EP0582263B1 - Stabilisiertes Gleichspannungsnetzgerät - Google Patents

Stabilisiertes Gleichspannungsnetzgerät Download PDF

Info

Publication number
EP0582263B1
EP0582263B1 EP93112380A EP93112380A EP0582263B1 EP 0582263 B1 EP0582263 B1 EP 0582263B1 EP 93112380 A EP93112380 A EP 93112380A EP 93112380 A EP93112380 A EP 93112380A EP 0582263 B1 EP0582263 B1 EP 0582263B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
voltage
power supply
transistor
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93112380A
Other languages
English (en)
French (fr)
Other versions
EP0582263A1 (de
Inventor
Vinzenz Dr. Von Tscharner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6464984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0582263(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0582263A1 publication Critical patent/EP0582263A1/de
Application granted granted Critical
Publication of EP0582263B1 publication Critical patent/EP0582263B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/577Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices for plural loads
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present invention relates to a stabilized DC power supply according to the preamble of claim 1.
  • a generic DC power supply is known from US 3,581,187.
  • the desired stabilization of the output voltage is achieved by tapping the output voltage in a control loop, comparing it with a substantially constant voltage and using an operational amplifier or the like to generate a control signal from this voltage difference, which generates the Output voltage itself is affected.
  • control principle of the generic power supply is based on a feedback, in which the comparison signal is not independent of the output voltage generated by the power supply.
  • the object of the present invention is therefore to simplify a power supply unit of the generic type, in particular to manufacture it in a simpler circuitry and more suitable for large-scale production, and to prevent an adverse reaction of voltage fluctuations at the output of the power supply unit to the stabilization process.
  • a second capacitor is charged from the first capacitor as the lower part of a cascade, this being done via the transistor, preferably a field effect transistor.
  • the voltage on the second capacitor ie the output voltage of the power supply unit
  • the voltage on the second capacitor can thus be stabilized by charging the first capacitor and by the action of the transistor T.
  • a "transformer and rectifier” G1 supplies the necessary voltage in the form of half-waves and the required current for a cascade power supply unit 10.
  • the power of the rectifier G1 is sufficient to charge a first capacitor C1 to the maximum charging voltage Umax even under full load, which is preferably between 2 to 2/3 times the output voltage Uout.
  • the capacitor C1 is thus charged as the upper level of the cascade.
  • the duration of the charging is extended due to the large voltage drop across capacitor C1 during a half-wave. Thanks to these conditions, the "transformer and rectifier” G1 is loaded longer, but less heavily. The current flows more homogeneously, and the "transformer and rectifier” G1 can therefore be dimensioned smaller.
  • the capacitor C1 has a sufficient capacity so that when the maximum current Imax at the output of the power supply is drawn, the voltage at the capacitor C1 does not drop below a minimum value during the O-passage of the supply voltage. This minimum value is higher than the output voltage of the power supply unit 10.
  • the capacitance of the capacitor C1 should not be greater than absolutely necessary so that the voltage fluctuations on the capacitor C1 - which also depend essentially on a resistor R1 - are large at full load; due to these voltage fluctuations, the "transformer and rectifier" G1 is loaded longer and thus more homogeneously at full load. However, the voltage fluctuations must be within the tolerance limit of the selected capacitor type.
  • An independent reference voltage Uref is connected to the gate of transistor T. The voltage difference between the reference voltage applied to the gate and the voltage across the second capacitor C2 controls the current of the transistor T for recharging the second capacitor C2.
  • the opening of the transistor T is caused by the small voltage drop across the second capacitor C2 with respect to the reference voltage, but not by a feedback to the gate.
  • the current of the transistor T is derived as directly as possible from the "transformer and rectifier" G1 - except during the O-passage of the supply voltage, during which it is only taken from the first capacitor C1.
  • the voltage at the second capacitor C2 is stabilized in a voltage range which is sufficiently narrow for audio amplifier operation.
  • the independent reference voltage Uref is generated by a separate transformer and rectifier G2.
  • a stabilized power supply unit is preferably used, since the stability of the output voltage essentially depends on that of the reference voltage. Since the reference voltage at the gate of the transistor T is never heavily loaded, it does not change even under extreme loads (short circuit) at the output of the cascade power supply 10. Therefore, the output voltage returns to the setpoint immediately and without vibrations even after a short-term extreme load.
  • the resistor R1 mentioned above has two functions; firstly, it increases the voltage fluctuations on capacitor C1 and secondly, it limits the current through transistor T and prevents its destruction. Too much resistance also increases the power loss and should therefore be avoided. At any time, the possible charging current for the capacitor C2, which is limited by the resistor R1, must be greater than the maximum current required by the power supply 10.
  • the second capacitor or output capacitor C2 can be charged from the "transformer and rectifier" G1 and the capacitor C1 via the transistor T. Its capacity buffers short current peaks and high-frequency electricity requirements. This also compensates for the inertia of the control circuit, which can easily lead to phase shifts, at all frequencies. Capacities that are smaller - or equal - than - or else the same as - that of the first capacitor C1 have proven successful; the time (R1 * C1) should be between 0.5 and 5 milliseconds; this causes a high damping factor in audio amplifiers and a great spontaneity of the music.
  • the main advantage of the interaction in the cascade of the capacitors C1 and C2 and the transistor T or the FET is that the charge for the output current, in particular at full load, is largely derived directly from the transformer and not, as in conventional power supplies , is temporarily stored in the capacitors C1, C2; the capacitors C1, C2 are only heavily loaded for a short time, in particular during O-passage and rapid load changes, and have buffer properties.
  • the capacitors C1, C2 in the cascade power supply unit 10 are therefore also dimensioned much smaller than in conventional power supply units.
  • the start-up of the power supply 10 can be slowed down by a capacitor (not shown in the drawing) at the gate of the transistor T (for example to 0.05 to 1 sec). This protects the FET and at the same time increases the stability of the output voltage.
  • FIG. 2 shows a circuit with a second resistor R2 and a second transistor T2 and a section for a negative Uout, capacitors C'1, C'2 and resistors R'1, R'2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

