EP0566583B1 - Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln - Google Patents

Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln Download PDF

Info

Publication number
EP0566583B1
EP0566583B1 EP92900156A EP92900156A EP0566583B1 EP 0566583 B1 EP0566583 B1 EP 0566583B1 EP 92900156 A EP92900156 A EP 92900156A EP 92900156 A EP92900156 A EP 92900156A EP 0566583 B1 EP0566583 B1 EP 0566583B1
Authority
EP
European Patent Office
Prior art keywords
compacts
components
adhesive
press
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP92900156A
Other languages
English (en)
French (fr)
Other versions
EP0566583A1 (de
Inventor
Christiane Zeise
Wilfried Rähse
Jochen Jacobs
Jürgen HOFFMEISTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6422660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0566583(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0566583A1 publication Critical patent/EP0566583A1/de
Application granted granted Critical
Publication of EP0566583B1 publication Critical patent/EP0566583B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions

Definitions

  • the invention relates to a new form of offer for ingredients of detergents and / or cleaning agents, in particular textile detergents, as well as correspondingly designed detergents and / or cleaning agents and the novel method for their production. It describes in particular the production of a comparatively coarse-grained and storage-stable, free-flowing material which, on the one hand, is compressed to increased bulk densities, but on the other hand, due to its special structure, is capable of rapid interaction with, in particular, aqueous liquid phases with destruction of the grain structure.
  • detergent mixtures in granular form with a bulk density of at least 650 g / l which are obtained by predetermined mixing ratios of selected non-soap-like surface-active agents - at least partially corresponding anionic surfactants - with predetermined amounts of crystalline or amorphous sodium aluminum silicate.
  • the granules are to be produced in a high-speed mixer / granulator, which ensures the process elements of the mixing and comminution.
  • the process is carried out in the presence of a liquid binder, with water being the preferred binder which, if necessary, can be added before or during the granulation step.
  • the particle size of the agglomerates obtained in this way is clearly below 1 mm and generally in the range from about 400 to a maximum of 600 ⁇ m.
  • German patent application DE 39 26 253 a new way of producing solid and free-flowing granules of detergents and / or cleaning agents, in particular corresponding textile detergents.
  • These granules are characterized by bulk densities of at least about 700 g / l, in particular those in the range from about 850 to 1,000 g / l.
  • the granules are produced by extrusion using the smallest possible amounts of liquid phase, in particular water, and are preferably subsequently additionally dried by dehydration. A dry granulate of high density and high strength is obtained in this process, which has good storage stability compared to the ambient conditions in practice.
  • a characteristic of the manufacturing process from this earlier application is an intensive mixing of the the respective mixture of substances when using high shear forces and processing pressures in screw extruders while plasticizing the mixture.
  • the mass homogenized in this form is extruded in the form of strands through perforated molds, the emerging compacted material strands are cut to the predetermined granulate dimension and, if desired, rounded off before the granulate grains formed are loaded with other active ingredients and / or dried to the granular, free-flowing material, if necessary.
  • EP-A-0 273 334 describes platelets which have a large empty space between the individual particles.
  • EP-A-0 273 334 neither discloses nor suggests that a microporous basic structure, in which the highest possible internal surface of the particles is associated with a microdisperse distribution of air in the particles, is known.
  • the teaching of the invention is based on the object of allowing targeted modifications in the specific design of such granular granules while maintaining the form of compacted comparatively coarse granules.
  • the invention aims to create the possibility of controlling the grain internal structure and in particular the microporosity of the grain.
  • the teaching of the invention is intended to make it possible to influence the inner surface of the granulate, preferably in such a way that the largest possible inner surface can be ensured in spite of a high compression of the mixture of substances in the granulate.
  • the object of the invention is based on the objective of achieving good and rapid dissolving power in the washing or cleaning bath despite the high bulk densities of the granular concentrates. It is obvious that an increase in the inner grain surface, in particular by inclusion and protection of the proportion of the finest microdisperse air inclusions, can influence the redissolvability of the granulate.
  • Another important determining element for the manufacturing process of the concentrates with the new structure is aimed in the same direction: the compacting and pressing of the material should be possible with the greatest possible restriction of shear forces to the respective substance mixture.
  • smearing of the individual solid particles with one another should be prevented as far as possible, as is the case, for example when processing the corresponding solid mixtures in screw extruders due to their strong shear effect.
  • this aspect can be of particular importance because, as a rule, highly lubricious components such as surfactants, polymeric builder substances and other mixture components which can be deformed or even spreadable under pressure are also used.
  • the invention aims to enable compacts of the type described to be obtained as immediate process products without the need for an intermediate drying step.
  • the invention provides a plurality of structural elements for the grain or compact structure on the one hand and for the process parameters in the production of such compressed concentrates from the at least predominantly powdery feedstocks.
  • the subject of the invention is a process for producing these granular compacts, this process being characterized in that components (a) and adhesive component (b) are mixed as fine-grained material under conditions, at least largely homogeneously, to form a loose bulk material , under which there is no distinctly solidifying adhesive function.
  • components (a) and adhesive component (b) are mixed as fine-grained material under conditions, at least largely homogeneously, to form a loose bulk material , under which there is no distinctly solidifying adhesive function.
  • liquid components to be used in the process which are only used in a very limited amount, as will be described in detail below, are mixed in here.
  • the bulk material prepared in this way is then pressed to form compacts with the exclusion of shear forces as much as possible - at least to its main mass - with the inclusion of microdispersed air.
  • these processing conditions are achieved by pressing using a die press, the bulk material being pressed onto a surface of a rotating, Bore-containing die applied and rolled into a compacted shape by means of a pressing tool rotating on or slightly above the die surface and pressed through it to form the granules.
  • a ring die press which essentially consists of a rotating hollow roll into which radial bores are made is particularly suitable for carrying out the method according to the invention.
  • a press roll is arranged eccentrically and rotatably mounted.
  • the mixture is introduced into the inside of the ring die, drawn into the nip between the press roll and the ring die and extruded.
  • a targeted control or adjustment of the temperature of the mixture within the ring die press in particular by means of temperature regulation via the coolable and / or heatable pressing tool, can take place.
  • Such a temperature control by varying the nip height between the pressing tool and the die surface and by the operating parameters of the ring die press, which are described in detail below, make it possible to control both the desired degree of compaction and the internal porosity of the granulate.
  • the dry concentrates according to the invention are produced in two successive steps: In the first step, solid fine-grained ingredients of detergents and cleaning agents, which preferably have no particles with diameters above 100 »m, are essentially in dry form and can be assigned to two different classes of material, are mixed as homogeneously as possible.
  • the first class of substances are ingredients without pronounced adhesive properties, which are referred to here as “components (a)”.
  • the second class of substances are fine-grained ingredients with adhesive or adhesive properties, which are referred to in the description of the invention as "adhesive components (b)".
  • Detergent and / or cleaning agent concentrates in dry form generally contain a large number of representatives of the two classes of substances mentioned here.
  • Fine-particle powders of this type which are solid at room temperature are either available as commercial products or can be prepared in a manner known per se, for example by spray drying.
  • Adhesive components (b) in the sense of the invention are, in particular, those representatives of the ingredients of detergents and cleaning agents which are present as a solid at room temperature, but at least superficially soften by increasing the temperature and / or by adding very limited amounts of liquid additives and / or under pressure - And the effect of temperature with subsequent cooling towards the neighboring solid particles form a certain adhesive and adhesive strength.
  • Typical examples of compounds of this type are finely divided surfactant compounds which are solid at room temperature and are generally used in detergents and cleaners. The particular type of surfactant is largely insignificant for the achievement of the object according to the invention as long as the selected surfactant compound can correspond to its function as adhesive and adhesive component (b).
  • Nonionic surfactant compounds can also be assigned to substance class (b), provided that they form a solid phase at room temperature.
  • substance class (b) The fact that liquid auxiliary components, in particular nonionic surfactants which are liquid at room temperature, can also play an important auxiliary role in the development of the compacts according to the invention for strengthening the adhesive components (b) is described below.
  • Typical representatives for such adhesive components are polymer compounds of synthetic and / or natural origin, examples being the polymers or copolymers of acrylic acid, which are known today as so-called Co-builders are usually used to inactivate water hardness in the washing process.
  • Co-builders are usually used to inactivate water hardness in the washing process.
  • other organic components, in particular organic polymer compounds can also have the appropriate adhesive and adhesive function.
  • Starch and starch derivatives, cellulose or cellulose derivatives and the like, which are used, for example, to improve the dirt-carrying capacity of the wash liquor, may be mentioned here merely by way of example.
  • Nonionic surfactants that are liquid at room temperature are now regular active ingredient constituents in detergent and cleaning agent mixtures and, accordingly, are also important mixture constituents within the framework of the teaching according to the invention. They take on an important additional function as an activating agent for the adhesive components (b) in the context of the teaching according to the invention.
  • aqueous pastes of anionic surfactants and / or of non-adhesive active ingredients according to (a), such as finely divided sodium zeolite, can also be used in the preparation of the mixture to be pressed.
  • Possible oil phases for use in the mixtures according to the invention are, for example, limited amounts of paraffin oils, of ester oils, but also low-volatile mono- and / or polyfunctional alcohols, corresponding ethers and the like.
  • Fine-grained ingredients of washing and / or cleaning agents without pronounced adhesive or adhesive properties ie the components (a) are a regular component of active ingredient mixtures of the type concerned here. As a rule, these are water-soluble or moderately soluble to insoluble components of inorganic origin or else organic mixture components with a comparatively high softening or melting point.
  • the representatives can be assigned to the most diverse classes of active ingredients, for example the builders or builder substances, for example of the zeolite NaA type, bleaching agents, bleach activators, textile-softening auxiliaries such as the swellable fine-particle sheet silicates and inorganic alkaline or neutral to slightly acidic salts, for example sodium silicate, sodium carbonate, sodium hydrogen carbonate, sodium sulfate Sodium bisulfate and perborate.
  • the builders or builder substances for example of the zeolite NaA type
  • bleaching agents bleach activators
  • textile-softening auxiliaries such as the swellable fine-particle sheet silicates and inorganic alkaline or neutral to slightly acidic salts, for example sodium silicate, sodium carbonate, sodium hydrogen carbonate, sodium sulfate Sodium bisulfate and perborate.
  • textile-softening auxiliaries such as the swellable fine-particle sheet silicates and inorganic alkaline or neutral to slightly acidic salts
  • the granulation or pressing process according to the invention proceeds in two stages.
  • the fine-grained components from (a) and (b), which are mostly solid at room temperature, are intimately mixed with one another.
  • All the slow to fast mixer types that are common in practice are suitable here, ploughshare mixers, segment screw mixers, paddle mixers, pin mixers, Eirich mixers, vortex mixers, horizontal high-speed mixers, multi-flow fluid mixers and the like being mentioned only as examples.
  • any liquid components that are used are homogeneously incorporated into the mixture of substances. This is possible, for example, by spraying on corresponding liquid constituents before or during this premixing stage or by adding aqueous pastes of active ingredients to this mixing stage.
  • the choice and coordination of the mixture components with one another in the subsequent second stage of the process according to the invention enables the desired microporous grain structure to be built up, which combines high bulk densities with a comparatively large inner surface of the granulate.
  • the respective mixing ratios of the components to one another can be optimized within the framework of general specialist knowledge.
  • the following working rules generally serve as guidelines:
  • the solid dry powder components (a) and (b) together make up at least about 90% by weight, preferably at least about 94% by weight, of the mixture to be produced in the first working step.
  • liquid components are preferably present in a maximum of about 10% by weight, preferably in amounts of about 1-8% by weight and in particular in amounts of about 2-6% by weight.
  • the premix is generally present as a dry-appearing powder at the beginning of the second stage of the process.
  • a particularly advantageous embodiment of the invention uses the following control element for the correct coordination of the active ingredient components in the mixture to be pressed:
  • the finely divided solids with and without adhesive or adhesive properties and the liquid constituents which may be used are used in such mixing ratios that under the conditions of the pressing in the second process stage as the primary product of extrusion, in addition to the desired compacts, just the first traces or small amounts of powdery material that has not yet solidified are pressed out.
  • the stickiness of the mixtures in the second Processing level is so coordinated here that the mass is under the working conditions used just in the border area of the compressibility to firm strands or granules to be obtained therefrom.
  • This border area can easily be left on both sides.
  • this boundary region is extended in the direction of the insufficient adhesion, ie in the direction of the coextrusion of small powdery residual fractions.
  • the powder-co-extruded proportions can make up, for example, up to 10% by weight, preferably up to about 5% by weight, based on the total extrudate.
  • the portion which has penetrated in powder form takes over the function of an auxiliary for powdering the primary extrudates, the stickiness of which is due in particular to their slightly elevated processing temperature.
  • the homogenized premix from the first stage of the process is compressed in the subsequent second stage of work to give a strand shape, which strands are expediently cut to the grain shape immediately after leaving the die.
  • a ring die press with a rotating ring die interspersed with press channels and at least one press roller connected to its inner surface, which presses the material supplied to the die press space through the press channels into a material discharge.
  • Both the ring die and the press roller (s) are related to the outer surfaces that come into operation can be driven in the same direction.
  • the rotational speeds of the ring die and press roll can be coordinated and adjusted to one another in such a way that no or practically no shear forces are exerted on the mixture introduced into the interior of the ring die.
  • the objective of the invention is thereby favored in several ways.
  • the mixture containing microdisperse air is only subjected to pressure in the direction of the extrusion pressure and thus compressed, without destroying the primarily predetermined structure of high microporosity.
  • the desired result is the comparatively high values of the inner surface of the compacts, which can be, for example, in the range from 2 to 5 m2 / g, in particular in the range from about 3 to 5 m2 / g. Values of this size can only be set by keeping the percentage of micropores with a diameter below 1 »m, preferably below 0.1» m or even below 0.01 »m, comparatively high.
  • the processing of the mixture homogenized in the first step with the exclusion of significant shear forces also leads to further advantages.
