EP0637056B1 - High pressure discharge lamp - Google Patents

High pressure discharge lamp Download PDF

Info

Publication number
EP0637056B1
EP0637056B1 EP94111177A EP94111177A EP0637056B1 EP 0637056 B1 EP0637056 B1 EP 0637056B1 EP 94111177 A EP94111177 A EP 94111177A EP 94111177 A EP94111177 A EP 94111177A EP 0637056 B1 EP0637056 B1 EP 0637056B1
Authority
EP
European Patent Office
Prior art keywords
getter
discharge vessel
boron
radiation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94111177A
Other languages
German (de)
French (fr)
Other versions
EP0637056A1 (en
Inventor
Dr. Dietrich Fromm
Dr. Richard Ullmann
Günther Söhring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0637056A1 publication Critical patent/EP0637056A1/en
Application granted granted Critical
Publication of EP0637056B1 publication Critical patent/EP0637056B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/183Composition or manufacture of getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/26Means for absorbing or adsorbing gas, e.g. by gettering; Means for preventing blackening of the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.
  • Electrode corrosion significantly shortens the lifespan of halogen-containing lamps. It occurs when there is free halogen on the electrodes in the operating state at an electrode temperature at which the halogen of the wholly or partially dissociated metal halide filling component can react with the electrode material.
  • Residual oxygen which, for example, comes into the discharge vessel in the form of water as an impurity in the filling gases and the discharge vessel material or in the form of OH groups in the quartz glass, is crucially responsible for this harmful cycle. Higher oxygen concentrations accelerate electrode corrosion considerably.
  • the electrode material which is usually tungsten or thoriated tungsten
  • the electrode material which is usually tungsten or thoriated tungsten
  • the vaporous tungsten halide or tungsten oxyhalide is dissociated again in the discharge, the tungsten being released being deposited at the hot points of the electrode, at the tip of the electrode.
  • This process can take up lead to the electrodes breaking off at the point thinned by corrosion and thus to failure of the lamp.
  • This reaction scheme taking place in the case of electrode corrosion can be explained on the basis of the schematic illustration in FIG. 2.
  • the residual oxygen (O 2 ) first forms tungsten dioxide (WO 2 ), which reacts with the halogen (X 2 ) to form tungsten oxyhalide (WO 2 X 2 ).
  • the tungsten oxyhalide compound dissociates in the discharge, with the tungsten being deposited on the hot areas of the electrodes, while the oxygen (O 2 ) and the halogen (X 2 ) on the cooler electrode parts, where the tungsten removal takes place, for further cycles with the electrode material (W) are available.
  • Metal halide high-pressure discharge lamps are particularly affected by electrode corrosion, the metal halide filler additive predominantly containing sodium and tin halide, and UV lamps, the metal halide filler additive primarily containing mercury halides, iron and / or nickel halides.
  • the patent specification FR 2 342 553 describes a gas discharge lamp with a fill containing metal halide. Elemental phosphorus or a phosphorus compound is contained in the discharge space of this lamp. The phosphorus or the phosphorus compound act within the discharge vessel as a getter for the undesired water vapor.
  • Japanese Patent Application Laid-Open No. 55-133732 discloses a manufacturing method for a high pressure metal halide discharge lamp. While the discharge vessel is being evacuated and provided with the filling additives, the discharge space is connected to an auxiliary chamber in which a metallic getter is arranged. When the discharge space is heated, this getter binds oxygen and hydrogen impurities that were caused by the introduction of the metal halide. After heating, the secondary chamber is separated from the discharge vessel.
  • the getter according to the invention binds the residual oxygen introduced into the discharge vessel by impurities in the filling substances. As a result, the oxygen is no longer available for the harmful cycle shown in FIG. 2, i.e. the accelerated, catalytic effect of the oxygen on the chemical reaction of the halogens with the electrode material is eliminated. In this way, the halogen attack on the electrodes and thus the electrode corrosion are suppressed.
  • the getter substances are advantageously the chemical elements boron, aluminum, scandium or the rare earth metals and their halides, preferably iodides bromides or chlorides, and the tungsten-boron compounds WB and W 2 B and the tin-phosphorus compounds SnP, SnP 3 , Sn 4 P 3 and the phosphorus halides used. These getter substances bind the residual oxygen in the discharge vessel and, given the low dosage given below, do not influence the color locus of the lamp or damage the quartz glass wall of the discharge vessel.
  • the dosage of the getter substances in the high-pressure discharge lamps according to the invention is selected such that the proportion by weight of the active getter element (e.g. boron and aluminum) contained in the getter compounds mentioned above, based on the total weight of the metal halide fill additives used in the discharge lamp for light or radiation generation, is approx 0.05 to 1 weight percent, and preferably 0.05 to 0.5 weight percent.
  • the dose of getter substances in the discharge vessel is about 0.05 to about 1 percent by weight for the elements boron and aluminum and about 0.1 to 6 percent by weight for their halides.
  • the dosage is chosen such that the boron or phosphorus fraction is approximately 0.05 to 1 percent by weight.
  • the dosage is approximately 0.05 to 0.5 percent by weight and for their halides approximately 0.1 to 6 percent by weight.
  • All percentages by weight relate to the metal halide fill additives of the discharge lamp used to generate light or radiation.
  • getter With smaller amounts of getter, the usually free residual oxygen can no longer be completely bound, while a larger amount of getter than specified here can lead to blackening of the discharge vessel wall or to an influence on the emission spectrum of the lamp. If the getter content is too high, the halogen circuit which keeps the discharge vessel wall clean is also impaired.
  • the amount of getter introduced is so small that the getter substances have no influence on the emission spectrum and the color locus of the invention Use metal halide lamp.
  • This aspect is particularly important when halides of rare earth metals, which are well known as light or radiation emitting fill components, are used as getter substances for binding the free oxygen.
  • the getter can advantageously be added together with the metal halide filler additives serving to emit light or radiation in the form of a solid dosage.
  • FIG. 1 shows the structure of a metal halide lamp that is pinched on both sides according to the invention.
  • the lamp 1 has a gas-tight discharge vessel 2 made of quartz glass, which is surrounded by a glass outer bulb 3.
  • the discharge vessel 2 there are two tungsten electrodes 4, 5, between which a gas discharge is formed in the operating state.
  • the electrodes 4, 5 are sealed in a gas-tight manner in the squeezing ends of the discharge vessel 2 and are each electrically conductively connected via a molybdenum foil 6, 7 to a respective power supply 8, 9.
  • the power supply lines 8, 9 in turn produce an electrically conductive connection to the electrical connections 12, 13 of the lamp 1 via a respective molybdenum foil melt 10, 11 of the outer bulb 3.
  • Inside the outer bulb 3 there is a getter 14 which is attached to a squeezing end of the discharge vessel 2.
  • the discharge vessel ends both have a heat-reflecting coating 15, 16.
  • the first five exemplary embodiments of the invention are each a 70W metal halide high-pressure discharge lamp which generates a warm white light color.
  • the ionizable, light-emitting filling of this lamp consists of 125 mbar argon-krypton noble gas mixture, 14.2 mg mercury and 1.4 mg metal halide filler additives.
  • the metal halide fill contains 33.51 weight percent sodium iodide (NaI), 34.96 weight percent tin bromide (SnBr 2 ), 23.3 weight percent tin iodide (SnI 2 ), 7.8 weight percent thallium iodide (TlI) and 0.43 weight percent indium iodide (InI).
  • the getter substance is introduced into the discharge vessel together with the metal halide fill additives in the form of a solid dosage.
  • the exemplary embodiments one to five differ only in the type or the amount of the getter introduced.
  • the first exemplary embodiment has approximately 0.4 percent by weight phosphorus iodide (PI 3 ) as an oxygen-binding getter substance, while approximately 2.0 percent by weight phosphorus iodide (PI 3 ) are added to the second exemplary embodiment.
  • the getter amount refers to the amount of metal halide fill additives used to emit light.
  • boron iodide (BI 3 ) and in the fourth exemplary embodiment approximately 5.0 percent by weight of boron iodide (BI 3 ) are filled into the discharge vessel as oxygen getters.
  • the fifth exemplary embodiment contains approximately 0.4 percent by weight of aluminum iodide (AlI 3 ) as the getter substance.
  • the exemplary embodiments six to eight are each a double-sided squeezed 150W metal halide high-pressure discharge lamp which emits light of a warm white color.
  • the structure of such a lamp is shown schematically in FIG. 1.
  • the filling of these lamps consists of 2.8 mg metal halide, which is preferably filled into the discharge vessel as a solid dosage.
  • the metal halide fill contains 41.93 weight percent tin iodide (SnI 2 ), 25.32 weight percent sodium iodide (NaI), 17.41 weight percent sodium bromide (NaBr), 12.66 weight percent thallium iodide (TlI), 1.34 weight percent indium iodide (InI) and 1 , 34 percent by weight (LiBr).
  • the exemplary embodiments six to nine differ only in the admixed getter substances.
  • phosphoric iodide PI 3
  • PI 3 phosphoric iodide
  • the metal halide filling of the seventh exemplary embodiment is admixed with about 1.8 percent by weight of boron iodide (BI 3 ) as a getter.
  • BI 3 boron iodide
  • the eighth embodiment contains approximately 0.4 weight percent aluminum iodide (AlI 3 ).
  • the tin-phosphorus compound SnP is used as the getter.
  • the dosage here is 2.16 percent by weight of SnP the total weight of the metal halide filling components. This corresponds to a phosphorus content of approximately 0.5 percent by weight.
  • the invention is not limited to the exemplary embodiments explained in more detail above. So instead of the iodides of aluminum, boron and phosphorus, their bromides or chlorides can also be used. Scandium halide or halides, in particular iodides, bromides and chlorides, of the rare earth metals are also suitable as getter substances. It is also possible to use the substances aluminum, phosphorus, boron, scandium and the rare earth metals in elemental form instead of the getter compounds mentioned above. The rare earth metals or rare earth metal halides and scandium or scandium halide serving as getters are used in such small doses that the getter substances have no significant influence on the emission spectrum, in particular the color temperature, of the lamp. Successful experiments were also carried out with the tungsten-boron compounds WB and W 2 B as oxygen getters.
  • the getter substances mentioned above can advantageously also be used in metal halide lamps which emit primarily in the UV range.
  • the ionizable filling of these UV lamps contains metal halide additives, which mainly consist of halides (iodides and bromides) of the metals mercury, iron or nickel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)

