EP0601030B1 - Procede et dispositif pour l'execution de mesures dans des trous fores par cable - Google Patents

Procede et dispositif pour l'execution de mesures dans des trous fores par cable Download PDF

Info

Publication number
EP0601030B1
EP0601030B1 EP92918511A EP92918511A EP0601030B1 EP 0601030 B1 EP0601030 B1 EP 0601030B1 EP 92918511 A EP92918511 A EP 92918511A EP 92918511 A EP92918511 A EP 92918511A EP 0601030 B1 EP0601030 B1 EP 0601030B1
Authority
EP
European Patent Office
Prior art keywords
measuring
probe
borehole
measurement
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92918511A
Other languages
German (de)
English (en)
Other versions
EP0601030A1 (fr
Inventor
Udo Dickel
Helmut Palm
Clemens Hinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergwerksverband GmbH
RAG AG
Original Assignee
Ruhrkohle AG
Bergwerksverband GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG, Bergwerksverband GmbH filed Critical Ruhrkohle AG
Publication of EP0601030A1 publication Critical patent/EP0601030A1/fr
Application granted granted Critical
Publication of EP0601030B1 publication Critical patent/EP0601030B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • E21B17/0283Electrical or electro-magnetic connections characterised by the coupling being contactless, e.g. inductive
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/02Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections

Definitions

  • the invention relates to a measurement method for cable core bores, in which an autonomously functioning measuring probe is inserted into the drill pipe and locked via a core tube coupling, measured values are recorded by the measuring probe and stored as a function of time, and the measuring probe is recovered with the aid of a core tube catcher and the measured values are read out after the measurement has been completed .
  • a measurement method is known from US-A-4,955,438.
  • the disadvantage of this measuring method is that the insertion and replacement of the measuring probe encounters difficulties in the case of strongly deflected bores and that the measuring probe can only carry out its measurements within the drill pipe because it is arranged behind the drill bit and the core pipe in the drill pipe.
  • the invention further relates to an apparatus for performing the method.
  • a drilling method in which an autonomously functioning measuring probe is inserted into the drill pipe and locked, a transmission probe with a borehole measuring cable attached to it is inserted into the borehole, a wireless connection between the measuring probe and the transmission probe is established , measurement values are recorded by the measuring probe and temporarily stored temporarily, the transmission probe from the The borehole is pulled out and the measuring probe is recovered after the measurement and the measured values are read out.
  • the measuring probe is arranged behind the drill bit and can only measure from within the rod.
  • the measurements take place during the drilling process and incorrect measurements are possible due to the vibrations that occur.
  • a borehole measuring method and an associated device are known, with which in particular horizontal or deflected bores can be measured, the measuring probe at the end of the Drill pipe is attached and a measuring cable is provided between the drill pipe and a measuring car for days, which can be moved via a cable winch.
  • the measuring probe consists of a drill collar mechanically and electrically connected to the cable lug, to which a coupling rod connects, to which the measuring tools are connected.
  • the probe further comprises a coupling housing for connection to the drill pipe and a protective housing for the measuring tools, which has a measuring opening.
  • the measuring probe is firmly connected to the drill string, so that the drill string must be removed before each measurement in order to remove the drill bit at the lower end of the drill string and to install the measuring probe there.
  • the invention is based on the object of proposing a measurement method suitable for cable core bores, in which the disadvantages of the measurement methods according to the prior art are avoided and that for measurements in strongly deflected bores and in the free borehole cross section below the drill pipe is suitable without having to remove the drill pipe.
  • the invention is also based on the object of proposing a device for carrying out the method according to the invention.
  • a measuring probe can be connected wirelessly to a transmission probe via induction coils and a soft magnetic core, the measuring probe is provided with an inner tube head and can be locked on a drill bit, and in Measuring probe, a measuring element, a power supply and a data recording device are included, and the transmission probe is formed from a measuring cable head with a coil attachment.
  • a modified device for carrying out the modified measurement method according to claim 6 is evident from the features of claim 11.
  • the measurement method according to the invention for cable core bores and the associated device are ideally suited for the geophysical measurement of strongly deflected bores.
  • This new measurement concept which is based on self-sufficient measuring probes that are flushed into the rod and whose sensors look out of the front of the drill bit, the removal of the drill rod before the measurement is avoided, so that the work and time required for the Surveying work can be reduced significantly.
  • No cable connection is required during the measurement process itself, so that no complex side entrances to the linkage are required. Since the measuring probes are housed within the rod, there are no measuring probe losses.
  • the coil system housed in the inner tube head of the measuring probe and in the transmission probe enables wireless (inductive) communication from above with the microprocessor-controlled measuring probe.
  • the measuring cable of the transmission probe is connected to a laptop PC or portable personal computer provided for days in order to initialize the measuring probe before the start of the measuring process and to synchronize it with the laptop PC.
  • the measuring probe is able to in a fixed time interval, for. B. 1/10 second to record measurement data and write them into their large semiconductor memory of at least one Mbyte.