  • Die vorliegende Erfindung betrifft ein stabilisiertes Gleichspannungsnetzgerät nach dem Oberbegriff des Patentanspruchs 1. Ein derartiges, gattungsgemäßes Gleichspannungsnetzgerät ist aus der US 3,581,187 bekannt.
  • Bei einem solchen stabilisierten Gleichspannungsnetzgerät wird die erwünschte Stabilisierung der Ausgangsspannung erreicht, in dem im Wege einer Regelschleife die Ausgangsspannung abgegriffen wird, mit einer im wesentlichen konstanten Spannung verglichen wird und mittels eines Operationsverstärkers od. dgl. aus dieser Spannungsdifferenz ein Regelsignal erzeugt wird, welches die Ausgangsspannung selbst wiederum beeinflußt.
  • Eine solche, aus der genannten US 3,581,187 bekannte Vorrichtung ist allerdings, allein schon durch den notwendigen Komparator und die von diesem gesteuerte, die Ausgangsspannung stellende Treiberstufe zwangsläufig schaltungstechnisch aufwendig und würde insbesondere eine Großserienfertigung des Netzgeräts unter Kostengesichtspunkten erschweren.
  • Ferner basiert das Regelprinzip des gattungsgemäßen Netzgeräts auf einer Rückkopplung, bei welcher das Vergleichssignal nicht unabhängig von der vom Netzgerät erzeugten Ausgangsspannung ist. Daraus ergibt sich aber der Nachteil, daß (unerwünschte) Spannungsschwankungen am Ausgang unmittelbar den Vergleich im Regelkreis beeinflussen, so daß zwangsläufig auch das Vergleichssignal und damit das Steuersignal für die Spannungsstabilisierung nicht völlig entkoppelt sind, was sich entsprechend negativ auf die Güte des (stabilisierten) Ausgangsspannungssignals auswirkt.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Netzgerät der gattungsgemäßen Art zu vereinfachen, insbesondere dieses schaltungstechnisch einfacher und für eine Großserienfertigung besser geeignet herzustellen, und eine nachteilige Rückwirkung von Spannungsschwankungen am Ausgang des Netzgeräts auf den Stabilisierungsvorgang zu verhindern.
  • Die Aufgabe wird durch das stabilisierte Gleichspannungsnetzgerät mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Erfindungsgemäß wird vom ersten Kondensator aus ein zweiter Kondensator als unterer Teil einer Kaskade geladen, wobei dies über den Transistor, bevorzugt einen Feldeffekttransistor, erfolgt.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Dabei hat es sich als nützlich erwiesen, daß die Spannung am ersten Kondensator signifikant höher ist, als die Ausgangsspannung.
  • Erfindungsgemäß ist also die Spannung am zweiten Kondensator (d.h. die Ausgangsspannung des Netzgeräts) durch die Ladung des ersten Kondensators und durch Wirkung des Transistors T stabilisierbar.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung, deren beide Figuren jeweils einen Schaltplan wiedergeben.
  • Ein "Transformer und Gleichrichter" G1 liefert die notwendige Spannung in Form von Halbwellen und den erforderlichen Strom für ein Kaskaden-Netzgerät 10. Die Leistung des Gleichrichters G1 reicht aus, um auch bei voller Last einen ersten Kondensator C1 auf die maximale Ladespannung Umax aufzuladen, die vorzugsweise zwischen dem 2- bis 2/3-fachen der Ausgangsspannung Uout liegt. Damit wird der Kondensator C1 als oberes Niveau der Kaskade geladen. Bei großer Last wird die Dauer der Aufladung -- bedingt durch den großen Spannungsabfall am Kondensator C1 während einer Halbwelle -- verlängert. Dank dieser Gegebenheiten wird der "Transformer und Gleichrichter" G1 zwar länger belastet, jedoch weniger stark. Der Strom fließt homogener, und der "Transformer und Gleichrichter" G1 kann deshalb kleiner dimensioniert werden.
  • Der Kondensator C1 hat eine ausreichende Kapazität, um bei Entnahme des maximalen Stromes Imax am Ausgang des Netzgerätes die Spannung am Kondensator C1 während des O-Durchganges der Speisespannung nicht unter einen Minimalwert abfallen zu lassen. Dieser Minimalwert liegt höher als die Ausgangsspannung des Netzgerätes 10. Die Kapazität des Kondensators C1 soll nicht größer sein als unbedingt notwendig, damit die Spannungsschwankungen am Kondensator C1 -- die auch wesentlich von einem Widerstand R1 abhängen -- bei voller Last groß sind; durch diese Spannungsschwankungen wird bei voller Last der "Transformer und Gleichrichter" G1 länger und somit homogener belastet. Die Spannungsschwankungen müssen aber innerhalb der Toleranzgrenze des gewählten Kondensatortyps liegen.
