EP0601030B1 - Process and device for measuring cable drilled bores - Google Patents
Process and device for measuring cable drilled bores Download PDFInfo
- Publication number
- EP0601030B1 EP0601030B1 EP92918511A EP92918511A EP0601030B1 EP 0601030 B1 EP0601030 B1 EP 0601030B1 EP 92918511 A EP92918511 A EP 92918511A EP 92918511 A EP92918511 A EP 92918511A EP 0601030 B1 EP0601030 B1 EP 0601030B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- measuring
- probe
- borehole
- measurement
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000523 sample Substances 0.000 claims abstract description 156
- 230000005540 biological transmission Effects 0.000 claims abstract description 41
- 230000008878 coupling Effects 0.000 claims abstract description 10
- 238000010168 coupling process Methods 0.000 claims abstract description 10
- 238000005859 coupling reaction Methods 0.000 claims abstract description 10
- 230000001360 synchronised effect Effects 0.000 claims abstract 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims description 8
- 238000002604 ultrasonography Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 3
- 235000009518 sodium iodide Nutrition 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 50
- 238000005553 drilling Methods 0.000 abstract description 9
- 239000012530 fluid Substances 0.000 abstract 2
- 230000036962 time dependent Effects 0.000 abstract 1
- 238000000691 measurement method Methods 0.000 description 14
- 238000011010 flushing procedure Methods 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/028—Electrical or electro-magnetic connections
- E21B17/0283—Electrical or electro-magnetic connections characterised by the coupling being contactless, e.g. inductive
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/08—Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
- E21B25/02—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/13—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/26—Storing data down-hole, e.g. in a memory or on a record carrier
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/028—Electrical or electro-magnetic connections
Definitions
- the invention relates to a measurement method for cable core bores, in which an autonomously functioning measuring probe is inserted into the drill pipe and locked via a core tube coupling, measured values are recorded by the measuring probe and stored as a function of time, and the measuring probe is recovered with the aid of a core tube catcher and the measured values are read out after the measurement has been completed .
- a measurement method is known from US-A-4,955,438.
- the disadvantage of this measuring method is that the insertion and replacement of the measuring probe encounters difficulties in the case of strongly deflected bores and that the measuring probe can only carry out its measurements within the drill pipe because it is arranged behind the drill bit and the core pipe in the drill pipe.
- the invention further relates to an apparatus for performing the method.
- a drilling method in which an autonomously functioning measuring probe is inserted into the drill pipe and locked, a transmission probe with a borehole measuring cable attached to it is inserted into the borehole, a wireless connection between the measuring probe and the transmission probe is established , measurement values are recorded by the measuring probe and temporarily stored temporarily, the transmission probe from the The borehole is pulled out and the measuring probe is recovered after the measurement and the measured values are read out.
- the measuring probe is arranged behind the drill bit and can only measure from within the rod.
- the measurements take place during the drilling process and incorrect measurements are possible due to the vibrations that occur.
- a borehole measuring method and an associated device are known, with which in particular horizontal or deflected bores can be measured, the measuring probe at the end of the Drill pipe is attached and a measuring cable is provided between the drill pipe and a measuring car for days, which can be moved via a cable winch.
- the measuring probe consists of a drill collar mechanically and electrically connected to the cable lug, to which a coupling rod connects, to which the measuring tools are connected.
- the probe further comprises a coupling housing for connection to the drill pipe and a protective housing for the measuring tools, which has a measuring opening.
- the measuring probe is firmly connected to the drill string, so that the drill string must be removed before each measurement in order to remove the drill bit at the lower end of the drill string and to install the measuring probe there.
- the invention is based on the object of proposing a measurement method suitable for cable core bores, in which the disadvantages of the measurement methods according to the prior art are avoided and that for measurements in strongly deflected bores and in the free borehole cross section below the drill pipe is suitable without having to remove the drill pipe.
- the invention is also based on the object of proposing a device for carrying out the method according to the invention.
- a measuring probe can be connected wirelessly to a transmission probe via induction coils and a soft magnetic core, the measuring probe is provided with an inner tube head and can be locked on a drill bit, and in Measuring probe, a measuring element, a power supply and a data recording device are included, and the transmission probe is formed from a measuring cable head with a coil attachment.
- a modified device for carrying out the modified measurement method according to claim 6 is evident from the features of claim 11.
- the measurement method according to the invention for cable core bores and the associated device are ideally suited for the geophysical measurement of strongly deflected bores.
- This new measurement concept which is based on self-sufficient measuring probes that are flushed into the rod and whose sensors look out of the front of the drill bit, the removal of the drill rod before the measurement is avoided, so that the work and time required for the Surveying work can be reduced significantly.
- No cable connection is required during the measurement process itself, so that no complex side entrances to the linkage are required. Since the measuring probes are housed within the rod, there are no measuring probe losses.
- the coil system housed in the inner tube head of the measuring probe and in the transmission probe enables wireless (inductive) communication from above with the microprocessor-controlled measuring probe.
- the measuring cable of the transmission probe is connected to a laptop PC or portable personal computer provided for days in order to initialize the measuring probe before the start of the measuring process and to synchronize it with the laptop PC.
- the measuring probe is able to in a fixed time interval, for. B. 1/10 second to record measurement data and write them into their large semiconductor memory of at least one Mbyte.
- the transmission probe is removed from the borehole, thus protecting the measuring cable from damage.
- the change in depth is preferably taken off simultaneously by means of a measuring wheel which is attached to the linkage for days and is written into a data file by the laptop PC as a function of time.
- the probe with the core tube catcher is recovered, opened and read out by the laptop PC.
- the time data information is assigned to the measurement data and a depth data file is created therefrom, which can be plotted on the spot on a printer.
- the measurement can be interrupted at any time and the measuring probe can be checked by flushing in the transmission probe.
- measurement data can also be read out directly from the measurement probe with the aid of the transfer probe and transferred to the laptop PC.
- a measurement probe 1 according to the invention is shown in the deflected part 43 of a borehole 12 and a cooperating transmission probe 2, which are accommodated in a drill pipe 3 which is located located in borehole 12, 43.
- the measuring probe 1 has already reached its measuring point in the area of a drill bit 5 by flushing in with the rinsing liquid.
- the transmission probe 2 is still in the straight part of the borehole 12 is - also by flushing with the flushing liquid - entered into the drill pipe 3 until it has reached its working position immediately behind the measuring probe 1.
- the transmission probe 2 is attached to a borehole measuring cable 4, which is braked by a measuring cable winch 13 when it is retracted and pulled when it is extended.
- the measuring cable winch 13 is arranged in the schematic figure next to a drilling rig 14. In practice, it will be conveniently housed on the working platform of the derrick 14.
- the borehole measuring cable 4 is connected in the example to a measuring carriage 42 in which a laptop PC 7 is accommodated with a registration unit 41, a data processor 44, a data memory 45, a printer 15 and a battery 28 as a power supply.
- Measuring probe 1 and transmission probe 2 are wirelessly connected to one another in the working position via a soft magnetic core 21 and two induction coils 9 (measuring probe 1) and 10 (transmission probe 2), see FIG.
- the energetically self-sufficient measuring probe 1 has a measuring sensor 47 which has a measuring opening in the drill bit 5 has a metrologically free access to the bottom and to the walls of the borehole 12, 43 in order to obtain measurement data, for example about the nature of the mountains, the borehole wall and the borehole caliber 38.
- the measuring probe 1 consists of a measuring probe housing 30 in which a measuring element 16, a power supply by means of a battery 17, a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated.
- the measuring probe housing 30 is preceded by the measuring sensor 47, which protrudes from the measuring opening of the drill bit 5 during measurement.
- the soft magnetic core 21 is anchored in the center on the side of the measuring probe housing 30 facing away from the drilling head 5.
- the anchored magnet end 21a is surrounded by the windings of the induction coil 9, the connections 48, 49 of which lead to the serial data transmitter 20.
