EP0540884B1 - Procédé pour la fabrication de revêtement multicouche avec l'utilisation d'une laque transparente polymérisable radicalairement ou cationiquement - Google Patents

Procédé pour la fabrication de revêtement multicouche avec l'utilisation d'une laque transparente polymérisable radicalairement ou cationiquement Download PDF

Info

Publication number
EP0540884B1
EP0540884B1 EP92116937A EP92116937A EP0540884B1 EP 0540884 B1 EP0540884 B1 EP 0540884B1 EP 92116937 A EP92116937 A EP 92116937A EP 92116937 A EP92116937 A EP 92116937A EP 0540884 B1 EP0540884 B1 EP 0540884B1
Authority
EP
European Patent Office
Prior art keywords
curing
process according
coating
coating composition
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92116937A
Other languages
German (de)
English (en)
Other versions
EP0540884A1 (fr
Inventor
Udo Dr. Bastian
Manfred Dr. Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axalta Coating Systems Germany GmbH and Co KG
Original Assignee
Herberts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herberts GmbH filed Critical Herberts GmbH
Publication of EP0540884A1 publication Critical patent/EP0540884A1/fr
Application granted granted Critical
Publication of EP0540884B1 publication Critical patent/EP0540884B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/536Base coat plus clear coat type each layer being cured, at least partially, separately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment

Definitions

  • the invention relates to a method for producing a multi-layer coating with a mechanically stable, fast-drying clear lacquer coating based on radiation-curing systems.
  • Today's automotive OEM paints mostly consist of a clear coat / basecoat top coat, which is applied to an electrophoretically primed body coated with a filler.
  • Basecoat and clearcoat are preferably applied wet-on-wet, i.e. after a flash-off time, the basecoat is optionally baked with heating and after subsequent application of a clearcoat, e.g. is described in EP-A 38 127 and 402 772.
  • Suitable clear coats in this context are e.g. in EP-A-38 127 and 184 761.
  • the baking process in industrial serial painting requires long dryer sections, naturally it takes a certain amount of time until the paint is no longer tacky, so that special measures must be taken to avoid dust inclusions on the surface.
  • JP-A-6213 2570 describes UV clearcoats which serve to protect electrical instruments for the household and automotive industry. They are applied in a thin layer, there is no multiple pre-coating.
  • EP-A-0 118 705 and GB-A-2 226 566 describe UV-curable layers for the automotive underbody area as stone chip protection.
  • the Layers are applied up to 180 »m thick. They are soft and elastic and cannot be sanded.
  • EP-A-0 247 563 describes coatings which, as a topcoat, have a coating which, in addition to an isocyanate-hydroxyl group crosslinking reaction, is additionally crosslinked by UV radiation. Due to the chemical reaction, the overspray of the coating agent that occurs during application can no longer be subjected to recycling.
  • the object of the invention is to provide a painting process for a multi-layer coating, in particular for the motor vehicle industry, in which a clear coat is used as the top coat, which allows rapid crosslinking, in which the overspray is recyclable after application, and in which the obtained coating on the substrate gives a glossy or matt hard clear top coat.
  • this goal can be achieved by a process for producing a multi-layer coating, in which a liquid clear lacquer is applied to a previously dried basecoat layer (basecoat layer) and can only be crosslinked via radical and / or cationic polymerization.
  • the clear lacquer is applied with the shielding of daylight, if necessary with illumination with visible light with a wavelength above 550 nm.
  • the overspray accumulated when the clear lacquer is applied is collected and can be used again for repainting after reprocessing.
  • the clearcoat film is then cured by irradiation with high-energy radiation or is initiated by irradiation with high-energy radiation.
  • An advantage of the method according to the invention is that even temperature-sensitive substrates can be provided with a permanent top coat. Contamination of the freshly painted surface can also be avoided by short reaction and drying times. The surfaces obtained in this way have good optical behavior and high scratch resistance.
  • the coating systems which can be used according to the invention are radiation-curing coating compositions which crosslink exclusively via free-radical or cationic polymerization or combinations thereof.
  • a preferred embodiment are high-solids aqueous systems which are present as an emulsion.
  • Solvent-based coating agents can also be used. It is particularly preferred to use 100% paint systems that can be applied without solvents and without water.
  • the radiation-curing clearcoats can be formulated as unpigmented or transparent pigmented topcoats, optionally colored with soluble dyes.
  • the clear lacquer coatings can be applied to standard basecoats. These can be solvent-based, aqueous or powder base coats.
  • the basecoats contain conventional physically drying and / or chemically crosslinking binders, inorganic and / or organic colored pigments and / or effect pigments, such as. B. metallic or pearlescent pigments as well as other paint additives, such as. B. catalysts, leveling agents or anti-cratering agents.
  • These basecoats are applied to common substrates either directly or to pre-coated substrates.
  • the substrates can be z. B. with conventional primer, filler and intermediate layers, such as z. B. are common for multi-layer coatings in the motor vehicle sector. Metal or plastic parts are suitable as substrates.
  • the background layers are dried or baked under conditions such that they contain only a small proportion of volatile substances. Particularly at the time of the radiation-induced crosslinking reaction of the clear lacquer coating layer, no substantial proportions of volatile constituents should be contained in the base layer. Such constituents can cause gloss and adhesion problems in the clear lacquer film.
  • the base layer can be dried at ambient temperature or at temperatures up to 150 ° C. A chemical cross-linking reaction is not excluded.
  • the process according to the invention is based on metallic basecoats to achieve a particularly good metal effect formation as a base layer.
  • the workpiece After applying and drying the basecoat, the workpiece is coated with the radiation-curing topcoat.
  • the coating process until the workpiece emerges from the coating unit is carried out under illumination with visible light of a wavelength of over 550 nm or with exclusion of light.
  • necessary measures to shield other light sources are used, e.g. B. light locks at the entrances and exits of the painting systems, filters in front of light sources or anti-reflective measures. Only light sources are used whose emission spectrum begins above 550 nm. There are e.g. B. lamps equipped with UV filters or yellow filters. If necessary, the lighting can also be provided through windows from the outside.
  • the application of the radiation-curable lacquer can be carried out by all usual spray application methods, such as. B. compressed air spraying, airless spraying, high rotation, electrostatic spray application (ESTA), optionally coupled with hot spray application, such as. B. hot-air hot spraying, at temperatures of maximum 70 - 80 ° C, so that suitable application viscosities are achieved and no change in the coating material and the overspray to be reprocessed occurs during the briefly acting thermal load.
  • hot spraying can be designed in such a way that the paint material is only briefly heated in or shortly before the spray nozzle.
  • the spray booth is operated with an optionally temperature-controlled circulation, which is equipped with a suitable absorption medium for the overspray, e.g. B. the paint material is operated.
  • a suitable absorption medium for the overspray e.g. B. the paint material is operated.
  • the spray booth is made of materials that contaminate the recyclable material exclude and are not attacked by the circulating medium. Examples of this are stainless steel or suitable plastics.
  • the recycling unit essentially comprises a filtration unit and a mixing device which maintains a controllable ratio of fresh paint material to refurbished and possibly rotating paint material. Storage tanks and pumps as well as control devices are also available. If non-100% lacquer material is used, an admixing device is also necessary to keep volatile constituents, such as the organic solvent components or water, constant.
