EP0628145A1 - Tuyau pour le transport d'un fluide. - Google Patents

Tuyau pour le transport d'un fluide.

Info

Publication number
EP0628145A1
EP0628145A1 EP92905219A EP92905219A EP0628145A1 EP 0628145 A1 EP0628145 A1 EP 0628145A1 EP 92905219 A EP92905219 A EP 92905219A EP 92905219 A EP92905219 A EP 92905219A EP 0628145 A1 EP0628145 A1 EP 0628145A1
Authority
EP
European Patent Office
Prior art keywords
data
sensor
transmission
winding
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92905219A
Other languages
German (de)
English (en)
Other versions
EP0628145B1 (fr
Inventor
Bernd Brandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT92905219T priority Critical patent/ATE131921T1/de
Publication of EP0628145A1 publication Critical patent/EP0628145A1/fr
Application granted granted Critical
Publication of EP0628145B1 publication Critical patent/EP0628145B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/04Preventing, monitoring, or locating loss by means of a signalling fluid enclosed in a double wall

Definitions

  • the invention relates to a conduit for transporting a medium according to the preamble of claim 1.
  • Line pipes serve e.g. for the transfer of liquid media for district heating systems.
  • a conduit there is in the filling material e.g. Polyurethane, an electrically accessible conductor in the space between the inner tube and the outer tube, with which errors can be measured by measuring resistance, e.g. Pipe leaks can be determined and located.
  • An insulated cable is also provided for the transmission of measurement data from a control point to an evaluation point, which can lie inside the filling material or can also run separately from the tube outside of the tube. It is also known to use rental cables or the TEMEX service of the Deutsche Bundespost for data transmission. Such a data transmission therefore requires additional lines or charges for existing data transmission lines.
  • the object of the invention is to reduce the effort and costs for data transmission in such a conduit. This object is achieved according to the invention in that the sensor is additionally used for the transmission of the data. Advantageous developments of the invention are described in the subclaims.
  • the sensor generally consists of a non-insulated, bare wire that is exposed to the environment, in particular the filler material, without protection. Moisture occurring e.g. acts directly on the sensor, so that this represents a very sensitive component. This high sensitivity of the sensor is necessary, since otherwise it cannot perform its function as a sensor. For this reason it has long been assumed that the sensor is not suitable for the transmission of data because of the high sensitivity to the environment. Surprisingly, it was found that the sensor can be used for the transmission of the data despite this extremely unavoidable sensitivity. It has even been shown that the data transmission is only impaired at an astonishingly high threshold value of moisture and thus a low ohmic resistance to earth in the area of the sensor.
  • the data source and / or the data sink is preferably inductively or capacitively coupled to the sensor. This ensures a separation from the actual sensor function working with DC voltage.
  • the second wire is preferably used for the transmission of the data.
  • the wire serving as a return conductor generally has fewer branches than the measuring wire itself and is therefore less exposed to faults and errors.
  • a pipeline system consists of a first pipe for the feed and a second pipe for the return. Then the cores of the two tubes serving as return conductors can be used as a symmetrical line for the transmission of the data.
  • the data is preferably transmitted in the form of digital signals which are modulated onto a carrier in frequency modulation.
  • fork circuits are preferably provided, which enable a circuit-based separation of the data and the energy.
  • the senor can simultaneously perform three tasks. It serves firstly as a pure sensor for determining and locating a fault location, secondly for the described transmission of the data and thirdly for transmitting an energy which is used at the control points or external points to generate operating voltages for active components is required.
  • the sensor function takes place by means of a direct voltage, the data transmission by means of a modulated carrier of approximately 1 to 5 kHz or even up to 50 kHz and the energy transmission by means of an alternating voltage of 50 Hz, from which the required operating voltages are obtained by rectification.
  • the circuits for data transmission generally contain active components that require an operating voltage.
  • an operating voltage can be generated with a pelletizing element.
  • Such an element generates an operating voltage from a temperature difference at its two electrons. It is then possible to dispense with the supply of an operating voltage at certain points along the entire pipeline route.
  • the feed tube and the return tube for the medium are preferably each connected to the two electrodes of the pelletizing element by means of a pipe socket which is closed at the end.
  • FIG. 1 shows the basic structure of the conduit with that serving as a sensor and data transmitter
  • Fig. 2 shows a simplified block diagram for the solution according to the invention
