EP0632749B1 - Laborröhrchen für die dosierung von flüssigkeiten - Google Patents

Laborröhrchen für die dosierung von flüssigkeiten Download PDF

Info

Publication number
EP0632749B1
EP0632749B1 EP93920526A EP93920526A EP0632749B1 EP 0632749 B1 EP0632749 B1 EP 0632749B1 EP 93920526 A EP93920526 A EP 93920526A EP 93920526 A EP93920526 A EP 93920526A EP 0632749 B1 EP0632749 B1 EP 0632749B1
Authority
EP
European Patent Office
Prior art keywords
tube
laboratory test
test tube
liquid
laboratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93920526A
Other languages
English (en)
French (fr)
Other versions
EP0632749A1 (de
Inventor
Peter Gundelsheimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE9203973U external-priority patent/DE9203973U1/de
Application filed by Individual filed Critical Individual
Publication of EP0632749A1 publication Critical patent/EP0632749A1/de
Application granted granted Critical
Publication of EP0632749B1 publication Critical patent/EP0632749B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes

Definitions

  • the present invention relates to a laboratory tube for dosing liquids with which it is possible, in a simple, user-friendly and contamination-safe manner, to retain a portion of a liquid in a predetermined amount in the laboratory tube and to remove the rest. With this device it is possible on the one hand to concentrate sedimentable solids and on the other hand to dilute dissolved substances.
  • US-A 3,748,099 describes a laboratory tube with fill level markings and sealing plugs (14), which adjoins the inside or outside of the tube.
  • a cannula 23 is slidably inserted, through which defined amounts of liquid can be squeezed out.
  • the device shown also serves more as a pipette with which defined amounts of solutions can be dispensed and not as a laboratory tube for metering liquids which are retained in the tube while an excess is being removed.
  • GB-A 20 83 091 describes a tube which is open on both sides, a narrow inner channel (40) being formed either by an inserted stopper or by a corresponding shaping of the tube, through which liquids are filled or drawn off can and in the outer area of the solid accumulates during centrifugation.
  • the channel must be very narrow in accordance with the procedure, since otherwise a noticeable amount of the solid matter is inside the channel during centrifugation and would be lost accordingly.
  • US-A 3,481,712 describes a centrifuge tube with a tapered lower end (25) in which the sediment is held while the supernatant liquid can be removed.
  • the closure flap (21) is designed as a microscope glass, so that the sediment can then be poured directly onto the plate, as shown in FIG. 8, an excess running into the outer cavity (35). This does not involve a measurement.
  • FIGS. 9 and 10 An alternative embodiment is described in FIGS. 9 and 10, the sediments settling in the intermediate space of the cap, from which, after the liquid has been removed, they can be transferred again to a microscope plate by gentle shaking, as shown in FIG. Even with this procedure, there is no constant retention volume for liquid which is to be returned to the laboratory tube and mixed there.
  • FR-A 2.122.187 describes an ampoule with parts of different widths so that an easy measurement of the liquids in these parts is possible.
  • a cannula is also inserted into the upper opening, through which it is possible to draw a certain volume of liquid into the ampoule.
  • the inwardly protruding tube (56) allows air to be expelled from the ampoule in the event of multiple suction processes, or an excess of liquid to be pressed out again.
  • an inner tube is inserted into the laboratory tube, which has a cylindrical opening, the outer diameter of which is 0.5-2 mm smaller than the inner diameter of the cylindrical opening, so that a defined space is formed which, depending on the length of the inserted inner tube, defines a retention space .
  • This retention space fills with the slowly pouring out the contents of the laboratory tube with the outflowing liquid, so that only the excess runs off and at Returning the tube to the vertical completely runs out of this space.
  • the space In order to allow a complete reflux, the space must not be so narrow that capillary forces hold part of the liquid when it is reset, which results in the lower limit of about 0.5-1 mm.