  • the individual constituents of the mixture lie next to one another in an individualized manner as in a bed, there is no smearing of plastic and / or thermoplastic good fractions over larger areas of adjacent surfaces of solid particles. This can mean substantial help for the rapid redissolvability of the compact. Easily water-soluble mixture components, for example corresponding proportions of neutral salts and / or washing alkalis, are accessible to direct interaction with the water when water enters; there is no need for detachment, for example, of a surfactant layer smeared on the fine crystalline material.
  • the exclusion of shear forces on the bulk material when compacting it also has an effect on restricting the temperature increase, which is always associated with the introduction of considerable mechanical forces into the bulk material to be compressed.
  • the pressure roller is designed to be temperature-controllable by means of a heating or cooling medium.
  • the method according to the invention makes use of it in the second working stage. Material temperatures of approximately 80 ° C., preferably approximately 70 ° C., are not exceeded within the ring matrix. Lower limit values for the temperature of the material in the processing step are usually in the temperature range from approximately 30 to 40 ° C., whereby working temperatures for compressing the bulk material in the range from approximately 45 to 60 ° C. can be particularly suitable.
  • the temperature conditions described here can in turn determine the selection of the adhesive components (b) and / or the use of liquid components in the first mixing stage.
  • adhesive components (b) in a finely particulate and essentially homogeneously distributed form in the substance mixture may be preferred which - if appropriate with the participation of the mixture components which are liquid at room temperature - soften to such an extent in the temperature range above 40 ° C. and in particular in the temperature range from approximately 45 to 70 ° C. that they form an adhesive effect under the working conditions according to the invention and subsequently in the cooled, granular extrudate.
  • the possibility of temperature control in the second processing step also determines, among other things, the mixing ratios of the dry components (a) to the adhesive components (b) in the multicomponent mixtures used.
  • the adhesive component (s) (b) it is preferred to use the adhesive component (s) (b) at most approximately at the same quantity as the components (a), although usually smaller mixture fractions (b), based on mixture fractions (a), can be preferred.
  • Suitable mixtures of substances for the purposes of the invention contain the adhesive components (b) in amounts in the range from about 15 to 40% by weight, based on the compacts.
  • the ring die press can then be used Bulk weights of the extrudates extruded in the form of strands and preferably immediately thereafter cut to the grain shape of at least 500 g / l are set.
  • the bulk densities of the granular compacts described according to the invention are preferably at or above about 600 g / l, with significantly higher values being set, for example those in the range up to about 900 g / l, or even more, depending on the working conditions and the choice and coordination of the mixture components can be.
  • Particularly suitable bulk weights can be, for example, in the range from about 550 to 850 g / l.
  • Suitable grain sizes for the compacts described according to the invention are, for example, in the range from about 1 to 3 mm, it being possible for the compacts to be of rod-shaped or spherical design in a manner known per se.
  • the material is pressed into bores with a diameter of approximately 0.8 to 1.5 mm and is preferably cut to lengths in the range of approximately 1 to 2 mm.
  • the freshly extruded compacts can be rounded off in a subsequent process step, the rounding expediently taking place before the material to be solidified by lowering the temperature.
  • auxiliary measures for stabilizing the primarily occurring compacts are, for example, shock cooling the primarily emerging product strands and the granules obtained therefrom, for example by means of a doctor blade, if desired drying these granules, for example in a fluidized bed dryer , and / or powdering the primary granulate with finely divided powder.
  • shock cooling the primarily emerging product strands and the granules obtained therefrom for example by means of a doctor blade, if desired drying these granules, for example in a fluidized bed dryer , and / or powdering the primary granulate with finely divided powder.
  • shock cooling the primarily emerging product strands and the granules obtained therefrom for example by means of a doctor blade, if desired drying these granules, for example in a fluidized bed dryer , and / or powdering the primary granulate with finely divided powder.
  • the appropriate choice of the mixture components used according to the invention in terms of type and / or quantity also makes
  • the compacts produced in this way can be processed further in a further process step, as a result of which the desired form of supply is obtained.
  • the compacts can be mixed with other detergent ingredients Granulation, spray drying, pelleting or extrusion were mixed.
  • the compacts are preferably packaged separately, it being particularly preferred to pack the compacts, which are either complete detergents or detergent additives, in portions, one portion usually being sufficient for one washing operation.
  • anionic surfactants e.g. Soaps from natural or synthetic
  • preferably saturated fatty acids can be used.
  • Natural fatty acids e.g. Soap mixtures derived from coconut, palm kernel or tallow fatty acids. Preferred are those which are composed of 50 to 100% of saturated C12 ⁇ 18 fatty acid soaps and 0 to 50% of oleic acid soap.
  • Further suitable synthetic anionic surfactants are those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are alkylbenzenesulfonates, preferably C9-C13-alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as are obtained, for example, from C12 ⁇ 18 monoolefins with a terminal or internal double bond by sulfonating with gaseous sulfur trioxide and subsequent sulfonates or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates which can be obtained from C12 ⁇ 18 alkanes by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization or by bisulfite addition to olefins are, and in particular the esters of ⁇ -sulfofatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable sulfate-type surfactants are the sulfuric acid monoesters of primary alcohols of natural and synthetic origin, i.e. from fatty alcohols, e.g. Coconut fatty alcohols, tallow fatty alcohols, oleyl alcohol, lauryl, myristyl, palmityl or stearyl alcohol, or the C10 ⁇ 20 oxo alcohols, and those of secondary alcohols of this chain length.
  • the sulfuric acid monoesters of alcohols ethoxylated with 1 to 6 moles of ethylene oxide, such as 2-methyl-branched C9 ⁇ 11 alcohols with an average of 3.5 moles of ethylene oxide, are suitable.
  • Sulfated fatty acid monoglycerides are also suitable.
  • anionic surfactants can be in the form of their sodium, potassium and ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the detergent content according to the invention of anionic surfactants or of anionic surfactant mixtures is preferably 5 to 40, in particular 8 to 30,% by weight.
  • Addition products of 1 to 40, preferably 2 to 20 moles of ethylene oxide with 1 mole of an aliphatic compound having essentially 10 to 20 carbon atoms from the group of alcohols, carboxylic acids, fatty amines, carboxamides or alkanesulfonamides can be used as nonionic surfactants.
  • polyglycol ethers with 2 to 7 ethylene glycol ether residues in the molecule which are not or not completely water-soluble, are also of interest, in particular if they are used together with water-soluble, nonionic or anionic surfactants.
  • alkyl glycosides of the general formula RO- (G) x can also be used as nonionic surfactants, in which R denotes a primary straight-chain or aliphatic radical with 8 to 22, preferably 12 to 18 C atoms, methyl-branched in the 2-position, G is a symbol which stands for a glycose unit with 5 or 6 carbon atoms, and the degree of oligomerization x between 1 and 10, preferably between 1 and 2 and in particular significantly less than 1.5, for example between 1.1 and 1.4, lies.
  • Suitable and, in particular, ecologically harmless builder substances such as finely crystalline, synthetic water-containing zeolites of the NaA type, which have a calcium binding capacity in the range from 100 to 200 mg CaO / g, are preferably used.
  • Their particle size is usually in the range from 1 to 10 »m.
  • Their content in the compositions is generally 0 to 60, preferably 10 to 45,% by weight, based on the anhydrous substance.
  • co-builder constituents which can be used in particular together with the zeolites are (co) polymeric polycarboxylates, such as polyacrylates, polymethacrylates and in particular copolymers of acrylic acid with maleic acid, preferably those composed of 50% to 10% maleic acid.
  • the molecular weight of the homopolymers is generally between 1,000 and 100,000, that of the copolymers between 200 and 200,000, preferably 50,000 to 120,000, based on free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 to 100,000.
  • Suitable, albeit less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ether, in which the proportion of acid is at least 50%.
  • vinyl ethers such as vinyl methyl ether
  • polyacetal carboxylic acids as described, for example, in US Pat. Nos. 4,144,226 and 4,146,495, and polymeric acid, which are obtained by polymerizing acrolein and subsequent disproportionation using alkalis and are composed of acrylic acid units and vinyl alcohol units or acrolein units.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid and nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons.
  • NTA nitrilotriacetic acid
  • phosphates can also be used, in particular pentasodium triphosphate, optionally also pyrophosphates and orthophosphates, which act primarily as precipitants for lime salts.
  • the phosphate content based on pentasodium triphosphate, is below 30% by weight. However, agents without a phosphate content are preferably used.
  • Suitable inorganic, non-complexing salts are the bicarbonates, carbonates, borates or silicates of the alkalis, which are also referred to as "washing alkalis"; Of the alkali silicates, especially the sodium silicates with a Na2O: SiO2 ratio of 1: 1 to 1: 3.5 can be used.
  • the other detergent ingredients include graying inhibitors (dirt carriers), foam inhibitors, bleaching agents and bleach activators, optical brighteners, enzymes, fabric softening agents, dyes and fragrances as well as neutral salts.
  • Graying inhibitors have the task of keeping the dirt detached from the fibers suspended in the liquor and thus preventing graying.
  • water-soluble colloids of mostly organic nature are suitable, such as, for example, the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • Carboxymethyl cellulose (Na salt), methyl cellulose, methyl hydroxyethyl cellulose and mixtures thereof, and polyvinyl pyrrolidone are preferably used, in particular in amounts of 0.1 to 5 wt .-%, based on the agent.
  • the foaming power of the surfactants can be increased or decreased by combining suitable types of surfactants; a reduction can also be achieved by adding non-surfactant-like organic substances.
  • a reduced foaming power, which is desirable when working in machines, is often achieved by combining different types of surfactants, e.g. of sulfates and / or sulfonates with nonionics and / or with soaps.
  • soaps the foam-suppressing effect increases with the degree of saturation and the C number of the fatty acid residue. Soaps of natural and synthetic origin that have a high proportion of C18 ⁇ 2 auf Struktur fatty acids are therefore suitable as foam-inhibiting soaps.
  • Suitable non-surfactant-like foam inhibitors are organopolysiloxanes and their mixtures with microfine, optionally silanized silica, paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica.
  • Bisacylamides derived from C12 ⁇ 20 alkylamines and C2 ⁇ 6 dicarboxylic acids are also useful.
  • Mixtures of different foam inhibitors are also advantageously used, e.g. those made of silicone and paraffins or waxes.
  • the foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance.
  • bleaching agents which supply H2O2 in water
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, peroxycarbonate, peroxypyrophosphates, citrate perhydrates and H2O2-delivering peracid salts or peracids, such as perbenzoates, peroxaphthalates, diperazelaic acid or diperdodecanedioic acid.
  • bleach activators can be incorporated into the agents.
  • these are N-acyl or O-acyl compounds which form organic peracids with H2O2, preferably N, N'tetraacylated diamines such as N, N, N ', N'-tetraacetylethylenediamine, also carboxylic anhydrides and esters of polyols, such as glucose pentaacetate.
  • the detergents can contain derivatives of di-aminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazin-6-yl-amino) -stilbene-2,2 'disulfonic acid or compounds of the same structure which instead of the morpholino group have a diethanolamino group , a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted 4,4'-distyryl-diphenyl type may also be present; e.g. the compound 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • Enzymes from the class of prostheses, lipases and amylases or their mixtures are possible. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. The enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the salts of polyphosphonic acids in particular the sodium salts of 1-hydroxyethane-1,1-diphosphonic acid (HEDP) or diethylenetriamine-pentamethylenephosphonic acid (DTPMP or DETPMP) come into consideration as stabilizers, in particular for per-compounds and enzymes.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • DTPMP diethylenetriamine-pentamethylenephosphonic acid
  • the teaching according to the invention is suitable both for the production of washing and / or cleaning agent mixtures, in particular textile detergents in the form of readily water-soluble storage-stable granules, and for the production of active substance concentrates from the field of these working materials, in particular for incorporation into textile detergents, the granules of different active substances contain predetermined mixing ratios.
  • perborates and bleach activators are separate from one another to be provided in different granules, which are then mixed in predetermined proportions.
  • Both grain types can be produced or formed separately from one another according to the invention and then be mixed with one another in a storage-stable manner.
  • the process according to the invention can be used advantageously for the production of bleach activator granules, as described, for example, in the older German patent application DE 4024759.
  • the components (A) to (K), of which only the components (B) are in liquid form - all other components are solid - in the mixing ratios specified in the table in a ploughshare mixer (Fa Lödige, Germany) mixed thoroughly for one minute.
  • the premix obtained in this way was then fed continuously to a ring die press (pellet press, embodiment DE 3816842, from Schlueter, Germany), the temperable roller (press roll) of which was cooled to 20.degree. Since the temperature generally rises in the product while the process is being carried out, cooling of the pan is necessary. In this way, a maximum product temperature of 50 ° C could be ensured.
  • the diameter of the press channels in the ring die was 1 - 1.5 mm (see Table 1).
  • the distance between the press roller and the ring die was 1.8 - 2 mm (see Table 1).
  • the emerging strand was cut to a length of 1.2-1.5 mm by a knife attached to the outside of the ring die.
  • the cut granules were rounded off in a Marumerizer-type rounding machine.
  • the stickiness of the particle surface was prevented by powdering by means of the proportion of fine dust produced during the process, so that a separate addition of a further solid was not necessary.
  • the products 1 - 6 thus produced were sieved: fine fraction (smaller than 0.6 mm) and oversize fraction (larger than 1.6 mm) were separated off.
  • the fine fraction of the granules was below 5% in all cases, the oversize fraction was below 1%.
  • the bulk density of the screened products varied between 650 g / l and 770 g / l.
  • the concentrates produced in Examples 1 to 6 can be mixed directly as detergents or - if desired - with non-pelleted or pelleted but separately prepared formulation components.
  • the compacts according to Example 4, as well as compacts of a number of other recipe combinations designed according to the invention were measured by means of mercury porosimetry. The following parameters were determined: Total internal volume in mm3 / g Total porosity in vol .-% Average pore radius in micrometers Specific surface area in m2 / g The relative volume distribution in mm3 / g within the following ranges of the respective pore radius (in »m): 0.001 to 0.01; 0.01 to 0.1; 0.1 to 1; 1 to 10 and 10 to 100
  • the compacts examined were produced as previously given for Examples 1 to 6 and correspond to the following overall formulations:
  • Bleach activator granules from the following components: 80 wt% TAED 8.0% by weight sodium dodecylbenzenesulfonate (96%) 4.0% by weight of C16 ⁇ 1 Tal tallow alcohol sulfate 6.0% by weight of C12 ⁇ 18 fatty alcohol with 5 EO 2.0 wt% zeolite NaA
  • the recipes for the granules or compacts according to Examples 9 to 15 are summarized in Table 2 below.
  • the materials of Examples 11 to 15 in the sense of the invention are molded articles produced by means of the pellet press.
  • the granules according to Examples 9 and 10 are extrudates which have been produced by extrusion in a screw extruder with a downstream perforated plate in accordance with the teaching of German patent application DE 39 26 253.
  • Example 5 summarizes the formulations of Examples 22-28, all of which deal with universal detergents (UWM).
  • UWM universal detergents
  • two representatives are processed by means of extrusion via a screw extruder with a downstream perforated plate in the manner given above (Examples 22 and 23).
  • the same starting recipes are then processed again into pellets via the pellet press in the sense of the invention, the recipe of example 22 corresponding to example 28 according to the invention and the recipe of example 23 corresponding to example 27 according to the invention.
  • pelletized mixtures according to the invention consistently show a dissolving time below 100 seconds, the solubility time of the two extrudates is above 200 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Glanulating (AREA)