- the soft magnetic core 21 projects beyond the inner tube head 11.
- the free magnet end 21b is surrounded by a coil attachment 23, in which the induction coil 10 of the transmission probe 2 is accommodated.
- the coil attachment 23 is attached to a cable head 22, in which the end of the downhole measuring cable 4 is fastened.
- the two connections 50, 57 of the induction coil 10 are connected to the downhole measuring cable 4 via the cable head 22.
- the transmission probe 2 In the illustrated assignment of the transmission probe 2 to the measuring probe 1, wireless data transmission from the laptop PC 7 to the measuring probe 1 is made possible in order to initialize it and to synchronize it with the laptop PC 7 at the same time. Then is the measuring probe 1 is able to record measurement data and temporarily store it in the data memory 19. The transmission probe 2 can now be pulled out of the borehole 12, 43 by means of the measuring cable winch 13. The measurement data is recorded while the drill pipe 3 is being pulled out of the borehole 12, 43. Differentiated pulses from an RS232 interface are provided as the data transmission format. With an RS232 interface, the data sent and received are usually exchanged on two separate lines. Here it is necessary to transmit the data separately over a line.
- the borehole depth is determined simultaneously with the measurement data acquisition.
- the depth measuring device shown schematically in FIG. 3 serves for this purpose.
- a Teufenmeßrad 8 is attached laterally, the revolutions of a pulse generator 24 and a measuring line 27 are transmitted to a pulse counter 25 which is connected via a transmission line 29 to the laptop PC 7. Since the laptop PC 7 and the measuring probe 1 work synchronously, the data collected in each case can be combined, i.e. the measurement data are assigned to the respective borehole depth at which they were taken.
- a gamma probe la can be used as the measuring probe 1, for example.
- the battery 17 serves as power supply.
- radioactive measurements are also possible through the drill pipe 3
- a measurement unaffected by the drill pipe 3 offers a much better resolution, especially if a radioactive radiator is placed in front and the gamma probe 1a is used as a density probe.
- the sensors of the radioactive measurements are well manageable and the measurement data obtained are low. With 1 MB of memory in the gamma probe la, measurements can be taken continuously for more than 24 hours.
- a dipmeter probe 1b can also serve as the measuring probe 1, as shown in FIG.
- a pendulum potentiometer 34 and analog electronics 35 are included as data measuring devices, which record the reflections of ultrasound signals emanating from ultrasound transducers 37 which are connected upstream of the probe housing 30.
- a battery 17 as a power generator and a data processor 18, a data memory 19 and a serial data transmitter 20 are provided in the probe housing 30.
- the dipometer probe 1b is used to detect the position of layer boundaries and fissures.
- Several fixed ultrasound transducers 37 measure the amplitude and the transit time without contact according to the sounder principle. The ultrasound impulses are scattered at fissures and layer boundaries and reflected in a weakened intensity from the borehole wall.
- the usual evaluation and display methods can also be applied to these amplitude values, as are also done for electrical dipmeters.
- the sum of all ultrasound transit times represents the borehole caliber 38, the value of which is stored as a further value in addition to the amplitudes.
- the orientation value is picked up by the electric pendulum potentiometer 34 and determines the position of the ultrasonic oscillators 37 in relation to the roll axis of the dipometer probe 1b. This ensures a simple top-bottom orientation.
- Dipmeter probe 1b can also be operated like a caliber probe by selecting another probe program during initialization. In contrast to dipmeter operation, only the caliber values are saved. The exact caliber values are important in connection with the density measurements of the gamma probe la (gamma-gamma).
- volume measurements of the bore 12 can be carried out with the dipmeter probe 1b.
- the dipmeter probe 1b must be engaged when removing the linkage 3 and the depth with the depth measuring wheel 8 and the laptop PC 7 can be measured.
- the dipmeter probe 1b can be used to implement a high-resolution measuring method, the smallest depth resolution of which is 1 mm.
- a gyro probe 1c can finally be provided as measuring probe 1, which can be used alone or together with one of measuring probes 1a and 1 or 1b to record the measurement data of interest.
- a gyro module 39 and optionally an additional sensor 40 are integrated as a measuring device.
- the course of a borehole 12, 43 and the position of the deepest borehole can be specified with an accuracy of 1 m at a depth of 1000 m. It is driven with the borehole measuring cable 4a in the drill pipe 3 and constantly measures the course and the position of the borehole 12, 43. If the inclination is greater, it can be flushed forward with a piston.
- the data are transmitted to the measuring carriage 42 and stored there in the registration unit 41.
- the additional sensor 40 also allows the position of the pipe fittings of the drill pipe 3 to be measured.
- a battery 17 for power supply and a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated in the housing 30 of the gyro probe 1c.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
Die Erfindung betrifft ein Vermesssungsverfahren für Seilkernbohrungen, bei dem eine autark funktionierende Meßsonde in das Bohrgestänge eingeführt und über eine Kernrohrkupplung arretiert wird, von der Meßsonde Meßwerte aufgenommen und zeitabhängig gespeichert werden und die Meßsonde nach beendeter Messung mit Hilfe eines Kernrohrfängers geborgen und die Meßwerte ausgelesen werden. Ein solches Vermessungsverfahren ist aus der US-A-4,955,438 bekannt. Nachteilig ist bei diesem Vermessungsverfahren, daß das Einbringen und das Auswechseln der Meßsonde bei stark abgelenkten Bohrungen auf Schwierigkeiten stößt und daß die Meßsonde ihre Messungen nur innerhalb des Bohrgestänges ausführen kann, weil sie hinter dem Bohrmeißel und dem Kernrohr im Bohrgestänge angeordnet ist. Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a measurement method for cable core bores, in which an autonomously functioning measuring probe is inserted into the drill pipe and locked via a core tube coupling, measured values are recorded by the measuring probe and stored as a function of time, and the measuring probe is recovered with the aid of a core tube catcher and the measured values are read out after the measurement has been completed . Such a measurement method is known from US-A-4,955,438. The disadvantage of this measuring method is that the insertion and replacement of the measuring probe encounters difficulties in the case of strongly deflected bores and that the measuring probe can only carry out its measurements within the drill pipe because it is arranged behind the drill bit and the core pipe in the drill pipe. The invention further relates to an apparatus for performing the method.
Aus GB-A-1,096,388 ist weiterhin ein Vermessungsverfahren bekannt für Bohrungen, bei dem eine autark funktionierende Meßsonde in das Bohrgestänge eingeführt und arretiert wird, außerdem eine Übertragungssonde mit daran befestigtem Bohrlochmeßkabel in das Bohrloch eingeführt wird, eine drahtlose Verbindung zwischen Meßsonde und Übertragungssonde hergestellt wird, von der Meßsonde Meßwerte aufgenommen und zeitabhängig zwischengespeichert werden, die Übertragungssonde aus dem Bohrloch herausgezogen wird und die Meßsonde nach beendeter Messung geborgen und die Meßwerte ausgelesen werden. Auch bei diesem Vermessungsverfahren ist es nachteilig, daß die Meßsonde hinter dem Bohrmeißel angeordnet ist und nur von innerhalb des Gestänges aus messen kann. Außerdem ist es nachteilig, daß die Messungen während des Bohrvorganges erfolgen und durch die dabei auftretenden Erschütterungen Fehlmessungen möglich sind.From GB-A-1,096,388 a drilling method is also known, in which an autonomously functioning measuring probe is inserted into the drill pipe and locked, a transmission probe with a borehole measuring cable attached to it is inserted into the borehole, a wireless connection between the measuring probe and the transmission probe is established , measurement values are recorded by the measuring probe and temporarily stored temporarily, the transmission probe from the The borehole is pulled out and the measuring probe is recovered after the measurement and the measured values are read out. With this measurement method, too, it is disadvantageous that the measuring probe is arranged behind the drill bit and can only measure from within the rod. In addition, it is disadvantageous that the measurements take place during the drilling process and incorrect measurements are possible due to the vibrations that occur.
