EP0570086A1 - Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen - Google Patents

Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen Download PDF

Info

Publication number
EP0570086A1
EP0570086A1 EP93250118A EP93250118A EP0570086A1 EP 0570086 A1 EP0570086 A1 EP 0570086A1 EP 93250118 A EP93250118 A EP 93250118A EP 93250118 A EP93250118 A EP 93250118A EP 0570086 A1 EP0570086 A1 EP 0570086A1
Authority
EP
European Patent Office
Prior art keywords
seal
primary
pressure
gas
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93250118A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ernst Rothstein
Wolfgang Zacharias
Franz-Josef Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0570086A1 publication Critical patent/EP0570086A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • F04D29/124Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid

Definitions

  • a tandem seal is usually arranged for a differential pressure range between the sealing pressure, the compression end pressure and the torch pressure of 120 - 140 bar. This consists of a primary seal that seals up to a torch pressure range of 1.5 - 5 bar. The subsequent secondary seal is a safety seal that seals up to atmospheric pressure.
  • tandem gas seal is not sufficient because the primary seal would be overloaded.
  • a triple gas seal is then selected, in which an intermediate seal is arranged between the primary seal and the secondary seal, which seals from the set intermediate pressure to the torch pressure.
  • it is difficult to regulate the pressure in the intermediate seal chamber because it is dependent on the ratio of the leakage rate of the primary and intermediate seals.
  • the leakage rate is strongly dependent on the set gap between the rotor and the spring-loaded stator of a mechanical seal. So that the sealing surfaces do not wear out too quickly, a back pressure is generated during operation by a special design of the surfaces in the form of grooves, which leads to the lifting of the sealing surfaces from one another.
  • the gap formed in the um area is then referred to as a gas lubricating film in the same way as a floating bearing. Since the leakage rate increases with the gap size, it is easy to see that the pre-calculated average leakage quantity can only refer to the new condition.
  • the geometry of the sealing surfaces changes due to the residual dust content of the cleaned gas and the operating mode, i.e. Number of downtimes in relation to the operating time of the turbomachine.
  • the size of the resulting sealing gap is influenced by the temperature conditions prevailing in this area. The change in the sealing gap leads to changes in the gas leakage quantity and thus also to a change in the pressure in the intermediate sealing chamber.
  • a pressure relief valve in the discharging leakage line. This is set to a pressure that is related to the differential pressure to be sealed for the intermediate seal. If the pressure in the intermediate sealing chamber exceeds the set pressure value, the valve is opened and the excess quantity is blown off.
  • the disadvantage of this proposal is that a possible overloading of the primary seal cannot be prevented if, for example, the leakage ratio is shifted in favor of the intermediate seal and the pressure drop to be sealed for the primary seal is therefore too great.
  • the object of the invention is to provide a method for regulating the pressure of the gas leakage quantity in the intermediate seal chamber of a gas-lubricated triple mechanical seal, which prevents possible overloading of the primary and / or intermediate seal.
  • a device for carrying out the method is part of a subsidiary claim.
  • the essence of the invention is the consideration of superimposing a multiple amount of gas on the outside of the absolutely small but fluctuating leakage amounts of the primary or intermediate seal.
  • This multiple quantity is preferably in the range of 4 to 10 times the gas leakage quantity of the primary seal.
  • a change in the leakage quantity of the primary seal of 50% only influences the intermediate pressure in the intermediate seal chamber by 5 to 10%.
  • the only disadvantage that has to be accepted is that an overall larger amount of gas is flared off via the primary leakage line.
  • the proposed method is implemented constructively in such a way that the intermediate sealing chamber is connected via a bypass line to the gas space of the turbomachine located between the labyrinth seal and the primary seal.
  • the amount supplied is a throttle in the bypass line z. B. built an aperture.
