EP0570086A1 - Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen - Google Patents
Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen Download PDFInfo
- Publication number
- EP0570086A1 EP0570086A1 EP93250118A EP93250118A EP0570086A1 EP 0570086 A1 EP0570086 A1 EP 0570086A1 EP 93250118 A EP93250118 A EP 93250118A EP 93250118 A EP93250118 A EP 93250118A EP 0570086 A1 EP0570086 A1 EP 0570086A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seal
- primary
- pressure
- gas
- leakage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007789 gas Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000007789 sealing Methods 0.000 claims description 38
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
- F01D11/04—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
- F01D11/06—Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/12—Shaft sealings using sealing-rings
- F04D29/122—Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
- F04D29/124—Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid
Definitions
- a tandem seal is usually arranged for a differential pressure range between the sealing pressure, the compression end pressure and the torch pressure of 120 - 140 bar. This consists of a primary seal that seals up to a torch pressure range of 1.5 - 5 bar. The subsequent secondary seal is a safety seal that seals up to atmospheric pressure.
- tandem gas seal is not sufficient because the primary seal would be overloaded.
- a triple gas seal is then selected, in which an intermediate seal is arranged between the primary seal and the secondary seal, which seals from the set intermediate pressure to the torch pressure.
- it is difficult to regulate the pressure in the intermediate seal chamber because it is dependent on the ratio of the leakage rate of the primary and intermediate seals.
- the leakage rate is strongly dependent on the set gap between the rotor and the spring-loaded stator of a mechanical seal. So that the sealing surfaces do not wear out too quickly, a back pressure is generated during operation by a special design of the surfaces in the form of grooves, which leads to the lifting of the sealing surfaces from one another.
- the gap formed in the um area is then referred to as a gas lubricating film in the same way as a floating bearing. Since the leakage rate increases with the gap size, it is easy to see that the pre-calculated average leakage quantity can only refer to the new condition.
- the geometry of the sealing surfaces changes due to the residual dust content of the cleaned gas and the operating mode, i.e. Number of downtimes in relation to the operating time of the turbomachine.
- the size of the resulting sealing gap is influenced by the temperature conditions prevailing in this area. The change in the sealing gap leads to changes in the gas leakage quantity and thus also to a change in the pressure in the intermediate sealing chamber.
- a pressure relief valve in the discharging leakage line. This is set to a pressure that is related to the differential pressure to be sealed for the intermediate seal. If the pressure in the intermediate sealing chamber exceeds the set pressure value, the valve is opened and the excess quantity is blown off.
- the disadvantage of this proposal is that a possible overloading of the primary seal cannot be prevented if, for example, the leakage ratio is shifted in favor of the intermediate seal and the pressure drop to be sealed for the primary seal is therefore too great.
- the object of the invention is to provide a method for regulating the pressure of the gas leakage quantity in the intermediate seal chamber of a gas-lubricated triple mechanical seal, which prevents possible overloading of the primary and / or intermediate seal.
- a device for carrying out the method is part of a subsidiary claim.
- the essence of the invention is the consideration of superimposing a multiple amount of gas on the outside of the absolutely small but fluctuating leakage amounts of the primary or intermediate seal.
- This multiple quantity is preferably in the range of 4 to 10 times the gas leakage quantity of the primary seal.
- a change in the leakage quantity of the primary seal of 50% only influences the intermediate pressure in the intermediate seal chamber by 5 to 10%.
- the only disadvantage that has to be accepted is that an overall larger amount of gas is flared off via the primary leakage line.
- the proposed method is implemented constructively in such a way that the intermediate sealing chamber is connected via a bypass line to the gas space of the turbomachine located between the labyrinth seal and the primary seal.
- the amount supplied is a throttle in the bypass line z. B. built an aperture.
- Another advantage of the proposed method is that the pressure in the intermediate sealing chamber can follow a change in the sealing pressure of the turbomachine immediately. With the old procedure it was the case that a change in the sealing pressure only gradually leads to a change in the amount of leakage and in the meantime the primary seal may already be overloaded.
- FIG. 2 shows an already known solution for the pressure control in the intermediate sealing chamber in the form of a schematic diagram.