Description

Die Erfindung betrifft eine Hochdruckentladungslampe gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.

Insbesondere handelt es sich um Halogenmetalldampfhochdruckentladungslampen mit einer ionisierbaren, der Lichterzeugung dienenden Füllung, deren Halogenidkomponente Halogenide der Metalle Natrium und Zinn enthält, und um Halogenmetalldampfhochdruckentladungslampen für medizinische oder technische Anwendungen, die vornehmlich im ultravioletten Spektralbereich emittieren und deren ionisierbare, der Strahlungserzeugung dienende Füllung ein oder mehrere Halogenide der Metalle Quecksilber, Eisen oder / und Nickel aufweist.In particular, these are high-pressure metal halide discharge lamps with an ionizable filling which serves to generate light, the halide component of which contains halides of the metals sodium and tin, and high-pressure metal halide discharge lamps for medical or technical applications which emit primarily in the ultraviolet spectral range and their ionizable radiation generation or serving has several halides of the metals mercury, iron and / or nickel.

Bei diesen Lampen mit halogenhaltiger Füllung läuft neben dem bekannten Halogenkreislauf, der die Entladungsgefäßwand vor einer Schwärzung bewahrt, ein weiterer, schädlicher Kreisprozeß ab, an dem das Elektrodenmaterial beteiligt ist und der zu einem schwerwiegenden Qualitätsproblem, nämlich der Elektrodenkorrosion, führt. Die Elektrodenkorrosion verkürzt die Lebensdauer der Halogen enthaltenden Lampen erheblich. Sie tritt auf wenn im Betriebszustand freies Halogen an den Elektroden bei einer Elektrodentemperatur existiert, bei der das Halogen der ganz oder teilweise dissoziierten Metallhalogenidfüllungskomponente mit dem Elektrodenmaterial reagieren kann. Restsauerstoff, der zum Beispiel in Form von Wasser als Verunreinigung der Füllgase und des Entladungsgefäßmaterials oder in Gestalt von OH-Gruppen im Quarzglas in das Entladungsgefäß gelangt, ist entscheidend für diesem schädlichen Kreislauf verantwortlich. Höhere Sauerstoffkonzentrationen beschleunigen die Elektrodenkorrosion in erheblichem Maße.In these lamps with a halogen-containing filling, in addition to the well-known halogen circuit, which protects the discharge vessel wall from blackening, another, harmful cyclical process takes place, in which the electrode material is involved and which leads to a serious quality problem, namely electrode corrosion. Electrode corrosion significantly shortens the lifespan of halogen-containing lamps. It occurs when there is free halogen on the electrodes in the operating state at an electrode temperature at which the halogen of the wholly or partially dissociated metal halide filling component can react with the electrode material. Residual oxygen, which, for example, comes into the discharge vessel in the form of water as an impurity in the filling gases and the discharge vessel material or in the form of OH groups in the quartz glass, is crucially responsible for this harmful cycle. Higher oxygen concentrations accelerate electrode corrosion considerably.

