EP0545064B1 - Dispositif pour le filtrage de particules chargées, filtre en energie et analyseur utilisant un tel filtre en énergie - Google Patents

Dispositif pour le filtrage de particules chargées, filtre en energie et analyseur utilisant un tel filtre en énergie Download PDF

Info

Publication number
EP0545064B1
EP0545064B1 EP92118282A EP92118282A EP0545064B1 EP 0545064 B1 EP0545064 B1 EP 0545064B1 EP 92118282 A EP92118282 A EP 92118282A EP 92118282 A EP92118282 A EP 92118282A EP 0545064 B1 EP0545064 B1 EP 0545064B1
Authority
EP
European Patent Office
Prior art keywords
condenser
energy filter
screen
cylinder
filter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92118282A
Other languages
German (de)
English (en)
Other versions
EP0545064A2 (fr
EP0545064A3 (en
Inventor
Gerhard Dr. Phys. Rettinghaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OC Oerlikon Balzers AG
Original Assignee
Unaxis Balzers AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unaxis Balzers AG filed Critical Unaxis Balzers AG
Publication of EP0545064A2 publication Critical patent/EP0545064A2/fr
Publication of EP0545064A3 publication Critical patent/EP0545064A3/de
Application granted granted Critical
Publication of EP0545064B1 publication Critical patent/EP0545064B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/484Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with spherical mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/482Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with cylindrical mirrors