  • the gap should not become too wide either, since otherwise the length of the inner tube becomes correspondingly smaller for a certain retention volume and additional errors can occur when emptying.
  • the inner opening of the inserted inner tube used for filling and emptying becomes correspondingly small, which in turn can lead to handling disadvantages. It is therefore advantageous to expand this opening in a funnel shape or, if desired, to provide it with a pouring spout.
  • the firm connection between the laboratory tube and the inner tube is preferably brought about in that the inner tube has a corresponding thickening in its upper part, which can be inserted into the opening of the laboratory tube with a certain pressure.
  • a molded collar can be provided to prevent the tube from being pressed too deeply.
  • the thickening inside can then be dispensed with.
  • laboratory tubes are made almost entirely of glass or plastic and can be manufactured with very small tolerances.
  • the inner tubes used according to the invention are preferably also made of plastic, which on the one hand has sufficient elasticity to form a tight connection with the laboratory tube and on the other hand is so inexpensive that the entire device is manufactured as a disposable article and can therefore be thrown away after use. If the laboratory tube and inner tube are made of the same plastic, there is also the advantageous possibility of recycling the plastic without the two parts must be separated again.
  • the present invention is particularly intended for the commercially available centrifuge tubes, which have a content of about 15 ml and e.g. with markings for 3, 5 and 10 ml. With a length of about 10 cm, such tubes have an inner diameter of 14 mm. An inserted inner tube with an outer diameter of 1.2 mm and a length of 15 mm has a retention volume of 1 cm3. Using the specified markings, dilution or concentration ratios of 1: 3, 1: 5 or 1:10 can therefore be set very easily without additional measuring aids.
  • the same device can of course also be used for differently shaped vessels as long as they have an opening which fits exactly with the device.
  • the usual 10 ml syringe made of plastic which has a shortenable piston shaft for centrifuging, can also be provided with such an inner tube after centrifuging and in this way not only a defined amount of serum but also a defined amount of the sediment resuspended in the serum be obtained, which is available for further investigation.
  • Other laboratory vessels such as Erlenmeyer flasks and round-bottom flasks etc., which have a cylindrical opening with a suitable inner diameter, can also be converted into a measuring vessel by attaching a corresponding retention device.
  • Other forms of application are conceivable without being listed in detail here.
  • FIG. 1 shows a centrifuge glass with a retention system inserted, FIG. 1a being a section through the system, FIG. 1b showing the filled tube, FIG. 1c showing the inclined tube with the escaping liquid, FIG. 1d shows the tube in the emptied state with the remaining volume in the retaining device and FIG. 1e shows the turned-back tube with the remaining volume on the sediment.
  • Figure 2 is an enlarged representation of Figure 1e with the laboratory tube 1, the inserted inner tube 2 which has a thickening 3 which fits into the inner diameter of the laboratory tube 1 and a collar 4 which surrounds the laboratory tube 1 on the outside.
  • a funnel-shaped extension 5 is incorporated in the thickening 3 and the collar 4, a funnel-shaped extension 5 is incorporated.
  • the space between the inner tube 2 and the laboratory tube 1 defines the retention volume 7, which corresponds to the volume 7a in the reset state.
  • a sediment 8 is indicated at the bottom of the tube 2.
  • 2 fill level markings 6 are indicated, which correspond, for example, to a fill quantity of 3 cm 3.
  • Figure 3 shows a simplified embodiment of the inner tube, which consists only of the inner tube 2 and the molded thickening 3.
  • FIG. 4 shows a device which, in addition to the inner tube 2, the thickening 3 and the collar 4, also has a molded spout 9.
  • FIG. 5 shows a commercially available syringe with the outer tube 10, the piston 11, the handle 13 provided with several notches 12 and a screw-on closure cap 14 to which the cannula attachment 15 is molded.