Aus der Druckschrift "HORIZONTAL WELL LOGGING BY 'SYMPHOR', Eighth European Formation Evaluation Symposium", in London, 1983, ist ein Bohrlochmeßverfahren und eine zugehörige Vorrichtung bekannt, mit dem insbesondere horizontale oder abgelenkte Bohrungen vermessen werden können, wobei die Meßsonde am Ende des Bohrgestänges angebracht ist und zwischen Bohrgestänge und einem Meßwagen über Tage ein Meßkabel vorgesehen ist, das über eine Kabelwinde bewegt werden kann. Die Meßsonde besteht aus einer mit dem Kabelschuh mechanisch und elektrisch verbundenen Schwerstange, an die eine Kupplungsstange anschließt, denen die Meßwerkzeuge nachgeschaltet sind. Die Sonde umfaßt weiterhin ein Kupplungsgehäuse zum Anschluß an das Bohrgestänge und ein Schutzgehäuse für die Meßwerkzeuge, das eine Meßöffnung aufweist. Bei diesem Meßverfahren und der zugehörigen Meßvorrichtung ist es nachteilig, daß die Meßsonde fest mit dem Bohrgestänge verbunden ist, so daß das Bohrgestänge vor jeder Messung ausgebaut werden muß, um die Bohrkrone am unteren Ende des Bohrstrangs auszubauen und die Meßsonde dort einzubauen.From the publication "HORIZONTAL WELL LOGGING BY 'SYMPHOR', Eighth European Formation Evaluation Symposium", in London, 1983, a borehole measuring method and an associated device are known, with which in particular horizontal or deflected bores can be measured, the measuring probe at the end of the Drill pipe is attached and a measuring cable is provided between the drill pipe and a measuring car for days, which can be moved via a cable winch. The measuring probe consists of a drill collar mechanically and electrically connected to the cable lug, to which a coupling rod connects, to which the measuring tools are connected. The probe further comprises a coupling housing for connection to the drill pipe and a protective housing for the measuring tools, which has a measuring opening. In this measuring method and the associated measuring device, it is disadvantageous that the measuring probe is firmly connected to the drill string, so that the drill string must be removed before each measurement in order to remove the drill bit at the lower end of the drill string and to install the measuring probe there.
Es ist weiterhin aus "Efficiently log and perforate 60°+ wells with coiled tubing", WORLD OIL, July 1987, S. 32, 33, 35, bereits ein Verfahren und eine Vorrichtung zur Vermessung bekannt, bei dem anstelle des Bohrgestänges ein spezieller aufrollbarer Schlauch verwendet wird, der mit einem Spezial-Schlauchhaspel zusammenwirkt und an dessen Ende eine Meßsonde anschließbar ist, beispielsweise eine Gammasonde, eine Ortungssonde für Verrohrungsverbindungen bzw. eine Akustiksonde zur Güteprüfung der Ringspaltzementierung zwischen Verrohrung und Gebirge. Bei diesem Vermessungsverfahren und der Vorrichtung zu dessen Durchführung ist eine schnelle Untersuchung solcher Bohrungen möglich, bei denen der Bohrturm bereits abgebaut ist. Andererseits ist es nachteilig, daß ein spezieller Haspel und ein spezielles Schlauchgestänge benötigt werden, um die erforderlichen Messungen durchzuführen.Furthermore, from "Efficiently log and perforate 60 ° + wells with coiled tubing", WORLD OIL, July 1987, pp. 32, 33, 35, a method and a device for measurement are known in which instead of the A special rollable hose is used in the drill pipe, which interacts with a special hose reel and at the end of which a measuring probe can be connected, for example a gamma probe, a locating probe for piping connections or an acoustic probe for checking the quality of the annular gap cementing between the piping and the rock. With this measurement method and the device for carrying it out, it is possible to quickly examine those holes in which the drilling rig has already been dismantled. On the other hand, it is disadvantageous that a special reel and a special hose linkage are required to carry out the required measurements.
Der Erfindung liegt, ausgehend von dem eingangs aufgeführten Verfahren, die Aufgabe zugrunde, ein für Seilkernbohrungen geeignetes Vermessungsverfahren vorzuschlagen, bei dem die Nachteile der Vermessungsverfahren gemäß dem Stand der Technik vermieden werden und das für Messungen in stark abgelenkten Bohrungen sowie im freien Bohrlochquerschnitt unterhalb des Bohrgestänges geeignet ist, ohne das Bohrgestänge ausbauen zu müssen. Weiterhin liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens vorzuschlagen.On the basis of the method mentioned at the outset, the invention is based on the object of proposing a measurement method suitable for cable core bores, in which the disadvantages of the measurement methods according to the prior art are avoided and that for measurements in strongly deflected bores and in the free borehole cross section below the drill pipe is suitable without having to remove the drill pipe. The invention is also based on the object of proposing a device for carrying out the method according to the invention.
Hinsichtlich des Vermessungsverfahrens wird diese Aufgabe durch die Merkmalskombination des Patentanspruchs 1 gelöst. Weiterbildungen des Vermessungsverfahrens sind in den Ansprüchen 2 bis 5 niedergelegt. Ein abgewandeltes Vermessungsverfahren nach Anspruch 1 weisen die Merkmale von Anspruch 6 aus.With regard to the measurement method, this object is achieved by the combination of features of patent claim 1. Developments of the measurement method are set out in
Hinsichtlich der Vorrichtung zur Durchführung des Vermessungsverfahrens nach Anspruch 1 wird die Aufgabe durch die Merkmalskombination des Patentanspruchs 7 gelöst.With regard to the device for carrying out the measurement method according to claim 1, the object is achieved by the combination of features of
Dabei wird ausgegangen von einer Vorrichtung, die aus der GB-A-1,096,388 bekannt ist, bei der eine Meßsonde mit einer Übertragungssonde über Induktionsspulen sowie einen Weichmagnetkern drahtlos verbindbar ist, die Meßsonde mit einem Innenrohrkopf versehen und an einer Bohrkrone arretierbar ist, sowie in der Meßsonde ein Meßelement, eine Energieversorgung und ein Datenaufnahmegerät enthalten sind, und die Übertragungssonde aus einem Meßkabelkopf mit einem Spulenvorsatz gebildet wird.This is based on a device which is known from GB-A-1,096,388, in which a measuring probe can be connected wirelessly to a transmission probe via induction coils and a soft magnetic core, the measuring probe is provided with an inner tube head and can be locked on a drill bit, and in Measuring probe, a measuring element, a power supply and a data recording device are included, and the transmission probe is formed from a measuring cable head with a coil attachment.
Weitere Ausgestaltungen zeigen die Merkmale der vorrichtungsansprüche 8 bis 10.Further configurations show the features of the device claims 8 to 10.
Eine abgewandelte Vorrichtung zur Durchführung des abgewandelten Vermessungsverfahrens nach Anspruch 6 geht aus den Merkmalen des Anspruchs 11 hervor.A modified device for carrying out the modified measurement method according to claim 6 is evident from the features of
Das erfindungsgemäße Vermessungsverfahren für Seilkernbohrungen und die zugehörige Vorrichtung eignen sich optimal für die geophysikalische Vermessung von stark abgelenkten Bohrungen. Mit diesem neuen Vermessungskonzept, das auf autark funktionierenden Meßsonden basiert, die in das Gestänge eingespült werden und deren Sensoren vorn aus der Bohrkrone herausschauen, wird das Ausbauen des Bohrgestänges vor dem Vermessen vermieden, so daß der Arbeits- und Zeitaufwand für die Vermessungsarbeiten ganz wesentlich verringert werden kann. Während des Meßvorganges selbst ist keine Kabelverbindung erforderlich, so daß auch keine aufwendige Seiteneingänge in das Gestänge benötigt werden. Da die Meßsonden innerhalb des Gestänges untergebracht sind, treten keine Meßsondenverluste auf.The measurement method according to the invention for cable core bores and the associated device are ideally suited for the geophysical measurement of strongly deflected bores. With this new measurement concept, which is based on self-sufficient measuring probes that are flushed into the rod and whose sensors look out of the front of the drill bit, the removal of the drill rod before the measurement is avoided, so that the work and time required for the Surveying work can be reduced significantly. No cable connection is required during the measurement process itself, so that no complex side entrances to the linkage are required. Since the measuring probes are housed within the rod, there are no measuring probe losses.