Definitions

  • the present invention relates to a method for Filtering of electrically charged particles according to the The preamble of claim 1, an energy filter according to that of claim 6 and an analyzer with such an energy filter according to claim 24.
  • the mentioned energy filtering is particularly used in connection with plasma mass spectrometry.
  • a filter system is formed, creating a beam charged molecular or atomic particles a selection regarding transmission is made in Function of the masses of the mentioned particles.
  • the present invention on the technology of the mentioned energy filtering directed.
  • Such is e.g. from EP-A-0 223 520 previously known.
  • the one known from it works Energy filter technology based on the well-known principle of the cylinder mirror. Following this principle charged particles of a particle beam in the field space a cylindrical capacitor and are introduced through the cylinder jacket forming the outer electrode electrostatically deflected, i.e. mirrored to then exit the cylinder assembly.
  • the energy filter effect is based on being higher energetic particles at a given electrostatic Field, a less curved trajectory pass through as deeper energetic particles with what only particles of a given energy band an intended exit opening through the mirror space to reach.
  • the beam of charged particles axially supplied to the mirror cylinder assembly occurs into a coaxial opening arrangement which is formed is by a first pair, a deflection capacitor forming electrode surfaces. These electrode surfaces define a radially outward curved Field space, in which, according to the charge polarity and the capacitor polarity, charged particles be deflected radially outwards. After leaving of the curved, entrance-side field space the charged particles in the actual mirror room of the cylinder mirror, consisting of a internal coaxial electrode core and the coaxial Mirror capacitor outer jacket.
  • the charged particles are redirected and occur symmetrically with respect to a radial plane to the entrance-side, curved field space, in the formed between two further electrode surfaces Exit field space, from which they, accordingly steered back, in one axis, with the entry axis aligned, emerge from the filter arrangement.
  • the known filter arrangement mentioned takes effect that between the input pair of electrodes, which defines the curved input field space, generated electrostatic field even in the coaxial Cylinder condenser mirror space, with which on the one hand the electrostatic field conditions, due to the resulting overlays in the transition area the particles from the input field space into the cylinder mirror space, are difficult to estimate, and with what decoupled setting of the electrostatic fields, because of the field penetration, is not possible.
  • the outer, axially adjacent capacitor electrodes of the the two field spaces are separated by an air gap.
  • the inner capacitor electrode of the first extends Pair axially over a portion of the inner capacitor electrode of the second pair and, axially, also over a region of the outer capacitor electrode of the second Couple.
  • the beam then enters another field space or spatial area, formed by a second, continuously curved Pair of capacitor electrodes.
  • the inner capacitor electrode of this second pair is, terminal, with oneself perpendicular to the beam entering the second field space extending aperture portion provided, wherein an opening is provided, through which the beam, after passing through the first field space, enters the second.
  • the structure is special simply by using the screen as one of the Electrodes for the first electrostatic field is used.
  • the beam is substantially parallel exits to the direction of entry.
  • An advantage of the filter arrangement mentioned above as known according to EP-A-0 223 520 is its coaxial structure. Coaxial to Axis of the cylinder mirror arrangement with the cylinder capacitor are also inlet and outlet deflection electrodes.
  • the fed Ray is at a sharp, kind of singularity Tip of the cylindrical core forming an electrode surface divided and runs mirror-symmetrically to the axis through the arrangement. As is well known, such tips form high ones Field strengths.
  • the cylindrical capacitor formed by the two central pairs of electrodes, the entry and exit arrangements through the outer electrode pairs.
  • a cross-sectional quadrant of the cylindrical capacitor as a mirror capacitor used and there are entry and exit arrangements in the axially symmetrically opposite cross-sectional quadrant intended.
  • the asymmetrical structure enables also not to provide any radial brackets in the mirror room.
  • the inventive energy filter on the inventive one Analyzer becomes a selective adjustability optimally enables the energy spectrum to be supplied to the mass filter, where in the preferred variants of the Energy filter with aligned beam entry and exit axes the entire analyzer structure becomes compact.
  • An electron impact ionization source is preferably attached to it provided according to the wording of claim 25. It follows thanks to the axially extended accelerator tube, which means the neutral particles homogeneous, with the accelerating grid controllable, ionized by electron bombardment, a high Ionization yield. Especially in their training after Claim 26 or 27 results in an extremely homogeneous ionization distribution.
  • the energy filter according to the invention can be well-known considerations, and in particular can the mentioned energy filter thanks to the decoupled adjustability its "filter stages" as an extremely narrow-band energy filter be used. This is because the vote of the mentioned "Filter stages” due to their field decoupling by the provided shielding can be done optimally.
  • the energy filter ensures that the Beam propagation through the filter without becoming one Displacement of the entry and exit axis of the Lead beam.
  • FIG. 1 schematically shows a longitudinal section through a known deflection arrangement for a beam of charged particles, for example known from EP-A-0 223 520.
  • the beam of positively charged ions 1 enters a curved field space 3, formed between essentially equally curved ones Electrode surfaces 3a and 3b on electrode bodies 3a ', 3b'.
  • an electrostatic field E 3 is generated in the field space 3 , essentially perpendicular to the dashed line of the beam S of charged ions 1.
  • the field E 3 shows the Ions are deflected through the curved field space 3 from their original entry direction.