  • Fig. 3 shows a circuit example for the feeding and extraction of data and energy
  • Fig. 4 shows an embodiment with inductive coupling
  • Fig. 5 shows another embodiment with capacitive input and Decoupling and - 5 -
  • FIG. 6 shows an exemplary embodiment for generating an operating voltage with a pelletizing element.
  • the conduit R consists of the inner pipe 1 carrying the medium, the outer pipe 2 surrounding the inner pipe 1 with a space, and the filling material 3 arranged in the space from e.g. Polyurethane and the sensor in the form of a bare wire 4.
  • the wire 4 which is stored in the filler 3 without insulation, serves as a sensor for determining a fault, such as e.g. a pipe leak and also for the transmission of measurement data.
  • the sensor S is connected to the measuring system MS, which consists of the wire AI serving for the measurement and the wire A2 serving as the return conductor.
  • the sensor S runs in the pipe R according to FIG. 1 and is led out of the pipe R at feeders ZI, Z2 for monitoring purposes.
  • Data D is coupled into the sensor S from the data processing DV via the data transcoder DT.
  • the data are evaluated in the data decoder DD and fed to the data acquisition and / or process control DEP.
  • the double arrows indicate that the data transmission is preferably bidirectional.
  • the sensor S which usually extends over the entire length of the pipeline R, thus serves on the one hand to report a fault to the measuring system MS and on the other hand to transmit the data D between the components shown.
  • the data D are transmitted in the form of digital signals which are modulated onto a carrier of 50 kHz, for example, by frequency modulation.
  • the frequency of the carrier can also be lower, for example in the range from 1 to 5 kHz. This frequency position can be advantageous in order to meet political requirements.
  • the frequency of the carrier is shifted between two values for the two binary values of the digital signal. Another possibility speed is that the carrier for the binary value "1" is present and blanked for the binary value "0".
  • the data path D is connected to the winding W1 of the transformer U1, the primary winding W2 of which is connected to the two wires AI of the two pipes R1, R2.
  • the energy path E is connected to the winding W3 of the transformer U2, the winding W4 of which lies between the center tap of the winding W2 and the interconnected inner tubes 1 of the two pipes R1, R2. This point is the reference point or the earth point for the circuit shown.
  • the wires AI fulfilling the sensor function of the two pipes R1, R2 thus additionally form a symmetrical line for data transmission.
  • FIG. 4 shows a circuit which essentially corresponds to the circuit according to FIG. 2.
  • the two conduits R1, R2 each contain a sensor S1, S2 with the actual measuring wire AI, which is more clearly shown, and the wire A2 serving as a return conductor.
  • the measuring wire AI is brought out in houses Hl, H2 for monitoring purposes.
  • the two wires A2 serving as return conductors of the two pipelines R1, R2 additionally serve as a symmetrical line for the transmission of the data D and the energy E.
  • the hybrid circuit with the two transmitters Ü1, Ü2 according to FIG 3 provided.
  • the coupling and decoupling of the data D is not capacitive, as in FIG. 4, but capacitive.
  • the data D are coupled into the sensor S via the capacitors C1, C2. With the capacitors C3, C4 the data are decoupled and fed to the data decoder DD.
  • the pipe R1 carries the medium for the feed at a temperature of + 90 ° C.
  • the pipe R2 serving as return pipe carries the medium at a temperature of + 50 ° C.
  • a pipe socket is attached to the pipe R1
  • the blind flange 5 set into which the medium penetrates, but which is ended at the end with a blind flange 6.
  • the electrode 7 assumes a temperature of approximately + 90 ° C. and the electrode 11 a temperature of approximately + 50 ° C. Due to this temperature difference, an operating voltage UB is generated at the terminals 12 due to the nature of the direction finder element 8.
  • This can be used at the various points of the arrangement according to FIGS. 2, 4, 5 for feeding active components such as amplifiers, impedance converters, processors and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Un tuyau, comportant un tuyau intérieur (1) conduisant le fluide ainsi qu'un tuyau extérieur (2), contient dans le matériau de remplissage intermédiaire (3) un capteur (S) servant à la détection de défauts. D'autre part, un câble associé au tuyau assure la transmission des données (D). Le but à atteindre est de réduire les dépenses pour la transmission des données (D). Selon l'invention, le capteur (S) est aussi utilisé pour la transmission des données (D). Cette invention s'applique en particulier aux tuyaux utilisés pour le transfert de liquides servant au chauffage à distance.
EP92905219A 1991-02-12 1992-02-27 Methode pour la determination des lieux du defaut Expired - Lifetime EP0628145B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT92905219T ATE131921T1 (de) 1992-02-27 1992-02-27 Verfahren zur ermittlung von fehlerstellen an leitungsrohren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4104216A DE4104216A1 (de) 1991-02-12 1991-02-12 Leitungsrohr zum transport eines mediums
PCT/EP1992/000415 WO1993017275A1 (fr) 1991-02-12 1992-02-27 Tuyau pour le transport d'un fluide