  • Another advantage of the proposed method is that the pressure in the intermediate sealing chamber can follow a change in the sealing pressure of the turbomachine immediately. With the old procedure it was the case that a change in the sealing pressure only gradually leads to a change in the amount of leakage and in the meantime the primary seal may already be overloaded.
  • FIG. 2 shows an already known solution for the pressure control in the intermediate sealing chamber in the form of a schematic diagram.
  • the turbomachine 1 is shown in an exaggeratedly small manner and the shaft sealing areas are shown in an exaggeratedly large manner. Both areas are constructed almost identically and have a gas-lubricated triple mechanical seal 2 as an essential element.
  • a triple mechanical seal 2 is composed of a primary seal 3, an intermediate seal 4 and a secondary seal 5.
  • the end forms a separating labyrinth 6, which is arranged between the secondary seal 5 and the bearing 7.
  • the cleaned gas is fed via a line 11 to the chamber 12 between the labyrinth seal 13 and the primary seal 3.
  • the chambers 14, 15 between the primary seal 3 and the intermediate seal 4 on the one hand and between the intermediate seal 4 and the secondary seal 5 on the other hand are connected to the primary leakage line 18 via lines 16, 17.
  • the last chamber 19 between the secondary seal and the separating labyrinth 6 is connected to the secondary leakage line 21 via a line 20.
  • the gas leakage quantities in the lines 16, 17 connected to the primary leakage line 18 are measured via an orifice 22, 23.
  • a pressure relief valve 24 is arranged in the line 16 connected to the intermediate sealing chamber 14. This is set so that when the pressure in the intermediate sealing chamber 14 rises above a predetermined value, the excess amount is blown off in order to lower the pressure again.
  • FIG. 1 shows the arrangement according to the invention for carrying out the proposed method in the same schematic diagram as FIG. 2.
  • the intermediate seal chamber 14 is connected via a bypass line 25 with the one between the primary seal 3 and the labyrinth seal 13 Chamber 12 connected.
  • an orifice 26 is arranged in the bypass line 25.
  • the orifice 22 in the line 16 has the function of limiting the amount of gas leakage in the line 16 connected to the primary leakage line 18.
  • the discharge line 16 connected to the intermediate sealing chamber 14 is drawn thicker in cross section in order to illustrate that, compared to the known solution, more gas as a whole is fed to the torch point.
  • FIG. 3 shows a graphical representation of the change in pressure in the intermediate sealing chamber 14 during normal operation and when the sealing pressure rises.
  • the pressure P is plotted on the ordinate and the time t on the abscissa.
  • the conditions in normal operation are reproduced in the first field 30.
  • the sealing pressure Pe is at a value x and the pressure Pz in the intermediate sealing chamber 14 is at a value y.
  • the hatched field below Pz is intended to reflect the possible fluctuation range of the pressure in the intermediate sealing chamber 14.
  • this increased differential pressure can already lead to the primary seal 3 being overloaded.
  • this illustration is not primarily aimed at it, but rather is intended to show how the pressure in the intermediate sealing chamber 14 changes when the sealing pressure Pe changes, for example due to a fault.
  • the relationships are shown in the following fields 31 to 34.
  • the sealing pressure Pe should increase from x to x1.
  • the possible differential pressure ⁇ P3 can also take into account the fluctuation range x1 - y2 amount, with y2 being only very slightly higher than y1, since the amount of gas leakage changes only very slightly initially when the sealing pressure increases from x to x1.
  • the lowest value of the intermediate pressure Pz rose from yl to y3 only about 100 times after the sealing pressure Pe changed from x to x1 (see field 34).
  • the sealing pressure Pe rises from a value x to x1
  • the pressure Pz in the intermediate sealing chamber 14 already follows the change after a few seconds (see field 36) and after twice the time it reaches the new value y6 or y7 (see field 38) .
  • the differential pressure ⁇ P6 rises somewhat compared to the initial value ⁇ P4, since the change in the compression end pressure Pe from x to x1 does not lead to a 1: 1 change in the intermediate pressure Pz.
  • there is no risk of overloading since the increase in the differential pressure is small compared to the increase in the sealing pressure Pe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP93250118A 1992-05-12 1993-04-21 Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen Withdrawn EP0570086A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4216006A DE4216006C1 (enrdf_load_stackoverflow) 1992-05-12 1992-05-12
DE4216006 1992-05-12