  • the transmission probe is removed from the borehole, thus protecting the measuring cable from damage.
  • the change in depth is preferably taken off simultaneously by means of a measuring wheel which is attached to the linkage for days and is written into a data file by the laptop PC as a function of time.
  • the probe with the core tube catcher is recovered, opened and read out by the laptop PC.
  • the time data information is assigned to the measurement data and a depth data file is created therefrom, which can be plotted on the spot on a printer.
  • the measurement can be interrupted at any time and the measuring probe can be checked by flushing in the transmission probe.
  • measurement data can also be read out directly from the measurement probe with the aid of the transfer probe and transferred to the laptop PC.
  • a measurement probe 1 according to the invention is shown in the deflected part 43 of a borehole 12 and a cooperating transmission probe 2, which are accommodated in a drill pipe 3 which is located located in borehole 12, 43.
  • the measuring probe 1 has already reached its measuring point in the area of a drill bit 5 by flushing in with the rinsing liquid.
  • the transmission probe 2 is still in the straight part of the borehole 12 is - also by flushing with the flushing liquid - entered into the drill pipe 3 until it has reached its working position immediately behind the measuring probe 1.
  • the transmission probe 2 is attached to a borehole measuring cable 4, which is braked by a measuring cable winch 13 when it is retracted and pulled when it is extended.
  • the measuring cable winch 13 is arranged in the schematic figure next to a drilling rig 14. In practice, it will be conveniently housed on the working platform of the derrick 14.
  • the borehole measuring cable 4 is connected in the example to a measuring carriage 42 in which a laptop PC 7 is accommodated with a registration unit 41, a data processor 44, a data memory 45, a printer 15 and a battery 28 as a power supply.
  • Measuring probe 1 and transmission probe 2 are wirelessly connected to one another in the working position via a soft magnetic core 21 and two induction coils 9 (measuring probe 1) and 10 (transmission probe 2), see FIG.
  • the energetically self-sufficient measuring probe 1 has a measuring sensor 47 which has a measuring opening in the drill bit 5 has a metrologically free access to the bottom and to the walls of the borehole 12, 43 in order to obtain measurement data, for example about the nature of the mountains, the borehole wall and the borehole caliber 38.
  • the measuring probe 1 consists of a measuring probe housing 30 in which a measuring element 16, a power supply by means of a battery 17, a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated.
  • the measuring probe housing 30 is preceded by the measuring sensor 47, which protrudes from the measuring opening of the drill bit 5 during measurement.
  • the soft magnetic core 21 is anchored in the center on the side of the measuring probe housing 30 facing away from the drilling head 5.
  • the anchored magnet end 21a is surrounded by the windings of the induction coil 9, the connections 48, 49 of which lead to the serial data transmitter 20.
  • the soft magnetic core 21 projects beyond the inner tube head 11.
  • the free magnet end 21b is surrounded by a coil attachment 23, in which the induction coil 10 of the transmission probe 2 is accommodated.
  • the coil attachment 23 is attached to a cable head 22, in which the end of the downhole measuring cable 4 is fastened.
  • the two connections 50, 57 of the induction coil 10 are connected to the downhole measuring cable 4 via the cable head 22.
  • the transmission probe 2 In the illustrated assignment of the transmission probe 2 to the measuring probe 1, wireless data transmission from the laptop PC 7 to the measuring probe 1 is made possible in order to initialize it and to synchronize it with the laptop PC 7 at the same time. Then is the measuring probe 1 is able to record measurement data and temporarily store it in the data memory 19. The transmission probe 2 can now be pulled out of the borehole 12, 43 by means of the measuring cable winch 13. The measurement data is recorded while the drill pipe 3 is being pulled out of the borehole 12, 43. Differentiated pulses from an RS232 interface are provided as the data transmission format. With an RS232 interface, the data sent and received are usually exchanged on two separate lines. Here it is necessary to transmit the data separately over a line.
  • the borehole depth is determined simultaneously with the measurement data acquisition.
  • the depth measuring device shown schematically in FIG. 3 serves for this purpose.
  • a Teufenmeßrad 8 is attached laterally, the revolutions of a pulse generator 24 and a measuring line 27 are transmitted to a pulse counter 25 which is connected via a transmission line 29 to the laptop PC 7. Since the laptop PC 7 and the measuring probe 1 work synchronously, the data collected in each case can be combined, i.e. the measurement data are assigned to the respective borehole depth at which they were taken.