  • Ions with greater kinetic energy experience less deflection in field E 3 than ions with lower kinetic energy.
  • essentially ions of a defined energy band pass through the curved field space 3, while higher-energy and lower-energy ions collide with one of the two electrode surfaces and are neutralized.
  • the electrode surface 3b on the outside of the curvature is continued at an acute angle after the exit region 5 from the field space 3 to the exit direction of the particle beam and forms with this extension electrode surface 7b of a further pair of electrode surfaces with 7a.
  • a further electrostatic field E 7 is created between the pair of electrode surfaces 7a and 7b, essentially polarized inversely with respect to the field E 3 , with which the ions are redirected back in the path shown schematically in dashed lines, possibly already to an outlet arrangement 4 shown in dashed lines 7 applies that the ions are deflected more or less according to their kinetic energy, so that only ions of a certain energy band hit the opening at the outlet arrangement 4 and leave the energy filter.
  • a well-known stray field is created in the field area 7 at the exit area 5 of the field space 3, whereby a superimposition of this stray field E 37 and the primary field E 7 prevailing there arises in this area with a resulting field that is both of E 7 as well depends on E 3 .
  • a shield ring 9 is provided and, as proposed at the same time, is connected to the same potential as the electrode surfaces 3b and 7b, the result is the additional field E 79 shown in FIG. 1, which depends on the field E 7 and depending on the ion polarity exerts an accelerating or decelerating effect on the ions arriving in the field space 7 and thus falsifies their paths in the sense of poorer energy resolution or transmission.
  • the field spaces correspond to 3 and 7 of FIG. 1 regarding the prevailing electrostatic Fields decoupled, with the above-mentioned interference effects to be avoided on the beam and due to the mutual Field isolation the electrostatic conditions in both field rooms independently of each other can be optimally adjusted.
  • a shield 11 is provided according to the invention, which the beam S, as shown in dashed lines, on one Passes through slot 13.
  • the potential of the screen 11 can initially be set as desired (dashed line at 6) if, by a suitable choice of the geometric arrangement of screen 11, electrodes 3a and 3b, the influence of the field between these three electrodes on the kinetic energy and deflection of the particles 1 between the exit zone 5 and passage slot 13 is minimized.
  • the screen 11 is placed on the potential of the outer electrode 3b '.
  • the preferred entry angle ⁇ 45 ° the influence of the electrostatic field E 11a between the screen 11 and the electrode body 3a 'is negligible due to the oblique passage of the space D through the beam.
  • the screen 11, as further shown in FIG. 2, is preferably used as an electrode of the pair 7a, 7b according to FIG. 1. As can be seen, there is no field influence between the fields E 7 and E 3 due to the provision of a screen 11 penetrated by the beam, even if combined with the electrode 7b for the essential structural simplification.
  • FIG. 3 schematically shows a first preferred embodiment of the arrangement shown in principle with reference to FIG. 2. Again, the same item numbers are used for the same structural parts.
  • the curvature outer electrode surface 3b or the body 3b 'defining it is continued away from the electrode surface 3a, and it surrounds - in one or more parts - this continuation 3d, in the sense of 3b' potentially identical parts, a cavity 15 which is traversed at an oblique angle by the beam between the exit region 5 and the passage slot 13.
  • the interference field E 3a arises in accordance with the dimensions of the chamber 15 and the potential difference between the electrode surfaces 3b and 3a practically only in zones of the space 15 which are not traversed by the beam S, so that this interference field has hardly any influence on the beam deflection or the energy of its particles takes.
  • the cavity 15 is, in particular in its from Beam S traversed area, essentially field-free, because of walls at the same potential edged.
  • the one opposite the exit area 5 Wall section which borders the space 15, in turn forms the electrode surface 7b of the another pair of electrode surfaces 7a, 7b, where between the beam, following the principle of reflection, is redirected becomes.
  • the Beam path in field-free room 15 before entry optimized in the field space 7, for example focused become.
  • the aperture 15a are outer Hidden parts of the beam. All without that further fields would have to be taken into account.
  • FIG. 4 is a preferred embodiment of the inventive Energy filter shown in the constructed essentially symmetrically to a plane E. is and in mirror image two of the with reference to FIG. 2 or 3 arrangements shown. There are again the same for the same components or sizes Position symbol used.
  • deflection fields E 3 and field E 7 for deflecting positive ions are entered.
  • this arrangement allows the entry axis A E and the exit axis A A to be aligned on the filter according to the invention by corresponding arrangement of the two curved field spaces 3 on the input and output sides, which, for the time being also without rotationally symmetrical design, creates the possibility of an analyzer with a downstream mass spectrometer , in particular a quadrupole mass spectrometer and possibly an upstream ionization source, in the common entry / exit axis A EA .
  • the screen sections 11 can, if appropriate, be put together or separately, each at different potentials with respect to part 3b '. Of course, this requires electrical insulation of the parts mentioned.
  • the inlet arrangement with curved field spaces 3, inner electrode surfaces 3a and outer electrode surfaces 3b and the electrode pairs 7a and 7b is cylindrical with a cylinder axis A Z.
  • the incoming beam S is split at a sharp tip P of an inner cylinder body 3b ', which forms the electrode surfaces 3b and 7b and is mounted on a retaining web 17 in the field space 7.
  • the beam path S is mirror-symmetrical to the cylinder axis A Z , in that the incoming beam S, as mentioned, is divided at the tip P - a kind of singularity - and passes through electrode pairs formed in mirror image with respect to the axis A Z or field fields therebetween. Because of the tip P, ions entering the axis A Z cannot pass through the arrangement. This also applies to ions that enter close to the axis A Z. Ions that can just pass the tip P have unfavorable entry parameters with respect to the cylinder mirror in space 7.
  • FIG. 6 an energy filter arrangement according to the invention is again shown schematically, in which on the one hand with mirror-image formation on the input and output sides, for example to plane E, input axis A E and exit axis A A , as shown, in the cylinder axis A Z of the cylindrical filter may lie, but a beam splitting is avoided.
  • FIG. 6 readily shows the arrangement in which the outer edge of the filter, essentially given by the outer electrode surfaces 7a, is cylindrical to the axis A Z , but not within the cylinder the beam path of the beam S.
  • the cross-sectional dimension of the filter is poorly used in this configuration, in which the coaxiality of the filter structure, beam feed and path guidance can be realized. This is improved in the preferred embodiment, as shown in FIG. 7.
  • the design according to FIG. 7 is much simpler in terms of production technology. It was assumed that holding onto a beam in and out of alignment with the cylinder axis A Z brings only minor advantages for the compilation of an analyzer system and these advantages are practically retained if the input axis A E and the exit axis A A are in alignment, the cross-sectional expansion is better utilized and significant advantages are obtained in terms of production technology.
  • the jet inlet and jet outlet are axially aligned, but offset in such a way with respect to the cylinder axis A ' Z that if the inlet and outlet are provided in a cross-sectional quadrant Q 1 , the field space 7, in which the beam is deflected back in a mirror-reflecting manner, is arranged in the quadrant Q 2 opposite to the axis A ' Z.
  • the axis A ' Z is shifted with respect to the axes A E and A A , as shown at A' Z in FIG. 6.
  • FIG. 8 schematically shows a cross-sectional illustration along line IIX-IIX of FIG. 7, the two bodies defining the electrode surfaces 3a and 3b again being designated 3a ′ and 3b ′ and, in dash-dot lines, the quadrants Q 1 , Q 2 are entered.
  • the insulation 9 between the parts 3a ', 3b' is visible, as is of course provided in some way in all the design variants according to FIGS. 2 to 4, 6 to 7.
  • the cross-sectional dimension of the filter is better utilized.
  • Fig. 9 the essential elements are preferred Energy filter according to the present invention shown in longitudinal section, an inventive Filter, which one Providing one Between the following field spaces and Utilization of the cylinder mirroring without beam splitting, taking advantage of the cross-sectional extent of the mirror cylinder, are realized according to a Combination of the arrangements according to FIGS. 4 and 7. Again, to facilitate cross-comparisons chosen the same reference numerals.
  • the electrode bodies 3a ', 3b' are rotating bodies.
  • the two parts 3a 'and 3b' that define the field space 3 are, as shown at 20, electrically insulated, corresponding to 9 of FIG. 8.
  • the exit direction for the beam S from the curved field space 3 in the exit region 5 is A E and / or A Z approx. 45 °.
  • the hollow cylinder 3b ' forms the essentially field-free spaces 15 and has the passage slots 13 for the deflected beam S.
  • the mirror cylinder 7a' is provided, which forms the electrode surface 7a as a cylindrical capacitor surface with respect to the electrode surface 7b on the hollow cylinder 3b '.
  • the beam outlet again with a curved field space 3, is constructed symmetrically with respect to the beam inlet, the beam exit axis A A is aligned with the beam entry axis A E , and both axes are offset with respect to the axis of rotation A Z of the cylindrical arrangement.
  • the potential differences applied are entered, for example, as shown schematically in U 1 and U 2 with adjustable voltage sources.
  • both parts 3a ' are connected to the same potential, which is not mandatory.
  • the hollow cylinder 3b ' is placed at a positive potential, which according to the invention forms shield 11, field-free space 15 and electrode of field space 7.
  • the outer electrode 7a corresponding to the hollow cylinder 7a ', is set to a positive potential with respect to the hollow cylinder 3b'.
  • a mass spectrometer preferably a quadrupole mass spectrometer 24, is preferably connected downstream of the energy filter, as shown, to form an analyzer according to the invention. If neutral particles are to be analyzed on the analyzer, an ionization source, preferably an electron impact ionization source 26, is connected upstream of the energy filter.
  • a beam diaphragm 15 is preferably provided in a field-free space 15. In this space, the beam is preferably focused on the cylinder axis A 'Z, and the diaphragm 15a suppresses edge regions and scattered ions of the beam. At focus F there is a crossover of the ion beam, ie a crossover of the ion trajectories.
  • FIG. 10 An ionization source is shown in FIG. 10, which is preferably used with the energy filter shown.
  • an aperture 30 with an opening 32 neutral particles are withdrawn from the plasma by diffusion and enter an axially extended cylinder grid 34.
  • At least one electron emitter preferably in the form of at least one hot cathode 36, is provided, preferably a plurality of hot cathodes 36 are arranged azimuthally around the grid 34.
  • the electron emitter cathodes 36 are set to a negative potential with respect to the grating 34, which means that the grating 34 acts as an acceleration grating for the emitted electrons e - .
  • the heating current at the electron emitter cathodes 36 is set at current sources I.
  • the ions generated within the grid 34 by electron impact emerge through a further aperture 38 with a controllable potential corresponding to U 4 .
  • the potential of the aperture 38 is preferably chosen to be at least substantially equal to that of the grid 34. Because of the axially extended lattice arrangement and the provided, preferably several and identical electron emitters outside the lattice, neutral particles within the lattice are homogeneously ionized with a high ionization rate.
  • the ionization source 10 preferably with the inventive energy filter according to the preceding Figures, especially Fig. 9, combined to with a mass spectrometer connected downstream of the latter, preferably quadrupole mass spectrometer, to form a neutral particle analyzer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (27)

  1. Procédé pour filtrer des particules à charge électrique d'un faisceau de particules en fonction de leur énergie cinétique, selon lequel le faisceau est dévié par un premier champ électrostatique (E7) entre des premières surfaces (7a, 7b) d'une première paire d'électrodes de condensateur, dans une première zone dans l'espace (7), et est dévié en sens inverse par un second champ électrique (E3) entre des secondes surfaces (3a, 3b) d'une seconde paire d'électrodes de condensateur (3a', 3b'), dans une zone dans l'espace (3) prévue en amont et/ou en aval de la première zone (7) dans le sens de propagation du faisceau, et la première zone (7) est protégée par rapport à la seconde (3), pour les champs électriques (E), à l'aide d'un écran (11) qui est mis au potentiel électrique de l'une des premières surfaces d'électrodes de condensateur (7b) et qui présente une première surface tournée vers la première zone (7) et une seconde surface tournée vers la seconde zone (3), caractérisé en ce que
    l'une des premières surfaces d'électrodes de condensateur (7b) est définie par la première surface de l'écran (11) qui est traversé par le faisceau (13) ;
    à l'aide de la seconde surface de l'écran (11) et d'une surface de l'une des électrodes de condensateur (3b') de la seconde paire (3a', 3b') est formée une autre paire de surfaces d'électrodes de condensateur avec une troisième zone dans l'espace (D) qui est traversée par le faisceau (S) et qui relie la première et la seconde zone dans l'espace (7, 3),
    l'écran (11) est mis à un potentiel électrostatique défini (6, 6a).
  2. Procédé selon la revendication 1, caractérisé en ce que l'écran (11) est mis au potentiel électrique d'une électrode (3b') de la seconde paire d'électrodes de condensateur (3a', 3b') et la troisième zone (D) est ainsi sans champ.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la seconde zone dans l'espace (3) est formée entre deux secondes surfaces d'électrodes de condensateur (3a, 3b) à courbures sensiblement identiques, et l'écran (11) est défini par un prolongement de l'électrode de condensateur (3b') qui forme l'extérieur de la courbure des surfaces d'électrodes de condensateur (3b).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le faisceau (S) entre dans la première ou la seconde zone (3, 7) et sort en conséquence de la seconde ou de la première zone, les déviations ayant lieu de telle sorte que l'entrée et la sortie soient sensiblement parallèles.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'il est prévu deux secondes zones dans l'espace (3) pourvues chacune d'une seconde paire d'électrodes de condensateur qui définit des secondes surfaces d'électrodes de condensateur, et le faisceau (S) entre et sort dans l'une des deux secondes zones (3), les déviations ayant lieu de telle sorte que les sens d'entrée et de sortie soient sensiblement alignés.
  6. Filtre d'énergie pour filtrer des particules à charge électrique d'un faisceau de particules en fonction de leur énergie cinétique, comportant un dispositif d'entrée et de sortie de faisceau et au moins deux paires d'électrodes de condensateur (3a, 3b ; 7a, 7b) qui s'étendent l'une derrière l'autre entre l'entrée et la sortie, sensiblement dans le sens de passage du faisceau, et qui génèrent des champs électriques respectifs (E3, E7) sensiblement perpendiculaires au sens de propagation du faisceau et de polarités inverses,
    une première paire d'électrodes de condensateurs (7a, 7b) formant une paire de premières surfaces d'électrodes de condensateur et définissant entre celles-ci une première zone dans l'espace (7),
    une seconde paire d'électrodes de condensateur (3a', 3b') formant une paire de secondes surfaces d'électrodes de condensateur (3a, 3b) et définissant entre celles-ci une seconde zone dans l'espace (3),
    et comportant également, entre les zones (3, 7), un écran électrique (11) qui présente une première surface tournée vers la première zone (7) et une seconde surface tournée vers la seconde zone (3), l'écran (11) étant mis au potentiel de l'une des premières électrodes de condensateur (7b),
       caractérisé en ce que
    l'une des premières surfaces d'électrodes de condensateur (7b) est formée par la première surface de l'écran (11), qui présente une ouverture de passage (13) pour le faisceau (S),
    la seconde surface de l'écran (11) forme avec une surface de l'une des secondes électrodes de condensateur (3b'), dans la zone de l'ouverture de passage (13), une troisième paire de surfaces d'électrodes de condensateur et, entre les deux, une troisième zone dans l'espace (D) qui relie les première et seconde zones,
    l'écran (11) est mis à un potentiel défini (6, 6a).
  7. Filtre d'énergie selon la revendication 6, caractérisé en ce que l'écran (11) est mis au potentiel de l'une (3b') des secondes électrodes de condensateur (3a', 3b').
  8. Filtre d'énergie selon la revendication 6 ou 7, caractérisé en ce que la seconde paire de surfaces d'électrodes de condensateur (3a, 3b) définit une seconde zone courbe (3), et l'électrode (3b') définissant la surface (3b) située du côté extérieur de la courbure forme avec un prolongement l'écran (11).
  9. Filtre d'énergie selon l'une des revendications 6 à 8, caractérisé en ce que la troisième zone (D, 15) est sensiblement sans champ, avec une bordure équipotentielle, ladite bordure de la troisième zone (D, 15) étant de préférence définie par un prolongement de l'une (3b') des secondes électrodes de condensateur (3a', 3b').
  10. Filtre d'énergie selon la revendication 9, caractérisé en ce qu'il est prévu dans la troisième zone (D, 15) au moins un diaphragme (15a).
  11. Filtre d'énergie selon l'une des revendications 6 à 10, caractérisé en ce que l'entrée et la sortie du faisceau sont sensiblement parallèles.
  12. Filtre d'énergie selon l'une des revendications 6 à 11, caractérisé en ce qu'il est prévu deux des premières paires d'électrodes de condensateur, et deux des secondes.
  13. Filtre d'énergie selon la revendication 12, caractérisé en ce que les deux paires d'électrodes de condensateur centrales sont des premières paires et sont de préférence réunies de par la construction (7a, 7b).
  14. Filtre d'énergie selon la revendication 12 ou 13, caractérisé en ce que les deux paires d'électrodes de condensateur extérieures sont des secondes paires (3a', 3b') et définissent des secondes zones dans l'espace respectives (3) courbées dans le même sens, et les électrodes de condensateur (3b') de la paire qui sont situées du côté extérieur de la courbure présentent un prolongement qui forme l'écran (11).
  15. Filtre d'énergie selon la revendication 14, caractérisé en ce que les deux électrodes de condensateur (3b') situées du côté extérieur de la courbure sont réunies de par la construction.
  16. Filtre d'énergie selon la revendication 15, caractérisé en ce que les deux prolongements (11) sont réunis de par la construction.
  17. Filtre d'énergie selon l'une des revendications 6 à 16, caractérisé en ce que l'épaisseur de paroi (d) de l'écran (11) est au moins égale à l'extension minimale du diamètre de l'ouverture de passage (13).
  18. Filtre d'énergie selon l'une des revendications 14 à 17, caractérisé en ce que les deux paires d'électrodes de condensateur extérieures (3a, 3b) définissent des tangentes d'entrée et de sortie pour le faisceau qui sont sensiblement parallèles, et ces tangentes sont de préférence alignées.
  19. Filtre d'énergie selon l'une des revendications 6 à 18, caractérisé en ce qu'il est construit suivant le principe du miroir cylindrique dans un condensateur cylindrique, avec des dispositifs d'entrée et de sortie pour le faisceau dans ledit condensateur cylindrique, les axes d'entrée et de sortie (AE, AA) étant sensiblement alignés et le trajet (S) du faisceau étant asymétrique par rapport à l'axe de cylindre (AZ) du condensateur cylindrique.
  20. Filtre d'énergie selon la revendication 19, caractérisé en ce que les axes d'entrée et de sortie (AE, AA) sont décalés, parallèlement, par rapport à l'axe (AZ) du condensateur cylindrique.
  21. Filtre d'énergie selon la revendication 19 ou 20, caractérisé en ce que le condensateur cylindrique (7a, 7b) est défini par les deux paires d'électrodes centrales et le dispositif d'entrée et de sortie (3a, 3b) est défini par les paires extérieures selon l'une des revendications 11 à 18.
  22. Filtre d'énergie selon l'une des revendications 19 à 21, caractérisé en ce que le condensateur cylindrique (7a, 7b) comporte un cylindre extérieur (7a) et agit comme condensateur réflecteur dans un quadrant de section transversale, et les dispositifs d'entrée et de sortie (3a, 3b) sont prévus dans le quadrant de la surface de section transversale dudit condensateur qui est opposé de manière axisymétrique à ce quadrant.
  23. Filtre d'énergie selon l'une des revendications 19 à 22, caractérisé en ce que le faisceau est focalisé sur l'axe du condensateur cylindrique.
  24. Analyseur, de préférence analyseur de plasma, pourvu d'un filtre d'énergie selon l'une au moins des revendications 6 à 23, et d'un filtre de masse, de préférence un analyseur de masse quadripolaire, monté en aval du filtre d'énergie.
  25. Analyseur selon la revendication 24, caractérisé en ce qu'il comporte une source d'ionisation par choc électronique montée en amont du filtre d'énergie, avec un dispositif d'ouverture d'entrée pour les particules neutres et un dispositif de sortie pour les ions, et en ce qu'il est prévu, coaxialement par rapport à l'axe de transmission défini entre les dispositifs d'entrée et de sortie, un tube accélérateur à grille qui s'étend axialement et, à l'extérieur radialement, au moins une cathode chaude.
  26. Analyseur selon la revendication 25, caractérisé en ce que plusieurs cathodes chaudes sont prévues radialement à l'extérieur de la grille d'accélération qui s'étend axialement, et sont de préférence réparties régulièrement.
  27. Analyseur selon la revendication 25 ou 26, caractérisé en ce que le rapport de la longueur de la zone d'arrivée des électrons sur le tube à grille sur le diamètre de cette zone est d'au moins 1,5, de préférence de 3 et de préférence supérieur à 3.
EP92118282A 1991-12-02 1992-10-26 Dispositif pour le filtrage de particules chargées, filtre en energie et analyseur utilisant un tel filtre en énergie Expired - Lifetime EP0545064B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH3536/91 1991-12-02
CH353691 1991-12-02
CH353691 1991-12-02

Publications (3)

Publication Number Publication Date
EP0545064A2 EP0545064A2 (fr) 1993-06-09
EP0545064A3 EP0545064A3 (en) 1993-08-04
EP0545064B1 true EP0545064B1 (fr) 2001-08-08

Family

ID=4258111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92118282A Expired - Lifetime EP0545064B1 (fr) 1991-12-02 1992-10-26 Dispositif pour le filtrage de particules chargées, filtre en energie et analyseur utilisant un tel filtre en énergie

Country Status (4)

Country Link
US (1) US5365064A (fr)
EP (1) EP0545064B1 (fr)
JP (1) JP3435179B2 (fr)
DE (1) DE59209914D1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672870A (en) * 1995-12-18 1997-09-30 Hewlett Packard Company Mass selective notch filter with quadrupole excision fields
US5598001A (en) * 1996-01-30 1997-01-28 Hewlett-Packard Company Mass selective multinotch filter with orthogonal excision fields
US6867414B2 (en) * 2002-09-24 2005-03-15 Ciphergen Biosystems, Inc. Electric sector time-of-flight mass spectrometer with adjustable ion optical elements
US7679051B2 (en) * 2006-05-17 2010-03-16 Southwest Research Institute Ion composition analyzer with increased dynamic range
JP5694317B2 (ja) * 2009-07-17 2015-04-01 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation 荷電粒子エネルギー分析器装置および方法
US8294093B1 (en) * 2011-04-15 2012-10-23 Fei Company Wide aperature wien ExB mass filter
US8835866B2 (en) 2011-05-19 2014-09-16 Fei Company Method and structure for controlling magnetic field distributions in an ExB Wien filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805057A (en) * 1971-03-22 1974-04-16 Hitachi Ltd Energy analyzer of coaxial cylindrical type
US4219730A (en) * 1977-08-29 1980-08-26 Hitachi, Ltd. Charge-particle energy analyzer
US4758722A (en) * 1980-05-12 1988-07-19 La Trobe University Angular resolved spectrometer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU29047A1 (ru) * 1932-03-08 1933-01-31 В.П. Михайлик Приспособление дл автоматического регулировани объема мерника в зависимости от температуры
US4126781A (en) * 1977-05-10 1978-11-21 Extranuclear Laboratories, Inc. Method and apparatus for producing electrostatic fields by surface currents on resistive materials with applications to charged particle optics and energy analysis
GB8527438D0 (en) * 1985-11-07 1985-12-11 Vg Instr Group Charged particle energy analyser
SU1411850A1 (ru) * 1986-07-07 1988-07-23 Предприятие П/Я В-8754 Дефлекторный энергетический анализатор
SU1492397A1 (ru) * 1986-12-23 1989-07-07 Институт Аналитического Приборостроения Научно-Технического Объединения Ан Ссср Устройство дл транспортировки и энергоанализа зар женных частиц

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805057A (en) * 1971-03-22 1974-04-16 Hitachi Ltd Energy analyzer of coaxial cylindrical type
US4219730A (en) * 1977-08-29 1980-08-26 Hitachi, Ltd. Charge-particle energy analyzer
US4758722A (en) * 1980-05-12 1988-07-19 La Trobe University Angular resolved spectrometer

Also Published As

Publication number Publication date
EP0545064A2 (fr) 1993-06-09
DE59209914D1 (de) 2001-09-13
US5365064A (en) 1994-11-15
EP0545064A3 (en) 1993-08-04
JPH05251036A (ja) 1993-09-28
JP3435179B2 (ja) 2003-08-11

Similar Documents

Publication Publication Date Title
DE69132461T2 (de) Verfahren und vorrichtung zur spurenanalyse
DE19941670B4 (de) Massenspektrometer und Verfahren zum Betreiben eines Massenspektrometers
DE112007002661B4 (de) Ionentransferanordnung
DE69714356T2 (de) Plasma-Massenspektrometer
EP0617451B1 (fr) Filtre en énergie d'électrons, produisant une image
DE19681168C2 (de) Ionenimplantationsanlage mit Massenselektion und anschließender Abbremsung
DE19681165C2 (de) Ionenimplantationsanlage mit Massenselektion und anschließender Abbremsung
EP0461442B1 (fr) Appareil à faisceau de particules
DE112011102323B4 (de) Ionendetektionsanordnung
DE102012207403B4 (de) Verfahren und vorrichtung zur überprüfung von ionen in einem massenspektrometer, das in einem sub-atmosphärischen druckregime gehalten wird
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
EP0373550A2 (fr) Spectromètre de masse à temps de vol à résolution et transmission élevées
DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
DE10324839B4 (de) Massenspektrometer
DE69623728T2 (de) Massenspektrometer
DE102005023590A1 (de) ICP-Massenspektrometer
EP0545064B1 (fr) Dispositif pour le filtrage de particules chargées, filtre en energie et analyseur utilisant un tel filtre en énergie
DE2608958A1 (de) Vorrichtung zum erzeugen von strahlen aus geladenen teilchen
EP3775864A1 (fr) Spectromètre à mobilité ionique et procédé d'analyse des échantillons par la spectrométrie à mobilité ionique
EP3775863A1 (fr) Spectromètre à mobilité ionique et procédé d'analyse des échantillons par la spectrométrie à mobilité ionique
DE69121463T2 (de) Ionenbündelvorrichtung
DE1598392A1 (de) Vierpol-Massenspektrograph
DE69629536T2 (de) Verfahren und Vorrichtung zur Massenanalyse einer gelösten Probe
DE60032972T2 (de) Energiefilter und seine Verwendung in einem Elektronenmikroskop
EP0632482B1 (fr) Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19940129

17Q First examination report despatched

Effective date: 19951212

RTI1 Title (correction)

Free format text: DEVICE FOR FILTERING CHARGED PARTICLES, ENERGY FILTER AND ANALYSER USING SUCH AN ENERGY FILTER

RTI1 Title (correction)

Free format text: DEVICE FOR FILTERING CHARGED PARTICLES, ENERGY FILTER AND ANALYSER USING SUCH AN ENERGY FILTER

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNAXIS BALZERS AKTIENGESELLSCHAFT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010808

REF Corresponds to:

Ref document number: 59209914

Country of ref document: DE

Date of ref document: 20010913

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071005

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071009

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091022

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091021

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59209914

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502