 ou 2, caractérisée en ce que l'atmosphère ionisable halogénée, qui sert à produire de la lumière ou un rayonnement, contient des halogénures des métaux sodium et étain, ainsi que, éventuellement, des halogénures d'autres métaux.
  4. Lampe à décharge à haute pression suivant les revendications 1 ou 2, caractérisée en ce que l'atmosphère ionisable halogénée, qui sert à produire de la lumière ou un rayonnement, contient un ou plusieurs halogénures des métaux mercure, fer et/ou nickel, ainsi que, éventuellement, des halogénures d'autres métaux.
  5. Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que le getter contient une ou plusieurs des substances du groupe bore, aluminium, les composés à base de tungstène et de bore WB et W2B, la proportion en poids des substances servant de getter introduites dans l'enceinte de décharge étant, rapportée aux constituants de l'atmosphère aux halogénures métalliques servant à l'émission de lumière ou d'un rayonnement, comprise entre 0,05 et 1 pour-cent en poids.
  6. Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que le getter contient une ou plusieurs des substances du groupe iodure de bore, bromure de bore, chlorure de bore, iodure d'aluminium, bromure d'aluminium, chlorure d'aluminium, la proportion en poids des substances servant de getter introduites dans l'enceinte de décharge étant, rapportée aux constituants de l'atmosphère aux halogénures métalliques servant à l'émission de lumière ou d'un rayonnement, comprise entre 0,1 et 6 pour-cent en poids.
  7. Lampe à décharge à haute pression suivant la revendication 2, caractérisée en ce que la proportion en poids des substances servant de getter introduites dans l'enceinte de décharge est, rapportée aux constituants de l'atmosphère aux halogénures métalliques servant à l'émission de lumière ou d'un rayonnement, comprise entre 0,05 et 0,5 pour-cent en poids.
  8. Lampe à décharge à haute pression, comportant une enceinte de décharge qui renferme une atmosphère ionisable halogénée, qui sert à produire de la lumière ou un rayonnement, et ayant des électrodes en saillie dans le volume de l'enceinte de décharge, l'atmosphère ionisable contenant des halogénures des métaux sodium et étain, ainsi que, éventuellement, des halogénures d'autres métaux, et un getter à teneur en phosphore étant introduit dans l'enceinte de décharge, caractérisée en ce que le getter à teneur en phosphore est un getter qui fixe l'oxygène et qui est introduit dans l'enceinte de décharge sous forme d'un composé à base d'étain et de phosphore du groupe SnP, SnP3, Sn4P3 ou d'un halogénure du phosphore.
EP94111177A 1993-07-30 1994-07-18 Lampe à décharge haute pression Expired - Lifetime EP0637056B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4325679 1993-07-30
DE4325679A DE4325679A1 (de) 1993-07-30 1993-07-30 Elektrische Lampe mit Halogenfüllung

Publications (2)

Publication Number Publication Date
EP0637056A1 EP0637056A1 (fr) 1995-02-01
EP0637056B1 true EP0637056B1 (fr) 1997-05-02

Family

ID=6494127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94111177A Expired - Lifetime EP0637056B1 (fr) 1993-07-30 1994-07-18 Lampe à décharge haute pression

Country Status (4)

Country Link
US (1) US5461281A (fr)
EP (1) EP0637056B1 (fr)
JP (1) JP3654929B2 (fr)
DE (2) DE4325679A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210606A1 (en) * 2019-11-15 2021-07-08 Alliance For Sustainable Energy, Llc Oxygen getters for activation of group v dopants in ii-vi semiconductor materials