- the turbomachine 1 is shown in an exaggeratedly small manner and the shaft sealing areas are shown in an exaggeratedly large manner. Both areas are constructed almost identically and have a gas-lubricated triple mechanical seal 2 as an essential element.
- a triple mechanical seal 2 is composed of a primary seal 3, an intermediate seal 4 and a secondary seal 5.
- the end forms a separating labyrinth 6, which is arranged between the secondary seal 5 and the bearing 7.
- the cleaned gas is fed via a line 11 to the chamber 12 between the labyrinth seal 13 and the primary seal 3.
- the chambers 14, 15 between the primary seal 3 and the intermediate seal 4 on the one hand and between the intermediate seal 4 and the secondary seal 5 on the other hand are connected to the primary leakage line 18 via lines 16, 17.
- the last chamber 19 between the secondary seal and the separating labyrinth 6 is connected to the secondary leakage line 21 via a line 20.
- the gas leakage quantities in the lines 16, 17 connected to the primary leakage line 18 are measured via an orifice 22, 23.
- a pressure relief valve 24 is arranged in the line 16 connected to the intermediate sealing chamber 14. This is set so that when the pressure in the intermediate sealing chamber 14 rises above a predetermined value, the excess amount is blown off in order to lower the pressure again.
- FIG. 1 shows the arrangement according to the invention for carrying out the proposed method in the same schematic diagram as FIG. 2.
- the intermediate seal chamber 14 is connected via a bypass line 25 with the one between the primary seal 3 and the labyrinth seal 13 Chamber 12 connected.
- an orifice 26 is arranged in the bypass line 25.
- the orifice 22 in the line 16 has the function of limiting the amount of gas leakage in the line 16 connected to the primary leakage line 18.
- the discharge line 16 connected to the intermediate sealing chamber 14 is drawn thicker in cross section in order to illustrate that, compared to the known solution, more gas as a whole is fed to the torch point.
- FIG. 3 shows a graphical representation of the change in pressure in the intermediate sealing chamber 14 during normal operation and when the sealing pressure rises.
- the pressure P is plotted on the ordinate and the time t on the abscissa.
- the conditions in normal operation are reproduced in the first field 30.
- the sealing pressure Pe is at a value x and the pressure Pz in the intermediate sealing chamber 14 is at a value y.
- the hatched field below Pz is intended to reflect the possible fluctuation range of the pressure in the intermediate sealing chamber 14.
- this increased differential pressure can already lead to the primary seal 3 being overloaded.
- this illustration is not primarily aimed at it, but rather is intended to show how the pressure in the intermediate sealing chamber 14 changes when the sealing pressure Pe changes, for example due to a fault.
- the relationships are shown in the following fields 31 to 34.
- the sealing pressure Pe should increase from x to x1.
- the possible differential pressure ⁇ P3 can also take into account the fluctuation range x1 - y2 amount, with y2 being only very slightly higher than y1, since the amount of gas leakage changes only very slightly initially when the sealing pressure increases from x to x1.
- the lowest value of the intermediate pressure Pz rose from yl to y3 only about 100 times after the sealing pressure Pe changed from x to x1 (see field 34).
- the sealing pressure Pe rises from a value x to x1
- the pressure Pz in the intermediate sealing chamber 14 already follows the change after a few seconds (see field 36) and after twice the time it reaches the new value y6 or y7 (see field 38) .
- the differential pressure ⁇ P6 rises somewhat compared to the initial value ⁇ P4, since the change in the compression end pressure Pe from x to x1 does not lead to a 1: 1 change in the intermediate pressure Pz.