Auch bei einem Meßsondenwechsel ist es nicht mehr erforderlich, das Gestänge komplett auszubauen, da jede Meßsonde, ähnlich wie ein volles Kernrohr, schnell mit Hilfe des Kernrohrfängers aus dem Bohrgestänge ausgebaut werden kann, woraufhin ebenso schnell eine neue Meßsonde durch Einspülen eingebracht werden kann. Bei Anwendung des erfindungsgemäßen Verfahrens treten Schwierigkeiten beim Durchführen der Vermessungsarbeiten praktisch nicht mehr auf, weil überall dort, wo gebohrt worden ist, anschließend sofort gemessen werden kann, ohne das Bohrgestänge ziehen zu müssen. Der Aussendurchmesser der Meßsonden entspricht dem eines Seilkernrohres und läßt sich wie dieses leicht über den Innenrohrkopf in die Kernrohrkupplung einrasten.Even when changing the probe, it is no longer necessary to completely remove the rod, since each probe, similar to a full core tube, can be quickly removed from the drill rod using the core tube catcher, after which a new probe can be inserted just as quickly by flushing it in. When using the method according to the invention, difficulties in carrying out the measurement work practically no longer occur, because wherever drilling has taken place, measurements can then be carried out immediately without having to pull the drill pipe. The outer diameter of the measuring probes corresponds to that of a rope core tube and, like this, can easily be snapped into the core tube coupling via the inner tube head.
Das im Innenrohrkopf der Meßsonde und in der Übertragungssonde untergebrachte Spulensystem ermöglicht eine drahtlose (induktive) Kommunikation von über Tage aus mit der mikroprozessorgesteuerten Meßsonde. Zu diesem Zweck ist das Meßkabel der Übertragungssonde an einen über Tage vorgesehenen Laptop PC bzw. tragbaren Personal-Computer angeschlossen, um die Meßsonde vor Beginn des Meßvorganges zu initialisieren und mit dem Laptop PC zu synchronisieren.The coil system housed in the inner tube head of the measuring probe and in the transmission probe enables wireless (inductive) communication from above with the microprocessor-controlled measuring probe. For this purpose, the measuring cable of the transmission probe is connected to a laptop PC or portable personal computer provided for days in order to initialize the measuring probe before the start of the measuring process and to synchronize it with the laptop PC.
Die Meßsonde ist in der Lage, in einem festen Zeitintervall, z. B. 1/10 Sekunde, Meßdaten zu erfassen und diese in ihren großen Halbleiterspeicher von mindestens einem MByte einzuschreiben. Vor dem eigentlichen Meßvorgang, der mit dem Ausbau des Gestänges abläuft, wird die Übertragungssonde aus dem Bohrloch entfernt und somit das Meßkabel vor Beschädigungen bewahrt.The measuring probe is able to in a fixed time interval, for. B. 1/10 second to record measurement data and write them into their large semiconductor memory of at least one Mbyte. Before the actual measuring process, which takes place with the expansion of the rod, the transmission probe is removed from the borehole, thus protecting the measuring cable from damage.
Vorzugsweise wird bei jeder Messung gleichzeitig die Teufenveränderung über ein Meßrad, das über Tage am Gestänge angebracht ist, abgenommen und zeitabhängig von dem Laptop PC in ein Daten-File geschrieben. Nach der Beendigung der Messung wird die Meßsonde mit dem Kernrohrfänger geborgen, geöffnet und vom Laptop PC ausgelesen. Gleichzeitig wird den Meßdaten die Zeitdateninformation zugeordnet und daraus ein Teufe-Daten-File erstellt, der an Ort und Stelle auf einem Drucker ausgeplottet werden kann.For each measurement, the change in depth is preferably taken off simultaneously by means of a measuring wheel which is attached to the linkage for days and is written into a data file by the laptop PC as a function of time. After completing the measurement, the probe with the core tube catcher is recovered, opened and read out by the laptop PC. At the same time, the time data information is assigned to the measurement data and a depth data file is created therefrom, which can be plotted on the spot on a printer.
Falls notwendig kann die Messung jederzeit unterbrochen werden und durch Einspülen der Übertragungssonde eine Kontrolle der Meßsonde erfolgen. Im begrenzten Umfange lassen sich auch Meßdaten mit Hilfe der Übertragungssonde unmittelbar aus der Meßsonde herauslesen und zum Laptop PC übertragen.If necessary, the measurement can be interrupted at any time and the measuring probe can be checked by flushing in the transmission probe. To a limited extent, measurement data can also be read out directly from the measurement probe with the aid of the transfer probe and transferred to the laptop PC.
Die Erfindung wird nachfolgend beispielhaft anhand der Zeichnung näher beschrieben. Es zeigen:
- Fig. 1
- eine schematische Darstellung eines Vermessungsverfahrens für Seilkernbohrungen sowie eine Vorrichtung zur Durchführung des Verfahrens;
- Fig. 2
- eine schematische Darstellung einer drahtlos verbundenen Meß- und Übertragungssondeneinheit;
- Fig. 3
- eine schematische Darstellung einer Längenmeßvorrichtung;
- Fig. 4
- eine schematische Darstellung einer Gammasonde;
- Fig. 5
- eine schematische Darstellung einer Dipmetersonde und
- Fig. 6
- eine schematische Darstellung einer als Meßsonde und zugleich als Übertragungssonde geeigneten Kreiselsonde.
- Fig. 1
- a schematic representation of a measurement method for rope core drilling and an apparatus for performing the method;
- Fig. 2
- a schematic representation of a wirelessly connected measuring and transmission probe unit;
- Fig. 3
- a schematic representation of a length measuring device;
- Fig. 4
- a schematic representation of a gamma probe;
- Fig. 5
- a schematic representation of a dipmeter probe and
- Fig. 6
- is a schematic representation of a gyro probe suitable as a measuring probe and at the same time as a transmission probe.