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504817B2 (ja) * 1988-11-16 1996-06-05 キヤノン株式会社 光学素子の成形方法
JPH07114902A (ja) * 1993-10-19 1995-05-02 Hamamatsu Photonics Kk メタルハライドランプ
US5846109A (en) * 1996-09-30 1998-12-08 General Electric Company Oxygen control agents for fluorescent lamps
US5754002A (en) * 1996-11-05 1998-05-19 General Electric Company Antioxidant control of leachable mercury in fluorescent lamps
US5898272A (en) * 1997-08-21 1999-04-27 Everbrite, Inc. Cathode for gas discharge lamp
TW403819B (en) * 1998-04-08 2000-09-01 Koninkl Philips Electronics Nv High-pressure metal-halide lamp
JP3655126B2 (ja) * 1999-06-14 2005-06-02 株式会社小糸製作所 メタルハライドランプ
DE60029088T2 (de) * 1999-11-11 2007-02-01 Koninklijke Philips Electronics N.V. Hochdruck-gasentladungslampe
JP3219084B2 (ja) 2000-03-10 2001-10-15 日本電気株式会社 高圧放電灯およびその製造方法
JP2003045373A (ja) 2001-08-03 2003-02-14 Nec Lighting Ltd 高圧放電灯
EP1766650A4 (fr) * 2004-07-13 2008-06-25 Advanced Lighting Tech Inc Lampes a halogenure metallise de krypton
US7714512B2 (en) * 2005-10-19 2010-05-11 Matsushita Electric Industrial Co., Ltd. High red color rendition metal halide lamp
US7868553B2 (en) * 2007-12-06 2011-01-11 General Electric Company Metal halide lamp including a source of available oxygen
US7777418B2 (en) * 2008-04-08 2010-08-17 General Electric Company Ceramic metal halide lamp incorporating a metallic halide getter
JP2010182581A (ja) * 2009-02-06 2010-08-19 Seiko Epson Corp 放電ランプ、光源装置、およびプロジェクタ
US8497633B2 (en) 2011-07-20 2013-07-30 General Electric Company Ceramic metal halide discharge lamp with oxygen content and metallic component
CN112979465B (zh) * 2019-12-02 2022-06-28 浙江省化工研究院有限公司 一种制备二氟溴乙酸乙酯的方法
CN112978693A (zh) * 2021-03-09 2021-06-18 昆明理工大学 一种气相法制备三磷化锡的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD110138A1 (fr) * 1974-02-25 1974-12-05
DE2456757C2 (de) * 1974-11-30 1983-06-01 Philips Patentverwaltung Gmbh, 2000 Hamburg Metallhalogenid-Hochdruckgasentladungslampe
GB1577734A (en) * 1976-02-25 1980-10-29 Thorn Electrical Ind Ltd Electric lamps and their production
JPS55133732A (en) * 1979-04-06 1980-10-17 Toshiba Corp Manufacture of metal halide lamp
US4360756A (en) * 1979-11-13 1982-11-23 General Electric Company Metal halide lamp containing ThI4 with added elemental cadmium or zinc
US4633136A (en) * 1982-04-20 1986-12-30 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh High-pressure discharge lamp with low power input
CA1222274A (fr) * 1983-03-10 1987-05-26 Philip J. White Support de degazeur de lampe a vapeur de sodium haute pression non saturee
US4859905A (en) * 1983-03-10 1989-08-22 Gte Products Corporation Unsaturated vapor high pressure sodium lamp getter mounting
US5034656A (en) * 1989-09-26 1991-07-23 General Electric Company Tungsten halogen lamp including phosphorous and bromine
DE4013039A1 (de) * 1990-04-24 1991-10-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
DE4132530A1 (de) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe kleiner leistung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210606A1 (en) * 2019-11-15 2021-07-08 Alliance For Sustainable Energy, Llc Oxygen getters for activation of group v dopants in ii-vi semiconductor materials

Also Published As

Publication number Publication date
JPH0757697A (ja) 1995-03-03
EP0637056A1 (fr) 1995-02-01
US5461281A (en) 1995-10-24
DE4325679A1 (de) 1995-02-02
JP3654929B2 (ja) 2005-06-02
DE59402590D1 (de) 1997-06-05

Similar Documents

Publication Publication Date Title
EP0637056B1 (fr) Lampe à décharge haute pression
DE69817493T2 (de) Hochdruck metallhalogenidlampe
DE10354868B4 (de) Quecksilber-freie Bogenentladungsröhre für eine Entladungslampeneinheit
DE1464181B2 (de) Elektrische hochdruck dampfentladungslampe
DE10291427B4 (de) Halogen-Metalldampflampe für einen Kraftfahrzeugscheinwerfer
DE3042291C2 (de) Hochdruck-Metallhalogenid-Entladungslampe
DE1764979A1 (de) Quecksilber-Metallhalogenid-Dampflampe mit Regeneration
EP1011126A2 (fr) Lampe aux halogénures métalliques
DE2422411A1 (de) Hochdruckquecksilberdampfentladungslampe
DE2359138A1 (de) Quecksilber-metallhalogenid-entladungslampen
DE10245228B4 (de) Quecksilberfreie Bogenentladungsröhre für Entladungsleuchteneinheit
DE2031449B2 (de) Hochdruck-Metalldampflampe mit einer in ausgewählten Spektralbereichen konzentrierten Strahlung
DE60031083T2 (de) Elektrodenlose Metallhalogenid-Beleuchtungslampe
DE2725297A1 (de) Hochdruckquecksilberdampfentladungslampe
EP2347430B1 (fr) Lampe à décharge sans mercure
DE3733217C2 (fr)
DE2201831A1 (de) Bogenentladungsvorrichtung
EP0722616B1 (fr) Lampe a decharge d'halogenure metallique
DE2550661A1 (de) Metallhalogenidlampe
DE2402760C3 (de) Hochdruck-Entladungslampe
DE2456757C2 (de) Metallhalogenid-Hochdruckgasentladungslampe
DE19632220B4 (de) Elektrodenlose Entladungslampe
DE69911538T2 (de) Niederdruckquecksilberdampfentladungslampe
WO2009115116A1 (fr) Lampe à décharge gazeuse et procédé de fabrication d'une lampe à décharge gazeuse
DE2846816A1 (de) Niederdruckquecksilberdampfentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19950217

17Q First examination report despatched

Effective date: 19950829

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59402590

Country of ref document: DE

Date of ref document: 19970605

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060707

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060711

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 13

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20070731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070718

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202