- there is no risk of overloading since the increase in the differential pressure is small compared to the increase in the sealing pressure Pe.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4216006A DE4216006C1 (enrdf_load_stackoverflow) | 1992-05-12 | 1992-05-12 | |
DE4216006 | 1992-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0570086A1 true EP0570086A1 (de) | 1993-11-18 |
Family
ID=6458915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93250118A Withdrawn EP0570086A1 (de) | 1992-05-12 | 1993-04-21 | Gasgeschmierte Triple-Gleitringdichtung für Turbomaschinen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0570086A1 (enrdf_load_stackoverflow) |
DE (1) | DE4216006C1 (enrdf_load_stackoverflow) |
NO (1) | NO303794B1 (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0690204A3 (de) * | 1994-06-28 | 1997-11-19 | ABBPATENT GmbH | Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses |
US6708981B2 (en) | 2000-02-24 | 2004-03-23 | John Crane Uk Limited | Seal assemblies |
EP1207310A4 (en) * | 1999-07-23 | 2005-12-07 | Hitachi Ltd | TURBOMA AND MECHANICAL SEAL FOR THIS MACHINE |
CN102713306A (zh) * | 2009-11-23 | 2012-10-03 | 诺沃皮尼奥内有限公司 | 用于压缩机的低排放干燥气体密封系统 |
CN104769227A (zh) * | 2012-10-25 | 2015-07-08 | 西门子公司 | 工艺气体压缩机-燃气轮机系 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19523713C2 (de) * | 1995-06-22 | 1997-04-24 | Mannesmann Ag | Verfahren und Vorrichtung zur Sicherung der Funktionstüchtigkeit von Gasdichtungen bei Turboverdichtern |
RU2133879C1 (ru) * | 1996-04-10 | 1999-07-27 | Акционерное общество "Сумское машиностроительное научно-производственное объединение им.М.В.Фрунзе" | Система уплотнений турбокомпрессора |
DE19722730A1 (de) * | 1997-05-30 | 1998-12-03 | Anton Heumann | Gasdichtung |
RU2357106C1 (ru) * | 2007-11-29 | 2009-05-27 | ОАО "Сумское машиностроительное научно-производственное объединение имени М.В. Фрунзе" | Система уплотнений турбокомпрессора |
RU2441177C1 (ru) * | 2010-09-07 | 2012-01-27 | Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" | Система обеспечения газом "сухих" газодинамических уплотнений |
RU2542739C2 (ru) * | 2013-07-25 | 2015-02-27 | Открытое акционерное общество Научно-производственное объединение "Искра" | Система обеспечения буферным газом "сухих" газодинамических уплотнений |
DE102014211690A1 (de) * | 2014-06-18 | 2015-12-24 | Siemens Aktiengesellschaft | Fluidenergiemaschine, Verfahren zum Betrieb |
RU170060U1 (ru) * | 2016-04-11 | 2017-04-12 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" | Устройство системы регулирования уплотнения центробежного компрессора |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2175868A (en) * | 1936-10-30 | 1939-10-10 | B F Sturtevant Co | Packing |
DE706180C (de) * | 1938-12-30 | 1941-05-20 | I G Farbenindustrie Akt Ges | Stopfbuechse |
CH364580A (de) * | 1958-10-01 | 1962-09-30 | Sulzer Ag | Einrichtung zum Abdichten einer aus einem Druckraum herausgeführten Welle mittels eines Sperrmediums |
DE2143736A1 (de) * | 1971-09-01 | 1973-03-08 | Erno Raumfahrttechnik Gmbh | Anordnung zum abdichten von wellendurchfuehrungen |
EP0426041A1 (en) * | 1989-10-30 | 1991-05-08 | John Crane, Inc. | Spiral groove seal system for sealing a high pressure gas |
-
1992
- 1992-05-12 DE DE4216006A patent/DE4216006C1/de not_active Expired - Lifetime
-
1993
- 1993-04-21 EP EP93250118A patent/EP0570086A1/de not_active Withdrawn
- 1993-05-11 NO NO931715A patent/NO303794B1/no not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2175868A (en) * | 1936-10-30 | 1939-10-10 | B F Sturtevant Co | Packing |
DE706180C (de) * | 1938-12-30 | 1941-05-20 | I G Farbenindustrie Akt Ges | Stopfbuechse |