Unter solchen Bedingungen wird das Elektrodenmaterial, das ist in der Regel Wolfram oder thoriertes Wolfram, als Halogenid von der kältesten Stelle der Elektroden abgetragen. Das dampfförmige Wolframhalogenid bzw. Wolframoxihalogenid wird in der Entladung wieder dissoziiert, wobei sich das freiwerdende Wolfram an den heißen Stellen der Elektrode, an der Elektrodenspitze, abscheidet. Dieser Prozeß kann bis zum Abbrechen der Elektroden an der durch Korrosion verdünnten Stelle und damit zum Ausfall der Lampe führen. Dieses bei der Elektrodenkorrosion ablaufende Reaktionsschema kann anhand der schematischen Darstellung in der Figur 2 erläutert werden.Under such conditions, the electrode material, which is usually tungsten or thoriated tungsten, is removed as a halide from the coldest point of the electrodes. The vaporous tungsten halide or tungsten oxyhalide is dissociated again in the discharge, the tungsten being released being deposited at the hot points of the electrode, at the tip of the electrode. This process can take up lead to the electrodes breaking off at the point thinned by corrosion and thus to failure of the lamp. This reaction scheme taking place in the case of electrode corrosion can be explained on the basis of the schematic illustration in FIG. 2.

Der Restsauerstoff (O2) bildet zunächst Wolframdioxid (WO2), das mit dem Halogen (X2) zu Wolframoxihalogenid (WO2X2) reagiert. Die Wolframoxihalogenidverbindung dissoziiert in der Entladung, wobei sich das Wolfram an den heißen Stellen der Elektroden ablagert, während der Sauerstoff (O2) und das Halogen (X2) an den kühleren Elektrodenteilen, an denen die Wolframabtragung erfolgt, für weitere Kreisläufe mit dem Elektrodenmaterial (W) zur Verfügung stehen.The residual oxygen (O 2 ) first forms tungsten dioxide (WO 2 ), which reacts with the halogen (X 2 ) to form tungsten oxyhalide (WO 2 X 2 ). The tungsten oxyhalide compound dissociates in the discharge, with the tungsten being deposited on the hot areas of the electrodes, while the oxygen (O 2 ) and the halogen (X 2 ) on the cooler electrode parts, where the tungsten removal takes place, for further cycles with the electrode material (W) are available.

Im besonderen Maße sind Halogenmetalldampf-Hochdruckentladunslampen von der Elektrodenkorrosion betroffen, deren Metallhalogenidfüllungszusatz überwiegend Natrium- und Zinnhalogenid enthält, sowie UV-Strahler, deren Metallhalogenidfüllungszusatz vornehmlich Quecksilberhalogenide, Eisen- oder / und Nickelhalogenide aufweist.Metal halide high-pressure discharge lamps are particularly affected by electrode corrosion, the metal halide filler additive predominantly containing sodium and tin halide, and UV lamps, the metal halide filler additive primarily containing mercury halides, iron and / or nickel halides.

Bisher wurde das Problem der Elektrodenkorrosion dadurch gelöst, daß der ionisierbaren Füllung der Halogenmetalldampflampen ein Metallüberschuß zugegeben wurde, der freies Halogen bindet und so die Teilnahme des Elektrodenmaterials am Halogenkreislauf stark einschränkte. So lassen sich beispielsweise bei einem atomaren Metall / Halogen-Verhältnis von größer oder gleich 1,5 Lampenlebensdauern von mehr als 6000 Betriebsstunden erreichen, wie z.B. im Aufsatz "Elektrodenentwicklung für kleine Halogen-Metalldampflampen" des Autors D.C. Fromm, veröffentlicht in den Technisch-wissenschaftlichen Abhandlungen der OSRAM-Gesellschaft Band 12, Springer-Verlag Berlin Heidelberg New York Tokyo 1986 auf den Seiten 65-72, offenbart ist.So far, the problem of electrode corrosion has been solved by adding an excess of metal to the ionizable filling of the metal halide lamps, which binds free halogen and thus greatly restricted the participation of the electrode material in the halogen cycle. For example, with an atomic metal / halogen ratio greater than or equal to 1.5 lamp lifetimes of more than 6000 operating hours, e.g. in the article "Electrode development for small metal halide lamps" by the author D.C. Fromm, published in the Technical-Scientific Treatises of OSRAM Society Volume 12, Springer-Verlag Berlin Heidelberg New York Tokyo 1986 on pages 65-72.

In der europäischen Patentschrift EP 0 092 221 ist eine dem Oberbegriff des Patentanspruchs 1 entsprechende Halogenmetalldampflampe beschrieben. Die ionisierbare Füllung dieser Lampe besitzt zur Verhinderung der Elektrodenkorrosion einen metallischen Zinnüberschuß. Zusätzlich werden die Elektroden an den kühleren Stellen im Einschmelzungsbereich, die besonders durch die Elektrodenkorrosion betroffen sind, durch eine den Elektrodenschaft umgebende Wendel geschützt.In the European patent EP 0 092 221, a metal halide lamp corresponding to the preamble of claim 1 is described. The ionizable filling of this lamp has an excess of metallic tin to prevent electrode corrosion. In addition, the electrodes at the cooler points in the melting area, which are particularly affected by the electrode corrosion, are protected by a helix surrounding the electrode shaft.

Die Patentschrift FR 2 342 553 beschreibt eine Gasentladungslampe mit einer metallhalogenidhaltigen Füllung. Im Entladungsraum dieser Lampe ist elementarer Phosphor oder eine Phosphorverbindung enthalten. Der Phosphor bzw. die Phosphorverbindung wirken innerhalb des Entladungsgefäßes als Getter für den unerwünschten Wasserdampf.The patent specification FR 2 342 553 describes a gas discharge lamp with a fill containing metal halide. Elemental phosphorus or a phosphorus compound is contained in the discharge space of this lamp. The phosphorus or the phosphorus compound act within the discharge vessel as a getter for the undesired water vapor.