  • FIG. 5a shows the same syringe with the attachment according to the invention, which is screwed onto the syringe via a screw connection 16.
  • the handle 13 has broken off at the first notch 12.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Laborröhrchen für die Dosierung von Flüssigkeiten mit dem es möglich ist, einfach, anwendungsfreundlich und kontaminationssicher, einen Teil einer Flüssigkeit, in einer vorbestimmten Menge, im Laborröhrchen zurückzuhalten und den Rest zu entfernen. Mit dieser Vorrichtung ist es einerseits möglich sedimentierbare Feststoffe zu konzentrieren und andererseits gelöste Stoffe zu verdünnen.
  • Bei der Untersuchung von sedimentierbaren Inhaltsstoffen einer Flüssigkeit, beispielsweise Urin oder Blut, wird eine bestimmte Menge der Suspension in ein Zentrifugenglas gefüllt, der Feststoff durch Zentrifugieren am Boden des Glases gesammelt, die überstehende Lösung abgegossen und das Sediment zur weiteren Untersuchung in einer bestimmten, normalerweise wesentlich kleineren Menge Flüssigkeit resuspendiert, um ein konzentrierteres Sediment zu erhalten. Zum Wiederaufnehmen wird dabei normalerweise die gleiche Flüssigkeit benutzt die vorher abgegossen wurde. Dazu muß eine definierte Menge abpipettiert und wieder in das Laborröhrchen zurückgeführt werden. Außer der Arbeit die dieses verursacht, besteht durch das Handhaben von Flüssigkeiten, welche ggf. Krankheitserreger enthalten, auch die Gefahr einer Kontamination.
  • Umgekehrt ist es häufig nicht möglich Lösungen direkt zu untersuchen, weil die Konzentration der Inhaltsstoffe für die Untersuchungsmethoden zu hoch liegt, um differenzierbare Ergebnisse zu erhalten. Für diesen Fall ist es notwendig die Lösungen zu verdünnen, was wiederum über eine Reihe von Pipettierschritten durchgeführt wird. Zur Vereinfachung dieser Verdünnung wurde daher in der DE-G 19 72 298 vorgeschlagen, am Boden eines Laborröhrchens ein enges Sackloch vor-zusehen, in dem sich durch Kapillarkräfte beim Ausleeren einer größeren Menge eine geringe definierte Flüssigkeitsmenge fängt, die sich beim Wiederauffüllen mit Verdünnungsmittel, durch die beim Einfüllen bewirkten Turbulenzen und Konzentrationsgradienten in dem Verdünnungsmittel, gleichmäßig verteilt. Durch entsprechende Markierungen des Laborröhrchens lassen sich definierte Verdünnungsmittelzugaben und damit Verdünnungsreihen leicht und ohne zusätzliche Hilfsmittel herstellen. Dies Verfahren hat jedoch die Nachteile, daß einerseits durch die Kapillarkräfte nur sehr geringe Flüssigkeitsmengen zurückgehalten werden können, so daß entweder der Verdünnungsfaktor sehr groß oder die nach dem Verdünnen erhaltene Lösungsmenge relativ klein ist und andererseits das Herstellen reproduzierbarer Kapillarräume einen erheblichen technischen Fertigungsaufwand erfordert, so daß es nicht möglich ist, solche Röhrchen als Wegwerf-Artikel zu fertigen und beim Reinigen wieder die Gefahr einer Kontamination auftritt. Darüberhinaus ist ein solches System nicht geeignet zur Konzentration von Sedimenten, da ein Feststoff aus dem Kapillarsystem nicht reproduzierbar wieder herausgelöst werden kann.
  • Es stellte sich daher die Aufgabe eine einfache Vorrichtung zu schaffen, welche einerseits eine definierte Menge einer Flüssigkeit in einem Laborröhrchen zurückhält und andererseits ein vollständiges Durchmischen mit zurückgebliebenem Sediment oder zugesetzter Verdünnungslösung erlaubt.
  • Diese Aufgabe wird durch die Merkmale des Hauptanspruchs gelöst und durch die Merkmale der Unteransprüche gefördert.
  • US-A 3.748.099 beschreibt ein Laborröhrchen mit Füllstands-Markierungen und Verschlußstopfen (14), welcher innen oder außen um das Röhrchen dicht anschließt. In diesem ist verschiebbar eine Kanüle 23 eingesetzt, durch die definierte Flüssigkeitsmengen ausgepreßt werden können. Die dargestellte Vorrichtung dient insofern auch mehr als Pipette, mit der definierte Mengen von Lösungen abgegeben werden können und nicht als Laborröhrchen zur Dosierung von Flüssigkeiten die im Röhrchen zurückgehalten werden, während ein Überschuß entfernt wird.