CH364580A (de) * | 1958-10-01 | 1962-09-30 | Sulzer Ag | Einrichtung zum Abdichten einer aus einem Druckraum herausgeführten Welle mittels eines Sperrmediums |
DE2143736A1 (de) * | 1971-09-01 | 1973-03-08 | Erno Raumfahrttechnik Gmbh | Anordnung zum abdichten von wellendurchfuehrungen |
EP0426041A1 (en) * | 1989-10-30 | 1991-05-08 | John Crane, Inc. | Spiral groove seal system for sealing a high pressure gas |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0690204A3 (de) * | 1994-06-28 | 1997-11-19 | ABBPATENT GmbH | Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses |
EP1207310A4 (en) * | 1999-07-23 | 2005-12-07 | Hitachi Ltd | TURBOMA AND MECHANICAL SEAL FOR THIS MACHINE |
US6708981B2 (en) | 2000-02-24 | 2004-03-23 | John Crane Uk Limited | Seal assemblies |
CN102713306A (zh) * | 2009-11-23 | 2012-10-03 | 诺沃皮尼奥内有限公司 | 用于压缩机的低排放干燥气体密封系统 |
JP2013511662A (ja) * | 2009-11-23 | 2013-04-04 | ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ | 圧縮機用低排出ドライガスシールシステム |
CN102713306B (zh) * | 2009-11-23 | 2015-07-08 | 诺沃皮尼奥内有限公司 | 用于压缩机的低排放干燥气体密封系统 |
CN104769227A (zh) * | 2012-10-25 | 2015-07-08 | 西门子公司 | 工艺气体压缩机-燃气轮机系 |
CN104769227B (zh) * | 2012-10-25 | 2016-05-18 | 西门子公司 | 工艺气体压缩机-燃气轮机系统 |
US9915161B2 (en) | 2012-10-25 | 2018-03-13 | Siemens Aktiengesellschaft | Process gas compressor/gas turbine section |
Also Published As
Publication number | Publication date |
---|---|
NO931715D0 (no) | 1993-05-11 |
NO931715L (no) | 1993-11-15 |
DE4216006C1 (enrdf_load_stackoverflow) | 1993-04-29 |
NO303794B1 (no) | 1998-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4216006C1 (enrdf_load_stackoverflow) | ||
DE69312738T2 (de) | Rotierender schraubenverdichter mit wellenabdichtung | |
DE60113894T2 (de) | Dichtungsanordnungen | |
EP0443473B1 (de) | Sperrflüssigkeits-Dichtungsanordnung bei einem Turboverdichter | |
DE4334262C2 (de) | Dichtungsanordnung für ein Ventil | |
DE2441520A1 (de) | Wellendichtung fuer schraubenrotorverdichter | |
DE3711553A1 (de) | Einwelliger mehrstufiger radialverdichter | |
CH684495A5 (de) | Turbomaschine. | |
EP0025910A1 (de) | Verfahren und Vorrichtung zur Entgasung der Druckflüssigkeit eines Hydrauliksystems | |
DE4313805A1 (de) | Dichtungsanordnung für zumindest eine Durchführung einer Welle durch ein Gehäuse | |
DE60319195T2 (de) | Axialschubausgleichseinrichtung mit verbesserten Sicherheitsmerkmalen für Kreiselverdichter | |
EP2079151A1 (de) | Verfahren zum Betreiben eines elektrischen Generators für die Stromgewinnung in Kraftwerken | |
EP0659621A1 (de) | Druckbegrenzungseinrichtung | |
EP0243675A1 (de) | Verfahren zur Pulsationsdämpfung bei Kolbenkompressoren | |
DE3810717A1 (de) | Verfahren zur vermeidung des pumpens eines turboverdichters mittels abblaseregelung | |
EP1688205A1 (de) | Vorrichtung zum Kühlen von Schweisskappen | |
DE69600981T2 (de) | Verteilventil für Fluide | |
DE3631624A1 (de) | Kuehlsystem mit zentrifugal-spareinrichtung | |
EP0443472A1 (de) | Sperrflüssigkeits-Dichtungsanordnung bei einem Turboverdichter | |
DE3303492C2 (enrdf_load_stackoverflow) | ||
DE19631824A1 (de) | Kreiselpumpenlagerung mit Axialschubausgleich | |
WO2007104526A1 (de) | Kreiselpumpe mit axialschubausgleichseinrichtung | |
CH639176A5 (de) | Verfahren zur steuerung der leitschaufeln einer mehrstufigen hydraulischen maschine bei einem betriebsunterbruch. | |
EP1712816A1 (de) | Dichtungssystem zur Abdichtung eines Prozessgasraumes gegen einen Dichtraum | |
DE2611216A1 (de) | Vorrichtung zur kavitationsfreien druckbegrenzung von arbeitsfluessigkeit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930823 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL |
|
17Q | First examination report despatched |
Effective date: 19941216 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19950509 |