Description

  • Die Erfindung betrifft eine neue Angebotsform für Inhaltsstoffe von Waschund/oder Reinigungsmitteln insbesondere Textilwaschmitteln, sowie entsprechend ausgestaltete Wasch- und/oder Reinigungsmittel und das neuartige Verfahren zu ihrer Herstellung. Beschrieben wird dabei insbesondere die Herstellung eines vergleichsweise grobkörnigen und lagerbeständig rieselfähigen Gutes, das einerseits zu erhöhten Schüttdichten verdichtet ist, andererseits aber aufgrund seiner besonderen Struktur zu einer raschen Interaktion mit insbesondere wäßrigen Flüssigphasen unter Zerstörung der Kornstruktur befähigt ist.
  • In den letzten Jahren ist eine Mehrzahl von Vorschlägen bekannt geworden, die die Herstellung von pulverförmigen oder zur Kornform agglomerierten festen Wasch- und/oder Reinigungsmitteln mit erhöhten Schüttdichten beschreiben. Aus der jüngeren Vergangenheit sei verwiesen auf die EP 340 013 und den dort zitierten druckschriftlichen Stand der Technik EP 219 328, EP 270 240 und GB 1 517 713 (alle Unilever), EP 229 671 und JP 61 069 897 (Kao) sowie EP 220 024 (Procter & Gamble). Beschrieben werden in der eingangs genannten Druckschrift Detergensgemische in Granulatform mit einer Schüttdichte von wenigstens 650 g/l, die durch bestimmte Mischungsverhältnisse ausgewählter nicht-seifenartiger oberflächenaktiver Wirkstoffe - wenigstens anteilsweise entsprechende Aniontenside - mit vorgegebenen Mengen an kristallinem oder amorphem Natriumaluminiumsilikat erhalten werden. Die Granulate sollen in einer hochtourigen Mixer/Granulier-Einrichtung hergestellt werden, die die Verfahrenselemente des Vermischens und der Zerkleinerung sicherstellt. Es wird in Gegenwart eines flüssigen Bindemittels gearbeitet, wobei Wasser das bevorzugte Bindemittel ist, das erforderlichenfalls vor oder während des Granulierschrittes zugesetzt werden kann. Die Teilchengröße der auf diese Weise gewonnenen Agglomerate liegt nach den Angaben der Beispiele deutlich unter 1 mm und im allgemeinen im Bereich von etwa 400 bis maximal 600 »m.
  • Ein jüngerer Vorschlag der gleichen Anmelderin findet sich in der EP 367 339. Auch hier wird die Herstellung eines vergleichsweise feinteiligen Waschmittelgranulats mit Schüttdichten von wenigstens 650 g/l beschrieben. Die Herstellung soll jetzt in einem zweistufigen Verfahren derart erfolgen, daß in einer ersten Verfahrensstufe (5 bis 30 Sekunden) das feinteilige Wirkstoffgemisch in einem hochtourigem Mischer behandelt und gleichzeitig verdichtet wird, während in einem nachfolgenden zweiten Verfahrensschritt die Granulation bei geringeren Bearbeitungsgeschwindigkeiten im Zeitraum von etwa 1 bis 10 Minuten, ebenfalls aber unter gleichzeitiger Verdichtung des Materials erfolgt. Das fertige Gut soll getrocknet und/oder durch Kühlen in den rieselfähigen Zustand überführt werden. Die Beispiele dieser Druckschrift beschäftigten sich ausführlich mit dem Vergleich der jeweiligen Schüttdichten und den zugehörigen prozentualen Teilchenporositäten und Teilchengrößen. Es wird gezeigt, daß im geschilderten Zweistufenverfahren eine deutliche Anhebung der Schüttdichte - beispielsweise auf Werte bis etwa 950 g/l - möglich und mit einer substantiellen Verringerung der prozentualen Teilchenporosität verbunden ist. Während die durch Sprühtrocknung erhaltenen Einsatzpulver Schüttdichten im Bereich um 400 g/l bei einer Teilchenporosität im Bereich von 45 bis 50 % aufweisen, liegen die Schüttdichten der zweistufig verdichteten Materialien im Bereich von etwa 700 bis 900 g/l, während die Teilchenporosität auf Werte unter 20 % und insbesondere unter 10 % abgesenkt sein kann. Die Teilchengröße des verdichteten Gutes kann den Wert von etwa 1 mm erreichen, liegt allerdings im allgemeinen auch hier deutlich darunter.
  • Die Anmelderin der im nachfolgenden geschilderten Entwicklung beschreibt in der deutschen Patentanmeldung DE 39 26 253 einen neuen Weg zur Herstellung fester und rieselfähiger Granulate von Wasch- und/oder Reinigungsmitteln, insbesondere entsprechender Textilwaschmittel. Diese Granulate zeichnen sich durch Schüttgewichte von wenigstens etwa 700 g/l, insbesondere durch solche im Bereich von etwa 850 bis 1 000 g/l, aus. Die Granulate sind unter Mitverwendung möglichst geringer Mengen an Flüssigphase, insbesondere Wasser, durch Strangextrusion hergestellt und vorzugsweise nachfolgend durch Wasserentzug zusätzlich aufgetrocknet. Es fällt in diesem Verfahren ein trockenes Granulatkorn hoher Dichte und hoher Festigkeit an, das gegenüber den Umgebungsbedingungen der Praxis gute Lagerbeständigkeit besitzt. Charakteristisch für das Herstellungsverfahren aus dieser älteren Anmeldung ist eine intensive Vermischung des jeweiligen Stoffgemisches bei Einsatz hoher Scherkräfte und Verarbeitungsdrucke in Schneckenextrudern unter gleichzeitiger Plastifizierung des Gemisches. Die in dieser Form homogenisierte Masse wird über Lochformen strangförmig extrudiert, die austretenden verdichteten Materialstränge werden auf die vorbestimmte Granulatdimension abgelängt und gewünschtenfalls abgerundet, bevor die gebildeten Granulatkörner erforderlichenfalls mit weiteren Wirkstoffen beaufschlagt und/oder zum kornförmigen rieselfähigen Gut aufgetrocknet werden.
  • Die europäische Patentanmeldung EP-A-0 273 334 beschreibt Plättchen, die einen hohen Leerraum zwischen den einzelnen Partikeln aufweisen. Die Einhaltung einer mikroporösen Grundstruktur, worin eine möglichst hohe innere Oberfläche der Teilchen mit einer mikrodispersen Verteilung von Luft in den Teilchen verbunden ist, ist aus der EP-A-0 273 334 weder bekannt, noch wird sie nahegelegt.
  • Die Lehre der Erfindung geht von der Aufgabe aus, unter Beibehaltung der Angebotsform verdichteter vergleichsweise grobteiliger Granulate gezielte Modifikationen in der bestimmten Ausbildung solcher kornförmigen Granulate zu ermöglichen. Die Erfindung will insbesondere die Möglichkeit schaffen, die Korninnenstruktur und hier insbesondere die Mikroporosität des Korns zu steuern. Die Lehre der Erfindung soll es ermöglichen, Einfluß auf die innere Oberfläche des Granulatkornes zu nehmen und zwar bevorzugt derart, daß trotz einer hohen Verdichtung des Stoffgemisches im Granulatkorn eine möglichst große innere Oberfläche sichergestellt werden kann. Der erfindungsgemäßen Aufgabe liegt dabei die Zielvorstellung zugrunde, trotz hoher Schüttdichten der kornförmigen Konzentrate zu einem guten und raschen Auflösevermögen im Wasch- beziehungsweise Reinigungsbad zu kommen. Es leuchtet ein, daß durch eine Vergrößerung der inneren Kornoberfläche, insbesondere durch Inklusion und Schutz des Anteils feinster mikrodisperser Lufteinschlüsse, Einfluß auf die Wiederauflösbarkeit des Granulats genommen werden kann.
  • In die gleiche Richtung zielt ein weiteres wichtiges Bestimmungselement für das Herstellungsverfahren der Konzentrate mit der neuen Struktur: Die Kompaktierung und Verpressung des Gutes soll unter möglichst weitgehender Einschränkung von Scherkräften auf das jeweilige Stoffgemisch möglich werden. Insbesondere soll ein Verschmieren der einzelnen Feststoffpartikel miteinander möglichst weitgehend verhindert werden, wie es beispielsweise bei der Verarbeitung der entsprechenden Feststoffmischungen in Schneckenextrudern aufgrund deren stark ausgeprägter Scherwirkung auftritt. Für das hier angesprochene Gebiet der Hilfs- und Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln kann diesem Aspekt deswegen besondere Bedeutung zukommen, weil hier in aller Regel stark schmierfähige Komponenten wie Tenside, polymere Buildersubstanzen und weitere unter Druck verformbare oder gar streichfähige Mischungskomponenten mitverwendet werden.
  • In weiteren Aspekten der erfindungsgemäßen Aufgabe soll gleichwohl die Herstellung von lagerbeständigen rieselfähigen Konzentraten hoher Bruchfestigkeit und geringer Tendenz der Verklebung der Einzelkörner miteinander bei der Lagerung möglich sein. In einer wichtigen Ausführungsform will es die Erfindung ermöglichen, Preßlinge der geschilderten Art als unmittelbare Verfahrensprodukte zu gewinnen, ohne daß es eines intermediären Trocknungsschrittes bedarf.
  • Zur technischen Lösung dieses Aufgabenbündels sieht die Erfindung eine Mehrzahl von Strukturelementen zum Korn- beziehungsweise Preßlingsaufbau einerseits sowie zu den Verfahrensparametern bei der Herstellung solcher verpreßten Konzentrate aus den wenigstens überwiegend pulverförmigen Einsatzmaterialien vor.
  • Gegenstand der Erfindung sind dementsprechend in einer ersten Ausführungsform rieselfähige und lagerbeständige grobkörnige Preßlinge, enthaltend Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln in konzentrierter Form, hergestellt durch formgebendes Verpressen eines wenigstens weitgehend homogenisierten feinkörnigen Vorgemisches der Inhaltsstoffe, dem auch bei Raumtemperatur flüssige Komponenten in geringen Mengen zugesetzt sein können. Diese Preßling kennzeichnen sich im Sinne der erfindungsgemäßen Lehre dadurch, daß sie haftfest verbundene trockene Gemische mit Schüttgewichten von wenigstens 500 g/l aus
    • (a) feinkörnigen Inhaltsstoffen ohne ausgeprägte Haft- beziehungsweise Klebereigenschaften (Komponenten (a)) mit
    • (b) feinkörnigen Inhaltsstoffen mit Haft- beziehungsweise Klebereigenschaften (Kleberkomponenten (b)) enthalten. Die Preßlinge sind dabei durch formgestaltendes Verpressen bei mäßig erhöhten Temperaturen, wobei Guttemperaturen von 80 °C nicht überstiegen werden, ohne Einwirkung wesentlicher Scherkräfte, die zu einer substantiellen Verschmierung im Prinzip schmierfähiger Mischungsbestandteile führen könnten, auf das feinkörnige Gut hergestellt worden und enthalten
    • (c) Luft in mikrodisperser Verteilung im Preßling.
    Die durchschnittliche innere Oberfläche der Preßlinge - bestimmt mittels Hg-Porosimetrie - beträgt dabei wenigstens etwa 1 m²/g, wobei deutlich höhere Werte, beispielsweise solche oberhalb 1,5 m²/g und insbesondere bei oder oberhalb 2m²/g, bevorzugt sind. In wichtigen Fällen können die Preßlinge eine innere Oberfläche im Bereich von etwa 3 - 5 m²/g aufweisen. In an sich bekannter Weise nimmt die innere Oberfläche eines mikroporösen Festkörpers mit dem Anstieg des Anteils der Mikroporen zu. Erfindungsgemäß können dementsprechend Preßlinge der geschilderten Art bevorzugt sein, deren Anteil an Mikroporen eines Durchmesser unterhalb 1 »m wenigstens etwa 20 - 25 Vol.% und insbesondere wenigstens etwa 30 Vol.% - bezogen auf die Gesamtporosität - ausmacht. Besonders bevorzugte Preßlinge kennzeichnen sich durch entsprechende mikroporöse Anteile mit Porendurchmessern unterhalb 1»m von wenigstens etwa 50 Vol.%. Im allgemeinen sind die erfindungsgemäßen Preßlinge durch eine breit gestreute Mikroporosität über den Gesamtbereich der individuellen Porendurchmesser von etwa 0,001 - 10 »m gekennzeichnet.
  • In einer weiteren Ausführungsform ist der Gegenstand der Erfindung ein Verfahren zur Herstellung dieser kornförmigen Preßlinge, wobei dieses Verfahren dadurch gekennzeichnet ist, daß man die Komponenten (a) und die Kleberkomponente (b) als feinkörniges Gut unter Bedingungen wenigstens weitgehend homogen zu einem lockeren Schüttgut vermischt, unter denen noch keine ausgeprägt verfestigende Kleberfunktion auftritt. Gewünschtenfalls dabei mitzuverwendende Flüssigkomponenten - die allerdings nur in sehr beschränkter Menge zum Einsatz kommen, wie nachfolgend noch im einzelnen geschildert wird - werden dabei mit eingemischt. Das so vorbereitete Schüttgut wird dann bei möglichst weitgehendem Ausschluß von Scherkräften - wenigstens auf seine Hauptmasse - unter Inklusion mikrodisperser Luft zu Preßlingen verpreßt. Diese Verarbeitungsbedingungen gelingen in der bevorzugten Ausführungsform der Erfindung durch Verpressung mittels einer Matrizenpresse, wobei das Schüttgut auf eine Oberfläche einer rotierenden, Bohrungen aufweisenden Matrize aufgebracht und mittels eines auf oder geringfügig oberhalb der Matrizenoberfläche rotierenden Preßwerkzeuges unter Verdichtung in die Bohrungen eingewalzt und durch diese hindurch zu den Granulaten verpreßt wird.
  • Besonders geeignet ist für die Durchführung des erfindungsgemäßen Verfahrens eine Ringmatrizenpresse, die im wesentlichen aus einer rotierenden Hohlwalze besteht, in die radiale Bohrungen eingebracht sind. In dieser Ringmatrize ist eine Preßrolle exzentrisch angeordnet und dabei drehbar gelagert. Das Gemisch wird in das Innere der Ringmatrize eingetragen, in den Walzenspalt zwischen Preßrolle und Ringmatrize eingezogen und extrudiert. In der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann eine gezielte Kontrolle beziehungsweise Einstellung der Temperatur des Gemisches innerhalb der Ringmatrizenpresse, insbesondere mittels Temperaturregulierung über das kühlbare und/oder beheizbare Preßwerkzeug, erfolgen. Durch eine solche Temperaturkontrolle, durch Variation der Walzenspalthöhe zwischen Preßwerkzeug und Matrizenoberfläche sowie durch die im nachfolgenden noch im einzelnen geschilderten Betriebsparameter der Ringmatrizenpresse wird die Steuerung sowohl des angestrebten Verdichtungsgrades als auch die Steuerung der inneren Porosität des Granulats möglich.
  • Die Herstellung der erfindungsgemäßen Trockenkonzentrate erfolgt in zwei aufeinanderfolgenden Arbeitsschritten:
    Im ersten Arbeitsschritt werden feste feinkörnige Inhaltsstoffe von Wasch-und Reinigungsmitteln, die vorzugsweise keine Teilchen mit Durchmessern oberhalb 100 »m aufweisen, im wesentlichen in Trockenform vorliegen und zwei unterschiedlichen Stoffklassen zugeordnet werden können, möglichst homogen miteinander vermischt. Bei der ersten Stoffklasse handelt es sich um Inhaltsstoffe ohne ausgeprägte Haft- beziehungsweise Klebereigenschaften, die hier als "Komponenten (a)" bezeichnet werden. Bei der zweiten Stoffklasse handelt es sich demgegenüber um feinkörnige Inhaltsstoffe mit Haft- beziehungsweise Klebereigenschaften, die im Rahmen der Erfindungsbeschreibung als "Kleberkomponenten (b)" bezeichnet werden.
  • Wasch- und/oder Reinigungsmittel-Konzentrate in Trockenform enthalten in aller Regel eine Mehrzahl von Vertretern der beiden hier genannten Stoffklassen. Bei Raumtemperatur feste feinteilige Pulver dieser Art sind entweder als Handelsprodukte erhältlich oder können in an sich bekannter Weise zum Beispiel durch Sprühtrocknung hergestellt werden.
  • Kleberkomponenten (b) im Sinne der Erfindung sind insbesondere solche Vertreter der Inhaltsstoffe von Wasch- und Reinigungsmitteln, die bei Raumtemperatur als Feststoff vorliegen, durch Temperaturerhöhung und/oder durch den Zusatz sehr begrenzter Mengen an flüssigen Zusatzstoffen aber wenigstens oberflächlich erweichen und/oder unter Druck- und Temperatureinwirkung mit nachfolgender Abkühlung gegenüber den benachbarten Feststoffpartikeln eine gewisse Kleb- und Haftfestigkeit ausbilden. Typische Beispiele für Verbindungen dieser Art sind bei Raumtemperatur feste feinteilige Tensidverbindungen, wie sie in Wasch- und Reinigungsmitteln in aller Regel mitverwendet werden. Der bestimmte Tensidtyp ist für die Verwirklichung der erfindungsgemäßen Aufgabe weitgehend bedeutungslos, solange die ausgewählte Tensidverbindung ihrer Funktion als Haft- und Kleberkomponente (b) entsprechen kann. Geeignet sind damit sowohl die zahlreichen in der Praxis eingesetzten, bei Raumtemperatur festen Aniontensidverbindungen, ebenso wie entsprechende ampholytische oder zwitterionische Tenside. Auch nichtionische Tensidverbindungen sind der Stoffklasse (b) zuzuordnen, sofern sie bei Raumtemperatur eine Feststoffphase bilden. Daß gerade aber auch flüssigen Hilfskomponenten, insbesondere bei Raumtemperatur flüssigen Niotensiden, im Rahmen der Ausbildung der erfindungsgemäßen Preßlinge eine wichtige Hilfsfunktion zur Verstärkung der Kleberkomponenten (b) zukommen kann, wird nachfolgend noch geschildert.