In Fig. 1 ist zur Verdeutlichung des dem erfindungsgemäßen Vermessungsverfahren sowie der Vorrichtung zur Durchführung des Verfahrens zugrunde liegenden Prinzips eine erfindungsgemäße Meßsonde 1 im abgelenkten Teil 43 eines Bohrlochs 12 sowie eine damit zusammenwirkende Übertragungssonde 2 abgebildet, die in einem Bohrgestänge 3 untergebracht sind, das sich im Bohrloch 12, 43 befindet. Die Meßsonde 1 ist bereits durch Einspülen mit der Spülflüssigkeit an ihre Meßstelle im Bereich einer Bohrkrone 5 gelangt. Die Übertragungssonde 2 befindet sich noch im geraden Teil des Bohrlochs 12. Sie wird - ebenfalls durch Einspülen mit der Spülflüssigkeit - in das Bohrgestänge 3 eingetragen, bis sie ihre Arbeitsstellung unmittelbar hinter der Meßsonde 1 erreicht hat. Die Übertragungssonde 2 ist an ein Bohrlochmeßkabel 4 angeschlagen, das über eine Meßkabelwinde 13 beim Einfahren abgebremst und beim Ausfahren gezogen wird. Die Meßkabelwinde 13 ist in der schematischen Figur neben einem Bohrturm 14 angeordnet. In der Praxis wird sie zweckmäßig auf der Arbeitsbühne des Bohrturms 14 untergebracht sein. Das Bohrlochmeßkabel 4 ist im Beispiel an einen Meßwagen 42 angeschlossen, in dem ein Laptop PC 7 untergebracht ist mit einer Registriereinheit 41, einem Datenprozessor 44, einem Datenspeicher 45, einem Drucker 15 und einer Batterie 28 als Energieversorgung. Meßsonde 1 und Übertragungssonde 2 sind in Arbeitsstellung über einen Weichmagnetkern 21 und zwei Induktionsspulen 9 (Meßsonde 1) sowie 10 (Übertragungssonde 2) drahtlos miteinander verbunden, vergleiche Fig. 2. Die energetisch autarke Meßsonde 1 verfügt über einen Meßsensor 47, der über eine Meßöffnung in der Bohrkrone 5 einen meßtechnisch freien Zugang zur Sohle und zu den Wänden des Bohrlochs 12, 43 hat, um Meßdaten, beispielsweise über die Gebirgsbeschaffenheit, die Bohrlochwandung und das Bohrlochkaliber 38, zu erlangen.In Fig. 1, to illustrate the principle underlying the measurement method according to the invention and the device for carrying out the method, a measurement probe 1 according to the invention is shown in the deflected
In Fig. 2 sind die Meßsonde 1 und die Übertragungssonde 2, die zu einer Meß- und Übertragungseinheit verbunden sind, in einer Datenübermittlungsstellung abgebildet. Aus dieser Darstellung geht weiterhin der allgemeine Aufbau der Meßsonde 1 und der Übertragungssonde 2 hervor. Die Meßsonde 1 besteht aus einem Meßsondengehäuse 30, in dem ein Meßelement 16, eine Stromversorgung mittels Batterie 17, ein Datenprozessor 18, ein Datenspeicher 19 sowie ein serieller Datenübermittler 20 untergebracht sind. Dem Meßsondengehäuse 30 ist der Meßsensor 47 vorgeschaltet, der beim Messen aus der Meßöffnung der Bohrkrone 5 herausragt. An der Rückseite der Meßsonde 1 ist ein Innenrohrkopf 11 angebracht, der über eine Kernrohrkupplung 6 zur Arretierung der Meßsonde 1 mit dem Bohrgestänge 3 bzw. der Bohrkrone 5 verbindbar ist. Auf der dem Bohrkopf 5 abgewandten Seite des Meßsondengehäuses 30 ist mittig der Weichmagnetkern 21 verankert. Das verankerte Magnetende 21a ist von den Windungen der Induktionsspule 9 umgeben, deren Anschlüsse 48, 49 zum seriellen Datenübermittler 20 führen. Der Weichmagnetkern 21 überragt mit seinem freien Magnetende 21b den Innenrohrkopf 11. In Übertragungsstellung ist das freie Magnetende 21b von einem Spulenvorsatz 23 umgeben, in dem die Induktionsspule 10 der Übertragungssonde 2 untergebracht ist. Der Spulenvorsatz 23 ist an einem Kabelkopf 22 angebracht, in dem das Ende des Bohrlochmeßkabels 4 befestigt ist. Die beiden Anschlüsse 50, 57 der Induktionsspule 10 sind über den Kabelkopf 22 mit dem Bohrlochmeßkabel 4 verbunden. Bei der dargestellten Zuordnung von Übertragungssonde 2 zur Meßsonde 1 ist eine drahtlose Datenübermittlung vom Laptop PC 7 zur Meßsonde 1 ermöglicht, um diese zu initialisieren und gleichzeitig mit dem Laptop PC 7 zu synchronisieren. Anschließend ist die Meßsonde 1 in der Lage, Meßdaten aufzunehmen und im Datenspeicher 19 zwischenzuspeichern. Die Übertragungssonde 2 kann nunmehr mittels der Meßkabelwinde 13 aus dem Bohrloch 12, 43 herausgezogen werden. Die Aufnahme der Meßdaten erfolgt während des Herausziehens des Bohrgestänges 3 aus dem Bohrloch 12, 43. Als Datenübertragungsformat sind differenzierte Impulse aus einer RS232-Schnittstelle vorgesehen. Üblicherweise werden bei einer RS232-Schnittstelle die gesendeten und empfangenen Daten auf zwei getrennten Leitungen ausgetauscht. Hier ist es erforderlich, die Daten zeitlich getrennt über eine Leitung zu übermitteln.2, the measuring probe 1 and the
Zeitgleich mit der Meßdatenaufnahme wird die Bohrlochtiefe ermittelt. Dazu dient die in Fig. 3 schematisch dargestellte Teufenmeßvorrichtung. An der jeweils obersten Bohrstange des Meßgestänges 3 ist ein Teufenmeßrad 8 seitlich angebracht, dessen Umdrehungen von einem Impulsgeber 24 und einer Meßleitung 27 einem Impulszähler 25 übermittelt werden, der über eine Übertragungsleitung 29 an den Laptop PC 7 angeschlossen ist. Da der Laptop PC 7 und die Meßsonde 1 zeitsynchron arbeiten, lassen sich die jeweils gesammelten Daten zusammenführen, d.h. die Meßdaten werden der jeweiligen Bohrlochtiefe zugeordnet, an der sie genommen worden sind.The borehole depth is determined simultaneously with the measurement data acquisition. The depth measuring device shown schematically in FIG. 3 serves for this purpose. At the top boring bar of the measuring
Als Meßsonde 1 kann beispielsweise eine Gammasonde la verwendet werden, deren schematischer Aufbau aus Fig. 4 hervorgeht. Im Meßsondengehäuse 30 sind ein Natrium-Jodid-Kristall 31 und eine Elektronenvervielfacherröhre 32, denen ein Spannungsumformer 33 zugeordnet ist, untergebracht, mit deren Hilfe die Meßdaten ermittelt werden. Diese werden über einen Datenprozessor 18 dem Datenspeicher 19 zugeführt, aus dem sie über den seriellen Datenübermittler 20 ausgelesen werden können. Als Stromversorgung dient die Batterie 17. Obwohl radioaktive Messungen auch durch das Bohrgestänge 3 möglich sind, bietet eine vom Bohrgestänge 3 unbeeinflußte Messung eine wesentlich bessere Auflösung, vor allem, wenn ein radioaktiver Strahler vorgesetzt wird und die Gammasonde 1a als Dichtesonde eingesetzt wird. Die Sensorik der Radioaktivmessungen ist gut überschaubar und die anfallenden Meßdaten sind gering. Mit 1 MByte Speicher in der Gammasonde la kann mehr als 24 Stunden lang ununterbrochen gemessen werden.A gamma probe la, the schematic structure of which can be seen in FIG. 4, can be used as the measuring probe 1, for example. A
Als Meßsonde 1 kann weiterhin beispielsweise eine Dipmetersonde 1b dienen, wie Figur 5 zeigt. In deren Gehäuse 30 sind ein Pendelpotentiometer 34 und eine Analogelektronik 35 als Datenmeßeinrichtung enthalten, die die Reflexionen von Ultraschallsignalen aufnehmen, die von Ultraschallschwingern 37 ausgehen, die dem Sondengehäuse 30 vorgeschaltet sind. Weiterhin sind im Sondengehäuse 30 eine Batterie 17 als Stromerzeuger sowie ein Datenprozessor 18, ein Datenspeicher 19 und ein serieller Datenübermittler 20 vorgesehen. Die Dipmetersonde 1b dient zur Erfassung der Lage von Schichtgrenzen und Klüften. Mehrere feste Ultraschallschwinger 37 messen berührungslos nach dem Echolotprinzip die Amplitude und die Laufzeit. An Klüften und Schichtgrenzen werden die Ultraschallimpulse gestreut und in abgeschwächter Intensität von der Bohrlochwand reflektiert.A dipmeter probe 1b can also serve as the measuring probe 1, as shown in FIG. In their
Auf diese Amplitudenwerte können die gängigen Auswertungs- und Darstellungsverfahren angewendet werden, wie sie auch für elektrische Dipmeter gemacht werden. Die Summe aller Ultraschall-Laufzeiten repräsentiert das Bohrlochkaliber 38, dessen Wert neben den Amplituden als weiterer Wert abgespeichert wird. Der Orientierungswert wird vom elektrischen Pendelpotentiometer 34 abgegriffen und bestimmt, in welcher Lage, in Bezug auf die Rollachse der Dipmetersonde 1b, sich die Ultraschallschwinger 37 befinden. Damit ist eine einfache Oben-Unten-Orientierung gewährleistet.The usual evaluation and display methods can also be applied to these amplitude values, as are also done for electrical dipmeters. The sum of all ultrasound transit times represents the
Zur entgültigen Einordnung der Schichten und Klüfte sind aber dazu noch Messungen über den Verlauf und die Lage des Bohrloches 12, 43 notwendig, die mit einer Kreiselsonde 1c durchgeführt werden, die unten beschrieben wird.To finally classify the layers and fissures, measurements of the course and position of the
Die Dipmetersonde 1b kann aber auch, durch Wahl eines anderen Sondenprogrammes bei der Initialisierung, wie eine Kalibersonde betrieben werden. Im Unterschied zum Dipmeterbetrieb werden dann nur die Kaliberwerte gespeichert. Die exakten Kaliberwerte sind im Zusammenhang mit den Dichtemessungen der Gammasonde la (Gamma-Gamma) von Bedeutung.Dipmeter probe 1b can also be operated like a caliber probe by selecting another probe program during initialization. In contrast to dipmeter operation, only the caliber values are saved. The exact caliber values are important in connection with the density measurements of the gamma probe la (gamma-gamma).