Publications (2)

Publication Number Publication Date
EP0628145A1 true EP0628145A1 (fr) 1994-12-14
EP0628145B1 EP0628145B1 (fr) 1995-12-20

Family

ID=6424878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92905219A Expired - Lifetime EP0628145B1 (fr) 1991-02-12 1992-02-27 Methode pour la determination des lieux du defaut

Country Status (5)

Country Link
EP (1) EP0628145B1 (fr)
KR (1) KR100209181B1 (fr)
DE (1) DE4104216A1 (fr)
DK (1) DK0628145T3 (fr)
WO (1) WO1993017275A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4402271C1 (de) * 1994-01-27 1995-07-27 Klein Alb Gmbh Co Kg Vorrichtung und Verfahren zum Überwachen von doppelwandigen Förderrohren
DE19519650C2 (de) * 1995-05-30 1997-04-17 Bernd Brandes Verfahren zur Ortung undichter Stellen in Rohrleitungen und Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
DE19821084C2 (de) * 1998-05-12 2000-08-31 Thermosoft Klimatechnik Gmbh Verfahren zur Dichtigkeitsüberwachung
DE10117238A1 (de) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Detektion von Fehlerstellen in isolierten Leitungssystemen
DE102004047224A1 (de) * 2004-02-17 2005-09-22 Brandes Gmbh Überwachungssystem für ein Fernwärmeverteilsystem
DE102020003135A1 (de) 2020-05-26 2021-12-02 Curt Reichert Sensoreinrichtung zur Funktionsüberwachung einer Rohrleitung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648642A (en) * 1970-01-28 1972-03-14 Continental Oil Co Communication channel between boat and marine cable depth controllers
DE7034009U (de) * 1970-09-12 1970-12-10 Felten & Guilleaume Kabelwerk Rohr fuer druckuebertragungssysteme.
DE7132112U (de) * 1971-08-21 1971-11-11 Felten & Guilleaume Kabelwerke Ag Schlauchkabel
GB1455415A (en) * 1973-03-26 1976-11-10 Rasmussen As E Insulated pipe system having means for detection of moisture in the insulation thereof
US4112247A (en) * 1976-09-20 1978-09-05 Western Electric Company, Inc. Gas feeder pipe assembly including electrical conductors
DE2829302A1 (de) * 1978-07-04 1980-01-17 Gerhard Krause Anordnung zur uebertragung von signalen innerhalb von gebaeuden
SE424359B (sv) * 1979-09-05 1982-07-12 Blom H Anordning for brottindikering vid fjerrvermeror
DE3201643A1 (de) * 1982-01-18 1983-07-28 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur ortung eines feuchtigkeitseinbruches in einen langgestreckten gegenstand grosser ausdehnung
DE3419705A1 (de) * 1984-05-25 1985-11-28 Siemens AG, 1000 Berlin und 8000 München Kabel mit kunststoffmantel und pruefleitern zur erkennung von eindringender feuchtigkeit
DE3433432A1 (de) * 1984-09-12 1986-03-20 kabelmetal electro GmbH, 3000 Hannover Fuehlader zum melden und orten von lecks in fernwaermeleitungen und verfahren zu ihrer herstellung
DE3622800A1 (de) * 1985-07-26 1987-01-29 Mitec Moderne Ind Gmbh Messanordnung mit einer vielzahl von messeinheiten
DE3626999A1 (de) * 1986-08-08 1988-02-11 Kabelmetal Electro Gmbh Vorrichtung zur laufenden ueberwachung einer fernwaermeleitung
DE3628336A1 (de) * 1986-08-21 1988-02-25 Roero Ges Fuer Isolier Und Fer Rohrleitungssystem und waermeisolierte rohre, z.b. fuer fernheizleitungen
DE3816884A1 (de) * 1988-05-18 1989-11-30 Guenter Dipl Ing Hess Montageschlauch
DE3907411A1 (de) * 1989-03-08 1990-09-13 Ant Nachrichtentech Zwischenstelle fuer eine digitalsignal-uebertragungsanlage
DE3908903A1 (de) * 1989-03-15 1990-09-20 Siemens Ag Meldeader und elektrisches oder optisches kabel mit einer meldeader sowie kabelnetz aus kabeln mit einer meldeader
DE4011259A1 (de) * 1989-04-10 1990-10-11 Inst Energieversorgung Sensorkabel zur ueberwachung der waermedaemmung von medienfuehrenden versorgungsleitungen, insbesondere fernwaermeleitungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9317275A1 *

Also Published As

Publication number Publication date
KR950700514A (ko) 1995-01-16
DK0628145T3 (da) 1996-05-06
KR100209181B1 (ko) 1999-07-15
EP0628145B1 (fr) 1995-12-20
DE4104216C2 (fr) 1992-11-12
DE4104216A1 (de) 1992-08-13
WO1993017275A1 (fr) 1993-09-02

Similar Documents

Publication Publication Date Title
DE2413345C2 (de) Isoliertes Rohrleitungssystem, insbesondere ein unterirdisches Rohrleitungssystem für Fernheizung
AT501758A4 (de) Verfahren zur ortung von leckagen in rohren
EP2283371B1 (fr) Dispositif de mesure de la puissance
EP2002413B1 (fr) Canal de transmission bidirectionnel séparé galvaniquement
US2261742A (en) Electric cable
DE3010369A1 (de) System und verfahren zum auffinden von widerstands- und verbindungsfehlern in mehradrigen kabeln
EP0060552B1 (fr) Dispositif de contrôle d'un système de canalisation, en particulier canalisation isolée de chauffage à grande distance
DE4104216C2 (fr)
DE3224623C2 (fr)
EP2112491B1 (fr) Dispositif, système et procédé de détection et de localisation d'étanchéïtés
DE19519650C2 (de) Verfahren zur Ortung undichter Stellen in Rohrleitungen und Rohrleitungssystem, insbesondere für die Übertragung von Fernwärme
DE69118483T2 (de) Magnetischer Durchflussmesser
EP2696183A2 (fr) Dispositif de surveillance des fuites et procédé de surveillance des fuites dans une conduite de chauffage à distance
DE4217962A1 (de) Datenuebertragungsverfahren fuer messsignale in grab- und erdbohrgeraeten sowie bohrloch-foerderungseinrichtungen
EP0257575A1 (fr) Système de tuyauterie et tuyaux isolées thermiquement, par exemple pour tuyauteries du chauffage à distance
DE3214130A1 (de) Unterirdisch verlegtes leitungssystem
DE19914658C2 (de) Anordnung zur Messung von Undichtigkeiten in Abdichtungssystemen zur Leckagedetektion und Leckageortung elektrisch leitender Fluide sowie Verwendung einer solchen Anordnung
US2803692A (en) Fluid
DE3611603C2 (fr)
CN109541404B (zh) 油气管道监控阀室绝缘故障排查方法
WO2020064951A1 (fr) Capteur et système de mesure pour détecter un fluide sur un élément structural muni d'une isolation
JPS6239856B2 (fr)
DE102016108122B3 (de) Kabelanordnung, Kabel und Verfahren
DE102007051766A1 (de) System zur Auslesung von Fernwärmezählern
DE3433028C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DK FR IT LI SE

17Q First examination report despatched

Effective date: 19950502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DK FR IT LI SE

REF Corresponds to:

Ref document number: 131921

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960226

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

EUG Se: european patent has lapsed

Ref document number: 92905219.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980226

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110214

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 131921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120227