  • Eine weitere wichtige Stoffklasse, die zu diesen Kleberkomponenten (b) gehört, aus Wasch- und Reinigungsmitteln, insbesondere Textilwaschmitteln, bilden ausgewählte Builder- beziehungsweise Gerüstsubstanzen, gegebenenfalls unter Mitverwendung beschränkter Feuchtigkeitsmengen. Typische Vertreter für solche Kleberkomponenten sind Polymerverbindungen synthetischen und/oder natürlichen Ursprungs, wobei als Beispiel die Polymeren beziehungsweise Copolymeren der Acrylsäure benannt seien, die heute als sogenannte Co-Builder üblicherweise zur Inaktivierung der Wasserhärte im Waschverfahren eingesetzt werden. Es leuchtet ein, daß auch anderen organischen Komponenten, insbesondere organischen Polymerverbindungen, die entsprechende Haft- und Kleberfunktion zukommen kann. Lediglich beispielhaft seien hier Stärke und Stärkederivate, Cellulose bzw. Cellulosederivate und dergleichen genannt, die zum Beispiel zur Verbesserung des Schmutztragevermögens der Waschflotte eingesetzt werden.
  • Zur Unterstützung der Aktivierung der Haft- und Kleberkomponenten im Verfahrensschritt der Verpressung kann die Mitverwendung beschränkter Mengen von bei Raumtemperatur flüssigen Komponenten in Betracht kommen. Die wichtigsten Vertreter - die entweder alleine oder auch in Mischung miteinander eingesetzt werden können - sind die bereits erwähnten bei Raumtemperatur flüssigen Niotenside, Wasser und/oder ausgewählte Ölphasen. Bei Raumtemperatur flüssige Niotenside sind in Wasch- und Reinigungsmittelgemischen heute regelmäßige Wirkstoffbestandteile und dementsprechend auch im Rahmen der erfindungsgemäßen Lehre wichtige Mischungsbestandteile. Sie übernehmen als Aktivierungsmittel für die Kleberkomponenten (b) im Rahmen der erfindungsgemäßen Lehre eine wichtige zusätzliche Funktion.
  • Wasser kann erforderlichenfalls in geringen Mengen im Rahmen der Zubereitung des zu verpressenden Gemisches zugesetzt werden. In Betracht kommt dabei insbesondere sein Einsatz zusammen mit Vertretern der zuvor genannten Stoffklassen (a) und/oder (b). So können beispielsweise wäßrige Pasten von Aniontensiden und/oder von nicht klebenden Wirkstoffen gemäß (a), wie feinteiligem Natriumzeolith, bei der Vorbereitung des zu verpressenden Gemisches mitverwendet werden.
  • Als mögliche Ölphasen für die Mitverwendung in den erfindungsgemäßen Stoffmischungen seien beispielsweise beschränkte Mengen an Paraffinölen, an Esterölen, aber auch schwerflüchtige ein- und/oder mehrfunktionelle Alkohole, entsprechende Ether und dergleichen genannt.
  • Feinkörnige Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln ohne ausgeprägte Haft- beziehungsweise Klebereigenschaften, d.h. die Komponenten (a), sind regelmäßiger Bestandteil von Wirkstoffgemischen der hier betroffenen Art. In der Regel handelt es sich hier um in Wasser lösliche oder mäßig lösliche bis unlösliche Komponenten anorganischen Ursprungs oder aber auch um organische Mischungskomponenten mit vergleichsweise hohem Erweichungs- beziehungsweise Schmelzpunkt. Die Vertreter sind den verschiedensten Wirkstoffklassen zuzuordnen, beispielsweise den Builderbeziehungsweise Gerüstsubstanzen, beispielsweise vom Typ Zeolith NaA, Bleichmitteln, Bleichaktivatoren, textilweichmachende Hilfsstoffe wie die quellfähigen feinteiligen Schichtsilikate sowie anorganische alkalische oder neutrale bis leicht saure Salze, zum Beispiel Natriumsilikat, Natriumcarbonat, Natriumhydrogencarbonat, Natriumsulfat, Natriumhydrogensulfat und Perborat. Allgemeines fachmännisches Wissen erlaubt in der jeweiligen angestrebten Rezeptur die Zuordnung der bestimmten Komponenten entweder zu der Gruppe der Komponenten (a) oder zu den Kleberkomponenten (b) im Sinne der erfindungsgemäßen Lehre.
  • Das erfindungsgemäße Granulierungs- beziehungsweise Preßverfahren verläuft zweistufig. In der ersten Verfahrensstufe werden die überwiegend bei Raumtemperatur festen feinkörnigen Komponenten aus den Stoffklassen zu (a) und (b) innig miteinander vermischt. Geeignet sind hier alle in der Praxis üblichen langsam bis schnell laufenden Mischertypen, wobei lediglich beispielhaft benannt seien Pflugscharmischer, Segmentschneckenmischer, Paddelmischer, Stiftmischer, Eirichmischer, Wirbelmischer, Horizontale Schnellmischer, Mehrstrom-Fluidmischer und dergleichen.
  • Aufgrund der Struktur des Vorgemisches und den Arbeitsbedingungen in dieser Vorstufe wirken auf das jeweilige Einzelkorn während der Behandlung keine wesentlichen Scherkräfte ein, die zu einer substantiellen Verschmierung im Prinzip schmierfähiger Mischungsbestandteile führen könnten. In dieser Vorstufe werden gegebenenfalls mitverwendete Flüssigbestandteile homogen in das Stoffgemisch eingearbeitet. Möglich ist dies beispielsweise durch das Aufdüsen entsprechender flüssiger Bestandteile vor oder während dieser Vormischstufe oder der Eintrag wäßriger Pasten von Wirkstoffen in diese Vermischungsstufe.
  • Durch die Wahl und Abstimmung der Mischungskomponenten aufeinander gelingt in der nachfolgenden zweiten Stufe des erfindungsgemäßen Verfahrens der Aufbau der angestrebten mikroporösen Kornstruktur, die hohe Schüttgewichte mit einer vergleichsweise großen inneren Oberfläche des Granulats verbindet. Unter Berücksichtigung der nachfolgend angegebenen Erläuterungen zur zweiten Verfahrensstufe kann eine Optimierung der jeweiligen Mischungsverhältnisse der Komponenten zueinander im Rahmen des allgemeinen Fachwissens vorgenommen werden. Als Anhaltspunkte gelten dabei im Allgemeinen die folgenden Arbeitsregeln:
    Die festen trockenen Pulverkomponenten (a) und (b) machen zusammen wenigstens etwa 90 Gew.-%, vorzugsweise wenigstens etwa 94 Gew.-% des in der ersten Arbeitsstufe herzustellenden Gemisches aus. Flüssigkomponenten sind demgemäß in bevorzugter Weise höchstens zu etwa 10 Gew.-%, vorzugsweise in Mengen von etwa 1 - 8 Gew.-% und insbesondere in Mengen von etwa 2 - 6 Gew.-% zugegen. Wird Wasser unmittelbar oder mittelbar über eine wäßrige Paste als Mischungsbestandteil mitverwendet, dann ist es selbst bei den geringen hier genannten Mengen zweckmäßig, auf der Seite der Feststoffpulver Mischungsbestandteile mitzuverwenden, die ein großes Wasserbindevermögen besitzen. Auf diese Weise kann durch innere Trocknung - beispielsweise über den Vorgang der vollständigen oder anteilsweisen Bindung des Wassers als Kristallwasser - die angestrebte Struktur des Granulatkorns auch ohne zusätzlichen Trocknungsschritt verwirklicht werden.
  • Das Vorgemisch liegt zu Beginn der zweiten Verfahrensstufe im allgemeinen als trocken erscheinendes Pulver vor. Eine besonders vorteilhafte Ausführungsform der Erfindung bedient sich des folgenden Steuerungselementes zur richtigen Abstimmung der Wirkstoffkomponenten im zu verpressenden Gemisch: Die feinteiligen Feststoffe mit und ohne Haft- beziehungsweise Klebereigenschaften und die gegebenenfalls mitverwendeten flüssigen Bestandteile werden in solchen Mischungsverhältnissen zueinander eingesetzt, daß unter den Bedingungen der Verpressung in der zweiten Verfahrensstufe als Primärprodukt der Extrusion neben den angestrebten Preßlingen gerade eben erste Spuren oder geringe Mengen an noch nicht verfestigtem pulverförmigen Gut ausgepreßt werden. Die Haftklebrigkeit der Stoffgemische in der zweiten Verarbeitungsstufe wird also hier so aufeinander abgestimmt, daß sich die Masse unter den eingesetzten Arbeitsbedingungen gerade im Grenzbereich der Verpressbarkeit zu haftfesten Strängen beziehungsweise daraus zu gewinnenden Granulaten befindet. Dieser Grenzbereich kann nach beiden Seiten leicht verlassen werden. In einer bevorzugten Ausführungsform wird dieser Grenzbereich in Richtung auf die unzureichende Haftung, d.h. in Richtung auf die Coextrusion geringer pulverförmiger Restanteile ausgedehnt. Die pulverförmig mit-extrudierten Anteile können hier beispielsweise bis zu 10 Gew.-%, vorzugsweise bis zu etwa 5 Gew.-% - bezogen auf das gesamte Extrudat - ausmachen. In der im nachfolgenden noch zu schildernden Aufbereitung dieses Extrudats zu Granulaten übernimmt dann der pulverförmig durchgetretene Anteil die Funktion eines Hilfsstoffes zum Abpudern der primären Extrudate, deren Klebrigkeit insbesondere durch ihre leicht erhöhte Temperatur aus der Verarbeitung bedingt ist.
  • Das homogenisierte Vorgemisch aus der ersten Verfahrensstufe wird in der nachfolgenden zweiten Arbeitsstufe verdichtend in Strangform ausgepresst, wobei diese Stränge zweckmäßigerweise unmittelbar nach dem Verlassen der Matrize zur Kornform abgelängt werden.
  • Eine wichtige Voraussetzung für die Verdichtung und gleichwohl Aufrechterhaltung der mikroporösen Gutstruktur in dieser zweiten Arbeitsstufe ist die Kompression des Vorgemisches unter möglichst weitgehendem Ausschluß von Scherkräften auf die Hauptmasse dieses Gemisches. Dadurch ergibt sich der Einschluß mirkodispers verteilter Luft, was zur angestrebten Mikroporosität führt.
  • Zur technischen Verwirklichung dieses Konzeptes hat sich das Arbeiten in einer Ringmatrizenpresse als sinnvoll erwiesen, wie sie beispielsweise in der DE 38 16 842 dargestellt ist. Beschrieben wird hier eine Ringmatrizenpresse mit einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Verbindung stehenden Preßrolle, die das dem Matrizenpreßraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Dabei sind sowohl die Ringmatrize wie auch die Preßrolle(n) bezüglich der miteinander in Funktion tretenden Mantelflächen gleichsinnig antreibbar. In der bevorzugten Ausführungsform beim Einsatz im erfindungsgemäßen Verfahren können die Umlaufgeschwindigkeiten von Ringmatrize und Preßrolle so aufeinander abgestimmt und einander angeglichen werden, daß keine oder praktisch keine Scherkräfte auf das in das Innere der Ringmatrize eingetragene Gemisch ausgeübt werden. Die erfindungsgemäße Zielsetzung wird dadurch in mehrfacher Weise begünstigt. Das mikrodisperse Luft enthaltende Gemisch wird lediglich in Richtung des Auspreßdruckes druckbelastet und damit verdichtet, ohne die primär vorgegebene Struktur hoher Mikroporosität zu zerstören. Das angestrebte Ergebnis sind die vergleichsweise hohen Werte der inneren Oberfläche der Preßlinge, die beispielsweise im Bereich von 2 bis 5 m²/g, insbesondere im Bereich von etwa 3 bis 5 m²/g, liegen können. Werte in dieser Größe sind nur dadurch einzustellen, daß der Prozentsatz an Mikroporen eines Durchmessers unterhalb 1 »m, vorzugsweise unterhalb 0,1 »m oder sogar unterhalb 0,01 »m, vergleichsweise hoch gehalten wird.
  • Die Verarbeitung des im ersten Arbeitsschritt homogenisierten Gemisches unter Ausschluß wesentlicher Scherkräfte führt aber auch zu weiteren Vorteilen. Die Einzelbestandteile des Gemisches liegen wie in einer Schüttung individualisiert nebeneinander, ein Verschmieren plastischer und/oder thermoplastischer Gutanteile über größere Bereiche benachbarter Oberflächen von Feststoffteilchen findet nicht statt. Für die rasche Wiederauflösbarkeit des Preßlings kann das eine substantielle Hilfe bedeuten. Gut wasserlösliche Mischungskomponenten, beispielsweise entsprechende Anteile von Neutralsalzen und/oder Waschalkalien, sind bei Wasserzutritt der unmittelbaren Interaktion mit dem Wasser zugänglich, es bedarf nicht erst des Ablösens beispielsweise einer auf dem feinkristallinen Gut verschmierten Tensidschicht.
  • Schließlich wirkt sich der Ausschluß von Scherkräften auf das Schüttgut bei dessen Verdichtung aber auch in Richtung auf eine Einschränkung der Temperatursteigerung aus, die mit dem Eintrag der beträchtlichen mechanischen Kräfte in das zu verdichtende Schüttgut stets verbunden ist. Im erfindungsgemäßen Sinne ist es zur weiterhin verbesserten Temperaturkontrolle bevorzugt, mit Ringmatrizen-Pressen zu arbeiten, die eine Temperatursteuerung im Inneren der Ringmatrize ermöglichen. Eine geeignete Ausführungsform ist in der bereits genannten DE 38 16 842 beschrieben. Hier wird vorgesehen, die Preßrolle durch ein Heiz- beziehungsweise Kühlmedium temperatursteuerbar auszugestalten. Das erfindungsgemäße Verfahren macht in der zweiten Arbeitsstufe davon Gebrauch. Dabei werden Guttemperaturen von etwa 80 °C, vorzugsweise von etwa 70 °C, innerhalb der Ringmatrize nicht überstiegen. Untere Grenzwerte für die Guttemperatur im Verarbeitungsschritt liegen üblicherweise im Temperaturbereich von etwa 30 bis 40 °C, wobei Arbeitstemperaturen für das Verpressen des Schüttguts im Bereich von etwa 45 bis 60 °C besonders geeignet sein können.
  • Die hier geschilderten Temperaturbedingungen können ihrerseits für die Auswahl der Kleberkomponenten (b) und/oder für die Mitverwendung von Flüssigkomponenten in der ersten Mischstufe mitbestimmend sein. So können Kleberkomponenten (b) in feinpartikulärer und im wesentlichen homogen im Stoffgemisch verteilter Form bevorzugt sein, die - gegebenenfalls unter Mitwirkung der bei Raumtemperatur flüssigen Mischungsbestandteile - im Temperaturbereich oberhalb 40 °C und insbesondere im Temperaturbereich von etwa 45 bis 70 °C soweit erweichen, daß sie unter den erfindungsgemäßen Arbeitsbedingungen und nachfolgend im wieder abgekühlten kornförmigen Extrudat Klebewirkung ausbilden.
  • Die Möglichkeit der Temperaturkontrolle im zweiten Verarbeitungsschritt ist unter anderem auch mitbestimmend für die Mischungsverhältnisse der Trockenkomponenten (a) zu den Kleberkomponenten (b) in den eingesetzten Mehrstoffgemischen. Bevorzugt ist im allgemeinen die Kleberkomponente(n) (b) höchstens etwa mengengleich mit den Komponenten (a) einzusetzen, wobei jedoch üblicherweise geringere Mischungsanteile (b), bezogen auf Mischungsanteile (a), bevorzugt sein können. Geeignete Stoffgemische im Sinne der Erfindung enthalten die Kleberkomponenten (b) in Mengen im Bereich von etwa 15 bis 40 Gew.-%, bezogen auf die Preßlinge.
  • Unter Einhaltung der erfindungsgemäß angestrebten mikroporösen Grundstruktur mit hoher innerer Oberfläche können dann in der Ringmatrizenpresse Schüttgewichte der strangförmig extrudierten und bevorzugt unmittelbar anschließend zur Kornform abgelängten Extrudate von wenigstens 500 g/l eingestellt werden. Vorzugsweise liegen die Schüttgewichte der erfindungsgemäß beschriebenen kornförmigen Preßlinge bei oder oberhalb etwa 600 g/l, wobei je nach Arbeitsbedingungen sowie Wahl und Abstimmung der Mischungskomponenten aufeinander deutlich höhere Werte, beispielsweise solche im Bereich bis etwa 900 g/l, oder auch noch darüber, eingestellt werden können. Besonders geeignete Schüttgewichte können beispielsweise im Bereich von etwa 550 bis 850 g/l liegen.
  • Geeignete Korngrößen für die erfindungsgemäß beschriebenen Preßlinge liegen beispielsweise im Bereich von etwa 1 bis 3 mm, wobei die Preßlinge in an sich bekannter Weise eher stäbchenförmig oder eher kugelförmig ausgebildet sein können. Hierzu kann es zweckmäßig sein, daß das Gut in Bohrungen mit einem Durchmesser von etwa 0,8 bis 1,5 mm verpresst und vorzugsweise auf Längen im Bereich von etwa 1 bis 2 mm abgelängt wird. Die frisch extrudierten Preßlinge können gewünschtenfalls in einem anschließenden Verfahrensschritt verrundet werden, wobei die Verrundung zweckmäßigerweise vor dem Erstarren des Preßgutes durch Absinken der Temperatur stattfindet.
  • Weitere an sich bekannte Hilfsmaßnahmen zur Stabilisierung der primär anfallenden Preßlinge, die im Rahmen der Erfindung mitverwendet werden können, sind beispielsweise die Schockkühlung der primär austretenden Gutstränge und der daraus beispielsweise mittels Abstreifmesser erhaltenen Granulate, falls gewünscht eine Trocknung dieser Granulate, zum Beispiel in einem Wirbelschichttrockner, und/oder das Abpudern des Primärgranulats mit feinteiligem Pulver. Wie bereits angegeben kann durch die geeignete Wahl der erfindungsgemäß eingesetzten Mischungskomponenten nach Art und/oder Menge auf solche Hilfsmaßnahmen aber auch verzichtet werden, beziehungsweise ein zahlenmäßig untergeordneter Pulveranteil mit ausgepreßt werden, der dann bei der nachfolgenden Verrundung zur Abpuderung des Primär-Granulats dient. Die so hergestellten Preßlinge können in einem weiteren Verfahrensschritt weiterverarbeitet werden, wodurch die gewünschte Anbietungsform erhalten wird. So ist es beispielsweise möglich, die Preßlinge zusammen mit anderen Waschmittelbestandteilen, die durch Granulierung, Sprühtrocknung, Pelletierung oder Extrusion erhalten wurden, zu vermengen. Vorzugsweise werden die Preßlinge jedoch separat abgepackt, wobei es insbesondere bevorzugt ist, die Preßlinge, die entweder vollständige Waschmittel oder Waschmitteladditive darstellen, portioniert abzupacken, wobei eine Portion üblicherweise für einen Waschvorgang ausreicht.