In der japanischen Offenlegungsschrift JP 55-133732 ist ein Herstellungsverfahren für eine Metallhalogenid-Hochdruckentladungslampe offenbart. Während das Entladungsgefäß evakuiert und mit den Füllungszusätzen versehen wird, steht der Entladungsraum mit einer Nebenkammer in Verbindung, in der ein metallischer Getter angeordnet ist. Beim Ausheizen des Entladungsraumes bindet dieser Getter Sauerstoff- und Wasserstoffverunreinigungen, die durch das Einbringen des Metallhalogenides verursacht wurden. Nach dem Ausheizen wird die Nebenkammer von dem Entladungsgefäß abgetrennt.Japanese Patent Application Laid-Open No. 55-133732 discloses a manufacturing method for a high pressure metal halide discharge lamp. While the discharge vessel is being evacuated and provided with the filling additives, the discharge space is connected to an auxiliary chamber in which a metallic getter is arranged. When the discharge space is heated, this getter binds oxygen and hydrogen impurities that were caused by the introduction of the metal halide. After heating, the secondary chamber is separated from the discharge vessel.

Es ist die Aufgabe der Erfindung, eine elektrische Lampe, bei der die Elektrodenkorrosion, bedingt durch den Halogenangriff auf die Elektroden, auf möglichst kostengünstige Weise unterdrückt wird.It is the object of the invention to provide an electric lamp in which the electrode corrosion caused by the halogen attack on the electrodes is suppressed in the most cost-effective manner possible.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale der Patentansprüche 1, 2 oder 8 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.This object is achieved by the characterizing features of claims 1, 2 or 8. Particularly advantageous embodiments of the invention are described in the subclaims.

Der erfindungsgemäße Getter bindet den durch Verunreinigungen der Füllsubstanzen in das Entladungsgefäß eingebrachten Restsauerstoff. Dadurch steht der Sauerstoff für den in Figur 2 dargestellten schädlichen Kreisprozeß nicht mehr zur Verfügung, d.h., die beschleunigte, katalytische Wirkung des Sauerstoffs auf die chemische Reaktion der Halogene mit dem Elektrodenmaterial entfällt. Auf diese Weise werden der Halogenangriff auf die Elektroden und damit die Elektrodenkorrosion unterdrückt.The getter according to the invention binds the residual oxygen introduced into the discharge vessel by impurities in the filling substances. As a result, the oxygen is no longer available for the harmful cycle shown in FIG. 2, i.e. the accelerated, catalytic effect of the oxygen on the chemical reaction of the halogens with the electrode material is eliminated. In this way, the halogen attack on the electrodes and thus the electrode corrosion are suppressed.

Ein Metallüberschuß in der ionisierbaren Füllung zur Bindung des freien Halogens, wie im oben zitierten Aufsatz "Elektrodenentwicklung für kleine Halogen-Metalldampflampen" offenbart oder eine Schutzwendel für den Elektrodenschaft, wie in der EP 0 092 221 B1 beschrieben, werden bei den erfindungsgemäßen Halogenmetalldampflampen nicht benötigt, so daß sich hier erhebliche Kosteneinsparungen ergeben.An excess of metal in the ionizable filling for binding the free halogen, as disclosed in the article "Electrode development for small metal halide lamps" cited above, or a protective helix for the electrode shaft, as described in EP 0 092 221 B1, are not required in the metal halide lamps according to the invention , so that there are considerable cost savings.

Als Gettersubstanzen werden vorteilhafterweise die chemischen Elemente Bor, Aluminium, Scandium oder die Seltenen-Erdmetalle sowie deren Halogenide, vorzugsweise Jodide Bromide oder Chloride, und die Wolfram-Bor-Verbindungen WB und W2B sowie die Zinn-Phosphor-Verbindungen SnP, SnP3, Sn4P3 und die Phosphorhalogenide verwendet. Diese Gettersubstanzen binden den Restsauerstoff im Entladungsgefäß und führen bei der geringen, unten angegebenen Dosierung, nicht zu einer Beeinflußung des Farbortes der Lampe oder zu einer Schädigung der Quarzglaswandung des Entladungsgefässes. Die Dosierung der Gettersubstanzen in den erfindungsgemäßen Hochdruckentladungslampen ist derart gewählt, daß der Gewichtsanteil des in den obengenannten Getterverbindungen enthaltenen aktiven Getterelementes (z. B. Bor und Aluminium), bezogen auf das Gesamtgewicht der der Licht- oder Strahlungserzeugung dienenden Metallhalogenidfüllungszusätze in der Entladungslampe, ca. 0,05 bis 1 Gewichtsprozent und vorzugsweise 0,05 bis 0,5 Gewichtsprozent beträgt.The getter substances are advantageously the chemical elements boron, aluminum, scandium or the rare earth metals and their halides, preferably iodides bromides or chlorides, and the tungsten-boron compounds WB and W 2 B and the tin-phosphorus compounds SnP, SnP 3 , Sn 4 P 3 and the phosphorus halides used. These getter substances bind the residual oxygen in the discharge vessel and, given the low dosage given below, do not influence the color locus of the lamp or damage the quartz glass wall of the discharge vessel. The dosage of the getter substances in the high-pressure discharge lamps according to the invention is selected such that the proportion by weight of the active getter element (e.g. boron and aluminum) contained in the getter compounds mentioned above, based on the total weight of the metal halide fill additives used in the discharge lamp for light or radiation generation, is approx 0.05 to 1 weight percent, and preferably 0.05 to 0.5 weight percent.

Im einzelnen beträgt die Dosierung der Gettersubstanzen im Entladungsgefäß für die Elemente Bor und Aluminium etwa 0,05 bis ca. 1 Gewichtsprozent und für ihre Halogenide ca. 0,1 bis 6 Gewichtsprozent.Specifically, the dose of getter substances in the discharge vessel is about 0.05 to about 1 percent by weight for the elements boron and aluminum and about 0.1 to 6 percent by weight for their halides.

Bei den Wolfram-Bor-Verbindungen WB, W2B und den Zinn-Phosphor-Verbindungen ist die Dosierung derart gewählt, daß der Bor- bzw. Phosphor-Anteil ca. 0,05 bis 1 Gewichtsprozent beträgt.In the case of the tungsten-boron compounds WB, W 2 B and the tin-phosphorus compounds, the dosage is chosen such that the boron or phosphorus fraction is approximately 0.05 to 1 percent by weight.