  • a gamma probe la can be used as the measuring probe 1, for example.
  • the battery 17 serves as power supply.
  • radioactive measurements are also possible through the drill pipe 3
  • a measurement unaffected by the drill pipe 3 offers a much better resolution, especially if a radioactive radiator is placed in front and the gamma probe 1a is used as a density probe.
  • the sensors of the radioactive measurements are well manageable and the measurement data obtained are low. With 1 MB of memory in the gamma probe la, measurements can be taken continuously for more than 24 hours.
  • a dipmeter probe 1b can also serve as the measuring probe 1, as shown in FIG.
  • a pendulum potentiometer 34 and analog electronics 35 are included as data measuring devices, which record the reflections of ultrasound signals emanating from ultrasound transducers 37 which are connected upstream of the probe housing 30.
  • a battery 17 as a power generator and a data processor 18, a data memory 19 and a serial data transmitter 20 are provided in the probe housing 30.
  • the dipometer probe 1b is used to detect the position of layer boundaries and fissures.
  • Several fixed ultrasound transducers 37 measure the amplitude and the transit time without contact according to the sounder principle. The ultrasound impulses are scattered at fissures and layer boundaries and reflected in a weakened intensity from the borehole wall.
  • the usual evaluation and display methods can also be applied to these amplitude values, as are also done for electrical dipmeters.
  • the sum of all ultrasound transit times represents the borehole caliber 38, the value of which is stored as a further value in addition to the amplitudes.
  • the orientation value is picked up by the electric pendulum potentiometer 34 and determines the position of the ultrasonic oscillators 37 in relation to the roll axis of the dipometer probe 1b. This ensures a simple top-bottom orientation.
  • Dipmeter probe 1b can also be operated like a caliber probe by selecting another probe program during initialization. In contrast to dipmeter operation, only the caliber values are saved. The exact caliber values are important in connection with the density measurements of the gamma probe la (gamma-gamma).
  • volume measurements of the bore 12 can be carried out with the dipmeter probe 1b.
  • the dipmeter probe 1b must be engaged when removing the linkage 3 and the depth with the depth measuring wheel 8 and the laptop PC 7 can be measured.
  • the dipmeter probe 1b can be used to implement a high-resolution measuring method, the smallest depth resolution of which is 1 mm.
  • a gyro probe 1c can finally be provided as measuring probe 1, which can be used alone or together with one of measuring probes 1a and 1 or 1b to record the measurement data of interest.
  • a gyro module 39 and optionally an additional sensor 40 are integrated as a measuring device.
  • the course of a borehole 12, 43 and the position of the deepest borehole can be specified with an accuracy of 1 m at a depth of 1000 m. It is driven with the borehole measuring cable 4a in the drill pipe 3 and constantly measures the course and the position of the borehole 12, 43. If the inclination is greater, it can be flushed forward with a piston.
  • the data are transmitted to the measuring carriage 42 and stored there in the registration unit 41.
  • the additional sensor 40 also allows the position of the pipe fittings of the drill pipe 3 to be measured.
  • a battery 17 for power supply and a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated in the housing 30 of the gyro probe 1c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Selon le procédé de mesures réalisées dans des trous forés par câble, une sonde de mesure (1) fonctionnant de façon autonome est introduite avec le liquide de lavage dans le train de tiges de forage (3) et bloquée, dans la couronne de blocage (5), au moyen d'un dispositif de raccordement (6) d'un tube carottier. Une sonde de transmission (2) à laquelle est fixé un câble de mesures de trous de forage, qui est relié à un ordinateur personnel portatif (7), est également introduite avec le liquide de lavage dans le train de tiges de forage (3). Une connexion sans fil est établie entre la sonde de mesure (1) et la sonde de transmission (2), la sonde de mesure (1) étant initialisée par l'intermédiaire de l'ordinateur personnel portatif (7) et mise en synchronisation avec celui-ci. Les valeurs de mesure émises par la sonde de mesure (1) sont relevées et stockés en mémoire temporaire en fonction du temps. La sonde de transmission (2) est ensuite retirée du train de tiges de forage (3) et la sonde de mesure (1), un fois les mesures terminées, est extraite au moyen d'un extracteur de tube carottier. Enfin les valeurs de mesure sont relevées par l'intermédiaire de l'ordinateur personnel portatif (7). L'invention concerne également un dispositif permettant de mettre en ÷uvre ledit procédé.