  • Es folgen allgemeine Angaben zur Auflistung geeigneter Wirkstoffe und zur Zusammensetzung geeigneter Wirkstoffgemische, wobei die Zuordnung der im einzelnen genannten Komponenten zu den Stoffklassen der Trockenkomponenten (a), der Kleberkomponenten (b) beziehungsweise den gegebenenfalls in geringer Menge mitzuverwendenden Flüssigkomponenten aufgrund des allgemeinen Fachwissens im Lichte der Angaben zur erfindungsgemäßen Verfahrensdurchführung und den hierbei eingesetzten Arbeitsbedingungen möglich ist. In diesem Zusammenhang ist auch auf die umfangreiche Fachliteratur zu verweisen, wie sie sich im einzelnen aus der einschlägigen Patentliteratur und Fachbüchern zu Wasch- und Reinigungsmitteln ergibt.
  • Als anionische Tenside sind z.B. Seifen aus natürlichen oder synthetischen, vorzugsweise gesättigten Fettsäuren brauchbar. Geeignet sind insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren abgeleitete Seifengemische. Bevorzugt sind solche, die zu 50 bis 100 % aus gesättigten C₁₂₋₁₈-Fettsäureseifen und zu 0 bis 50 % aus Ölsäureseife zusammengesetzt sind. Weiterhin geeignete synthetische anionische Tenside sind solche vom Typ der Sulfonate und Sulfate.
  • Als Tenside vom Sulfonattyp kommen Alkylbenzolsulfonate, vorzugsweise C₉-C₁₃-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C₁₂₋₁₈-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C₁₂₋₁₈-Alkanen durch Sulfochlorierung oder Sulfoxidation und anschließende Hydrolyse beziehungsweise Neutralisation beziehungsweise durch Bisulfitaddition an Olefinen erhältlich sind, sowie insbesondere die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren.
  • Geeignete Tenside vom Sulfattyp sind die Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthetischen Ursprungs, d.h. aus Fettalkoholen, z.B. Kokosfettalkoholen, Talgfettalkoholen, Oleylalkohol, Lauryl-, Myristyl-, Palmityl- oder Stearylalkohol, oder den C₁₀₋₂₀-Oxoalkoholen, und diejenigen sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten Alkohole, wie 2-Methyl-verzweigte C₉₋₁₁-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid sind geeignet. Ferner eigen sich sulfatierte Fettsäuremonoglyceride.
  • Die anionischen Tenside können in Form ihrer Natrium-, Kalium- und Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di-oder Triethanolamin vorliegen. Der Gehalt erfindungsgemäßer Waschmittel an anionischen Tensiden beziehungsweise an anionischen Tensidgemischen beträgt vorzugsweise 5 bis 40, insbesondere 8 bis 30 Gew.-%.
  • Als nichtionische Tenside sind Anlagerungsprodukte von 1 bis 40, vorzugsweise 2 bis 20 Mol Ethylenoxid an 1 Mol einer aliphatischen Verbindung mit im wesentlichen 10 bis 20 Kohlenstoffatomen aus der Gruppe der Alkohole, Carbonsäuren, Fettamine, Carbonsäureamide oder Alkansulfonamide verwendbar. Besonders wichtig sind die Anlagerungsprodukte von 3 bis 20 Mol Ethylenoxid an primäre Alkohole, wie z.B. an Kokos- oder Talgfettalkohole, an Oleylalkohol, an Oxoalkohole, oder an sekundäre Alkohole mit 8 bis 18, vorzugsweise 12 bis 18 C-Atomen.
  • Neben den wasserlöslichen Nonionics sind aber auch nicht, beziehungsweise nicht vollständig wasserlösliche Polyglykolether mit 2 bis 7 Ethylenglykoletherresten im Molekül von Interesse, insbesondere, wenn sie zusammen mit wasserlöslichen, nichtionischen oder anionischen Tensiden eingesetzt werden.
  • Außerdem können als nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R-O-(G)x eingesetzt werden, in der R einen primären geradkettigen oder in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet, G ein Symbol ist, das für eine Glykose-Einheit mit 5 oder 6 C-Atomen steht, und der Oligomerisierungsgrad x zwischen 1 und 10, vorzugsweise zwischen 1 und 2 und insbesondere deutlich kleiner als 1,5, beispielsweise zwischen 1,1 und 1,4, liegt.
  • Als organische und anorganische Gerüstsubstanzen eignen sich schwach sauer, neutral oder alkalisch reagierende lösliche und/oder unlösliche Komponenten, die Calciumionen auszufällen oder komplex zu binden vermögen. Geeignete und insbesondere ökologisch unbedenkliche Buildersubstanzen, wie feinkristalline, synthetische wasserhaltige Zeolithe vom Typ NaA, die ein Calciumbindevermögen im Bereich von 100 bis 200 mg CaO/g aufweisen, finden eine bevorzugte Verwendung. Ihre Teilchengröße liegt üblicherweise im Bereich von 1 bis 10 »m. Ihr Gehalt in den Mitteln beträgt im allgemeinen 0 bis 60, vorzugsweise 10 bis 45 Gew.-%, bezogen auf wasserfreie Substanz.
  • Als weitere Co-Builder-Bestandteile, die insbesondere zusammen mit den Zeolithen eingesetzt werden können, kommen (co)-polymere Polycarboxylate in Betracht, wie Polyacrylate, Polymethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Das Molekulargewicht der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, das der Copolymeren zwischen 200 und 200000, vorzugsweise 50000 bis 120000, bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist ein Molekulargewicht von 50000 bis 100000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylether, in denen der Anteil der Säure mindestens 50 % beträgt. Brauchbar sind ferner Polyacetalcarbonsäuren, wie sie beispielsweise in den US-Patentschriften 4,144,226 und 4,146,495 beschrieben sind sowie polymere Säure, die durch Polymerisation von Acrolein und anschließende Disproportionierung mittels Alkalien erhalten werden und aus Acrylsäureeinheiten und Vinylalkoholeinheiten beziehungsweise Acroleineinheiten aufgebaut sind.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronensäure und Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist.
  • In Fällen, in denen ein Phosphat-Gehalt toleriert wird, können auch Phosphate mitverwendet werden, insbesondere Pentanatriumtriphosphat, gegebenfalls auch Pyrophosphate sowie Orthophosphate, die in erster Linie als Fällungsmittel für Kalksalze wirken. Der Gehalt an Phosphaten, bezogen auf Pentanatriumtriphosphat, liegt unter 30 Gew.-%. Es werden jedoch bevorzugt Mittel ohne Phosphatgehalt eingesetzt.
  • Geeignete anorganische, nicht komplexbildende Salze sind die - auch als "Waschalkalien" bezeichneten - Bicarbonate, Carbonate, Borate oder Silikate der Alkalien; von den Alkalisilikaten sind vor allem die Natriumsilikate mit einem Verhältnis Na₂O : SiO₂ wie 1 : 1 bis 1 : 3,5 brauchbar.
  • Zu den sonstigen Waschmittelbestandteilen zählen Vergrauungsinhibitoren (Schmutzträger), Schauminhibitoren, Bleichmittel und Bleichaktivatoren, optische Aufheller, Enzyme, textilweichmachende Stoffe, Farb- und Duftstoffe sowie Neutralsalze.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, wie beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppe enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräperate und andere als die oben genannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Carboxymethylcellulose (Na-Salz), Methylcellulose, Methylhydroxyethylcellulose und deren Gemische sowie Polyvinylpyrrolidon werden vorzugsweise, insbesondere in Mengen von 0,1 bis 5 Gew.-%, bezogen auf das Mittel, eingesetzt.
  • Das Schäumvermögen der Tenside läßt sich durch Kombination geeigneter Tensidtypen steigern oder verringern; eine Verringerung läßt sich ebenfalls durch Zusätze nichttensidartiger organischer Substanzen erreichen. Ein verringertes Schäumvermögen, das beim Arbeiten in Maschinen erwünscht ist, erreicht man vielfach durch Kombination verschiedener Tensidtypen, z.B. von Sulfaten und/oder Sulfonaten mit Nonionics und/oder mit Seifen. Bei Seifen steigt die schaumdämpfende Wirkung mit dem Sättigungsgrad und der C-Zahl des Fettsäurerestes an. Als schauminhibierende Seifen eignen sich daher solche Seifen natürlicher und synthetischer Herkunft, die einen hohen Anteil an C₁₈₋₂₄-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind Organopolysiloxane und deren Gemische mit mikrofeiner, gegegebenenfalls silanierter Kieselsäure, Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure. Auch von C₁₂₋₂₀-Alkylaminen und C₂₋₆-Dicarbonsäuren abgeleitete Bisacylamide sind brauchbar. Mit Vorteil werden auch Gemische verschiedener Schauminhibitoren verwendet, z.B. solche aus Silikonen und Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden.
  • Unter den als Bleichmittel dienenden, in Wasser H₂O₂ liefernden Verbindungen haben das Natriumperborat-tetrahydrat und das Natriumperborat-monohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxycarbonat, Peroxypyrophosphate, Citratperhydrate sowie H₂O₂ liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxaphthalate, Diperazelainsäure oder Diperdodecandisäure.
  • Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Mittel eingearbeitet werden. Beispiele hierfür sind mit H₂O₂ organische Persäuren bildende N-Acyl- beziehungsweise O-Acyl-Verbindungen, vorzugsweise N,N'tetraacylierte Diamine, wie N,N,N',N'-Tetraacetylethylendiamin, ferner Carbonsäureanhydride und Ester von Polyolen, wie Glucosepentaacetat.
  • Die Waschmittel können als optische Aufheller Derivate der Di-aminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazin-6-yl-amino)-stilben-2,2' disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholinogruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ des substituierten 4,4'-Distyryl-diphenyls anwesend sein; z.B. die Verbindung 4,4' -Bis-(4-chlor-3-sulfostyryl)-diphenyl. Auch Gemische der vorgenannten Aufheller können verwendet werden.
  • Als Enzyme kommen solche aus der Klasse der Protheasen, Lipasen und Amylasen beziehungsweise deren Gemische in Frage. Besonders geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
  • Als Stabilisatoren insbesondere für Perverbindungen und Enzyme kommen die Salze von Polyphosphonsäuren, insbesondere die Natriumsalze von 1-Hydroxyethan-1,1-diphosphonsäure (HEDP) oder Diethylentriamin-pentamethylenphosphonsäure (DTPMP bzw. DETPMP) in Betracht.
  • Die erfindungsgemäße Lehre eignet sich dabei sowohl zur Herstellung von Wasch- und/oder Reinigungsmittelgemischen, insbesondere Textilwaschmitteln in Form leicht wasserlöslicher lagerbeständiger Granulate, als auch zur Herstellung von Wirkstoffkonzentraten aus dem Bereich dieser Arbeitsmittel, insbesondere für die Einarbeitung in Textilwaschmittel, die Granulate unterschiedlicher Wirkstoffe in vorbestimmten Mischungsverhältnissen enthalten. Lediglich beispielhaft sei hier der folgende Fall geschildert: Zur Einstellung einer guten Lagerstabilität eines für die Textilwäsche bei niederen Waschtemperaturen geeigneten Textilwaschmittels in Trockenform sind Perborate und Bleichaktivatoren getrennt voneinander in unterschiedlichen Granulaten vorzusehen, die dann in vorbestimmten Mengenverhältnissen gemischt werden. Beide Korntypen können getrennt voneinander erfindungsgemäß hergestellt beziehungsweise ausgebildet sein und dann in Mischung miteinander lagerstabil vorliegen. Beispielsweise läßt sich das erfindungsgemäße Verfahren mit Vorteil für die Gewinnung von Bleichaktivator-Granulaten einsetzen, wie sie beispielsweise in der älteren deutschen Patentanmeldung DE 4024759 beschrieben sind.
  • Beispiele
  • Zur Herstellung der kornförmigen, leicht löslichen Trockenkonzentrate wurden die Bestandteile (A) bis (K), von denen nur die Komponenten (B) in flüssiger Form vorliegen - alle übrigen Komponenten sind fest - in den in der Tabelle angegebenen Mischungsverhältnissen in einem Pflugscharmischer (Fa. Lödige, Deutschland) eine Minute intensiv vermischt. Das so erhaltene Vorgemisch wurde anschließend kontinuierlich einer Ringmatrizenpresse (Pelletpresse, Ausführungsform DE 3816842, Fa. Schlüter, Deutschland) zugeführt, deren temperierbarer Koller (Preßrolle) auf 20°C gekühlt war. Da es während der Durchführung des Verfahrens generell zu Temperatursteigerungen im Produkt kommt, ist eine Kühlung des Kollers erforderlich. Auf diese Weise konnte eine Produkttemperatur von maximal 50°C sichergestellt werden. Der Durchmesser der Preßkanäle in der Ringmatrize betrug 1 - 1,5 mm (siehe Tabelle 1). Der Abstand zwischen Preßrolle und Ringmatrize betrug 1,8 - 2 mm (siehe Tabelle 1). Durch ein an der Außenseite der Ringmatrize angebrachtes Messer wurde der austretende Strang jeweils in der Länge von 1,2 - 1,5 mm abgeschnitten. Zusätzlich wurden die abgelängten Granulate in einem marktgängigen Rondiergerät vom Typ Marumerizer verrundet. Die Klebrigkeit der Partikeloberfläche wurde durch Abpuderung mittels des während des Prozesses entstehenden Feinstaubanteils verhindert, so daß eine separate Zugabe eines weiteren Feststoffes nicht erforderlich war. Die so hergestellten Produkte 1 - 6 wurden gesiebt: Feinanteil (kleiner als 0,6 mm) und Überkornanteil (größer als 1,6 mm) wurden abgetrennt. Der Feinanteil der Granulate lag in allen Fällen unterhalb 5%, der Überkornanteil lag unterhalb 1%. Das Schüttgewicht der gesiebten Produkte variierte zwischen 650 g/l und 770 g/l.
  • Die in den Beispielen 1 bis 6 hergestellten Konzentrate können direkt als Waschmittel oder - falls gewünscht - mit nicht-pelletierten oder pelletierten, aber separat hergestellten Rezepturbestandteilen gemischt werden.
    Figure imgb0001
    Figure imgb0002
  • Beispiele 7 - 15
  • Die Preßlinge gemäß Beispiel 4, sowie erfindungsgemäß ausgebildete Preßlinge einer Reihe weiterer Rezepturzusammenstellungen wurden mittels Hg-Porosimetrie vermessen. Es wurden dabei die folgenden Parameter bestimmt:
       Inneres Gesamtvolumen in mm³/g
       Gesamtporosität in Vol.-%
       Mittlerer Porenradius in Mikrometer
       Spezifische Oberfläche in m²/g
       Die relative Volumenverteilung in mm³/g innerhalb der nachfolgenden Bereiche des jeweiligen Porenradius (in »m):
       0,001 bis 0,01; 0,01 bis 0,1; 0,1 bis 1; 1 bis 10 und 10 bis 100
    Die untersuchten Preßlinge sind dabei wie zuvor zu den Beispielen 1 bis 6 angegeben hergestellt worden und entsprechen den nachfolgenden Gesamtrezepturen:
  • Beispiel 4:
  • wie zuvor angegeben
  • Beispiel 7:
  • Bleichaktivator-Granulat aus den folgenden Bestandteilen:
       80 Gew.-% TAED
       8,0 Gew.-% Natriumdodecylbenzolsulfonat (96 %ig)
       4,0 Gew.-% C₁₆₋₁₈-Talgalkoholsulfat
       6,0 Gew.-% C₁₂₋₁₈-Fettalkohol mit 5 EO
       2,0 Gew.-% Zeolith NaA
  • Beispiel 8:
  • Auch hierbei handelt es sich um ein Bleichaktivator-Granulat, das der folgenden Zusammensetzung entspricht:
       85 Gew.-% TAED
       10 Gew.-% Natriumdodecylbenzolsulfonat (96 %ig)
       5,0 Gew.-% C₁₂₋₁₈-Fettalkohol mit 7 EO
    Die Rezepturen zu den Granulaten beziehungsweise Preßlingen gemäß den Beispielen 9 bis 15 sind in der nachfolgenden Tabelle 2 zusammengefaßt. Dabei sind die Materialien der Beispiele 11 bis 15 im erfindungsgemäßen Sinn mittels der Pelletpresse hergestellte Formkörper. Die Granulate gemäß Beispielen 9 und 10 sind demgegenüber Extrudate, die durch Strangextrusion in einem Schneckenextruder mit nachgeschalteter Lochplatte gemäß der Lehre der deutschen Patentanmeldung DE 39 26 253 hergestellt worden sind. Diese beiden Beispiele sind als Vergleichsbeispiele hier mit aufgenommen und zeigen insbesondere im Vergleich der spezifischen inneren Oberfläche (Tabelle 3) des Granulats deutlich geringere Werte als die im erfindungsgemäßen Sinne definierten Preßlinge aus der Pelletpresse.
    Figure imgb0003