  • GB-A 20 83 091 beschreibt ein Röhrchen, welches an beiden Seiten offen ist, wobei entweder durch einen eingesetzten Stopfen oder durch eine entsprechende Ausformung des Röhrchens selbst ein schmaler innerer Kanal (40) gebildet wird, durch den Flüssigkeiten eingefüllt oder abgezogen werden können und in dessen Außenbereich sich beim Zentrifugieren der Feststoff ansammelt. Der Kanal muß der Vorgehensweise entsprechend sehr eng sein, da sonst beim Zentrifugieren eine merkliche Menge des festen Stoffes sich innerhalb des Kanals befinden und entsprechend verloren gehen würde.
  • US-A 3,481,712 beschreibt ein Zentrifugenglas mit einem verjüngten unteren Ende (25) in dem das Sediment festgehalten wird, während die überstehende Flüssigkeit entfernt werden kann. Die Verschlußklappe (21) ist in ihrem planen oberen Teil als Mikroskopierglas ausgebildet, so daß anschließend, wie in Figur 8 dargestellt, das Sediment direkt auf die Platte aufgegossen werden kann, wobei ein Überschuß in den äußeren Hohlraum (35) läuft. Eine Messung ist damit nicht verbunden. Eine alternative Ausführungsweise wird in Figuren 9 und 10 beschrieben, wobei die Sedimente sich in dem Zwischenraum der Kappe absetzen, aus dem sie nach Entfernen der Flüssigkeit durch leichtes Schütteln, wie in Figur 10 dargestellt, wieder auf eine Mikroskopierplatte überführt werden können. Auch bei dieser Vorgehensweise ist ein konstantes Rückhaltevolumen für Flüssigkeit, die wieder in das Laborröhrchen zurückgeleitet und dort vermischt werden soll, nicht gegeben.
  • FR-A 2.122.187 beschreibt eine Ampulle mit verschieden weiten Teilen, so daß eine leichte Messung der in diesen Teilen stehenden Flüssigkeiten möglich ist. In der Figur 10 ist darüber hinaus noch eine Kanüle in die obere Öffnung eingesetzt, durch welche es möglich ist, ein gewisses Flüssigkeitsvolumen in die Ampulle einzusaugen. Die nach innen überstehende Röhre (56) erlaubt es dabei, bei mehrfachen Ansaugvorgängen zwischenzeitlich Luft aus der Ampulle wieder auszustoßen, bzw. ein Überschuß Flüssigkeit wieder herauszudrücken.
  • Erfindungsgemäß wird in das Laborröhrchen, welches eine zylinderförmige Öffnung besitzt ein Innenröhrchen eingefügt, dessen Außendurchmesser 0,5-2 mm kleiner ist als der Innendurchmesser der zylindrischen Öffnung, so daß sich ein definierter Zwischenraum bildet, welcher je nach Länge des eingeschobenen Innenröhrchen einen Rückhalteraum definiert. Dieser Rückhalteraum füllt sich beim langsamen Ausgießen des Inhalts des Laborröhrchens mit der ausfließenden Flüssigkeit, so daß nur der Überschuß abläuft und beim Wiederzurückführen des Röhrchens in die Senkrechte vollständig aus diesem Zwischenraum ausläuft. Um einen vollständigen Rücklauf zu ermöglichen darf der Zwischenraum daher nicht so eng sein, daß Kapillarkräfte einen Teil der Flüssigkeit beim Zurückstellen festhalten, wodurch sich die untere Grenze von etwa 0,5-1 mm ergibt. Andererseits sollte der Spalt jedoch auch nicht zu breit werden, da sonst für ein bestimmtes Rückhaltevolumen die Länge des Innenrohres entsprechend kleiner wird und damit zusätzliche Fehler beim Entleeren auftreten können. Darüberhinaus wird bei von Haus aus engen Laborröhrchen die zum Befüllen und Entleeren dienende Innenöffnung des eingeschobenen Innenrohrs entsprechend klein, was wiederum Handhabungsnachteile mit sich bringen kann. Es ist daher vorteilhaft diese Öffnung trichterförmig zu erweitern oder falls gewünscht auch mit einem Ausgießschmabel zu versehen.
  • Die feste Verbindung zwischen Laborröhrchen und Innenrohr wird vorzugsweise dadurch bewirkt, daß das Innenrohr eine entsprechende Verdickung in seinem oberen Teil aufweist, welche mit einem gewissen Preßdruck in die Öffnung des Laborröhrchen eingeschoben werden kann. Ein angeformter Kragen kann vorgesehen sein, um ein zu tiefes Eindrücken in das Röhrchen zu verhindern. Alternativ ist es möglich, den Kragen außen um das Röhrchen herumgreifend auszubilden und mit einem Preßdruck zu halten oder mit einem Gewinde zu versehen, mittels dessen es auf ein entsprechendes Gegengewinde des Laborröhrchens aufgeschraubt werden kann. Auf die Verdickung im Inneren kann dann verzichtet werden.
  • Laborröhrchen bestehen heute praktisch ausschließlich aus Glas oder Kunststoff und lassen sich mit sehr geringen Toleranzen fertigen. Die erfindungsgemäß eingesetzten Innenröhrchen werden vorzugsweise ebenfalls aus Kunststoff gefertigt, welcher einerseits genügend Elastizität aufweist um eine dichte Verbindung mit dem Laborröhrchen einzugehen und andererseits so preiswert ist, daß die ganze Vorrichtung als Wegwerf-Artikel gefertigt und daher nach Gebrauch weggeworfen werden kann. Falls Laborröhrchen und Innenrohr aus dem gleichen Kunststoff gefertigt sind, ergibt sich zusätzlich die vorteilhafte Möglichkeit einer Recyclisierung des Kunststoffs, ohne daß die beiden Teile wieder getrennt werden müssen.
  • Die vorliegende Erfindung ist insbesondere für die handelsüblichen Zentrifugengläschen gedacht, welche einen Inhalt von etwa 15 ml aufweisen und z.B. mit Markierungen für 3, 5 und 10 ml versehen sind. Bei einer Länge von etwa 10 cm weisen solche Röhrchen einen Innendurchmesser von 14 mm auf. Ein eingeschobenes Innenröhrchen mit 1,2 mm Außendurchmesser und einer Länge von 15 mm hat ein Rückhaltevolumen von 1 cm³. Unter Verwendung der vorgegebenen Markierungen lassen sich daher sehr einfach Verdünnungs- oder Konzentrationsverhältnisse von 1:3, 1:5 oder 1:10 ohne zusätzlich Meßhilfen einstellen.
  • Obwohl die Vorrichtung an sich für die Konzentrierung von Sedimenten in Zentrifugengläschen entwickelt worden ist, läßt sich die gleiche Vorrichtung natürlich auch für anders geformte Gefäße verwenden, solange diese eine Öffnung besitzen, welche genau mit der Vorrichtung zusammenpaßt. Beispielsweise kann die übliche aus Kunststoff gefertigte 10 ml Spritze, die zum Zentrifugieren einen verkürzbaren Kolbenschaft besitzt, nach dem Zentrifugieren ebenfalls mit einem solchen Innenrohr versehen werden und auf diese Weise nicht nur eine definierte Menge Serum sondern auch eine definierte Menge des im Serum wieder resuspendierten Sediments erhalten werden, welches zur weiteren Untersuchung zur Verfügung steht. Auch andere Laborgefäße wie Erlenmeyer-Kolben und Rundkolben etc., welche eine zylindrische Öffnung mit geeigneten Innendurchmesser besitzen, können durch Aufsatz einer entsprechenden Rückhaltevorrichtung in ein Meßgefäß verwandelt werden. Weitere Anwendungsformen sind denkbar ohne jedoch hier im Einzelnen aufgezählt zu sein.
  • An den beigefügten Figuren wird die Erfindung näher erläutert, ohne daß sie jedoch darauf beschränkt sein soll.
  • Figur 1 zeigt ein Zentrifugenglas mit eingesetztem Rückhaltesystem, wobei Figur 1a ein Schnitt durch das System ist, Figur 1b das gefüllte Röhrchen zeigt, Figur 1c das schräg gestellte Röhrchen mit der auslaufenden Flüssigkeit zeigt, Figur 1d das Röhrchen im geleerten Zustand mit dem Restvolumen in der Rückhaltevorrichtung und Figur 1e das zurückgedrehte Röhrchen mit dem Restvolumen auf dem Sediment wiedergibt.
  • Figur 2 ist eine vergrößerte Wiedergabe der Figur 1e mit dem Laborröhrchen 1, dem eingesetzten Innenröhrchen 2 welches eine Verdickung 3 aufweist, die in den Innendurchmesser des Laborröhrchens 1 hineinpaßt und einen Kragen 4, welcher das Laborröhrchen 1 außen umschließt. In die Verdickung 3 und den Kragen 4 ist eine trichterförmige Erweiterung 5 eingearbeitet. Der Zwischenraum zwischen dem Innenröhrchen 2 und dem Laborröhrchen 1 definiert das Rückhaltevolumen 7, welches dem Volumen 7a in zurückgestelltem Zustand entspricht. Ein Sediment 8 ist am Boden des Röhrchens 2 angedeutet. Ferner sind 2 Füllstandsmarkierungen 6 angegeben, die z.B. einer Füllmenge von 3 cm³ entsprechen.
  • Figur 3 zeigt eine vereinfachte Ausführungsform des Innenrohrs, welche lediglich aus dem Innenrohr 2 und der angeformten Verdickung 3 besteht.
  • Figur 4 zeigt eine Vorrichtung, welche außer dem Innenrohr 2, der Verdickung 3 und dem Kragen 4 noch einen angeformten Gießschnabel 9 aufweist.
  • Figur 5 zeigt eine handelsübliche Spritze mit dem Außenrohr 10, dem Kolben 11, dem mit mehreren Bruchkerben 12 versehenen Handgriff 13 sowie einer aufschraubbaren Verschlußkappe 14 an die der Kanülenansatz 15 angeformt ist. Figur 5a zeigt die gleiche Spritze mit dem erfindungsgemäßen Aufsatz, der über eine Schraubverbindung 16 auf die Spritze aufgeschraubt ist. Der Handgriff 13 ist an der ersten Bruchkerbe 12 abgebrochen.
  • Bezugszeichenliste
  • 1
    Laborröhrchen
    2
    Innenröhrchen
    3
    Verdickung
    4
    Kragen
    5
    Einfüllöffnung (trichterförmig erweitert)
    6
    Füllmarkierung
    7
    Rückhaltevolumen
    7a
    Rückhaltevolumen nach Rücklauf
    8
    Sediment
    9
    Gießschnabel
    10
    Außenrohr
    11
    Kolben
    12
    Bruchkerbe
    13
    Handgriff
    14
    Verschlußkappe
    15
    Kanülenansatz
    16
    Schraubverbindung

Claims (4)

  1. Laborröhrchen für die Dosierung von Flüssigkeiten, wobei das Laborröhrchen (1) Markierungen (6) für das Befüllen mit der Flüssigkeit besitzt, mit der Öffnung des Laborröhrchens (1) ein verkürztes Innenröhrchen (2) verbunden ist, wobei sich zwischen Laborröhrchen (1) und Innenröhrchen (2) ein Raum mit konstantem Rückhaltevolumen (7) beim Ausgießen des Röhrcheninhalts befindet, dadurch gekennzeichnet, daß der Zwischenraum eine Weite von mindestens 0,5 bis maximal 1mm aufweist.
  2. Laborröhrchen gemäß Anspruch 1, dadurch gekennzeichnet, daß Laborröhrchen (1) und Innenröhrchen (2) aus recyclingfähigem Kunststoff bestehen, die über eine Preßverbindung verbunden sind.
  3. Laborröhrchen gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Innenrohrchen (2) aus einem zylindrischen Rohr besteht, durch dessen Länge und Außendurchmesser und dem Innendurchmesser des Laborröhrchens (1) das Rückhaltevolumen (7) definiert ist, das Innenröhrchen (2) an seinem oberen Ende eine Verdickung (3) aufweist, deren Außendurchmesser dem Innendurchmesser des Laborröhrchens (1) entspricht, das Innenröhrchen (2) einen Kragen (4) aufweist, der die Öffnung des Laborröhrchens (1) umgreift, und Kragen (4) und Verdickung (3) eine trichterförmige Einfüllöffnung (5) umfassen.
  4. Verwendung von Laborröhrchen gemäß einem der Ansprüche 1 bis 3 zur Resuspendierung der durch Zentrifugieren erhaltenen Sedimente.
EP93920526A 1992-03-25 1993-03-16 Laborröhrchen für die dosierung von flüssigkeiten Expired - Lifetime EP0632749B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE9203973U 1992-03-25
DE9203973U DE9203973U1 (de) 1992-03-25 1992-03-25 Laborröhrchen für die Dosierung von Flüssigkeiten
DE4243478 1992-12-22
DE4243478A DE4243478A1 (de) 1992-03-25 1992-12-22 Laborröhrchen für die Dosierung von Flüssigkeiten
PCT/EP1993/000615 WO1993018858A1 (de) 1992-03-25 1993-03-16 Laborröhrchen für die dosierung von flüssigkeiten

Publications (2)

Publication Number Publication Date
EP0632749A1 EP0632749A1 (de) 1995-01-11
EP0632749B1 true EP0632749B1 (de) 1995-10-04

Family

ID=25921616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93920526A Expired - Lifetime EP0632749B1 (de) 1992-03-25 1993-03-16 Laborröhrchen für die dosierung von flüssigkeiten

Country Status (6)

Country Link
EP (1) EP0632749B1 (de)
AT (1) ATE128645T1 (de)
AU (1) AU3749093A (de)
CA (1) CA2117696A1 (de)
DE (2) DE4243478A1 (de)
WO (1) WO1993018858A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055988A (zh) * 2012-08-27 2013-04-24 浙江硕华医用塑料有限公司 离心管
NL2014739B1 (en) * 2015-04-30 2017-01-18 Labonovum B V Fluid collection device.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL109202C (de) * 1959-11-20
US3718133A (en) * 1971-01-12 1973-02-27 Damon Corp Container unit for liquid samples
US3748099A (en) * 1971-09-07 1973-07-24 Toluca Ind Corp Liquid handling device
US4342724A (en) * 1980-08-21 1982-08-03 E. R. Squibb & Sons, Inc. Red cell labeling vial

Also Published As

Publication number Publication date
DE4243478A1 (de) 1993-09-30
ATE128645T1 (de) 1995-10-15
EP0632749A1 (de) 1995-01-11
AU3749093A (en) 1993-10-21
WO1993018858A1 (de) 1993-09-30
DE59300720D1 (de) 1995-11-09
CA2117696A1 (en) 1993-09-26

Similar Documents

Publication Publication Date Title
DE60306232T2 (de) Wattebauscheinrichtung und Verfahren
DE60212522T2 (de) Vorrichtung für die Entnahme von flüssigen Proben
EP0749759A1 (de) Vorrichtung zur Abgabe eines fliessfähigen Stoffes aus einem Behälter
DE1598301A1 (de) Sediment-Behaelter fuer Zentrifugen und Kappe fuer derartige Behaelter
DE2625876B2 (de) Vorrichtung zum Zubereiten von Flüssigkeitsproben zwecks Untersuchung und Analyse
EP1474235A1 (de) Probenvorbereitungsvorrichtung und hierauf aufbauender testgerätesatz
WO1998022218A1 (de) Probengefäss zur blutabnahme
EP0722083B1 (de) Verfahren und Vorrichtung zum Entnehmen und Ausstreichen von Flüssigkeiten
DE2638743A1 (de) Vorrichtung zum ausgeben einer biologischen fluessigkeit
EP0331912A2 (de) Befüllbares Probenaufnahmegefäss zur Handhabung einer flüssigen Probe
DE3415580C2 (de)
US5725832A (en) Laboratory test tubes for the dosing of liquids
EP0632749B1 (de) Laborröhrchen für die dosierung von flüssigkeiten
WO1999051350A2 (de) Vorrichtung zur aufnahme und abgabe einer definierten flüssigkeitsmenge
DE69914841T2 (de) Verfahren und Vorrrichtung zur Probenentnahme aus einem Teströhrchen
CH615129A5 (de)
DE3618558C2 (de)
EP0907414B1 (de) Verfahren zur durchführung chemischer, insbesondere biochemischer reaktionen und pipettierspitze mit reaktionsgefäss
DE2637273A1 (de) Vorrichtung zum trennen von blutfraktionen (iv)
DE3202232C2 (de) Entnahmeeinsatz für pharmazeutische Behälter, insbesondere pharmazeutische Flaschen
DE9203973U1 (de) Laborröhrchen für die Dosierung von Flüssigkeiten
EP0343534B1 (de) Flüssigkeitsaufbewahrungsbehälter insbesondere für Körperflüssigkeiten
DE3715957A1 (de) Vorrichtung zum dosieren von fluessigkeiten aus behaeltern, insbesondere flaschen o. dgl.
DE2454918A1 (de) Filtervorrichtung zum trennen von blutfraktionen
DE3333629C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951004

REF Corresponds to:

Ref document number: 128645

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 59300720

Country of ref document: DE

Date of ref document: 19951109

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960104

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010423

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060323

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060324

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

BERE Be: lapsed

Owner name: *GUNDELSHEIMER PETER

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110303

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59300720

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002