Für Scandium und die Seltenen-Erdmetalle beträgt die Dosierung ca. 0,05 bis 0,5 Gewichtsprozent sowie für deren Halogenide ca. 0,1 bis 6 Gewichtsprozent.For scandium and the rare earth metals, the dosage is approximately 0.05 to 0.5 percent by weight and for their halides approximately 0.1 to 6 percent by weight.

Sämtliche Angaben in Gewichtsprozent beziehen sich auf die der Licht- oder Strahlungserzeugung dienenden Metallhalogenidfüllungszusätze der Entladungslampe.All percentages by weight relate to the metal halide fill additives of the discharge lamp used to generate light or radiation.

Bei geringeren Gettermengen kann der üblicherweise freie Restsauerstoff nicht mehr vollständig gebunden werden, während eine höhere Gettermenge, als hier angegeben, zu einer Schwärzung der Entladungsgefäßwand oder zu einer Beeinflussung des Emissionsspektrums der Lampe führen kann. Bei einem zu hohen Getteranteil wird auch der Halogenkreislauf, der die Entladungsgefäßwand sauber hält, beeinträchtigt.With smaller amounts of getter, the usually free residual oxygen can no longer be completely bound, while a larger amount of getter than specified here can lead to blackening of the discharge vessel wall or to an influence on the emission spectrum of the lamp. If the getter content is too high, the halogen circuit which keeps the discharge vessel wall clean is also impaired.

Andererseits ist die eingebrachte Gettermenge so gering, daß die Gettersubstanzen keinen Einfluß auf das Emissionsspektrum und den Farbort der erfindungsgemäßen Halogenmetalldampflampe ausüben. Dieser Gesichtspunkt ist insbesondere dann zu beachten, wenn Halogenide der Seltenen-Erdmetalle, die als Licht oder Strahlung emittierende Füllungskomponenten wohlbekannt sind, als Gettersubstanzen zum Binden des freien Sauerstoffs verwendet werden.On the other hand, the amount of getter introduced is so small that the getter substances have no influence on the emission spectrum and the color locus of the invention Use metal halide lamp. This aspect is particularly important when halides of rare earth metals, which are well known as light or radiation emitting fill components, are used as getter substances for binding the free oxygen.

Die Zugabe des Getters kann vorteilhafterweise gemeinsam mit den der Licht- bzw. Strahlungsemission dienenden Metallhalogenidfüllungszusätzen in Form einer Festkörperdosierung erfolgen.The getter can advantageously be added together with the metal halide filler additives serving to emit light or radiation in the form of a solid dosage.

Die Erfindung wird nachstehend anhand mehrerer bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
Eine schematische Darstellung des Aufbaus einer erfindungsgemäßen zweiseitig gequetschten Halogenmetalldampflampe
Figur 2
Eine Darstellung des bei der Elektrodenkorrosion unter Beteiligung von Sauerstoff ablaufenden Reaktionsschemas
The invention is explained in more detail below on the basis of several preferred exemplary embodiments. Show it:
Figure 1
A schematic representation of the structure of a metal halide lamp pinched on both sides according to the invention
Figure 2
A representation of the reaction scheme that occurs in electrode corrosion with the participation of oxygen

Figur 1 zeigt den Aufbau einer erfindungsgemäßen zweiseitig gequetschten Halogenmetalldampflampe. Die Lampe 1 besitzt ein gasdicht verschlossenes Entladungsgefäß 2 aus Quarzglas, das von einem gläsernen Außenkolben 3 umgeben ist. Innerhalb des Entladungsgefäßes 2 befinden sich zwei Wolframelektroden 4, 5, zwischen denen sich im Betriebszustand eine Gasentladung ausbildet. Die Elektroden 4, 5 sind gasdicht in den Quetschenden des Entladungsgefäßes 2 eingeschmolzen und über jeweils eine Molybdänfolie 6, 7 mit je einer Stromzuführung 8, 9 elektrisch leitend verbunden. Die Stromzuführungen 8, 9 stellen ihrerseits über jeweils eine Molybdänfolieneinschmelzung 10, 11 des Außenkolbens 3 eine elektrisch leitende Verbindung zu den elektrischen Anschlüssen 12, 13 der Lampe 1 her. Innerhalb des Außenkolbens 3 befindet sich ein Getter 14, der an einem Quetschende des Entladungsgefäßes 2 befestigt ist. Die Entladungsgefäßenden weisen beide eine Wärme reflektierende Beschichtung 15, 16 auf.FIG. 1 shows the structure of a metal halide lamp that is pinched on both sides according to the invention. The lamp 1 has a gas-tight discharge vessel 2 made of quartz glass, which is surrounded by a glass outer bulb 3. Within the discharge vessel 2 there are two tungsten electrodes 4, 5, between which a gas discharge is formed in the operating state. The electrodes 4, 5 are sealed in a gas-tight manner in the squeezing ends of the discharge vessel 2 and are each electrically conductively connected via a molybdenum foil 6, 7 to a respective power supply 8, 9. The power supply lines 8, 9 in turn produce an electrically conductive connection to the electrical connections 12, 13 of the lamp 1 via a respective molybdenum foil melt 10, 11 of the outer bulb 3. Inside the outer bulb 3 there is a getter 14 which is attached to a squeezing end of the discharge vessel 2. The discharge vessel ends both have a heat-reflecting coating 15, 16.

Alle Ausführungsbeispiele, die im folgenden näher erläutert werden, besitzen den oben geschilderten und in Figur 1 schematisch dargestellten Aufbau.All of the exemplary embodiments which are explained in more detail below have the structure described above and shown schematically in FIG.