    Die durch Hg-Porosimetrie erfaßten Meßwerte sind in der nachfolgenden Tabelle 3 zusammengefaßt.
    Figure imgb0004
  • Beispiele 16 - 28
  • Die in der nachfolgenden Tabelle 4 zusammengefaßten Rezepturen der Beispiele 16 - 21 beschreiben Spezial-Waschmittelzusammensetzungen (Spezial-WM), die zu Granulatkörnern mit einer mittleren Partikelgröße im Bereich von 1 bis 1,2 mm verdichtet werden. Dabei gilt im einzelnen das Folgende:
  • Die Rezepturen der Beispiele 16 und 17 wurden wiederum durch Strangextrusion in einem Schneckenextruder mit nachgeschalteter Lochplatte gemäß der Lehre der deutschen Patentanmeldung DE 39 26 253 hergestellt und sind damit Vergleichsprodukte zu den über die Pelletpresse verarbeiteten Rezepturgemischen gemäß Beispielen 18 - 21.
  • Die anschließende Tabelle 5 faßt die Rezepturen der Beispiele 22 - 28 zusammen, die durchweg Universal-Waschmittel (UWM) zum Gegenstand haben. Auch hier sind zwei Vertreter mittels Extrusion über einen Schneckenextruder mit nachgeschalteter Lochplatte in der zuvor angegebenen Weise verarbeitet (Beispiele 22 und 23). Die gleichen Ausgangsrezepturen werden dann aber noch einmal über die Pelletpresse im erfindungsgemäßen Sinne zu Preßlingen verarbeitet, wobei die Rezeptur des Beispiels 22 dem erfindungsgemäßen Beispiel 28 und die Rezeptur des Beispiels 23 dem erfindungsgemäßen Beispiel 27 entspricht.
  • An den granulierten Wirkstoffmischungen gemäß Beispielen 16 - 28 wird unter jeweils identischen Standardbedingungen die Lösezeit in Wasser (in Sekunden) bestimmt. Die dabei erhaltenen Ergebnisse sind in der anschließenden Tabelle 6 zusammengefaßt. Die Auswertung der Beispielsgruppen zeigt das Folgende:
  • Beispiele 16 - 21. Spezial-Waschmittel:
  • Während die erfindungsgemäß pelletierten Stoffgemische durchweg eine Lösezeit unterhalb 100 Sekunden zeigen, liegt die Löslichkeitsdauer der beiden Extrudate oberhalb 200 Sekunden.
  • Beispiele 22 - 28. Universal-Waschmittel:
  • Interessant ist hier zunächst der Vergleich der Extrudate (22 und 23) mit den entsprechenden Pellets (28 und 27). Der Vergleich beider zueinander gehöriger Paare zeigt die geringere Lösezeit der Pellets gegenüber dem jeweiligen Extrudat. Die Beispiele 24 - 26 zeigen dann allerdings, daß auch - rezepturabhängig - die Auf lösung erfindungsgemäß hergestellter Granulate in Pelletform im Einzelfall einen nicht unbeträchtlichen Zeitraum benötigen kann.
    Figure imgb0005