Darüber hinaus können mit der Dipmetersonde 1b Volumenmessungen der Bohrung 12 durchgeführt werden. Dazu muß beim Ausbauen des Gestänges 3 die Dipmetersonde 1b eingerastet sein und die Teufe mit dem Teufenmeßrad 8 und dem Laptop PC 7 gemessen werden. Mit der Dipmetersonde 1b läßt sich ein hochauflösendes Meßverfahren verwirklichen, dessen kleinste Teufenauflösung 1 mm beträgt.In addition, volume measurements of the
Als Meßsonde 1 kann schließlich, wie Fig. 6 zeigt, eine Kreiselsonde lc vorgesehen sein, die allein oder zusammen mit einer der Meßsonden la und 1 oder 1b zur Erfassung der jeweils interessierenden Meßdaten angewendet werden kann. Im Sondenkörper 30 der Kreiselsonde lc ist ein Kreiselmodul 39 und gegebenenfalls ein Zusatzsensor 40 als Meßeinrichtung integriert. Mit Hilfe der Kreiselsonde lc kann der Verlauf eines Bohrlochs 12, 43 und die Position des Bohrlochtiefsten mit einer Genauigkeit von 1 m auf 1000 m Teufe angegeben werden. Sie wird mit dem Bohrlochmeßkabel 4a im Bohrgestänge 3 gefahren und mißt dabei ständig den Kurs und die Lage des Bohrlochs 12, 43. Bei stärkerer Neigung kann sie mit einem Kolben nach vorne gespült werden. Während der Messung werden die Daten zum Meßwagen 42 übertragen und dort in der Registriereinheit 41 gespeichert. Der Zusatzsensor 40 erlaubt es gleichzeitig, die Lage der Rohrverschraubungen des Bohrgestänges 3 zu vermessen. Wie bei den Meßsonden la, 1b sind im Gehäuse 30 der Kreiselsonde lc eine Batterie 17 zur Stromversorgung sowie ein Datenprozessor 18, ein Datenspeicher 19 sowie ein serieller Datenübermittler 20 untergebracht.6, a
- 11
- MeßsondeMeasuring probe
- 1a1a
- GammasondeGamma probe
- 1b1b
- DipmetersondeDipmeter probe
- 1c1c
- KreiselsondeGyro probe
- 22nd
- ÜbertragungssondeTransmission probe
- 33rd
- BohrgestängeDrill pipe
- 44th
- BohrlochmeßkabelDownhole measuring cable
- 4a4a
- BohrlochmeßkabelDownhole measuring cable
- 55
- BohrkroneCore bit
- 66
- KernrohrkupplungCore pipe coupling
- 77
- Laptop PCLaptop pc
- 88th
- TeufenmeßradDepth measuring wheel
- 99
- Induktionsspule der MeßsondeInduction coil of the measuring probe
- 1010th
- Induktionsspule der ÜbertragungssondeInduction coil of the transmission probe
- 1111
- InnenrohrkopfInner tube head
- 1212th
- BohrlochBorehole
- 1313
- MeßkabelwindeMeasuring cable winch
- 1414
- Bohrturmderrick
- 1515
- Druckerprinter
- 1616
- MeßelementMeasuring element
- 1717th
- Batteriebattery
- 1818th
- DatenprozessorData processor
- 1919th
- DatenspeicherData storage
- 2020th
- serieller Datenübermittlerserial data transmitter
- 2121
- WeichmagnetkernSoft magnetic core
- 21a21a
- verankertes Magnetendeanchored magnet end
- 21b21b
- freies Magnetendefree magnet end
- 2222
- KabelkopfCable head
- 2323
- SpulenvorsatzCoil attachment
- 2424th
- ImpulsgeberImpulse generator
- 2525th
- ImpulszählerPulse counter
- 2727
- MeßleitungMeasurement line
- 2828
- Batteriebattery
- 2929
- ÜbertragungsleitungTransmission line
- 3030th
- MeßsondengehäuseProbe housing
- 3131
- Natrium-Jodid-KristallSodium iodide crystal
- 3232
- ElektronenvervielfacherröhreElectron multiplier tube
- 3333
- SpannungsumformerVoltage converter
- 3434
- PendelpotentiometerPendulum potentiometer
- 3535
- AnalogelektronikAnalog electronics
- 3737
- UltraschallschwingerUltrasonic transducer
- 3838
- BohrlochkaliberBorehole caliber
- 3939
- KreiselmodulGyro module
- 4040
- ZusatzsensorAdditional sensor
- 4141
- RegistriereinheitRegistration unit
- 4242
- MeßwagenMeasuring car
- 4343
- abgelenktes Bohrlochdeflected borehole
- 4444
- DatenprozessorData processor
- 4545
- DatenspeicherData storage
- 4747
- MeßsensorMeasuring sensor
- 4848
- AnschlußConnection
- 4949
- AnschlußConnection
- 5050
- AnschlußConnection
- 5151
- AnschlußConnection
Claims (11)
- A measuring process for cable core bores during which an autarkically functioning measuring probe (1) is inserted into the drill string (3) and is locked to the drill bit (5) via a core barrel coupling (6), measured values are received and stored temporarily by the measuring probe (1), and the measuring probe (1) is recovered with the aid of a core barrel catcher when measuring is over, and the measured values are read out, characterised in that the measuring probe (1) is flushed into the drill string (3) and is locked in the drill bit (5) with the core barrel coupling (6) in such a manner that a measuring sensor (47) can freely access metrologically the bottom and the walls of the borehole (12, 43) by way of a measuring opening in the drill bit (5), and the measured value is recorded while the drill string (3) in the free borehole is being withdrawn, and in addition a transmission probe (2) with a borehole measuring cable (4) fastened thereto and attached to a portable PC (7) is flushed into the drill string (3), a wireless connection is produced between the measuring probe (1) and the transmission probe (2), the measuring probe (1) is initialised via the portable PC and synchronised therewith, the transmission probe (2) is withdrawn from the drill string (3) after initialisation and synchronisation, and the measured values are read out via the portable PC (7) from the measuring probe (1) after its recovery.
- A measuring process according to Claim 1, characterised in that measuring occurs while the drill string is being pulled, and the respective measured depth is determined via a path display (8) and is stored temporarily by the portable PC.