Claims (11)

  1. Procédé pour l'exécution de mesures dans des trous forés par câble, avec lequel une sonde de mesure (1) fonctionnant en autarcie est introduite dans la tige de forage (3) et est verrouillée avec la couronne de forage (5) au moyen d'un accouplement de tube carottier (6), les valeurs mesurées sont enregistrées par la sonde de mesure (1) et stockées provisoirement en fonction du temps, la sonde de mesure (1) est récupérée une fois la mesure achevée à l'aide d'un repêcheur de tube carottier et les valeurs mesurées extraites, caractérisé en ce que la sonde de mesure (1) est introduite dans la tige de forage (3) et verrouillée avec l'accouplement de tube carottier (6) dans la couronne de forage (5) de telle façon qu'un capteur de mesure (47) ait un accès libre au niveau des appareils de mesures à la sole et aux parois du trou foré (12, 43) par un orifice de mesure situé dans la couronne de forage (5) et l'enregistrement des valeurs mesurées s'effectue pendant l'enlèvement de la tige de forage (3) dans le trou foré libre, et une sonde de transmission (2) avec un câble de mesure pour trous forés (4) fixé dessus et raccordé à un PC (7) portable est introduite dans la tige de forage (3), une liaison sans fil est établie entre la sonde de mesure (1) et la sonde de transmission (2), la sonde de mesure (1) est initialisée par le PC (7) portable et synchronisé avec celui-ci, la sonde de transmission (2) est sortie de la tige de forage (3) après l'initialisation et la synchronisation, et après la récupération de la sonde de mesure (1) les valeurs mesurées sont extraites de celle-ci par l'intermédiaire du PC (7) portable.
  2. Procédé pour l'exécution de mesures selon la revendication 1, caractérisé en ce que la mesure s'effectue pendant l'extraction de la tige, la profondeur de mesure respective est déterminée par un indicateur de déplacement (8) et est mémorisée en fonction du temps par le PC (7) portable.
  3. Procédé pour l'exécution de mesures selon les revendications 1 ou 2, caractérisé en ce qu'on utilise comme sondes de mesure (1) des sondes gamma (1a) ou des sondes à dipmètre (1b).
  4. Procédé pour l'exécution de mesures selon la revendication 3, caractérisé en ce que les valeurs mesurées des différentes sondes de mesure (1a, 1b) sont déterminées successivement et de façon synchrone avec la profondeur et analysées ensemble.
  5. Procédé pour l'exécution de mesures selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les données de mesure enregistrées par la sonde de mesure (1) sont transmises directement ou après une mémorisation temporaire dans la sonde de mesure (1) sont transmises sans fil à la sonde de transmission (2) et acheminées de celle-ci au PC (7) portable.
  6. Procédé modifié pour l'exécution de mesures selon la revendication 1 ou 2, caractérisé en ce qu'on utilise une sonde gyroscopique (1c) comme sonde de mesure (1) qui est raccordée directement par le câble de mesure pour trous forés (4a) au PC (7) portable, initialisé par celui-ci et synchronisé avec celui-ci.
  7. Dispositif pour l'application du procédé de mesure selon les revendications 1 à 5, avec lequel une sonde de mesure (1) peut être reliée sans fil à une sonde de transmission (2) par des bobines à induction (9, 10) et un noyau magnétique doux (21), la sonde de mesure (1) est pourvue d'une tête de tube intérieur (11) et peut être verrouillée dans une couronne de forage (5), la sonde de mesure (1) contient un élément de mesure (16), un dispositif d'alimentation en énergie (17) et un appareil enregistreur de données, et la sonde de transmission (2) est constituée d'une tête de table de mesure (22) avec un adaptateur de bobine (23), caractérisé en ce que la sonde de transmission (2) est raccordée au moyen du câble de mesure pour trous forés (4) à un PC (7) portable et on prévoit comme appareil enregistreur de données un processeur de données (18), une mémoire de données (19) et une unité de transmission des données (20) sérielle, la sonde de mesure (1) peut être verrouillée par un accouplement de tube carottier (6) dans la couronne de forage (5) et un capteur de mesure (47) de la sonde de mesure (1) peut être placé en dépassant dans le trou foré pour la mesure dans la section libre du trou foré à travers une ouverture de la couronne de forage (5).
  8. Dispositif selon la revendication 7, caractérisé en ce que le PC (7) portable est relié par une ligne de mesure (27) à un compteur d'impulsions (25) et à un générateur d'impulsions (24) d'une roue mesureuse de profondeur (8) qui peut être raccordée à la tige de forage (3).
  9. Dispositif selon les revendications 7 ou 8, caractérisé en ce que la sonde de mesure (1) est une sonde gamma (1a), dont la partie capteur comprend un cristal sodium-iodure (31) et comme transducteur de mesure un tube multiplicateur d'électrons (32).
  10. Dispositif selon les revendications 7 ou 8, caractérisé en ce que la sonde de mesure (1) est un dipmètre (36) acoustique, dont la partie capteur comprend plusieurs oscillateurs ultrasonores (37), une électronique analogique (35) et un potentiomètre à pendule (34).
  11. Dispositif modifié selon les revendications 7 et 8, pour l'application du procédé de mesurage selon les revendications 1, 2 et 6, caractérisé en ce qu'on prévoit comme sonde de mesure (1) une sonde gyroscopique (1c) qui est reliée par un câble de mesure pour trous forés (4a) directement au PC (7) portable et est constituée d'un module gyroscopique (3a), d'un capteur supplémentaire (40), d'une alimentation électrique (17), d'un processeur de données (18), d'une mémoire de données (19) et d'une unité de transmission des données (20) sérielle.
EP92918511A 1991-09-06 1992-09-04 Procede et dispositif pour l'execution de mesures dans des trous fores par cable Expired - Lifetime EP0601030B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4129709 1991-09-06
DE4129709A DE4129709C1 (fr) 1991-09-06 1991-09-06
PCT/EP1992/002043 WO1993005271A1 (fr) 1991-09-06 1992-09-04 Procede et dispositif pour l'execution de mesures dans des trous fores par cable