Bei den ersten fünf Ausführungsbeispielen der Erfindung handelt es sich jeweils um eine 70W-Halogen-Metalldampf-Hochdruckentladungslampe, die eine warmweiße Lichtfarbe erzeugt. Die ionisierbare, lichtemittiernde Füllung dieser Lampe besteht aus 125 mbar Argon-Krypton Edelgasgemisch, 14,2 mg Quecksilber und 1,4 mg Metallhalogenidfüllungszusätzen. Die Metallhalogenidfüllung enthält 33,51 Gewichtsprozent Natriumjodid (NaI), 34,96 Gewichtsprozent Zinnbromid (SnBr2), 23,3 Gewichtsprozent Zinnjodid (SnI2), 7,8 Gewichtsprozent Thalliumjodid (TlI) und 0,43 Gewichtsprozent Indiumjodid (InI). Bei allen folgenden Ausführungsbeispielen ist die Gettersubstanz gemeinsam mit den Metallhalogenidfüllungszusätzen in Form einer Festkörperdosierung in das Entladungsgefäß eingebracht. Die Ausführungsbeispiele eins bis fünf unterscheiden sich nur durch die Art oder die Menge des eingebrachten Getters.The first five exemplary embodiments of the invention are each a 70W metal halide high-pressure discharge lamp which generates a warm white light color. The ionizable, light-emitting filling of this lamp consists of 125 mbar argon-krypton noble gas mixture, 14.2 mg mercury and 1.4 mg metal halide filler additives. The metal halide fill contains 33.51 weight percent sodium iodide (NaI), 34.96 weight percent tin bromide (SnBr 2 ), 23.3 weight percent tin iodide (SnI 2 ), 7.8 weight percent thallium iodide (TlI) and 0.43 weight percent indium iodide (InI). In all of the following exemplary embodiments, the getter substance is introduced into the discharge vessel together with the metal halide fill additives in the form of a solid dosage. The exemplary embodiments one to five differ only in the type or the amount of the getter introduced.

Das erste Ausführungsbeispiel besitzt ca. 0,4 Gewichtsprozent Phosphorjodid (PI3) als Sauerstoff bindende Gettersubstanz, während dem zweiten Ausführungsbeispiel ungefähr 2,0 Gewichtsprozent Phosphorjodid (PI3) zugesetzt sind. Die Gettermenge bezieht sich auf die Menge der Metallhalogenidfüllungszusätze, die zur Lichtemission dienen.The first exemplary embodiment has approximately 0.4 percent by weight phosphorus iodide (PI 3 ) as an oxygen-binding getter substance, while approximately 2.0 percent by weight phosphorus iodide (PI 3 ) are added to the second exemplary embodiment. The getter amount refers to the amount of metal halide fill additives used to emit light.

Beim dritten Ausführungsbeispiel werden ca. 1,8 Gewichtsprozent Borjodid (BI3) und beim vierten Ausführungsbeispiel ca. 5,0 Gewichtsprozent Borjodid (BI3) als Sauerstoffgetter in das Entladungsgefäß eingefüllt.In the third exemplary embodiment, approximately 1.8 percent by weight of boron iodide (BI 3 ) and in the fourth exemplary embodiment approximately 5.0 percent by weight of boron iodide (BI 3 ) are filled into the discharge vessel as oxygen getters.

Das fünfte Ausführungsbeispiel enthält ca. 0,4 Gewichtsprozent Aluminiumjodid (AlI3) als Gettersubstanz.The fifth exemplary embodiment contains approximately 0.4 percent by weight of aluminum iodide (AlI 3 ) as the getter substance.

Bei den Ausführungsbeispielen sechs bis acht handelt es sich jeweils um eine zweiseitig gequetschte 150W-Halogen-Metalldampf-Hochdruckentladungslampe, die Licht warmweißer Farbe emittiert. Der Aufbau einer derartigen Lampe ist schematisch in der Figur 1 dargestellt.The exemplary embodiments six to eight are each a double-sided squeezed 150W metal halide high-pressure discharge lamp which emits light of a warm white color. The structure of such a lamp is shown schematically in FIG. 1.

Die Füllung dieser Lampen besteht neben dem obligatorischen Quecksilber und dem Zündgas (Argon-Krypton Edelgasgemisch) aus 2,8 mg Metallhalogenid, das vorzugsweise als Festkörperdosierung in das Entladungsgefäß eingefüllt ist. Die Metallhalogenidfüllung enthält 41,93 Gewichtsprozent Zinnjodid (SnI2), 25,32 Gewichtsprozent Natriumjodid (NaI), 17,41 Gewichtsprozent Natriumbromid (NaBr), 12,66 Gewichtsprozent Thalliumjodid (TlI), 1,34 Gewichtsprozent Indiumjodid (InI) und 1,34 Gewichtsprozent (LiBr). Die Ausführungsbeispiele sechs bis neun unterscheiden sich lediglich durch die beigemischten Gettersubstanzen.In addition to the obligatory mercury and the ignition gas (argon-krypton noble gas mixture), the filling of these lamps consists of 2.8 mg metal halide, which is preferably filled into the discharge vessel as a solid dosage. The metal halide fill contains 41.93 weight percent tin iodide (SnI 2 ), 25.32 weight percent sodium iodide (NaI), 17.41 weight percent sodium bromide (NaBr), 12.66 weight percent thallium iodide (TlI), 1.34 weight percent indium iodide (InI) and 1 , 34 percent by weight (LiBr). The exemplary embodiments six to nine differ only in the admixed getter substances.

Bei dem sechsten Ausführungsbeispiel werden als Sauerstoff bindende Gettersubstanz, ca. 0,4 Gewichtsprozent Phosphorjodid (PI3) verwendet.In the sixth embodiment, about 0.4% by weight phosphoric iodide (PI 3 ) is used as the oxygen-binding getter substance.

Der Metallhalogenidfüllung des siebten Ausführungsbeispiels sind ca. 1,8 Gewichtsprozent Borjodid (BI3) als Getter beigemischt.The metal halide filling of the seventh exemplary embodiment is admixed with about 1.8 percent by weight of boron iodide (BI 3 ) as a getter.

Das achte Ausführungsbeispiel enthält ungefähr 0,4 Gewichtsprozent Aluminiumjodid (AlI3).The eighth embodiment contains approximately 0.4 weight percent aluminum iodide (AlI 3 ).

Beim neunten Ausführungsbeispiel wird als Getter die Zinn-Phosphor-Verbindung SnP verwendet. Die Dosierung beträgt hier 2,16 Gewichtsprozent SnP bezogen auf das Gesamtgewicht der Metallhalogenidfüllungskomponenten. Das entspricht einem Phosphoranteil von ungefähr 0,5 Gewichtsprozent.In the ninth embodiment, the tin-phosphorus compound SnP is used as the getter. The dosage here is 2.16 percent by weight of SnP the total weight of the metal halide filling components. This corresponds to a phosphorus content of approximately 0.5 percent by weight.

Bei allen Ausführungsbeispielen konnten weder eine Schwärzung der Entladungsgefäßinnenwand aufgrund eines Getterüberschusses noch Frühausfälle, verursacht durch Elektrodenkorrosion, beobachtet werden.In all of the exemplary embodiments, neither blackening of the inside of the discharge vessel due to excess getter nor early failures caused by electrode corrosion could be observed.