  • Ein Transistor T (Kaskade), vorzugsweise ein Feldeffekt-Transistor FET, dessen Gate durch eine dünne Oxidschicht gegen den Stromkanal isoliert ist (MOS-FET = metal-oxid-silicon), kontrolliert die Ladung und damit die Spannung an einem zweiten Kondensator C2 (unterer Teil der Kaskade). Am Gate des Transistors T ist eine unabhängige Referenzspannung Uref angeschlossen. Die Spannungdifferenz zwischen der am Gate angelegten Referenzspannung und der Spannung am zweiten Kondensator C2 steuert den Strom des Transistors T für das Nachladen des zweiten Kondensators C2. Die Öffnung des Transistors T entsteht durch den kleinen Spannungsabfall am zweiten Kondensator C2 bezüglich der Referenzspannung, nicht aber durch eine Rückkoppelung zum Gate. Der Strom des Transistors T wird möglichst direkt aus dem "Transformer und Gleichrichter" G1 abgeleitet - ausgenommen während des O-Durchganges der Speisespannung, während dessen er einzig aus dem ersten Kondensator C1 entnommen wird. Im Rahmen der Empfindlichkeit des gewählten Transistors T, vorzugsweise des FET, wird die Spannung am zweiten Kondensator C2 in einem für den Audioverstärkerbetrieb ausreichend engen Spannungsbereich stabilisert.
  • Die unabhängige Referenzspannung Uref wird von einem gesonderten Transformer und Gleichrichter G2 generiert. Vorzugsweise wird ein stabilisiertes Netzgerät verwendet, da die Stabilität der Ausgangsspannung wesentlich von derjenigen der Referenzspannung abhängt. Da die Referenzspannung am Gate des Transistors T nie stark belastet wird, ändert sie sich auch bei extremen Lasten (Kurzschluß) am Ausgang des KaskadenNetzgerätes 10 nicht. Daher kehrt die Ausgangsspannung auch nach kurzfrist extremer Last sofort und ohne Schwingungen zum Sollwert zurück.
  • Der oben erwähnte Widerstand R1 hat zwei Aufgaben; erstens vergrößert er die Spannungsschwankungen am Kondensator C1 und zweitens limitiert er den Strom durch den Transistor T und verhindert dessen Zerstörung. Ein zu großer Widerstand vergrößert auch die Verlustleistung und ist deshalb zu vermeiden. Jederzeit muß der mögliche Ladestrom für den Kondensator C2, der durch den Widerstand R1 begrenzt ist, größer sein als der maximale Strom, der vom Netzteil 10 verlangt wird.
  • Der zweite Kondensator oder Ausgangs-Kondensator C2 ist aus dem "Transformer und Gleichrichter" G1 und dem Kondensor C1 über den Transistor T ladbar. Seine Kapazität puffert kurze Stromspitzen sowie hochfrequenten Strombedarf ab. Damit wird auch die Trägheit der Regelschaltung, die leicht zu Phasenverschiebungen führen kann, bei allen Frequenzen aufgefangen. Bewährt haben sich Kapazitäten, die kleiner -- oder gleich --sind als -- oder aber gleich wie -- die des ersten Kondensators C1, die Zeit (R1*C1) sollte zwischen 0,5 und 5 Millisekunden liegen; dies bewirkt einen hohen Dämpungsfaktor in Audio-Verstärkern und eine große Spontaneität der Musik.
  • Der wesentliche Vorteil des Zusammenspiels in der Kaskade der Kondensatoren C1 und C2 und des Transistors T bzw. des FET liegt darin, daß die Ladung für den Ausgangsstrom, insbesondere bei voller Last, weitgehend direkt vom Transformer her abgeleitet wird und nicht, wie in herkömmlichen Netzgeräten, in den Kondensatoren C1,C2 zwischengespeichert wird; die Kondensatoren C1,C2 werden nur kurzzeitig, inbesondere beim O-Durchgang und bei schnellen Laständerungen, stark belastet und haben Puffereigenschaften. Daher sind die Kondensatoren C1,C2 im Kaskaden-Netzgerät 10 auch viel kleiner dimensioniert als in herkömmlichen Netzgeräten.
  • Das Aufstarten des Netzgerätes 10 kann durch einen in der Zeichnung nicht dargestellten Kondensator am Gate des Transistors T verlangsamt werden (z. B. auf 0,05 bis 1 sec). Damit werden die FET geschützt, und gleichzeitig wird die Stabilität der Ausgangsspannung erhöht.
  • Mit der vorstehend beschriebenen Art der Stabilisierung bzw. Siebung kann bei 10 A Belastung eine Stabilität erhalten werden, die besser als +- 0,1 Volt auf 20 Volt Ausgangsspannung ist.
  • Das erfindungsgemäße Ausführungsbeispiel der Fig. 2 zeigt eine Schaltung mit einem zweiten Widerstand R2 und einem zweiten Transistor T2 sowie einen Abschnitt für eine negative Uout, Kondensatoren C'1, C'2 und Widerständen R'1, R'2.

Claims (7)

  1. Stabilisiertes Gleichspannungsnetzgerät, zum Einsatz im Audiobereich,
    mit einem ersten Kondensator (C1), der zwischen Ausgangsanschlüssen eines Gleichrichters (G1) verbunden ist,
    einem zweiten Kondensator (C2), der zwischen Ausgangsklemmen des Netzgeräts geschaltet ist und
    einem Transistor (T), der so zwischen einem ersten Anschluß des ersten Kondensators (C1) und einem ersten Anschluß des zweiten Kondensators (C2) geschaltet ist, daß bei durchgeschaltetem Transistor (T) beide erste Anschlüsse miteinander verbunden sind,
    dadurch gekennzeichnet,
    daß die jeweils zweiten Anschlüsse des ersten (C1) bzw. des zweiten (C2) Kondensators unmittelbar miteinander verbunden sind
    und ein Steueranschluß des Transistors zum Beaufschlagen mit einer Referenzspannung geschaltet ist, die unabhängig von einer über dem zweiten Kondensator (C2) abgegriffenen Ausgangsspannung (Uout) erzeugt wird.
  2. Gleichspannungsnetzgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Referenzspannung eine stabilisierte Konstantspannung ist.
  3. Gleichspannungsnetzgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kondensatoren (C1,C2) und der Transistor (T) so dimensioniert sind, daß ein Strom durch den Transistor zwischen den ersten Anschlüssen als Reaktion auf die Spannungsdifferenz zwischen der Referenzspannung und der Ausgangsspannung gesteuert wird.
  4. Gleichspannungsnetzgerät nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen in den Pfad zwischen die ersten Anschlüsse des ersten (C1) bzw. zweiten (C2) Kondensators und den Transistor (T) geschalteten Widerstand (R1).
  5. Gleichspannungsnetzgerät nach Anspruch 4, dadurch gekennzeichnet, daß der Widerstand (R1) mit dem ersten Anschluß des ersten Kondensators (C1) verbunden ist und die Zeitkonstante (C1 x R1) des ersten Kondensators (C1) mit dem Widerstand (R1) zwischen 0,5 und 5 msec liegt.
  6. Gleichspannungsnetzgerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Gleichrichter (G1) so dimensioniert ist, daß er den ersten Kondensator (C1) auf eine Spannung (Umax) aufladen kann, die das 2- bis 3/2-fache der Ausgangsspannung (Uout) beträgt.
  7. Gleichspannungsnetzgerät nach einem der Ansprüche 1 bis 6, gekennzeichnet durch einen zwischen Referenzspannung und den Steueranschluß des Transistors (T) geschalteten Kondensator.
EP93112380A 1992-08-06 1993-08-03 Stabilisiertes Gleichspannungsnetzgerät Revoked EP0582263B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4226022 1992-08-06
DE4226022 1992-08-06

Publications (2)

Publication Number Publication Date
EP0582263A1 EP0582263A1 (de) 1994-02-09
EP0582263B1 true EP0582263B1 (de) 1996-06-05

Family

ID=6464984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93112380A Revoked EP0582263B1 (de) 1992-08-06 1993-08-03 Stabilisiertes Gleichspannungsnetzgerät

Country Status (2)

Country Link
EP (1) EP0582263B1 (de)
DE (1) DE59302801D1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1270158B (de) * 1961-04-19 1968-06-12 Fritz Hellige & Co G M B H Fab Schaltung zur Stabilisierung einer Speisespannung mit einem Schutz gegen Einschaltstromspitzen
US3581187A (en) * 1969-06-23 1971-05-25 Metrodynamics Corp Regulated dc power supply
EP0399598A3 (de) * 1989-05-22 1991-03-06 Koninklijke Philips Electronics N.V. Wechselstrom/Gleichstrom-Konverter
DE4019637C1 (en) * 1990-06-20 1991-08-08 Loewe Opta Gmbh, 8640 Kronach, De Current supply circuit for LF amplifier of radio receiver - has two rectifying circuits for two sec. windings of mains transformer combinable by switch for higher output power

Also Published As

Publication number Publication date
EP0582263A1 (de) 1994-02-09
DE59302801D1 (de) 1996-07-11

Similar Documents

Publication Publication Date Title
DE60003276T2 (de) Gleichstrom/Gleichstrom Umwandler und Verfahren zum Betrieb eines Gleichstrom/Gleichstrom Umwandlers
DE69814250T2 (de) Spannungsregelung mit Lastpolstabilisation
DE19882350B4 (de) Gleichspannungskonverter mit Sollwertspannungssteuerung der Ausgansspannung
DE102005055160A1 (de) Regelschaltung zur Strom- und Spannungregelung in einem Schaltnetzteil
DE3634979A1 (de) Anordnung zur erhoehung der ausgangsleistung eines mit niedriger spannung betriebenen verstaerkers, insbesondere fuer autoradios
DE2617444A1 (de) Stabilisierte stromversorgung
DE2406258B1 (de) Schaltung zur automatischen Dynamik-Kompression oder -Expansion
EP1249925A2 (de) DC-DC-Konverter
DE2305291A1 (de) Signalregelschaltung
DE10050294B4 (de) PLL-Schaltung
EP0582263B1 (de) Stabilisiertes Gleichspannungsnetzgerät
EP0749059A2 (de) Telekommunikationsendgerät mit Spannungsregelschaltung
EP0862271A2 (de) Komparatorschaltung
DE19755164B4 (de) Leistungsstufe eines Verstärkers/Senders
DE3213506C1 (de) Schaltungsanordnung mit einem Differenzverstaerker
DE4007953C2 (de) Gleichspannungswandler mit geschalteten Kondensatoren
DE3624391C2 (de)
DE4235048A1 (de) Vorrichtung mit einem Netzgerät für Gleichspannung
DE4330996A1 (de) Steuereinrichtung für einen elektrischen, insbesondere einen induktiven Verbraucher
DE10027013A1 (de) Verfahren zur Ladung bzw. Entladung von piezoelektrischen Bauelementen
DE10350597B4 (de) Verfahren und Schaltungsanordnung zur Amplituden-Regelung eines oszillatorischen Signals
DE2850736C2 (de) Schaltungsanordnung zur Erzeugung einer von einer Wechselspannung abhängigen Steuergleichspannung
DE10124114A1 (de) Schaltungsanordnung zur Spannungsstabilisierung
DE2711520C3 (de) Belastungsschaltung für eine Signalquelle
DE2424771A1 (de) Schaltung zur bildung einer regelgleichspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940805

17Q First examination report despatched

Effective date: 19940905

18D Application deemed to be withdrawn

Effective date: 19950316

D18D Application deemed to be withdrawn (deleted)
GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960605

Ref country code: FR

Effective date: 19960605

REF Corresponds to:

Ref document number: 59302801

Country of ref document: DE

Date of ref document: 19960711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960831

EN Fr: translation not filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: INTERESSENGEMEINSCHAFT FUER RUNDFUNKSCHUTZRECHTE G

Effective date: 19970305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970801

Year of fee payment: 5

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971023

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20000108