Publications (2)

Publication Number Publication Date
EP0601030A1 EP0601030A1 (fr) 1994-06-15
EP0601030B1 true EP0601030B1 (fr) 1996-08-07

Family

ID=6440047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92918511A Expired - Lifetime EP0601030B1 (fr) 1991-09-06 1992-09-04 Procede et dispositif pour l'execution de mesures dans des trous fores par cable

Country Status (6)

Country Link
US (1) US5560437A (fr)
EP (1) EP0601030B1 (fr)
AU (1) AU2487392A (fr)
DE (2) DE4129709C1 (fr)
WO (1) WO1993005271A1 (fr)
ZA (1) ZA926583B (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221221C2 (de) * 1992-06-27 1995-10-26 Bergwerksverband Gmbh Vermessungsverfahren für Seilkernbohrungen und Vorrichtung zur Durchführung
EP0601811B1 (fr) * 1992-12-07 1997-10-01 Akishima Laboratories (Mitsui Zosen) Inc. Système de mesure pendant le forage utilisant une vanne d'impulsion de pression pour la transmission de données
DE4437525C2 (de) * 1994-10-20 1998-07-23 Geotechnisches Ingenieurbuero Verfahren und Vorrichtung zur Untersuchung der Wandung eines Bohrlochs in Gestein
US5720354A (en) * 1996-01-11 1998-02-24 Vermeer Manufacturing Company Trenchless underground boring system with boring tool location
US6378627B1 (en) * 1996-09-23 2002-04-30 Intelligent Inspection Corporation Autonomous downhole oilfield tool
US5988243A (en) * 1997-07-24 1999-11-23 Black & Decker Inc. Portable work bench
US6536520B1 (en) 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
GB9826017D0 (en) 1998-11-28 1999-01-20 Wireline Technologies Ltd Well logging method and apparatus
FI111287B (fi) * 1998-12-10 2003-06-30 Tamrock Oy Menetelmä ja kallionporauslaite kallionporauksen ohjaamiseksi
AU1995100A (en) * 1999-01-16 2000-08-01 Transmission Winch Systems Limited Winching apparatus
US6189621B1 (en) * 1999-08-16 2001-02-20 Smart Drilling And Completion, Inc. Smart shuttles to complete oil and gas wells
US6315062B1 (en) 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US6308787B1 (en) 1999-09-24 2001-10-30 Vermeer Manufacturing Company Real-time control system and method for controlling an underground boring machine
US6928864B1 (en) * 1999-09-30 2005-08-16 In-Situ, Inc. Tool assembly and monitoring applications using same
US6349778B1 (en) 2000-01-04 2002-02-26 Performance Boring Technologies, Inc. Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole
US6995684B2 (en) 2000-05-22 2006-02-07 Schlumberger Technology Corporation Retrievable subsurface nuclear logging system
US6836218B2 (en) 2000-05-22 2004-12-28 Schlumberger Technology Corporation Modified tubular equipped with a tilted or transverse magnetic dipole for downhole logging
US6577244B1 (en) * 2000-05-22 2003-06-10 Schlumberger Technology Corporation Method and apparatus for downhole signal communication and measurement through a metal tubular
US6655453B2 (en) * 2000-11-30 2003-12-02 Xl Technology Ltd Telemetering system
FI118134B (sv) * 2001-10-19 2007-07-13 Sandvik Tamrock Oy Bergborrningsanordning och brytningsanordning
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
AU2003302036B2 (en) 2002-11-15 2007-06-14 Schlumberger Holdings Limited Bottomhole assembly
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7207215B2 (en) * 2003-12-22 2007-04-24 Halliburton Energy Services, Inc. System, method and apparatus for petrophysical and geophysical measurements at the drilling bit
US6913087B1 (en) 2004-01-30 2005-07-05 Black & Decker Inc. System and method for communicating over power terminals in DC tools