Die Erfindung beschränkt sich nicht auf die oben näher erläuterten Ausführungsbeispiele. So können anstelle der Jodide von Aluminium, Bor und Phosphor auch deren Bromide oder Cloride verwendet werden. Als Gettersubstanzen eignen sich auch Scandiumhalogenid oder Halogenide, insbesondere Jodide, Bromide und Cloride, der Seltenen-Erdmetalle. Ferner ist es möglich, anstelle der obengenannten Getterverbindungen auch die Substanzen Aluminium, Phosphor, Bor, Scandium und die Seltenen-Erdmetalle in elementarer Form zu verwenden. Die als Getter dienenden Seltenen-Erdmetalle bzw. Seltenen-Erdmetall-Halogenide sowie Scandium bzw. Scandiumhalogenid werden in so geringen Dosierungen verwendet, daß keine nennenswerte Einflußnahme der Gettersubstanzen auf das Emissionsspektrum, insbesondere die Farbtemperatur, der Lampe erfolgt. Erfolgreiche Versuche wurden außerdem mit den Wolfram-Bor-Verbindungen WB und W2B als Sauerstoffgetter durchgeführt.The invention is not limited to the exemplary embodiments explained in more detail above. So instead of the iodides of aluminum, boron and phosphorus, their bromides or chlorides can also be used. Scandium halide or halides, in particular iodides, bromides and chlorides, of the rare earth metals are also suitable as getter substances. It is also possible to use the substances aluminum, phosphorus, boron, scandium and the rare earth metals in elemental form instead of the getter compounds mentioned above. The rare earth metals or rare earth metal halides and scandium or scandium halide serving as getters are used in such small doses that the getter substances have no significant influence on the emission spectrum, in particular the color temperature, of the lamp. Successful experiments were also carried out with the tungsten-boron compounds WB and W 2 B as oxygen getters.

Die oben genannten Gettersubstanzen können vorteilhaft auch in Halogenmetalldampfstrahlern verwendet werden, die vornehmlich im UV-Bereich emittieren. Die ionisierbare Füllung dieser UV-Strahler enthält neben Quecksilber und einem Edelgasgemisch Metallhalogenidzusätze, die überwiegend aus Halogeniden (Jodide und Bromide) der Metalle Quecksilber, Eisen oder Nickel bestehen.The getter substances mentioned above can advantageously also be used in metal halide lamps which emit primarily in the UV range. In addition to mercury and a noble gas mixture, the ionizable filling of these UV lamps contains metal halide additives, which mainly consist of halides (iodides and bromides) of the metals mercury, iron or nickel.

Versuche haben ferner gezeigt, daß es sogar möglich ist, mit Hilfe der oben genannten Gettersubstanzen den durch Sauerstoffverunreinigungen verursachten Halogenangriff auf die Wolframwendel bei Halogenglühlampen deutlich einzuschränken.Experiments have also shown that it is even possible to use the getter substances mentioned above to significantly limit the halogen attack on the tungsten filament caused by oxygen impurities in incandescent halogen lamps.

Claims (8)

  1. High-pressure discharge lamp having a discharge vessel, in which a halogen-containing, ionizable fill used for the generation of light or radiation is enclosed, and having electrodes protruding into the volume of the discharge vessel, characterized in that the discharge vessel contains an oxygen-binding getter, the getter containing one or more substances from the following group: boron, aluminium, boron iodide, boron bromide, boron chloride, aluminium iodide, aluminium bromide, aluminium chromide, and the tungsten/boron compounds WB and W2B.
  2. High-pressure discharge lamp having a discharge vessel, in which a halogen-containing, ionizable fill used for the generation of light or radiation is enclosed, and having electrodes protruding into the volume of the discharge vessel, characterized in that the discharge vessel contains an oxygen-binding getter, the getter being introduced in the form of scandium or of a rare earth metal or in the form of halides of scandium or of a rare earth metal.
  3. High-pressure discharge lamp according to Claims 1 or 2, characterized in that the halogen-containing, ionizable fill used for the generation of light or radiation contains halides of the metals sodium and tin, and optionally halides of further metals.
  4. High-pressure discharge lamp according to Claims 1 or 2, characterized in that the halogen-containing, ionizable fill used for the generation of light or radiation contains one or more halides of the metals mercury, iron and/or nickel, and optionally halides of further metals.
  5. High-pressure discharge lamp according to Claim 1, characterized in that the getter contains one or more substances from the group boron, aluminium, and the tungsten/boron compounds WB, W2B, the proportion by weight of the getter substances introduced into the discharge vessel being 0.05 to 1 per cent by weight relative to the metal halide fill components used for the emission of light or radiation.
  6. High-pressure discharge lamp according to Claim 1, characterized in that the getter contains one or more substances from the group boron iodide, boron bromide, boron chloride, aluminium iodide, aluminium bromide and aluminium chloride, the proportion by weight of the getter substances introduced into the discharge vessel being 0.1 to 6 per cent by weight relative to the metal halide fill components used for the emission of light or radiation.
  7. High-pressure discharge lamp according to Claim 2, characterized in that the proportion by weight of the getter substances introduced into the discharge vessel is 0.05 to 0.5 per cent by weight relative to the metal halide fill components used for the emission of light or radiation.
  8. High-pressure discharge lamp having a discharge vessel, in which a halogen-containing, ionizable fill used for the generation of light or radiation is enclosed, and having electrodes protruding into the volume of the discharge vessel, the ionizable fill containing halides of the metals sodium and tin, and optionally halides of further metals, and a phosphorus-containing getter being introduced into the discharge vessel, characterized in that the phosphorus-containing getter is an oxygen-binding getter which is introduced into the discharge vessel in the form of a tin/phosphorus compound from the group SnP, SnP3, Sn4P3, or of a phosphorus halide.
EP94111177A 1993-07-30 1994-07-18 High pressure discharge lamp Expired - Lifetime EP0637056B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4325679A DE4325679A1 (en) 1993-07-30 1993-07-30 Electric lamp with halogen filling
DE4325679 1993-07-30

Publications (2)

Publication Number Publication Date
EP0637056A1 EP0637056A1 (en) 1995-02-01
EP0637056B1 true EP0637056B1 (en) 1997-05-02

Family

ID=6494127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94111177A Expired - Lifetime EP0637056B1 (en) 1993-07-30 1994-07-18 High pressure discharge lamp

Country Status (4)

Country Link
US (1) US5461281A (en)
EP (1) EP0637056B1 (en)
JP (1) JP3654929B2 (en)
DE (2) DE4325679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210606A1 (en) * 2019-11-15 2021-07-08 Alliance For Sustainable Energy, Llc Oxygen getters for activation of group v dopants in ii-vi semiconductor materials

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504817B2 (en) * 1988-11-16 1996-06-05 キヤノン株式会社 Optical element molding method
JPH07114902A (en) * 1993-10-19 1995-05-02 Hamamatsu Photonics Kk Metal halide lamp
US5846109A (en) * 1996-09-30 1998-12-08 General Electric Company Oxygen control agents for fluorescent lamps
US5754002A (en) * 1996-11-05 1998-05-19 General Electric Company Antioxidant control of leachable mercury in fluorescent lamps
US5898272A (en) * 1997-08-21 1999-04-27 Everbrite, Inc. Cathode for gas discharge lamp
TW403819B (en) * 1998-04-08 2000-09-01 Koninkl Philips Electronics Nv High-pressure metal-halide lamp
JP3655126B2 (en) * 1999-06-14 2005-06-02 株式会社小糸製作所 Metal halide lamp
WO2001035443A1 (en) * 1999-11-11 2001-05-17 Koninklijke Philips Electronics N.V. High-pressure gas discharge lamp
JP3219084B2 (en) 2000-03-10 2001-10-15 日本電気株式会社 High pressure discharge lamp and method of manufacturing the same
JP2003045373A (en) 2001-08-03 2003-02-14 Nec Lighting Ltd High pressure discharge lamp
WO2006017271A2 (en) * 2004-07-13 2006-02-16 Advanced Lighting Technologies, Inc. Method of manufacturing arc tubes
US7714512B2 (en) * 2005-10-19 2010-05-11 Matsushita Electric Industrial Co., Ltd. High red color rendition metal halide lamp
US7868553B2 (en) * 2007-12-06 2011-01-11 General Electric Company Metal halide lamp including a source of available oxygen
US7777418B2 (en) * 2008-04-08 2010-08-17 General Electric Company Ceramic metal halide lamp incorporating a metallic halide getter
JP2010182581A (en) * 2009-02-06 2010-08-19 Seiko Epson Corp Discharge lamp, light source device, and projector
US8497633B2 (en) 2011-07-20 2013-07-30 General Electric Company Ceramic metal halide discharge lamp with oxygen content and metallic component
CN112979465B (en) * 2019-12-02 2022-06-28 浙江省化工研究院有限公司 Method for preparing ethyl difluorobromoacetate
CN112978693A (en) * 2021-03-09 2021-06-18 昆明理工大学 Method for preparing tin triphosphate by vapor phase method
DE102023000526A1 (en) 2023-02-17 2024-08-22 NARVA Lichtquellen GmbH + Co KG. Metal halide lamp with increased UV-A yield

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD110138A1 (en) * 1974-02-25 1974-12-05
DE2456757C2 (en) * 1974-11-30 1983-06-01 Philips Patentverwaltung Gmbh, 2000 Hamburg Metal halide high pressure gas discharge lamp
GB1577734A (en) * 1976-02-25 1980-10-29 Thorn Electrical Ind Ltd Electric lamps and their production
JPS55133732A (en) * 1979-04-06 1980-10-17 Toshiba Corp Manufacture of metal halide lamp
US4360756A (en) * 1979-11-13 1982-11-23 General Electric Company Metal halide lamp containing ThI4 with added elemental cadmium or zinc
US4633136A (en) * 1982-04-20 1986-12-30 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh High-pressure discharge lamp with low power input
CA1222274A (en) * 1983-03-10 1987-05-26 Philip J. White Unsaturated vapor high pressure sodium lamp getter mounting
US4859905A (en) * 1983-03-10 1989-08-22 Gte Products Corporation Unsaturated vapor high pressure sodium lamp getter mounting
US5034656A (en) * 1989-09-26 1991-07-23 General Electric Company Tungsten halogen lamp including phosphorous and bromine
DE4013039A1 (en) * 1990-04-24 1991-10-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HIGH PRESSURE DISCHARGE LAMP
DE4132530A1 (en) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HIGH PRESSURE DISCHARGE LAMP WITH LOW POWER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210606A1 (en) * 2019-11-15 2021-07-08 Alliance For Sustainable Energy, Llc Oxygen getters for activation of group v dopants in ii-vi semiconductor materials

Also Published As

Publication number Publication date
DE59402590D1 (en) 1997-06-05
JPH0757697A (en) 1995-03-03
EP0637056A1 (en) 1995-02-01
DE4325679A1 (en) 1995-02-02
US5461281A (en) 1995-10-24
JP3654929B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP0637056B1 (en) High pressure discharge lamp
DE69817493T2 (en) HIGH PRESSURE METAL HALOGEN LAMP
DE10354868B4 (en) Mercury-free arc tube for a discharge lamp unit
DE1464181B2 (en) ELECTRIC HIGH PRESSURE VAPOR DISCHARGE LAMP
DE10291427B4 (en) Metal halide lamp for a motor vehicle headlight
DE3042291C2 (en) High pressure metal halide discharge lamp
DE1764979A1 (en) Mercury metal halide vapor lamp with regeneration
EP1011126A2 (en) Metal halogen lamp
DE2422411A1 (en) HIGH PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE2359138A1 (en) MERCURY METAL HALOGENIDE DISCHARGE LAMPS
DE69402107T2 (en) High pressure metal halide discharge lamp
DE10245228B4 (en) Mercury-free arc tube for discharge lamp unit
DE2031449B2 (en) High pressure metal halide lamp with radiation concentrated in selected spectral ranges
DE60031083T2 (en) Electrodeless metal halide illumination lamp
DE2725297A1 (en) HIGH PRESSURE MERCURY VAPOR DISCHARGE LAMP
EP2347430B1 (en) Mercury-free discharge lamp
DE3733217C2 (en)
DE2201831A1 (en) Arc discharge device
DE69608089T2 (en) Metal halide lamp
EP0722616B1 (en) Metal halogenide discharge lamp
DE69201339T2 (en) Metal vapor discharge lamp.
DE2402760C3 (en) High pressure discharge lamp
DE2456757C2 (en) Metal halide high pressure gas discharge lamp
DE19632220B4 (en) Electrodeless discharge lamp
DE69911538T2 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19950217

17Q First examination report despatched

Effective date: 19950829

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59402590

Country of ref document: DE

Date of ref document: 19970605

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060707

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060711

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 13

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20070731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070718

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202