    In Rohstoffen enthaltenes Wasser wurde nicht separat berücksichtigt.
    Figure imgb0006
    Tabelle 6
    Beispiel Lösezeit (90%ige Auflösung in Wasser unter Standardbedingungen* (sec) Partikelgröße (mm)
    16 Spez.WM-Extrudat 252 1,2
    17 Spez.WM-Extrudat 230 1,2
    18 Spez.WM-Pellet 80 0,4 1,25
    19 Spez.WM-Pellet 91 0,4 1,25
    20 Spez.WM-Pellet 80 0,4 1,25
    21 Spez.WM-Pellet 99 0,4 1,25
    22 UWM-Extrudat 324 1,6
    23 UWM-Extrudat 282 1,4
    24 UWM-Pellet 264 1,2
    25 UWM-Pellet 216 1,0
    26 UWM-Pellet 378 1,2
    27 UWM-Pellets (entsprechend UWM-Extrudat 23) 198 1,0
    28 UWM-Pellets (entsprehend UWM-Extrudat 22) 222 1,0
    * In ein 1 Liter-Glasgefäß wurden 500 g demineralisiertes Wasser (20 °C) eingefüllt, der Propellerrührer mit einer Drehzahl von 900 Umdrehungen pro Minute eingeschaltet und die Leitfähigkeitsmeßzelle eingetaucht. Danach wurden 5 g des Waschmittels zugegeben. Die Änderung der Leitfähigkeit wurde über einen Schreiber festgehalten. Die Messung erfolgte solange, bis kein Anstieg der Leitfähigkeit mehr feststellbar war. Die Zeit bis zum Erreichen der Leitfähigkeitskonstanz ist die Lösezeit des gesamten Waschmittels (100 %). Die Lösezeit bei 90%iger Auflösung wurde rechnerisch ermittelt.

Claims (21)