- A measuring process according to Claim 1 or 2, characterised in that gamma probes (1a) or dipmeter probes (1b) are used as measuring probes (1).
- A measuring process according to Claim 3, characterised in that the measured values of the different measuring probes (1a, 1b) are determined in succession and synchronically with respect to depth, and are evaluated together.
- A measuring process according to any one of Claims 1 to 4, characterised in that measured data recorded by the measuring probe (1) are transmitted directly or after temporary storage in the measuring probe (1) in a wireless manner to the transmission probe (2), and are further conveyed by the transmission probe to the portable PC (7).
- A modified measuring process according to either Claim 1 or 2, characterised in that a revolving probe (1c) is used as the measuring probe (1) which is attached directly via a borehole measuring cable (4a) to the portable PC (7), and is initialised via and synchronised using the said PC.
- A device for implementing the measuring process according to any of Claims 1 to 5, in which a measuring probe (1) is connectable to a transmission probe (2) via induction coils (9, 10) and a soft magnet core (21) in a wireless manner, the measuring probe is provided with an inner tube head (11) and is lockable in a drill bit (5), and a measuring element (16), an energy supply (17) and data recording apparatus are contained in the measuring probe (1), and the transmission probe (2) is in the form of a measuring cable head (22) with a coil attachment (23), characterised in that the transmission probe (2) is attached to a portable PC (7) by means of a borehole measuring cable (4), and a data processor (18), a data store (19) and a serial data transmitter (20) are provided as the data recording apparatus, and the measuring probe (1) is lockable via a core barrel coupling (6) in the drill bit (5) and a measuring sensor (47) of the measuring probe (1) can be arranged, so as to project into the borehole, for the purpose of measuring in the free borehole cross-section through an opening of the drill bit (5).
- A device according to Claim 7, characterised in that the portable PC (7) is connected via a measuring line (27) to a pulse counter (25) and a pulse transmitter (24) of a depth measuring wheel (8) which is attachable to the drill string (3).
- A device according to Claim 7 or 8, characterised in that the measuring probe (1) is a gamma probe (la), and the sensor part thereof comprises a sodium iodide crystal (31) and an electron multiplier tube (32) as the measured-value transmitter.
- A device according to Claim 7 or 8, characterised in that the measuring probe (1) is an acoustic dipmeter (36), and the sensor part thereof comprises a plurality of ultrasound oscillators (37), an analogue electronic [device] (35) and an oscillating potentiometer (34).
- A modified device according to Claims 7 and 8 for the implementation of the measuring process according to Claims 1, 2 and 6, characterised in that a revolving probe (1c) is provided as a measuring probe (1) and is directly connected to the portable PC (7) via a borehole measuring cable (4a) and is formed from a revolving module (3a), an additional sensor (40), a current supply (17), a data processor (18), a data store (19) and a serial data transmitter (20).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4129709 | 1991-09-06 | ||
DE4129709A DE4129709C1 (en) | 1991-09-06 | 1991-09-06 | |
PCT/EP1992/002043 WO1993005271A1 (en) | 1991-09-06 | 1992-09-04 | Process and device for measuring cable drilled bores |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0601030A1 EP0601030A1 (en) | 1994-06-15 |
EP0601030B1 true EP0601030B1 (en) | 1996-08-07 |
Family
ID=6440047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92918511A Expired - Lifetime EP0601030B1 (en) | 1991-09-06 | 1992-09-04 | Process and device for measuring cable drilled bores |
Country Status (6)
Country | Link |
---|---|
US (1) | US5560437A (en) |
EP (1) | EP0601030B1 (en) |
AU (1) | AU2487392A (en) |
DE (2) | DE4129709C1 (en) |
WO (1) | WO1993005271A1 (en) |
ZA (1) | ZA926583B (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4221221C2 (en) * | 1992-06-27 | 1995-10-26 | Bergwerksverband Gmbh | Measurement method for core drilling and device for carrying it out |
ATE158844T1 (en) * | 1992-12-07 | 1997-10-15 | Akishima Lab Mitsui Zosen Inc | SYSTEM FOR MEASUREMENTS DURING DRILLING WITH PRESSURE PULSE VALVE FOR DATA TRANSMISSION |
DE4437525C2 (en) * | 1994-10-20 | 1998-07-23 | Geotechnisches Ingenieurbuero | Method and device for examining the wall of a borehole in rock |
US5720354A (en) * | 1996-01-11 | 1998-02-24 | Vermeer Manufacturing Company | Trenchless underground boring system with boring tool location |
CA2238334C (en) * | 1996-09-23 | 2008-04-22 | Intelligent Inspection Corporation Commonwealth Of Massachusetts | Autonomous downhole oilfield tool |
US5988243A (en) * | 1997-07-24 | 1999-11-23 | Black & Decker Inc. | Portable work bench |
US6536520B1 (en) | 2000-04-17 | 2003-03-25 | Weatherford/Lamb, Inc. | Top drive casing system |
GB9826017D0 (en) | 1998-11-28 | 1999-01-20 | Wireline Technologies Ltd | Well logging method and apparatus |
FI111287B (en) * | 1998-12-10 | 2003-06-30 | Tamrock Oy | Method and Rock Drilling Device for Controlling Rock Drilling |
AU1995100A (en) * | 1999-01-16 | 2000-08-01 | Transmission Winch Systems Limited | Winching apparatus |
US6189621B1 (en) * | 1999-08-16 | 2001-02-20 | Smart Drilling And Completion, Inc. | Smart shuttles to complete oil and gas wells |
US6308787B1 (en) | 1999-09-24 | 2001-10-30 | Vermeer Manufacturing Company | Real-time control system and method for controlling an underground boring machine |
US6315062B1 (en) | 1999-09-24 | 2001-11-13 | Vermeer Manufacturing Company | Horizontal directional drilling machine employing inertial navigation control system and method |
US6928864B1 (en) * | 1999-09-30 | 2005-08-16 | In-Situ, Inc. | Tool assembly and monitoring applications using same |
US6349778B1 (en) | 2000-01-04 | 2002-02-26 | Performance Boring Technologies, Inc. | Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole |
US6577244B1 (en) * | 2000-05-22 | 2003-06-10 | Schlumberger Technology Corporation | Method and apparatus for downhole signal communication and measurement through a metal tubular |
US6995684B2 (en) | 2000-05-22 | 2006-02-07 | Schlumberger Technology Corporation | Retrievable subsurface nuclear logging system |
US6836218B2 (en) | 2000-05-22 | 2004-12-28 | Schlumberger Technology Corporation | Modified tubular equipped with a tilted or transverse magnetic dipole for downhole logging |
US6655453B2 (en) * | 2000-11-30 | 2003-12-02 | Xl Technology Ltd | Telemetering system |
FI118134B (en) * | 2001-10-19 | 2007-07-13 | Sandvik Tamrock Oy | Rock drilling device and breaking device |
US7730965B2 (en) | 2002-12-13 | 2010-06-08 | Weatherford/Lamb, Inc. | Retractable joint and cementing shoe for use in completing a wellbore |
CA2506056C (en) * | 2002-11-15 | 2011-02-01 | Shell Canada Limited | Drilling a borehole |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US7207215B2 (en) * | 2003-12-22 | 2007-04-24 | Halliburton Energy Services, Inc. | System, method and apparatus for petrophysical and geophysical measurements at the drilling bit |
US6913087B1 (en) | 2004-01-30 | 2005-07-05 | Black & Decker Inc. | System and method for communicating over power terminals in DC tools |
GB2424432B (en) | 2005-02-28 | 2010-03-17 | Weatherford Lamb | Deep water drilling with casing |
US7857052B2 (en) | 2006-05-12 | 2010-12-28 | Weatherford/Lamb, Inc. | Stage cementing methods used in casing while drilling |
US8276689B2 (en) | 2006-05-22 | 2012-10-02 | Weatherford/Lamb, Inc. | Methods and apparatus for drilling with casing |
US8433058B2 (en) * | 2008-08-08 | 2013-04-30 | Avaya Inc. | Method and system for distributed speakerphone echo cancellation |
US8548742B2 (en) * | 2008-10-21 | 2013-10-01 | National Oilwell Varco L.P. | Non-contact measurement systems for wireline and coiled tubing |
RU2643380C2 (en) * | 2013-02-08 | 2018-02-01 | Сергей Георгиевич Фурсин | Method for monitoring bottom-hole parameters during well drilling |
CN208010332U (en) * | 2018-02-13 | 2018-10-26 | 宁波金地电子有限公司 | A kind of probe of no-dig technique guide instrument |
WO2021016443A1 (en) | 2019-07-24 | 2021-01-28 | Schlumberger Technology Corporation | Conveyance apparatus, systems, and methods |
US11283701B2 (en) * | 2020-01-24 | 2022-03-22 | Halliburton Energy Services, Inc. | Telemetry configurations for downhole communications |
US11187077B2 (en) * | 2020-01-31 | 2021-11-30 | Halliburton Energy Services, Inc. | Adaptive wireline telemetry in a downhole environment |
CN112343578B (en) * | 2020-11-09 | 2023-07-21 | 黄山联合应用技术研究院 | Visual logging mechanism tunneling device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2868506A (en) * | 1954-06-01 | 1959-01-13 | Texas Co | Determination of fluid movement in bore holes |
US3086167A (en) * | 1958-11-13 | 1963-04-16 | Sun Oil Co | Bore hole logging methods and apparatus |
GB1096388A (en) * | 1965-07-27 | 1967-12-29 | Texaco Development Corp | Retrieval system for logging while drilling |
US4001774A (en) * | 1975-01-08 | 1977-01-04 | Exxon Production Research Company | Method of transmitting signals from a drill bit to the surface |
US4003441A (en) * | 1975-04-22 | 1977-01-18 | Efim Lvovich Lokshin | Method of opening carbon-bearing beds with production wells for underground gasification |
GB1557863A (en) * | 1976-06-22 | 1979-12-12 | Shell Int Research | Method and means for transmitting information through a pipe string situated in a borehole oe well |
AU546119B2 (en) * | 1980-01-21 | 1985-08-15 | Exploration Logging Inc. | Transmitting well logging data |
DE3035905C2 (en) * | 1980-09-24 | 1982-12-30 | Christensen, Inc., 84115 Salt Lake City, Utah | Device for the remote transmission of information from a borehole to the surface of the earth during the operation of a drilling rig |
JPS57123319A (en) * | 1981-01-22 | 1982-07-31 | Kiso Jiban Consultant Kk | Method and apparatus for subsurface exploration |
DE3402386A1 (en) * | 1984-01-25 | 1985-08-01 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | INDUCTIVE ENERGY AND DATA TRANSFER |
GB8607395D0 (en) * | 1986-03-25 | 1986-04-30 | British Petroleum Co Plc | Core sampling equipment |
US4806928A (en) * | 1987-07-16 | 1989-02-21 | Schlumberger Technology Corporation | Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface |
FR2627649B1 (en) * | 1988-02-22 | 1990-10-26 | Inst Francais Du Petrole | METHOD AND DEVICE FOR TRANSMITTING INFORMATION BY CABLE AND MUD WAVE |
DE3813508C1 (en) * | 1988-04-22 | 1989-10-12 | Eastman Christensen Co., Salt Lake City, Utah, Us | |
US4932471A (en) * | 1989-08-22 | 1990-06-12 | Hilliburton Company | Downhole tool, including shock absorber |
FR2679958B1 (en) * | 1991-08-02 | 1997-06-27 | Inst Francais Du Petrole | SYSTEM, SUPPORT FOR PERFORMING MEASUREMENTS OR INTERVENTIONS IN A WELLBORE OR DURING DRILLING, AND USES THEREOF. |
US5234053A (en) * | 1992-07-16 | 1993-08-10 | Halliburton Geophysical Services, Inc. | Reeled tubing counter assembly and measuring method |
-
1991
- 1991-09-06 DE DE4129709A patent/DE4129709C1/de not_active Expired - Lifetime
-
1992
- 1992-08-31 ZA ZA926583A patent/ZA926583B/en unknown
- 1992-09-04 EP EP92918511A patent/EP0601030B1/en not_active Expired - Lifetime
- 1992-09-04 WO PCT/EP1992/002043 patent/WO1993005271A1/en active IP Right Grant
- 1992-09-04 AU AU24873/92A patent/AU2487392A/en not_active Abandoned
- 1992-09-04 US US08/204,320 patent/US5560437A/en not_active Expired - Lifetime
- 1992-09-04 DE DE59206874T patent/DE59206874D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE4129709C1 (en) | 1992-12-03 |
DE59206874D1 (en) | 1996-09-12 |
AU2487392A (en) | 1993-04-05 |
EP0601030A1 (en) | 1994-06-15 |
ZA926583B (en) | 1993-03-09 |
US5560437A (en) | 1996-10-01 |
WO1993005271A1 (en) | 1993-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0601030B1 (en) | Process and device for measuring cable drilled bores | |
DE69506872T2 (en) | DATA COLLECTION OR MEASUREMENT DURING REMOVAL | |
DE602004009043T2 (en) | RADIAL ADJUSTABLE DRILLING DEVICES AND METHOD FOR THE SAME | |
DE3813508C1 (en) | ||
DE69216558T2 (en) | Inclinometer and method for examining earth formations | |
DE102006014265A1 (en) | Modular boring tool system | |
DE3912614A1 (en) | ELECTRICAL TRANSMISSION SYSTEM FOR A DRILL HOLE FILLED WITH DRILLING MEDIUM | |
DE2720273A1 (en) | METHOD AND DEVICE FOR DETERMINING AND REGISTERING MEASURED VALUES OF A DEEP HOLE | |
DE102005008430A1 (en) | Method and apparatus for drilling a borehole from a remote location | |
DE2941104A1 (en) | METHOD AND DEVICE FOR EXAMINING PITCH HOLES | |
DE3435812A1 (en) | DEVICE FOR MEASURING THE ROTATING SPEED OF A ROTATING ELEMENT | |
DE60106936T2 (en) | DEVICE AND METHOD FOR SYNCHRONIZED DRILLING MEASUREMENT | |
DE3513178A1 (en) | METHOD AND DEVICE FOR MONITORING HOLES | |
DE4221221C2 (en) | Measurement method for core drilling and device for carrying it out | |
EP0811750A1 (en) | Method and device for downhole measurement of depth of borehole | |
DE102005038313B4 (en) | Method for measuring the geological storage density and for detecting cavities in the area of a tunnel tunneling | |
DE112016000973B4 (en) | Improved pulse generation for underground surveying | |
DE2025362C3 (en) | Well logging method and apparatus for its implementation | |
DE19745947A1 (en) | Device and method for drilling earth formations | |
DE112016000975T5 (en) | Casing and Cement Evaluation Tool with reduced transmitter reverberation | |
DE112016000878T5 (en) | Real-time, adaptive, minimum-phase wavelet generation for downhole tools | |
DE112016000854T5 (en) | In-situ measurement of velocity and attenuation of well fluid in an ultrasonic scanning tool | |
DE3540251A1 (en) | DEVICE AND METHOD FOR ACOUSTIC DIRECTION MEASUREMENT | |
DE112016000974T5 (en) | Method of assessing cement bonding | |
DE2118380A1 (en) | Method and device for the detection and localization of leaks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19951113 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59206874 Country of ref document: DE Date of ref document: 19960912 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960905 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110928 Year of fee payment: 20 Ref country code: DE Payment date: 20110923 Year of fee payment: 20 Ref country code: GB Payment date: 20110920 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59206874 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59206874 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120903 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120905 |