GB2424432B (en) 2005-02-28 2010-03-17 Weatherford Lamb Deep water drilling with casing
CA2651966C (fr) 2006-05-12 2011-08-23 Weatherford/Lamb, Inc. Procedes de cimentation progressive utilises pour le tubage pendant le forage
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US8433058B2 (en) * 2008-08-08 2013-04-30 Avaya Inc. Method and system for distributed speakerphone echo cancellation
US8548742B2 (en) * 2008-10-21 2013-10-01 National Oilwell Varco L.P. Non-contact measurement systems for wireline and coiled tubing
RU2643380C2 (ru) * 2013-02-08 2018-02-01 Сергей Георгиевич Фурсин Способ контроля забойных параметров в процессе бурения скважины
CN208010332U (zh) * 2018-02-13 2018-10-26 宁波金地电子有限公司 一种非开挖导向仪的探棒
US20220268151A1 (en) * 2019-07-24 2022-08-25 Schlumberger Technology Corporation Conveyance apparatus, systems, and methods
US11283701B2 (en) * 2020-01-24 2022-03-22 Halliburton Energy Services, Inc. Telemetry configurations for downhole communications
US11187077B2 (en) * 2020-01-31 2021-11-30 Halliburton Energy Services, Inc. Adaptive wireline telemetry in a downhole environment
CN112343578B (zh) * 2020-11-09 2023-07-21 黄山联合应用技术研究院 一种可视化测井机构掘进装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868506A (en) * 1954-06-01 1959-01-13 Texas Co Determination of fluid movement in bore holes
US3086167A (en) * 1958-11-13 1963-04-16 Sun Oil Co Bore hole logging methods and apparatus
GB1096388A (en) * 1965-07-27 1967-12-29 Texaco Development Corp Retrieval system for logging while drilling
US4001774A (en) * 1975-01-08 1977-01-04 Exxon Production Research Company Method of transmitting signals from a drill bit to the surface
US4003441A (en) * 1975-04-22 1977-01-18 Efim Lvovich Lokshin Method of opening carbon-bearing beds with production wells for underground gasification
GB1557863A (en) * 1976-06-22 1979-12-12 Shell Int Research Method and means for transmitting information through a pipe string situated in a borehole oe well
AU546119B2 (en) * 1980-01-21 1985-08-15 Exploration Logging Inc. Transmitting well logging data
DE3035905C2 (de) * 1980-09-24 1982-12-30 Christensen, Inc., 84115 Salt Lake City, Utah Vorrichtung zur Fernübertragung von Informationen aus einem Bohrloch zur Erdoberfläche während des Betriebs eines Bohrgeräts
JPS57123319A (en) * 1981-01-22 1982-07-31 Kiso Jiban Consultant Kk Method and apparatus for subsurface exploration
DE3402386A1 (de) * 1984-01-25 1985-08-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Induktive energie- und datenuebertragung
GB8607395D0 (en) * 1986-03-25 1986-04-30 British Petroleum Co Plc Core sampling equipment
US4806928A (en) * 1987-07-16 1989-02-21 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface
FR2627649B1 (fr) * 1988-02-22 1990-10-26 Inst Francais Du Petrole Methode et dispositif de transmission de l'information par cable et par ondes de boue
DE3813508C1 (fr) * 1988-04-22 1989-10-12 Eastman Christensen Co., Salt Lake City, Utah, Us
US4932471A (en) * 1989-08-22 1990-06-12 Hilliburton Company Downhole tool, including shock absorber
FR2679958B1 (fr) * 1991-08-02 1997-06-27 Inst Francais Du Petrole Systeme, support pour effectuer des mesures ou interventions dans un puits fore ou en cours de forage, et leurs utilisations.
US5234053A (en) * 1992-07-16 1993-08-10 Halliburton Geophysical Services, Inc. Reeled tubing counter assembly and measuring method

Also Published As

Publication number Publication date
DE59206874D1 (de) 1996-09-12
US5560437A (en) 1996-10-01
AU2487392A (en) 1993-04-05
EP0601030A1 (fr) 1994-06-15
ZA926583B (en) 1993-03-09
WO1993005271A1 (fr) 1993-03-18
DE4129709C1 (fr) 1992-12-03

Similar Documents

Publication Publication Date Title
EP0601030B1 (fr) Procede et dispositif pour l'execution de mesures dans des trous fores par cable
DE69506872T2 (de) Daten-erfassung oder messung während des ausbaus
DE602004009043T2 (de) Radiale einstellbare bohrlochvorrichtungen und verfahren für dieselben
DE69216558T2 (de) Neigungsmessgerät und -verfahren zum Untersuchen von Erdformationen
EP0338367A2 (fr) Outil de carottage
DE102006014265A1 (de) Modulares Bohrlochwerkzeugsystem
DE3912614A1 (de) Elektrisches uebertragungssystem fuer ein mit bohrspuelmittel gefuelltes bohrloch
DE2720273A1 (de) Verfahren und vorrichtung zum ermitteln sowie registrieren von messwerten einer tiefbohrung
DE102005008430A1 (de) Verfahren und Vorrichtung zum Bohren eines Bohrlochs von einem entfernten Ort aus
DE2941104A1 (de) Verfahren und vorrichtung zum untersuchen von erdbohrloechern
DE3435812A1 (de) Geraet zur messung der drehgeschwindigkeit eines rotierenden elements
DE60106936T2 (de) Vorrichtung und verfahren für synchronisierte bohrlochmessung
DE4221221C2 (de) Vermessungsverfahren für Seilkernbohrungen und Vorrichtung zur Durchführung
EP0811750A1 (fr) Procédé et dispositif pour mesure au fond de puits de la profondeur d'un trou de forage
DE112016000873T5 (de) Messen frequenzabhängiger akustischer Dämpfung
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
DE19745947A1 (de) Vorrichtung und Verfahren zum Bohren von Erdformationen
DE112016000973B4 (de) Verbesserte Impulserzeugung zur Untertagevermessung
DE2025362C3 (de) Bohrlochmeßverfahren und Vorrichtung für seine Durchführung
DE112016000975T5 (de) Verrohrungs- und Zementevaluierungswerkzeug mit reduziertem Sendernachschwingen
DE112016000878T5 (de) Adaptive Minimum-Phase-Wavelet-Generierung in Echtzeit für Bohrlochwerkzeuge
DE112016000854T5 (de) In-situ-Messung von Geschwindigkeit und Abschwächung von Bohrlochflüssigkeit in einem Ultraschall-Abtastwerkzeug
DE3540251A1 (de) Vorrichtung und verfahren zur akustischen richtungsvermessung
DE112016000974T5 (de) Verfahren zum Beurteilen von Zementbindung
DE2118380A1 (de) Verfahren und Vorrichtung zum Erkennen und Lokalisieren von Leckstellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19951113

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59206874

Country of ref document: DE

Date of ref document: 19960912

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110928

Year of fee payment: 20

Ref country code: DE

Payment date: 20110923

Year of fee payment: 20

Ref country code: GB

Payment date: 20110920

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206874

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206874

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120903

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120905