Publications (1)

Publication Number Publication Date
EP0570086A1 true EP0570086A1 (de) 1993-11-18

Family

ID=6458915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93250118A Withdrawn EP0570086A1 (de) 1992-05-12 1993-04-21 Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen

Country Status (3)

Country Link
EP (1) EP0570086A1 (enrdf_load_stackoverflow)
DE (1) DE4216006C1 (enrdf_load_stackoverflow)
NO (1) NO303794B1 (enrdf_load_stackoverflow)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690204A3 (de) * 1994-06-28 1997-11-19 ABBPATENT GmbH Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
US6708981B2 (en) 2000-02-24 2004-03-23 John Crane Uk Limited Seal assemblies
EP1207310A4 (en) * 1999-07-23 2005-12-07 Hitachi Ltd TURBOMA AND MECHANICAL SEAL FOR THIS MACHINE
CN102713306A (zh) * 2009-11-23 2012-10-03 诺沃皮尼奥内有限公司 用于压缩机的低排放干燥气体密封系统
CN104769227A (zh) * 2012-10-25 2015-07-08 西门子公司 工艺气体压缩机-燃气轮机系

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523713C2 (de) * 1995-06-22 1997-04-24 Mannesmann Ag Verfahren und Vorrichtung zur Sicherung der Funktionstüchtigkeit von Gasdichtungen bei Turboverdichtern
RU2133879C1 (ru) * 1996-04-10 1999-07-27 Акционерное общество "Сумское машиностроительное научно-производственное объединение им.М.В.Фрунзе" Система уплотнений турбокомпрессора
DE19722730A1 (de) * 1997-05-30 1998-12-03 Anton Heumann Gasdichtung
RU2357106C1 (ru) * 2007-11-29 2009-05-27 ОАО "Сумское машиностроительное научно-производственное объединение имени М.В. Фрунзе" Система уплотнений турбокомпрессора
RU2441177C1 (ru) * 2010-09-07 2012-01-27 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Система обеспечения газом "сухих" газодинамических уплотнений
RU2542739C2 (ru) * 2013-07-25 2015-02-27 Открытое акционерное общество Научно-производственное объединение "Искра" Система обеспечения буферным газом "сухих" газодинамических уплотнений
DE102014211690A1 (de) * 2014-06-18 2015-12-24 Siemens Aktiengesellschaft Fluidenergiemaschine, Verfahren zum Betrieb
RU170060U1 (ru) * 2016-04-11 2017-04-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Устройство системы регулирования уплотнения центробежного компрессора

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175868A (en) * 1936-10-30 1939-10-10 B F Sturtevant Co Packing
DE706180C (de) * 1938-12-30 1941-05-20 I G Farbenindustrie Akt Ges Stopfbuechse
CH364580A (de) * 1958-10-01 1962-09-30 Sulzer Ag Einrichtung zum Abdichten einer aus einem Druckraum herausgeführten Welle mittels eines Sperrmediums
DE2143736A1 (de) * 1971-09-01 1973-03-08 Erno Raumfahrttechnik Gmbh Anordnung zum abdichten von wellendurchfuehrungen
EP0426041A1 (en) * 1989-10-30 1991-05-08 John Crane, Inc. Spiral groove seal system for sealing a high pressure gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175868A (en) * 1936-10-30 1939-10-10 B F Sturtevant Co Packing
DE706180C (de) * 1938-12-30 1941-05-20 I G Farbenindustrie Akt Ges Stopfbuechse
CH364580A (de) * 1958-10-01 1962-09-30 Sulzer Ag Einrichtung zum Abdichten einer aus einem Druckraum herausgeführten Welle mittels eines Sperrmediums
DE2143736A1 (de) * 1971-09-01 1973-03-08 Erno Raumfahrttechnik Gmbh Anordnung zum abdichten von wellendurchfuehrungen
EP0426041A1 (en) * 1989-10-30 1991-05-08 John Crane, Inc. Spiral groove seal system for sealing a high pressure gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690204A3 (de) * 1994-06-28 1997-11-19 ABBPATENT GmbH Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
EP1207310A4 (en) * 1999-07-23 2005-12-07 Hitachi Ltd TURBOMA AND MECHANICAL SEAL FOR THIS MACHINE
US6708981B2 (en) 2000-02-24 2004-03-23 John Crane Uk Limited Seal assemblies
CN102713306A (zh) * 2009-11-23 2012-10-03 诺沃皮尼奥内有限公司 用于压缩机的低排放干燥气体密封系统
JP2013511662A (ja) * 2009-11-23 2013-04-04 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ 圧縮機用低排出ドライガスシールシステム
CN102713306B (zh) * 2009-11-23 2015-07-08 诺沃皮尼奥内有限公司 用于压缩机的低排放干燥气体密封系统
CN104769227A (zh) * 2012-10-25 2015-07-08 西门子公司 工艺气体压缩机-燃气轮机系
CN104769227B (zh) * 2012-10-25 2016-05-18 西门子公司 工艺气体压缩机-燃气轮机系统
US9915161B2 (en) 2012-10-25 2018-03-13 Siemens Aktiengesellschaft Process gas compressor/gas turbine section

Also Published As

Publication number Publication date
NO931715D0 (no) 1993-05-11
NO931715L (no) 1993-11-15
DE4216006C1 (enrdf_load_stackoverflow) 1993-04-29
NO303794B1 (no) 1998-08-31

Similar Documents

Publication Publication Date Title
DE4216006C1 (enrdf_load_stackoverflow)
DE69312738T2 (de) Rotierender schraubenverdichter mit wellenabdichtung
DE60113894T2 (de) Dichtungsanordnungen
EP0443473B1 (de) Sperrflüssigkeits-Dichtungsanordnung bei einem Turboverdichter
DE4334262C2 (de) Dichtungsanordnung für ein Ventil
DE2441520A1 (de) Wellendichtung fuer schraubenrotorverdichter
DE3711553A1 (de) Einwelliger mehrstufiger radialverdichter
CH684495A5 (de) Turbomaschine.
EP0025910A1 (de) Verfahren und Vorrichtung zur Entgasung der Druckflüssigkeit eines Hydrauliksystems
DE4313805A1 (de) Dichtungsanordnung für zumindest eine Durchführung einer Welle durch ein Gehäuse
DE60319195T2 (de) Axialschubausgleichseinrichtung mit verbesserten Sicherheitsmerkmalen für Kreiselverdichter
EP2079151A1 (de) Verfahren zum Betreiben eines elektrischen Generators für die Stromgewinnung in Kraftwerken
EP0659621A1 (de) Druckbegrenzungseinrichtung
EP0243675A1 (de) Verfahren zur Pulsationsdämpfung bei Kolbenkompressoren
DE3810717A1 (de) Verfahren zur vermeidung des pumpens eines turboverdichters mittels abblaseregelung
EP1688205A1 (de) Vorrichtung zum Kühlen von Schweisskappen
DE69600981T2 (de) Verteilventil für Fluide
DE3631624A1 (de) Kuehlsystem mit zentrifugal-spareinrichtung
EP0443472A1 (de) Sperrflüssigkeits-Dichtungsanordnung bei einem Turboverdichter
DE3303492C2 (enrdf_load_stackoverflow)
DE19631824A1 (de) Kreiselpumpenlagerung mit Axialschubausgleich
WO2007104526A1 (de) Kreiselpumpe mit axialschubausgleichseinrichtung
CH639176A5 (de) Verfahren zur steuerung der leitschaufeln einer mehrstufigen hydraulischen maschine bei einem betriebsunterbruch.
EP1712816A1 (de) Dichtungssystem zur Abdichtung eines Prozessgasraumes gegen einen Dichtraum
DE2611216A1 (de) Vorrichtung zur kavitationsfreien druckbegrenzung von arbeitsfluessigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19941216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950509