  1. Rieselfähige und lagerbeständige grobkörnige Preßlinge, enthaltend Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln in konzentrierter Form, hergestellt durch formgebendes Verpressen eines wenigstens weitgehend homogenisierten feinkörnigen Vorgemisches der Inhaltsstoffe, dem auch bei Raumtemperatur flüssige Komponenten in geringen Mengen zugesetzt sein können, dadurch gekennzeichnet, daß sie haftfest verbundene trockene Gemische mit Schüttgewichten von wenigstens 500g/l aus
    a) feinkörnigen Inhaltsstoffen ohne ausgeprägte Haft- bzw. Klebereigenschaften mit
    b) feinkörnigen Inhaltsstoffen mit Haft- bzw. Klebereigenschaften enthalten, durch formgestaltendes Verpressen bei mäßig erhöhten Temperaturen, wobei Guttemperaturen von 80 °C nicht überstiegen werden, ohne Einwirkung wesentlicher Scherkräfte, die zu einer substantiellen Verschmierung im Prinzip schmierfähiger Mischungsbestandteile führen könnten, auf das feinkörnige Gut hergestellt worden sind und
    c) Luft in mikrodisperser Verteilung im Preßling enthalten und eine innere Oberfläche - bestimmt mittels Quecksilberporosimetrie - von wenigstens 1 m²/g aufweisen.
  2. Preßlinge nach Anspruch 1, dadurch gekennzeichnet, daß sie Schüttgewichte bei oder oberhalb etwa 600 g/l, zum Beispiel im Bereich bis etwa 850 g/l aufweisen.
  3. Preßlinge nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie eine innere Oberfläche bei oder oberhalb von 1,5 - 2 m²/g aufweisen, die insbesondere im Bereich von etwa 3 bis 5 m²/g liegen kann.
  4. Preßlinge nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ihr Anteil an Mikroporen eines Durchmesser unterhalb 1»m wenigstens etwa 30 Vol.-%, vorzugsweise wenigstens etwa 50 Vol.-% der Gesamtporosität ausmacht.
  5. Preßlinge nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie de Komponenten (a) zu den Kleberkomponenten (b) in Mengenverhältnissen enthalten, die unter den Arbeitsbedingungen der Verpressung zum Grenzbereich der Ausbildung formstabiler Preßlinge führen, wobei solche Mischungsverhältnisse bevorzugt sind, die im formgebenden Verarbeitungsschritt neben den Preßlingen zu geringen Mengen pulverförmigen Gutes führen.
  6. Preßlinge nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie zur Ausbildung des haftfesten Materialverbundes im Preßling zusammen mit den festen feinteiligen Kleberkomponenten (b) beschränkte Mengen bei Raumtemperatur flüssiger Mischungsbestandteile mit oder ohne Eigenwirkung für Wasch- und/oder Reinigungsmittel enthalten, die im Preßling vorzugsweise weitgehend homogen verteilt und ohne substantielle Beeinträchtigung der Mikroporosität vorliegen.
  7. Preßlinge nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Kleberkomponenten (b) Mischungsbestandteile mit Eigenwirkung in Wasch- und/oder Reinigungsmitteln und insbesondere entsprechende Komponenten organischer Natur enthalten, wobei hier bei Raumtemperatur feste Tensidverbindungen und/oder entsprechende Polymerverbindungen natürlichen und/oder synthetischen Ursprungs bevorzugt sind, die durch Mitverwendung geringer Mengen bei Raumtemperatur flüssiger Bestandteile in ihrer Kleberfunktion aktiviert sein können.
  8. Preßlinge nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie Kleberkomponenten (b) in feinpartikulärer und im wesentlichen homogen im Stoffgemisch verteilter Form enthalten, die - gegebenenfalls unter Mitwirkung der bei Raumtemperatur flüssigen Mischungsbestandteile - im Temperaturbereich oberhalb 40°C, insbesondere bei Temperaturen von etwa 45 - 80°C erweichen.
  9. Preßlinge nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie die Kleberkomponenten (b) höchstens etwa mengengleich mit den Komponenten (a) enthalten, wobei jedoch geringere Mischungsanteile (b) bevorzugt sind, die beispielsweise im Bereich von etwa 15 - 40 Gew.-%, bezogen auf die Preßlinge, liegen.
  10. Preßlinge nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ihr Gehalt an bei Raumtemperatur flüssigen Mischungsbestandteilen nicht mehr als etwa 10 Gew.-% ausmacht und vorzugsweise im Bereich von etwa 2 - 8 Gew.-% liegt, wobei als entsprechende Komponenten insbesondere bei Raumtemperatur flüssige Niotenside, Öle und/oder beschränkte Wassermengen in Betracht kommen.
  11. Preßlinge nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Komponenten (a) feinteilige feste anorganische und/oder organische Mischungskomponenten mit Eigenwirkung in Wasch- und/oder Reinigungsmitteln wie Builder beziehungsweise Gerüstsubstanzen, anorganische alkalische und neutrale bis leicht saure Salze, Bleichmittel, Bleichaktivatoren und quellfähige Schichtsilikate vorliegen.
  12. Preßlinge nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß als Komponenten (a) Bestandteile mitverwendet werden, die zur internen Wasserbindung - zum Beispiel in Form von Kristallwasser - befähigt sind.
  13. Verfahren zur Herstellung der Preßlinge nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man die Komponenten (a) und Kleberkomponenten (b) unter solchen Bedingungen wenigstens weitgehend homogen zu einem lockeren Vorgemisch vermischt, unter denen noch keine ausgeprägt verfestigende Kleberfunktion auftritt, dabei die gewünschtenfalls mitverwendeten Flüssigkomponenten einmischt und das Vorgemisch bei möglichst weitgehendem Ausschluß von Scherkräften auf dessen Hauptmasse unter Einschluß mikrodisperser Luft zu Preßlingen verpreßt, wobei eine innere Oberfläche - bestimmt mittels Quecksilberporosimetrie - von wenigstens 1 m²/g generiert und Schüttgewichte von wenigstens 500 g/l eingestellt werden.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Verpressung bei leicht erhöhter Schüttguttemperatur durchgeführt wird, die vorzugsweise im Bereich von etwa 40 bis 80°C, insbesondere bei etwa 45 - 60°C liegt.
  15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß die Verpressung mittels einer Matrizenpresse, insbesondere in einer Ringmatrizenpresse erfolgt, wobei das Schüttgut auf eine Oberfläche einer rotierenden, Bohrungen aufweisenden Matrize aufgebracht und mittels eines auf oder geringfügig oberhalb der Matrizenoberfläche rotierenden Preßwerkzeuges unter Verdichtung in die Bohrungen eingewalzt und durch diese hindurch strangförmig verpreßt und zu Granulaten abgelängt wird, wobei insbesondere durch Kontrolle der Guttemperatur und durch Variation der Walzspalthöhe zwischen Preßwerkzeug und Matrizenoberfläche der Verdichtungsgrad sowie die innere Porosität des Granulates beeinflußbar eingestellt werden.
  16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß die Matrize und das Preßwerkzeug mit gleichsinniger Drehrichtigung angetrieben werden, wobei die Einstellung im wesentlichen identischer Mantelgeschwindigkeiten bevorzugt ist.
  17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß das Preßwerkzeug gekühlt und hiermit die Temperatur des zu verpressenden Schüttgutes geregelt wird.
  18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß die verpreßten Massen unmittelbar nach Austritt aus den Bohrungen der Matrize, vorzugsweise mittels Abstreifmesser, abgelängt werden.
  19. Verfahren nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, daß die Preßlinge gewünschtenfalls nach einer Trockung, zum Beispiel in einem Wirbelschichttrockner, vorzugsweise aber ohne zusätzliche Trocknung, gegebenenfalls bei leichter Abpuderung weiterverarbeitet, insbesondere portioniert abgepackt werden.
  20. Verfahren nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, daß man mit solchen Mischungsverhältnissen der Komponenten (a) zu den Kleberkomponenten (b) arbeitet, daß beim formgebenden Verpressen zusammen mit den Preßlingen geringe Anteile an nicht gebundenem Pulver anfallen, die vorzugsweise nicht mehr als etwa 10 Gew.-% und insbesondere nicht mehr als etwa 5 Gew.-% des Gutaustrages aus der Presse ausmachen.
  21. Verfahren nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, daß das Gut in Bohrungen mit einem Durchmesser von etwa 0,8 bis 1,5 mm verpresst und vorzugsweise auf Längen im Bereich von etwa 1 bis 2 mm abgelängt wird.
EP92900156A 1991-01-08 1991-12-10 Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln Revoked EP0566583B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4100306 1991-01-08
DE4100306A DE4100306A1 (de) 1991-01-08 1991-01-08 Kornfoermige, leicht loesliche trockenkonzentrate von inhaltsstoffen aus wasch- und/oder reinigungsmitteln und verfahren zu ihrer herstellung
PCT/EP1991/002366 WO1992012229A1 (de) 1991-01-08 1991-12-10 Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln

Publications (2)

Publication Number Publication Date
EP0566583A1 EP0566583A1 (de) 1993-10-27
EP0566583B1 true EP0566583B1 (de) 1995-06-28

Family

ID=6422660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92900156A Revoked EP0566583B1 (de) 1991-01-08 1991-12-10 Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln

Country Status (8)

Country Link
US (1) US5587104A (de)
EP (1) EP0566583B1 (de)
JP (1) JPH06504303A (de)
KR (1) KR100200025B1 (de)
AT (1) ATE124448T1 (de)
DE (2) DE4100306A1 (de)
ES (1) ES2073907T3 (de)
WO (1) WO1992012229A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19531690A1 (de) * 1995-08-29 1997-03-06 Henkel Kgaa Figurenhaft ausgestaltete feste und verdichtete Mehrkomponentengemische aus dem Bereich der Wasch- und Reinigungsmittel sowie Verfahren zu ihrer Herstellung
GB9606913D0 (en) * 1996-04-02 1996-06-05 Unilever Plc Surfactant blends processes for preparing them and particulate detergent compositions containing them
DE19959002C2 (de) * 1999-12-08 2002-12-05 Henkel Kgaa Verfahren zur Herstellung von verdichteten Teilchen
US20050187132A1 (en) * 2002-09-12 2005-08-25 Volker Blank Detergent composition which has been compacted under pressure
DE10242222A1 (de) * 2002-09-12 2004-03-25 Henkel Kgaa Unter Druck kompaktiertes Wasch- oder Reinigungsmittel
US20150182960A1 (en) * 2013-12-31 2015-07-02 Ecowater Systems Llc Zeolite regeneration
KR101715275B1 (ko) * 2016-07-06 2017-03-17 (주) 대은글로벌솔루션 세제기능을 가지는 세라믹볼 및 이의 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT915806A (de) * 1970-12-22
GB1517713A (en) * 1974-10-31 1978-07-12 Unilever Ltd Preparation of detergent formulations
JPS51126974A (en) * 1975-04-30 1976-11-05 Kao Corp A process for producing granules containing viscous substances at high concentration
US4144226A (en) * 1977-08-22 1979-03-13 Monsanto Company Polymeric acetal carboxylates
US4146495A (en) * 1977-08-22 1979-03-27 Monsanto Company Detergent compositions comprising polyacetal carboxylates
DE3048641A1 (de) * 1980-12-23 1982-07-15 Hoechst Ag, 6000 Frankfurt "tensidhaltiges gemisch zur reinigung harter oberflaechen"
US5362413A (en) * 1984-03-23 1994-11-08 The Clorox Company Low-temperature-effective detergent compositions and delivery systems therefor
AU582519B2 (en) * 1985-10-09 1989-03-23 Procter & Gamble Company, The Granular detergent compositions having improved solubility
GB8525269D0 (en) * 1985-10-14 1985-11-20 Unilever Plc Detergent composition
ES2020949B3 (es) * 1986-01-17 1991-10-16 Kao Corp Composicion detergente granular de alta densidad.
GB8626082D0 (en) * 1986-10-31 1986-12-03 Unilever Plc Detergent powders
DE3644564A1 (de) * 1986-12-27 1988-07-07 Henkel Kgaa Verfahren zur herstellung von rieselfaehigen, stabilen persaeure-konzentraten durch kompaktierende granulation
JPH01221497A (ja) * 1988-02-29 1989-09-04 Lion Corp 浴室用洗浄剤組成物
GB8810193D0 (en) * 1988-04-29 1988-06-02 Unilever Plc Detergent compositions & process for preparing them
DE3816842A1 (de) * 1988-05-18 1989-11-23 Schlueter Gmbh U Co Kg H Ringmatrizenpresse
ES2085273T3 (es) * 1988-11-02 1996-06-01 Unilever Nv Procedimiento para preparar una composicion detergente granular de alta densidad aparente.
KR927003783A (ko) * 1989-08-09 1992-12-18 게오르그 차이트 세제용 압축과립의 제조방법
DE3926253A1 (de) * 1989-08-09 1991-02-14 Henkel Kgaa Verdichtete wasch- und reinigungsmittel in granulatform, verfahren zu ihrer herstellung und anwendung des verfahrens zur gewinnung lagerstabil rieselfaehiger waschmittel-konzentrate
GB9015503D0 (en) * 1990-07-13 1990-08-29 Unilever Plc Detergent composition
DE4024759A1 (de) * 1990-08-03 1992-02-06 Henkel Kgaa Bleichaktivatoren in granulatform
DE4112075A1 (de) * 1991-04-12 1992-10-15 Henkel Kgaa Verfahren zur herstellung stabiler, bifunktioneller, phospat- und metasilikatfreier niederalkalischer reinigungsmitteltabletten fuer das maschinelle geschirrspuelen

Also Published As

Publication number Publication date
WO1992012229A1 (de) 1992-07-23
KR100200025B1 (ko) 1999-06-15
EP0566583A1 (de) 1993-10-27
US5587104A (en) 1996-12-24
ATE124448T1 (de) 1995-07-15
ES2073907T3 (es) 1995-08-16
DE59105893D1 (de) 1995-08-03
JPH06504303A (ja) 1994-05-19
KR930703428A (ko) 1993-11-30
DE4100306A1 (de) 1992-07-09

Similar Documents

Publication Publication Date Title
EP0486592B1 (de) Herstellung verdichteter granulate für waschmittel
EP0595946B1 (de) Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
EP0642576B1 (de) Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
DE69014186T2 (de) Verfahren zur Herstellung von Detergenszubereitungen mit hoher Schüttdichte.
DE69019574T2 (de) Detergens-Zusammensetzungen und Verfahren zu ihrer Herstellung.
DE4010533A1 (de) Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
EP0665879B1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate
DE4203031A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
EP0663005B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0566583B1 (de) Leicht lösliche trockenkonzentrate enthaltend inhaltsstoffe von waschmitteln
EP1167509B1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit
WO1984003708A1 (en) Granular free flowing detergent composition and separation method thereof
EP0804535B1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
EP0605436B1 (de) Verfahren zur herstellung von zeolith-granulaten
WO1996017045A1 (de) Wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
DE4304475A1 (de) Granuliertes Wasch- und Reinigungsmittel
EP0674703B1 (de) Verfahren zur herstellung eines granulierten wasch- und reinigungsmittels
DE19542570A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür
DE19546465A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür
WO1995004129A1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate
DE19548346A1 (de) Verfahren zum Herstellen granularer Wasch- und/oder Reinigungsmittel und zur Durchführung geeignete Vorrichtung
DE4435742A1 (de) Verfahren zur Herstellung wasch- oder reinigungsaktiver Extrudate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR IT LI NL

17Q First examination report despatched

Effective date: 19940325

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR IT LI NL

REF Corresponds to:

Ref document number: 124448

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59105893

Country of ref document: DE

Date of ref document: 19950803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2073907

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 19960328

NLR1 Nl: opposition has been filed with the epo

Opponent name: THE PROCTER & GAMBLE COMPANY

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001204

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010315

Year of fee payment: 10

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011212

Year of fee payment: 11

Ref country code: AT

Payment date: 20011212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011228

Year of fee payment: 11

Ref country code: ES

Payment date: 20011228

Year of fee payment: 11

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20011120

NLR2 Nl: decision of opposition
NLR2 Nl: decision of opposition

Effective date: 20011120

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO