EP0543911B2 - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- EP0543911B2 EP0543911B2 EP91915442A EP91915442A EP0543911B2 EP 0543911 B2 EP0543911 B2 EP 0543911B2 EP 91915442 A EP91915442 A EP 91915442A EP 91915442 A EP91915442 A EP 91915442A EP 0543911 B2 EP0543911 B2 EP 0543911B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- composition according
- detergent composition
- weight
- detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 138
- 239000003599 detergent Substances 0.000 title claims abstract description 63
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000004094 surface-active agent Substances 0.000 claims abstract description 31
- 239000004615 ingredient Substances 0.000 claims abstract description 30
- 239000010457 zeolite Substances 0.000 claims abstract description 30
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 29
- 239000011734 sodium Substances 0.000 claims abstract description 21
- 150000007942 carboxylates Chemical class 0.000 claims abstract description 16
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 14
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 14
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 claims abstract description 12
- 239000002738 chelating agent Substances 0.000 claims abstract description 12
- 239000000429 sodium aluminium silicate Substances 0.000 claims abstract description 12
- 235000012217 sodium aluminium silicate Nutrition 0.000 claims abstract description 12
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 10
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 9
- 239000001257 hydrogen Chemical group 0.000 claims abstract description 4
- 229910052739 hydrogen Chemical group 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 150000003839 salts Chemical class 0.000 claims description 22
- 239000007844 bleaching agent Substances 0.000 claims description 20
- 229920005646 polycarboxylate Polymers 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 238000005342 ion exchange Methods 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 239000003945 anionic surfactant Substances 0.000 claims description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 6
- 229910001424 calcium ion Inorganic materials 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- 125000000129 anionic group Chemical group 0.000 claims description 5
- 229910021527 natrosilite Inorganic materials 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 4
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 4
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 4
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 4
- 229910009112 xH2O Inorganic materials 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 239000002563 ionic surfactant Substances 0.000 claims description 2
- 229920001281 polyalkylene Polymers 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 150000004967 organic peroxy acids Chemical class 0.000 claims 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 abstract description 21
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 45
- 239000004744 fabric Substances 0.000 description 31
- 239000007921 spray Substances 0.000 description 30
- -1 Mg++ ion Chemical class 0.000 description 28
- 229910000323 aluminium silicate Inorganic materials 0.000 description 19
- 239000000843 powder Substances 0.000 description 18
- 238000005406 washing Methods 0.000 description 18
- 229920001296 polysiloxane Polymers 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229910001385 heavy metal Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 6
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- 239000004902 Softening Agent Substances 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 150000003138 primary alcohols Chemical class 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- JPZROSNLRWHSQQ-UHFFFAOYSA-N furan-2,5-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1OC(=O)C=C1 JPZROSNLRWHSQQ-UHFFFAOYSA-N 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002304 perfume Substances 0.000 description 4
- 229910021653 sulphate ion Inorganic materials 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- BQSLGJHIAGOZCD-CIUDSAMLSA-N Leu-Ala-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O BQSLGJHIAGOZCD-CIUDSAMLSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000007580 dry-mixing Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000004682 monohydrates Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- QBIAZVPERXOGAL-OWOJBTEDSA-N (e)-prop-1-ene-1,3-diamine Chemical compound NC\C=C\N QBIAZVPERXOGAL-OWOJBTEDSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- UURYKQHCLJWXEU-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)butanedioic acid Chemical class CC(O)C(=O)OC(C(O)=O)CC(O)=O UURYKQHCLJWXEU-UHFFFAOYSA-N 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910003252 NaBO2 Inorganic materials 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical group OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N acetoacetic acid Chemical compound CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- SINKOGOPEQSHQD-UHFFFAOYSA-N cyclopentadienide Chemical compound C=1C=C[CH-]C=1 SINKOGOPEQSHQD-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- VUJGKADZTYCLIL-UHFFFAOYSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(C=CC=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- HKZVDXUEAWCPIQ-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexacarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(C(O)=O)C(C(O)=O)CC(O)=O HKZVDXUEAWCPIQ-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- NJEVMKZODGWUQT-UHFFFAOYSA-N propane-1,1,3,3-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)CC(C(O)=O)C(O)=O NJEVMKZODGWUQT-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229940117972 triolein Drugs 0.000 description 1
- POZPMIFKBAEGSS-UHFFFAOYSA-K trisodium;2-hydroxypropane-1,2,3-tricarboxylate;trihydrate Chemical compound O.O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O POZPMIFKBAEGSS-UHFFFAOYSA-K 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/1273—Crystalline layered silicates of type NaMeSixO2x+1YH2O
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3761—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
Definitions
- This invention relates to laundry detergent compositions and more especially to laundry detergent compositions that incorporate little or no phosphorus containing materials.
- Laundry detergent compositions of this type have become widely available as a result of public concern over, and/or legislative action to control, the environmental impact of aqueous effluent from untreated or partially treated domestic sewage containing dissolved phosphates.
- Zero phosphate compositions employ a combination of materials to replace the phosphate builder, the principal component usually being a water insoluble sodium aluminosilicate zeolite supplemented by a mixture of water soluble inorganic and polymeric organic salts.
- EP-A-405,122 describes detergent compositions containing crystalline layered silicate and zeolite builders.
- EP-A-337, 219 describes detergent compositions containing crystalline layered silicate and an oxygen bleaching component.
- JP 1-153800 describes concentrated fabric softening granular detergent compositions containing bentonite, crystalline layered silicate and zeolite components.
- a particulate detergent composition comprising an oxygen bleach and comprising
- component (b)(iii) of the builder system is ⁇ , ⁇ , ⁇ , or ⁇ -Na 2 Si 2 O 5 and component (b)(i) is a synthetic hydrated zeolite of unit cell formula Na z [(AlO 2 ) z (SiO 2 ) y ]. xH 2 O wherein z and y are at least 6, the ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276.
- the monomeric or oligomeric organic carboxylate chelating agent has a first carboxyl logarithmic acidity constant (pK 1 ) of less than 9, preferably of from 2 to 8.5.
- the present invention concerns a particulate detergent composition incorporating one or more surfactants and a detergent builder system composed of three principal components viz. a sodium aluminosilicate zeolite, a water soluble monomeric or oligomeric organic carboxylate chelating agent and a crystalline layered sodium silicate.
- Compositions in accordance with the invention also contain an oxygen bleach and optionally other, non surfactant, non-builder detergent ingredients.
- a wide range of surfactants can be used in the detergent compositions.
- anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
- Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C 12 -C 18 fatty source, preferably from a C 16 -C 18 fatty source.
- the cation is an alkali metal, preferably sodium.
- Preferred sulphate surfactants are alkyl sulphates having from 12 to 22, preferably 14 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
- the cation in each instance is again an alkali metal cation, preferably sodium.
- One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
- HLB hydrophilic-lipophilic balance
- the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
- Especially preferred nonionic surfactants of this type are the C 9 -C 15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C 14 -C 15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C 12 -C 14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
- Nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
- Compounds of this type and their use in detergent compositions are disclosed in EP-B 0070074, 0070077, 0075996 and 0094118.
- a further class of surfactants are the semi-polar surfactants such as amine oxides.
- Suitable amine oxides are selected from mono C 8 -C 20 , preferably C 10 -C 14 N-alkyl or alkenyl amine oxides and propylene-1,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono C 8 -C 16 , preferably C 10 -C 14 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- the detergent compositions can comprise from 5% to 50% by weight of surfactant but usually comprises from 5% to 30%, more preferably from 5% to 15% by weight.
- Combinations of surfactant types are preferred, more especially anionic-nonionic and also anionic-nonionic-cationic blends. Particularly preferred combinations are described in GB-A-2040987 and EP-A-0087914.
- the surfactants can be incorporated into the compositions as mixtures, it is preferable to control the point of addition of each surfactant in order to optimise the physical characteristics of the composition and avoid processing problems. Preferred modes and orders of surfactant addition are described hereinafter.
- compositions in accordance with the invention is a detergent builder system comprising a mixture of sodium aluminosilicate zeolite, a water soluble monomeric or oligomeric carboxylate chelating agent and a crystalline layered sodium silicate in defined amounts.
- preferred sodium aluminosilicate zeolites have the unit cell formula Na z [(AlO 2 ) z (SiO 2 ) y ] xH 2 O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
- the aluminosilicate materials are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water.
- the above aluminosilicate ion exchange materials are further characterised by a particle size diameter of from 0.1 to 10 micrometers, preferably from 0.2 to 4 micrometers.
- particle size diameter herein represents the average particle size diameter of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
- the aluminosilicate ion exchange materials are further characterised by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
- the aluminosilicate ion exchange materials herein are still further characterised by their calcium ion exchange rate which is at least 130 mg equivalent of CaCO 3 /litre/minute/(g/litre) [2 grains Ca ++ /gallon/minute/(gram/gallon)] of aluminosilicate (anhydrous basis), and which generally lies within the range of from 130 mg equivalent of CaCO 3 /litre/minute/(gram/litre) [2 grains/gallon/minute/ (gram/gallon)] to 390 mg equivalent of CaCO 3 /litre/minute/ (gram/litre) [6 grains/gallon/minute/(gram/gallon)], based on calcium ion hardness.
- Optimum aluminosilicates for builder purposes exhibit a calcium ion exchange rate of at least 260 mg equivalent of CaCO 3 /litre/minute/(gram/litre) [4 grains/gallon/minute/(gram/gallon)].
- Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available and can be naturally occurring materials, but are preferably synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in US Patent No. 3,985,669.
- Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite X, Zeolite HS and mixtures thereof.
- the crystalline aluminosilicate ion exchange material is Zeolite A and has the formula Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ]. xH 2 O wherein x is from 20 to 30, especially 27.
- the water-soluble monomeric or oligomeric organic carboxylate chelating agent can be selected from a wide range of compounds but preferably has a first carboxyl logarithmic acidity/constant (pK 1 ) of less than 9, preferably of between 2 and 8.5, more preferably of between 4 and 7.5.
- the logarithmic acidity constant is defined by reference to the equilibrium H + + A ⁇ H + A where A is the fully ionized carboxylate anion of the builder salt.
- acidity constants are defined at 25°C and at zero ionic strength.
- Literature values are taken where possible (see Stability Constants of Metal-Ion Complexes, Special Publication No. 25, The Chemical Society, London): where doubt arises they are determined by potentiometric titration using a glass electrode.
- the polycarboxylate has a pK Ca++ in the range from about 2 to about 7 especially from about 3 to about 6.
- the stability constant is defined at 25°C and at zero ionic strength using a glass electrode method of measurement as described in Complexation in Analytical Chemistry by Anders Ringbom (1963).
- the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- Monomeric and oligomeric builders can be selected from acyclic, alicyclic, heterocyclic and aromatic carboxylates having the general formulae wherein R 1 represents H,C 1-30 alkyl or alkenyl optionally substituted by hydroxy, carboxy, sulfo or phosphono groups or attached to a polyethylenoxy moiety containing up to 20 ethyleneoxy groups; R 2 represents H,C 1-4 alkyl, alkenyl or hydroxy alkyl, or alkaryl, sulfo, or phosphono groups;
- Suitable carboxylates containing one carboxy group include lactic acid, glycollic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 821,368, 821, 369 and 821,370.
- Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenediozy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
- Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
- Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarbozylates, cyclopentadienide pentacarbozylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
- Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
- the preferred polycarboxylates are hydroxycarbozylates containing up to three carboxy groups per molecule, more particularly citrates.
- the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts eg. citric acid or citrate/citric acid mixtures are also contemplated as components of builder systems useful in the present invention.
- the third element of the builder system is a crystalline layered sodium silicate having the general formula NaMSi x O 2x+1 . yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
- Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
- x in the general formula above can have a value of 2, 3 or 4 and is preferably 2. More preferably M is sodium and y is 0 and preferred examples of this formula comprise the ⁇ -, ⁇ -, ⁇ - and ⁇ -forms of Na 2 Si 2 O 5 .
- These materials are available from Hoechst AG FRG as respectively NaSKS-5, NaSKS-7, NaSKS-11 and NaSKS-6. The most preferred material is ⁇ -Na 2 Si 2 O 5 , NaSKS-6.
- detergent builder materials can also form part of the builder system but are not essential elements thereof. Such materials can be organic or inorganic in nature.
- Inorganic builder materials that can form optional elements of the builder system for the purposes of the invention include alkali metal carbonates, bicarbonates and silicates.
- Suitable organic materials include the organic phosphonates and amino polyalkylene phosphonates although these materials are less preferred where the minimisation of phosphorus compounds in the compositions is desired.
- Suitable water soluble organic salts are the homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB-A-1,596,756.
- Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000. These materials are normally used at levels of from 0.5% to 10% by weight more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
- the optional builder materials if present, will total no more than 25% by weight of the composition normally less than 20% and most usually less than 15% by weight.
- the builder system will comprise from 10% to 60% by weight of the compositions, more preferably from 20% to 60% by weight.
- the sodium aluminosilicate zeolite will comprise from 20% to 60% by weight of the mixture
- the monomeric or oligomeric carboxylate will comprise from 10% to 30% by weight of the mixture
- the crystalline layered silicate will comprise from 10% to 65% by weight of the mixture.
- the zeolite is present in an amount of from 25% to 50%
- the monomeric or oligomeric carboxylate comprises from 15% to 25%
- the layered silicate from 20% to 50% by weight of the builder system.
- the builder system incorporates a combination of auxiliary inorganic and organic builders such as sodium carbonate and maleic anhydride/acrylic acid copolymers in amounts of up to 25%.
- compositions in accordance with the invention also contain up to 40% of non-surfactant non detergent builder components including an oxygen bleach and optionally other ingredients.
- non-surfactant non detergent builder components including an oxygen bleach and optionally other ingredients.
- Anti-redeposition and soil-suspension agents, optical brighteners, soil release agents, dyes and pigments are examples of such optional ingredients and can be added in varying amounts as desired.
- Anti-redeposition and soil-suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
- Polymers of this type include copolymers of maleic anhydride with ethylene, methylvinyl ether, acrylic or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
- polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
- compositions in accordance with the present invention are their ability to maintain the suspension of insoluble particulate solids (ash) with reduced levels of polymeric polycarboxylate builder/anti redeposition agents or even, in preferred compositions of the invention, with no polymeric polycarboxylate present.
- a level of polymeric polycarboxylate of 5% in conventional products can be halved, i.e. to 2.5% with no increase in fabric ash level in compositions according to the present invention. If the polymeric polycarboxylate is removed entirely only a slight increase in fabric ash takes place in contrast to a virtual doubling of the ash level if the polymer is removed from a conventional formulation.
- compositions in accordance with the invention also show robustness in hardness control in under built situations, i.e. where insufficient detergent builder is available to control all of the mineral hardness present. This benefit is believed to arise because of the ability of the ternary builder system components to redistribute the calcium and magnesium hardness ions amongst themselves in underbuilt situations, taking advantage of the enhanced affinity of the crystalline layered silicate component for magnesium ion.
- compositions in accordance with the present invention are a reduction in damage to fabrics arising from the washing process. This loss is believed to arise from the interaction of heavy metal ions deposited on fabrics during the washing process with oxygen bleaches. Fabrics washed in compositions of the present invention show a level of deposition of heavy metal ions and a reduced tensile strength loss, relative to compositions in which the crystalline layered silicate component is replaced by a conventional amorphous silicate
- Preferred optical brighteners are anionic in character, examples of which are disodium 4,4 1 -bis-(2-diethanolamino-4-anilino-s-triazin-6-ylamino)stilbene-2,2 1 -disulphonate, disodium 4, 4 1 -bis-(2-morpholino-4-anilino-s-triazin-6-ylaminostilbene-2,2 1 -disulphonate, disodium 4,4 1 -bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2,2 1 -disulphonate, monosodium 4 1 ,4 11 -bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2-sulphonate, disodium 4,4 1 -bis-(2-anilino-4-(N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,
- Soil-release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0272033.
- a particular preferred polymer in accordance with EP-A-0272033 has the formula (CH 3 )(PEG) 43 ) 0.75 (POH) 0.25 [T-PO) 2.8 (T-PEG) 0.4 ]T(PO- H) 0.25 ((PEG) 43 CH 3 ) 0.75 where PEG is -(OC 2 H 4 )0-, PO is (OC 3 H 6 O) and T is (pcOC 6 H 4 CO).
- Certain polymeric materials such as polyvinyl pyrrolidones typically of MW 5000-20000, preferably 10000-15000, also form useful agents in preventing the transfer of labile dyestuffs between fabrics during the washing process.
- Another optional but highly preferred ingredient is a particulate inorganic perhydrate bleach.
- Any particulate inorganic perhydrate bleach can be used, in an amount of from 3% to 40% by weight, more preferably from 8% to 25% by weight and most preferably from 12% to 20% by weight of the compositions.
- Preferred examples of such bleaches are sodium perborate monohydrate and tetrahydrate and mixtures thereof.
- a peroxy carboxylic acid bleach precursor commonly referred to as a bleach activator
- a bleach activator which is preferably added in a prilled or agglomerated form.
- suitable compounds of this type are disclosed in British Patent Nos, 1586769 and 2143231 and a method for their formation into a prilled form is described in European Published Patent Application No. 0062523.
- Preferred examples of such compounds are tetracetyi ethylene diamine and sodium 3, 5, 5 trimethyl hexanoylozybenzene sulphonate.
- Bleach activators are normally employed at levels of from 0.5% to 10% by weight, more frequently from 1% to 8% and preferably from 2% to 6% by weight of the composition.
- a suds suppressor exemplified by silicones, and silica-silicone mixtures.
- Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms, exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent-impermable carrier. Alternatively the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
- useful silicone suds controlling agents can comprise a mixture of an alkylated siloxane, of the type referred to hereinbefore, and solid silica. Such mixtures are prepared by affixing the silicone to the surface of the solid silica.
- a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 nanometers to 20 nanometers and a specific surface area above 50 m 2 /g, intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
- a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3,933, 572.
- Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors.
- DC-544 commercially availably from Dow Corning, which is a siloxane/glycol copolymer.
- the suds suppressors described above are normally employed at levels of from 0.001% to 0.5% by weight of the composition, preferably from 0.01% to 0.1% by weight.
- the preferred methods of incorporation comprise either application of the suds suppressors in liquid form by spray-on to one or more of the major components of the composition or alternatively the formation of the suds suppressors into separate particulates that can then be mixed with the other solid components of the composition.
- the incorporation of the suds modifiers as separate particulates also permits the inclusion therein of other suds controlling materials such as C 20 -C 24 fatty acids, microcrystalline waxes and high MW copolymers of ethylene oxide and propylene oxide which would otherwise adversely affect the dispersibility of the matrix. Techniques for forming such suds modifying particulates are disclosed in the previously mentioned Bartolotta et al U.S. Patent No. 3,933,672.
- Another optional ingredient useful in the present invention is one or more enzymes.
- Preferred enzymatic materials include the commercially availably amylases, neutral and alkaline proteases, lipases, esterases and cellulases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in U.S. Patent 3,533,139.
- Fabric softening agents can also be incorporated into detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1,400,898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1514276 and EP-B-0011340. Their combination with mono C 12 -C 14 quaternary ammonium salts is disclosed in EP-B-0026528. Other useful organic fabric softening agents are the dilong chain amides as disclosed in EP-B-0242919. Additional organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0299575 and 0313146.
- Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
- Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
- these materials can be added to the aqueous slurry fed to the spray drying tower, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as a molten liquid on to other solid components of the composition.
- compositions of the invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation and preferred methods involve combinations of these techniques.
- a preferred method of making the compositions involves a combination of spray drying, agglomeration in a high speed mixer and dry mixing.
- Preferred detergent compositions in accordance with the invention also comprise at least two particulate multi-ingredient components.
- the first component comprises at least 20%, conventionally from 30% to 70%, but more preferably no more than 40% by weight of the composition and the second component from 1% to 50%, more preferably 10% to 40% by weight of the composition.
- the first component comprises a particulate incorporating an anionic surfactant in an amount of from 0.75% to 35% by weight of the powder and one or more inorganic and/or organic salts in an amount of from 99.25% to 65% by weight of the powder.
- the particulate can have any suitable form such as granules, flakes, prills, marumes or noodles but is preferably granular.
- the granules themselves may be agglomerates formed by pan or drum agglomeration or by in-line mixers but are preferably spray dried particles produced by atomising an aqueous slurry of the ingredients in a hot air stream which removes most of the water.
- the spray dried granules forming the first component may themselves be subjected to densification steps, eg. by high speed cutter mixers, to increase density before being reagglomerated.
- the first component is described hereinafter as a spray dried powder as this constitutes a preferred embodiment of the invention.
- An important characteristic of the principal anionic surfactant in the first component is that it should have a low rate of solubility in aqueous media at the water temperatures that prevail during the fill step of the wash cycle in an automatic washing machine.
- the water temperature during the fill step is predominantly in the range from 5°C to 20°C, more usually from 7°C to 12°C.
- Suitable anionic surfactants for the purposes of the first component have been found to be linear alkyl sulfate salts in which the alkyl group has an average of from 16 to 22 carbon atoms, and linear alkyl carboxylate salts in which the alkyl group has an average of from 16 to 24 carbon atoms.
- the alkyl groups for both types of surfactant are preferably derived from natural fats such as tallow. Shorter chain alkyl sulfates or carboxylates, in which the alkyl group is derived from sources comprising a mixture of alkyl moieties more than 40% of which contain 14 or less carbon atoms, are less suitable as they cause the first component to form a gel like mass during dissolution.
- the level of anionic surfactant in the spray dried powder forming the first component is from 0.75% to 4% by weight, more usually 2.5% to 25% preferably from 3% to 20% and most preferably from 5% to 15% by weight.
- Water-soluble surfactants such as linear alkyl benzene sulphonates can be included or alternatively may be applied subsequently to the spray dried powder by spray on.
- the other major ingredient of the spray dried powder is one or more inorganic or organic salts that provide the crystalline structure for the granules.
- the inorganic and/or organic salts may be water-soluble or water-insoluble, the latter type being comprised by the, or the major part of the, water-insoluble builders where these form part of the builder system.
- Suitable water soluble inorganic salts include the alkali metal carbonates, bicarbonates, sulphates and borates.
- Alkali metal silicates can also be present in the spray dried granule provided that aluminosilicate does not form part of the spray dried component.
- aluminosilicate builder be incorporated into the spray dried granule and, as indicated above, where this takes place, any silicate present should not form part of the spray dried component.
- incorporation of the silicate can be achieved in several ways, e.g. by producing a separate silicate containing spray dried particulate, by incorporating the silicate into an agglomerate of other ingredients, or more preferably by adding the silicate as a dry mixed solid ingredient.
- any of the previously mentioned optional builder salts can also be incorporated in the spray dried powder forming the first component.
- the spray dried powder can also include some or even all of the water soluble monomeric or oligomeric carboxylate chelating agent but this is less preferred as it tends to inhibit the rapid solution of this ingredient.
- the organic and/or inorganic salts comprise from 60% to 90% by weight of the first component, more preferably from 70% to 90% and most preferably from 75% to 85% by weight.
- the spray dried powder also normally contains up to 15% by weight of miscellaneous ingredients.
- first component is a spray dried powder
- optional ingredients included in the first component should be heat stable to the extent necessary to withstand the temperatures encountered in the spray drying process.
- first component is a spray dried powder it will normally be dried to a moisture content of from 7% to 11% by weight, more preferably from 8% to 10% by weight of the spray dried powder.
- Moisture contents of powders produced by other processes such as agglomeration may be lower and can be in the range 1-10% by weight.
- the particle size of the first component is conventional and preferably not more than 5% by weight should be above 1.4 mm, while not more than 10% by weight should be less than 0.15 mm in maximum dimension.
- Preferably at least 60% and most preferably at least 80% by weight of the powder lies between 0.7 mm and 0.25 mm in size.
- the bulk density of the particles should lie in the range from 350 g/litre to 650g/litre but is conventionally in the range from 540 to 600 g/litre. Bulk densities in the upper part of the range from 600-650 g/litre are particularly useful where production of so called concentrated products is desired. Bulk densities above this range may be produced if the spray dried powder is subjected to further processing steps such as size reduction in a high speed cutter/mixer followed by compaction. Alternatively, processes other than spray drying may be used to form the powder.
- a second component of a preferred composition in accordance with the invention is a particulate containing a water soluble surfactant.
- surfactants are listed hereinbefore but preferred surfactants are linear C 11 -C 15 alkyl benzene sulfonates and fatty C 14 -C 18 methyl ester sulphonates.
- the second component may have any suitable physical form i.e. it may take the form of flakes, prills, marumes, noodles, ribbons, or granules which may be spray-dried or non spray-dried agglomerates.
- the second component could in theory comprise the water soluble surfactant on its own, in practice at least one organic or inorganic salt is included to facilitate processing. This provides a degree of crystallinity, and hence acceptable flow characteristics, to the particulate and may be any one or more of the organic or inorganic salts present in the first component.
- the particle size range of the second component is not critical but should be such as to obviate segregation from the particles of the spray dried first component when blended therewith. Thus not more than 5% by weight should be above 1.4 mm while not more than 10% should be less than 0.15 mm in maximum dimension.
- the bulk density of the second component will be a function of its mode of preparation.
- the second component in spray dried granular form may have a density of from 350 g/litre to 650 g/litre but more preferably will be in the range from 500 g/litre to 630 g/litre.
- the preferred form of the second component is a mechanically mixed agglomerate which may be made by adding the ingredients dry or with an agglomerating agent to a pan agglomerator, Z blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050 F.R.G.
- the second component can be given a bulk density in the range from 650 g/litre to 1190 g/litre more preferably from 750 g/litre to 850 g/litre. This is particularly useful in formulating the so called 'concentrated' products.
- compositions include a level of alkali metal carbonate in the second component corresponding to an amount of from 3% to 15% by weight of the composition, more preferably from 5% to 12% by weight. This will provide a level of carbonate in the second component of from 20% to 40% by weight.
- a highly preferred ingredient of the second component is also a hydrated water insoluble aluminosilicate ion exchange material of the synthetic zeolite type, described hereinbefore, present at from 10% to 35% by weight of the second component.
- the amount of water insoluble aluminosilicate material incorporated in this way is from 1% to 10% by weight of the composition, more preferably from 2% to 8% by weight.
- the silicate may be incorporated in the first component or, if that also contains aluminosilicate, may be added as a solid, together with other dry mixed materials, to the first and second components.
- the surfactant salt is formed in situ in an inline mixer.
- the liquid acid form of the surfactant is added to a mixture of particulate anhydrous sodium carbonate and hydrated sodium aluminosilicate in a continuous high speed blender such as a Lodige KM mixer and neutralised to form the surfactant salt whilst maintaining the particulate nature of the mixture.
- the resultant agglomerated mixture forms the second component which is then added to other components of the product.
- the surfactant salt is pre-neutralised and added as a viscous paste to the mixture of the other ingredients.
- the mixer serves merely to agglomerate the ingredients to form the second component.
- part of the spray dried product comprising the first granular component is diverted and subjected to a low level of nonionic surfactant spray on before being reblended with the remainder.
- the second granular component is made using the preferred process described above.
- the first and second components together with other dry mix ingredients such as the carboxylate chelating agent, inorganic peroxygen bleach, bleach activator, soil-release polymer, silicate and enzyme are then fed to a conveyor belt, from which they are transferred to a horizontally rotating drum in which perfume and silicone suds suppressor are sprayed on to the product.
- a further drum mixing step is employed in which a low (approx. 2% by weight) level of finely divided crystalline aluminosilicate is introduced to increase density and improve granular flow characteristics.
- compositions in accordance with the invention can also benefit from delivery systems that provide transient localised high concentrations of product in the drum of an automatic washing machine at the start of the wash cycle, thereby also avoiding problems associated with loss of product in the pipework or sump of the machine.
- Delivery to the drum can most easily be achieved by incorporation of the composition in a bag or container from which it is rapidly releasable at the start of the wash cycle in response to agitation, a rise in temperature or immersion in the wash water in the drum.
- the washing machine itself may be adapted to permit direct addition of the compostion to the drum e.g. by a dispensing arrangement in the access door.
- Products comprising a detergent composition enclosed in a bag or container are usually designed in such a way that container integrity is maintained in the dry state to prevent egress of the contents when dry, but are adapted for release of the container contents on exposure to a washing environment, normally on immersion in an aqueous solution.
- the container will be flexible, such as a bag or pouch.
- the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
- it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
- a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
- laminated sheet products can be employed in which a central flexible layer is impregnated and/or coated with a composition and then one or more outer layers are applied to produce a fabric-like aesthetic effect.
- the layers may be sealed together so as to remain attached during use or may separate on contact with water to facilitate the release of the coated or impregnated material.
- An alternative laminate form comprises one layer embossed or deformed to provide a series of pouch-like containers into each of which the detergent components are deposited in measured amounts, with a second layer overlying the first layer and sealed thereto in those areas between the pouch-like containers where the two layers are in contact.
- the components may be deposited in particulate, paste or molten form and the laminate layers should prevent egress of the contents of the pouch-like containers prior to their addition to water.
- the layers may separate or may remain attached together on contact with water, the only requirement being that the structure should permit rapid release of the contents of the pouch-like containers into solution.
- the number of pouch-like containers per unit area of substrate is a matter of choice but will normally vary between 500 and 25,000 per square metre.
- Suitable materials which can be used for the flexible laminate layers in this aspect of the invention include, among others, sponges, paper and woven and non-woven fabrics.
- the preferred means of carrying out the process of the invention is to introduce the composition into the liquid surrounding the fabrics that are in the drum via a reusable dispensing device having walls that are permeable to liquid but impermeable to the solid composition.
- the support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
- the granular detergent products were prepared having compositions as shown below in parts by weight.
- Both products were made by a combination of spray drying, agglomeration and dry mixing techniques.
- a spray dried powder was made incorporating all of the TAS, approximately one quarter of the LAS, all of the Maleic anhydride/acrylic acid copolymer, DETPMP, CMC and brightener and part of the carbonate and zeolite builders.
- For Product A approximately 82% of the zeolite and 65% of the carbonate were included in the spray dried portion, while for Product B approximately 60% of the zeolite and 45% of the carbonate were added in this way.
- the spray dried product was passed through a Lodige KM high speed mixer/cutter and the 45E7 nonionic was sprayed on to the granules.
- the treated granules were then transferred to a conveyor belt.
- the remainder of the LAS, carbonate and zeolite were processed in a Lodige KM high speed mixer to form agglomerated particles which were fed to the conveyor belt.
- the other dry solid ingredients viz. the citrate, silicate, perborate and bleach activator were also added to the belt at the same time.
- the mixed particulates were subjected to a low intensity blending step in a mix drum, during which step the perfume and suds suppressor were sprayed on to the particulates to form the finished product.
- the test programme was designed, and contained sufficient replicates, to permit statistical treatment of the results.
- Product A was used in an amount of 95g per load whereas Product B was used in an amount of 79g per load. The difference reflected the higher concentration of ingredients per 100 parts of Product B and thus the need to use less weight in order to provide the same levels of non builder ingredients.
- the test programme used AEG Lavamat 980 automatic washing machines set to the No. 2 cycle. The machines were charged with water of 25° German Hardness having a 3:1 Ca:Mg ratio. Testing was carried out at three temperatures, viz.
- Each load comprised a mixture of naturally soiled white cotton fabric articles together with swatches soiled with a variety of stains viz. greasy, clay soil, enzymatic and bleachable, to permit the assessment of whiteness and stain removal performance.
- Each swatch comprised half of a pair, the other half being washed in the same machine using the comparison product. After washing, the fabrics were dried at ambient temperature and were then subjected to panelling by expert judges using a 1-5 Scheffe scale to characterise differences in whiteness and stain removal performance between Products A and B at the selected temperatures.
- Each product was used to wash a load comprising 2.72 kg of new cotton terry towelling fabric and the respective washed loads were then subjected to a further 14 complete wash cycles.
- compositions in accordance with the invention produce lower levels of inorganic salt deposition than those obtained with commercially available non-phosphate detergent products.
- compositions identical to, Composition B of Example I were prepared in the manner of, and having compositions identical to, Composition B of Example I other than the builder system differences shown below (values are in parts by weight in the composition).
- C D E Zeolite A 13.0 13.0 13.0 Citrate 6.0 6.0 6.0 NaSKS-6 11.0 11.0 - Silicate (2.0 Ratio) - - 13.75 MA/AA 4.25 2.0 2.0
- the products were used to conduct full scale washing machine tests in which terry towelling cotton swatches were included with 4 kg of clean fabric ballast loads and subjected to multiple wash cycles to determine the levels of heavy metal ions (Fe and Mn) and total ash (inorganic salts) building up on the fabrics after repeated washing.
- a heavy metal ion 'spike' of 2.5 ppm Fe as FeCl 3 and 0.2 ppm Mn as MnCl 2 was added to the water fed to the machines.
- the wash conditions were Machine Type Miele Hydromatic W698 Machine Cycle 95°C Cotton Water Hardness Newcastle upon Tyne (UK) City Water adjusted to give 25° German Hardness with Ca:Mg ratio of 3:1. (This water source typically contains 0-3ppm Cu).
- ppm heavy metal ion content
- ash total inorganic salt content
- compositions in accordance with the invention display similar ash and heavy metal ion contents.
- Composition D contains a level of polymeric polycarboxylate auxiliary builder which is ⁇ 50% of that used conventionally, showing that the use of the ternary builder system of the invention provides enhanced robustness to detergent compositions.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Emergency Medicine (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
- Forging (AREA)
- Color Television Systems (AREA)
- Television Systems (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9018157 | 1990-08-17 | ||
GB909018157A GB9018157D0 (en) | 1990-08-17 | 1990-08-17 | Detergent compositions |
PCT/US1991/005533 WO1992003525A1 (en) | 1990-08-17 | 1991-08-05 | Detergent compositions |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0543911A1 EP0543911A1 (en) | 1993-06-02 |
EP0543911A4 EP0543911A4 (en) | 1993-08-25 |
EP0543911B1 EP0543911B1 (en) | 1997-05-02 |
EP0543911B2 true EP0543911B2 (en) | 2000-11-08 |
Family
ID=10680876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91915442A Expired - Lifetime EP0543911B2 (en) | 1990-08-17 | 1991-08-05 | Detergent compositions |
Country Status (27)
Country | Link |
---|---|
EP (1) | EP0543911B2 (pt) |
JP (1) | JP3615756B2 (pt) |
CN (1) | CN1059930A (pt) |
AT (1) | ATE152474T1 (pt) |
AU (1) | AU661826B2 (pt) |
BR (1) | BR9106749A (pt) |
CA (1) | CA2088275A1 (pt) |
CZ (1) | CZ21693A3 (pt) |
DE (1) | DE69125938T3 (pt) |
DK (1) | DK0543911T4 (pt) |
EG (1) | EG19654A (pt) |
ES (1) | ES2100957T5 (pt) |
FI (1) | FI930673A0 (pt) |
GB (1) | GB9018157D0 (pt) |
GR (2) | GR3023501T3 (pt) |
HU (1) | HUT63649A (pt) |
IE (1) | IE912924A1 (pt) |
MA (1) | MA22257A1 (pt) |
MX (1) | MX9100708A (pt) |
NO (1) | NO930528L (pt) |
NZ (1) | NZ239436A (pt) |
PL (1) | PL172300B1 (pt) |
PT (1) | PT98654B (pt) |
SK (1) | SK10093A3 (pt) |
TR (1) | TR26080A (pt) |
TW (1) | TW217420B (pt) |
WO (1) | WO1992003525A1 (pt) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4034131C2 (de) * | 1990-10-26 | 1999-08-26 | Henkel Kgaa | Gerüststoff für Waschmittel |
GB9108639D0 (en) * | 1991-04-23 | 1991-06-12 | Procter & Gamble | Particulate detergent compositions |
GB9216409D0 (en) * | 1992-08-01 | 1992-09-16 | Procter & Gamble | Detergent compositions |
DE4304474A1 (de) * | 1993-02-15 | 1994-08-18 | Henkel Kgaa | Tensid- und builderhaltiges Waschmitteladditiv |
US5378388A (en) * | 1993-06-25 | 1995-01-03 | The Procter & Gamble Company | Granular detergent compositions containing selected builders in optimum ratios |
US5961662A (en) † | 1994-09-13 | 1999-10-05 | Kao Corporation | Washing method and clothes detergent composition |
GB2294704A (en) * | 1994-11-05 | 1996-05-08 | Procter & Gamble | Bleaching composition |
DE4440328A1 (de) * | 1994-11-11 | 1996-05-15 | Huels Chemische Werke Ag | Amphiphile Verbindungen mit mindestens zwei hydrophilen und mindestens zwei hydrophoben Gruppen auf der Basis von Amiden |
ES2216025T3 (es) * | 1995-04-20 | 2004-10-16 | Kao Corporation | Compuesto detergente blanqueante. |
ID16215A (id) * | 1996-03-11 | 1997-09-11 | Kao Corp | Komposisi deterjen untuk mencuci pakaian |
GB9605534D0 (en) * | 1996-03-15 | 1996-05-15 | Unilever Plc | Detergent compositions |
WO1997034978A1 (fr) * | 1996-03-19 | 1997-09-25 | Kao Corporation | Composition detergente granulaire a haute densite |
CN1074457C (zh) * | 1996-11-25 | 2001-11-07 | 魏忠汉 | 用粉煤灰制备洗用分子筛 |
EP0849355B1 (de) * | 1996-12-21 | 2004-03-17 | Clariant GmbH | Pulverförmige Wasch- und Reinigungsmittel-Komponente |
AU2284799A (en) * | 1998-02-11 | 1999-08-30 | Rhodia Chimie | Detergent compositions containing an amine silicone and a polymer inhibiting colour transfer |
GB2339203A (en) * | 1998-07-08 | 2000-01-19 | Procter & Gamble | A method of dipensing |
US6723693B1 (en) | 1999-07-08 | 2004-04-20 | The Procter & Gamble Company | Method for dispensing a detergent comprising an amionic/silicate agglomerate |
CN1317061C (zh) * | 2005-03-30 | 2007-05-23 | 长春师范学院 | 螯合性表面活性剂 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3144297A1 (de) † | 1981-11-07 | 1983-05-19 | Degussa Ag, 6000 Frankfurt | Phosphatsubstitut fuer waschmittel |
US4664839A (en) † | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
EP0240356A1 (en) † | 1986-04-04 | 1987-10-07 | Unilever Plc | Detergent powders and process for preparing them |
EP0283885A2 (de) † | 1986-07-18 | 1988-09-28 | Henkel Kommanditgesellschaft auf Aktien | Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation |
EP0337219A2 (de) † | 1988-04-15 | 1989-10-18 | Hoechst Aktiengesellschaft | Lagerstabilisiertes Waschmittel mit verstärkter Bleichwirkung |
EP0337217A2 (de) † | 1988-04-15 | 1989-10-18 | Hoechst Aktiengesellschaft | Waschmittel mit lagerstabilisiertem Bleichsystem |
JPH02178397A (ja) † | 1988-12-29 | 1990-07-11 | Lion Corp | 洗浄剤組成物 |
JPH02178399A (ja) † | 1988-12-29 | 1990-07-11 | Lion Corp | 粒状洗剤組成物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4605509A (en) * | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
DD234878A1 (de) * | 1985-03-01 | 1986-04-16 | Genthin Waschmittelwerk | Verfahren zur herstellung von waschmittelrohstoffgemischen |
DE3526405A1 (de) * | 1985-07-24 | 1987-02-05 | Henkel Kgaa | Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln |
JPH01153800A (ja) * | 1987-12-11 | 1989-06-15 | Lion Corp | 濃縮柔軟付与粒状洗剤組成物 |
DE3920704A1 (de) * | 1989-06-24 | 1991-01-03 | Hoechst Ag | Builder fuer textilwaschmittel |
-
1990
- 1990-08-17 GB GB909018157A patent/GB9018157D0/en active Pending
-
1991
- 1991-08-05 EP EP91915442A patent/EP0543911B2/en not_active Expired - Lifetime
- 1991-08-05 JP JP51475291A patent/JP3615756B2/ja not_active Expired - Lifetime
- 1991-08-05 CA CA002088275A patent/CA2088275A1/en not_active Abandoned
- 1991-08-05 DE DE69125938T patent/DE69125938T3/de not_active Expired - Lifetime
- 1991-08-05 HU HU93426A patent/HUT63649A/hu unknown
- 1991-08-05 SK SK10093A patent/SK10093A3/sk unknown
- 1991-08-05 PL PL91297965A patent/PL172300B1/pl unknown
- 1991-08-05 WO PCT/US1991/005533 patent/WO1992003525A1/en active IP Right Grant
- 1991-08-05 ES ES91915442T patent/ES2100957T5/es not_active Expired - Lifetime
- 1991-08-05 AT AT91915442T patent/ATE152474T1/de not_active IP Right Cessation
- 1991-08-05 BR BR919106749A patent/BR9106749A/pt not_active IP Right Cessation
- 1991-08-05 DK DK91915442T patent/DK0543911T4/da active
- 1991-08-05 CZ CS93216A patent/CZ21693A3/cs unknown
- 1991-08-05 AU AU84970/91A patent/AU661826B2/en not_active Ceased
- 1991-08-12 PT PT98654A patent/PT98654B/pt not_active IP Right Cessation
- 1991-08-13 TW TW080106365A patent/TW217420B/zh active
- 1991-08-15 EG EG49391A patent/EG19654A/xx active
- 1991-08-15 MA MA22537A patent/MA22257A1/fr unknown
- 1991-08-16 MX MX9100708A patent/MX9100708A/es unknown
- 1991-08-16 NZ NZ239436A patent/NZ239436A/xx unknown
- 1991-08-16 TR TR91/0794A patent/TR26080A/xx unknown
- 1991-08-16 IE IE292491A patent/IE912924A1/en not_active IP Right Cessation
- 1991-08-17 CN CN91108855.5A patent/CN1059930A/zh active Pending
-
1993
- 1993-02-15 NO NO93930528A patent/NO930528L/no unknown
- 1993-02-16 FI FI930673A patent/FI930673A0/fi not_active Application Discontinuation
-
1997
- 1997-05-20 GR GR970401151T patent/GR3023501T3/el unknown
-
2000
- 2000-12-21 GR GR20000402817T patent/GR3035134T3/el not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3144297A1 (de) † | 1981-11-07 | 1983-05-19 | Degussa Ag, 6000 Frankfurt | Phosphatsubstitut fuer waschmittel |
US4664839A (en) † | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
EP0164514B1 (de) † | 1984-04-11 | 1989-06-14 | Hoechst Aktiengesellschaft | Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und Verfahren zur Wasserenthärtung |
EP0240356A1 (en) † | 1986-04-04 | 1987-10-07 | Unilever Plc | Detergent powders and process for preparing them |
EP0283885A2 (de) † | 1986-07-18 | 1988-09-28 | Henkel Kommanditgesellschaft auf Aktien | Verfahren zur Herstellung von rieselfähigen alkalischen Reinigungsmitteln durch kompaktierende Granulation |
EP0337219A2 (de) † | 1988-04-15 | 1989-10-18 | Hoechst Aktiengesellschaft | Lagerstabilisiertes Waschmittel mit verstärkter Bleichwirkung |
EP0337217A2 (de) † | 1988-04-15 | 1989-10-18 | Hoechst Aktiengesellschaft | Waschmittel mit lagerstabilisiertem Bleichsystem |
JPH02178397A (ja) † | 1988-12-29 | 1990-07-11 | Lion Corp | 洗浄剤組成物 |
JPH02178399A (ja) † | 1988-12-29 | 1990-07-11 | Lion Corp | 粒状洗剤組成物 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0591203B1 (en) | Detergent compositions | |
EP0543911B2 (en) | Detergent compositions | |
EP0581895B1 (en) | Particulate detergent compositions | |
US5540855A (en) | Particulate detergent compositions | |
US5792738A (en) | Granular laundry detergent compositions containing stabilised percarbonate bleach particles | |
EP0634481B1 (en) | Detergent compositions | |
US5516449A (en) | Detergent compositions | |
EP0650518B1 (en) | Process of dispensing a high bulk density percarbonate-containing laundry detergent | |
CA2167159C (en) | Granular laundry detergent compositions containing stabilised percarbonate bleach particles | |
US5891837A (en) | Stabilized bleaching compositions | |
EP0633922B1 (en) | Concentrated laundry detergent containing stable amide peroxyacid bleach | |
EP0634483B1 (en) | Stabilised bleaching compositions | |
EP0634480B1 (en) | Detergent compositions | |
IE911056A1 (en) | Fabric cleaning process | |
CA2167160C (en) | Stabilised bleaching compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
RHK1 | Main classification (correction) |
Ipc: C11D 3/12 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19930707 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19950504 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 152474 Country of ref document: AT Date of ref document: 19970515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: RITSCHER & SEIFERT PATENTANWAELTE VSP |
|
REF | Corresponds to: |
Ref document number: 69125938 Country of ref document: DE Date of ref document: 19970605 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2100957 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3023501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970805 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19980127 |
|
26 | Opposition filed |
Opponent name: CLARIANT GMBH WERK KNAPSACK Effective date: 19980202 Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19980127 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Opponent name: CLARIANT GMBH WERK KNAPSACK |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20001108 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20001221 |
|
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Kind code of ref document: T5 Effective date: 20001213 |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080708 Year of fee payment: 18 Ref country code: DK Payment date: 20080709 Year of fee payment: 18 Ref country code: ES Payment date: 20080806 Year of fee payment: 18 Ref country code: NL Payment date: 20080715 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080816 Year of fee payment: 18 Ref country code: FR Payment date: 20080807 Year of fee payment: 18 Ref country code: AT Payment date: 20080708 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080808 Year of fee payment: 18 Ref country code: BE Payment date: 20080828 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20080704 Year of fee payment: 18 |
|
BERE | Be: lapsed |
Owner name: THE *PROCTER & GAMBLE CY Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: NL Ref legal event code: V1 Effective date: 20100301 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090806 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100831 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100708 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69125938 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69125938 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20110804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110806 |