  • the application is such that preferably dry layer thicknesses of 10-80 »m, particularly preferably 30-60» m, are achieved.
  • the clear coat can optionally be applied in several layers.
  • the coated substrate is optionally subjected to the crosslinking process after a rest period.
  • the rest time is used, for example, for the course, for degassing the paint film or for evaporating volatile constituents, such as solvents, water or CO2, if the paint material has been applied with supercritical carbon dioxide as a solvent, such as. B. described in EP-A-321 607. If necessary, it can also be supported by elevated temperatures up to 80 ° C., preferably up to 60 ° C.
  • the actual radiation curing process can be carried out either with UV rays or electron beams or with actinic radiation emanating from other radiation sources.
  • work is preferably carried out under an inert gas atmosphere. This can be done, for example, by supplying CO2, N2 or by using a mixture of both directly on the substrate surface.
  • UV sources or electron beam sources are preferred as the radiation source.
  • UV radiation sources with emissions in the wavelength range of 180-420 nm, preferably 200-400 nm, are for example: optionally doped high-pressure, medium-pressure and low-pressure mercury lamps, gas discharge tubes, e.g. Xenon low pressure lamps, pulsed and non-pulsed UV lasers, UV spot lamps, such as. B. UV emitting diodes. So-called black light tubes are suitable as radiation sources emitting particularly in the long-wave UV range. If necessary, measures can be taken against the heat of the radiation source, e.g. B. by water or air cooling.
  • Electron beam sources are e.g. B. spot radiators working according to the cathode ray principle (e.g. from Polymerphysik, Tübingen) or linear cathodes working according to the Elektrocurtain R principle (e.g. from Energy Science Inc.). They have a radiation power of 100 keV to 1 MeV. Combinations of these radiation sources are also possible.
  • Both the electron sources and the UV radiation sources can also be designed to operate discontinuously. Laser light sources or electron sources are then particularly suitable. Another possibility for temporarily switching on and off (clockable) UV sources is by connecting z. B. movable shutters.
  • auxiliary elements conventional lighting control systems used in technical optics, such as. B. absorption filters, reflectors, mirrors, lens systems, or optical fibers can be used.
  • the irradiation can be carried out in such a way that the clear lacquer layer is continuously crosslinked in one step.
  • the arrangement of the radiation source is known in principle, it can be adapted to the conditions of the workpiece and the process parameters.
  • the workpiece as a whole can be irradiated, or a radiation curtain can be used that moves relative to the workpiece.
  • a punctiform radiation source can be guided over the substrate via an automatic device and initiate the crosslinking process.
  • the distance of the radiation source can be fixed or it is adjusted to a desired value of the substrate shape.
  • the distances between the radiation sources are preferably in the range of 2-25 cm, particularly preferably 5-10 cm, from the wet lacquer surface. If a UV laser is used, a larger distance is possible.
  • the radiation duration is, for example, in the range from 0.1 seconds to 30 minutes, depending on the coating system and radiation source. A time of less than 5 minutes is preferred.
  • the irradiation time is chosen so that complete curing is achieved, i. H. the formation of the required technological properties is guaranteed.
  • the inventive method can be particularly advantageous for the production of multi-layer coatings in the automotive sector, for. B. of automobile bodies or parts thereof.
  • thermal activation for crosslinking the coating agent on surfaces which can only be subjected to the radiation crosslinking process in an insufficient manner.
  • thermally activatable radical initiators it may be expedient to use thermally activatable radical initiators so that a thermally activated radical polymerization can be carried out after the irradiation or simultaneously with the irradiation.
  • cationically polymerizable coating agents it is not necessary to use special thermally activatable initiators.
  • the cationic polymerization initiated by the radiation energy also plants itself in the shadow areas e.g. B. not or only little irradiated areas. In this case, too, however, it is advantageous to heat to support the polymerization in the shadow areas.
  • radiation-curing clear lacquer coating compositions can be used which are known in principle and are described in the literature. They are either radical curing systems, i. H. The action of radiation on the coating agent gives rise to radicals which then trigger the crosslinking reaction, or it is a matter of cationically curing systems in which Lewis acids are formed by radiation from initiators and serve to trigger the crosslinking reaction.
  • the radically curing systems are e.g. B. prepolymers, such as poly- or oligomers, which have olefinic double bonds in the molecule. These prepolymers can optionally in reactive diluents, i.e. H. reactive liquid monomers.
  • coating compositions of this type can also contain customary initiators, light stabilizers, optionally transparent pigments, soluble dyes, and other coating assistants.
  • prepolymers or oligomers are (meth) acrylic-functional (meth) acrylic copolymers, epoxy resin (meth) acrylates that are free from aromatic structural units, polyester (meth) acrylates, polyether (meth) acrylates, polyurethane (meth) acrylates, unsaturated polyesters , Amino (meth) acrylates, melamine (meth) acrylates, unsaturated polyurethanes or silicone (meth) acrylates.
  • the molecular weight (Number average M n ) is preferably in the range from 200 to 10,000, particularly preferably from 500 to 2000.
  • (Meth) acrylic here and hereinafter means acrylic and / or methacrylic.
  • reactive diluents are used, they are generally used between 1-50% by weight, preferably 5-30% by weight, based on the total weight of prepolymers and reactive diluents. They can be mono-, di- or poly-unsaturated.
  • reactive diluents are: (meth) acrylic acid and its esters, maleic acid and its half esters, vinyl acetate, vinyl ether, substituted vinyl ureas, alkylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butanediol di ( meth) acrylate, vinyl (meth) acrylate, allyl (meth) acrylate, glycerol tri- (meth) acrylate, trimethylolpropane tri- (meth) acrylate, styrene, vinyl toluene, divinylbenzene, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipropylene glycol di (meth) acrylate and hexanediol di (meth) acrylate, and mixtures thereof. They serve to influence the viscosity and
  • Photoinitiators for radical curing systems can e.g. B. in amounts of 0.1-5% by weight, preferably 0.5-3% by weight, based on the sum of free-radically polymerizable prepolymers, reactive diluents and initiators. It is advantageous if their absorption is in the wavelength range from 260 -450 nm.
  • photoinitiators are benzoin and derivatives, benzil and derivatives, benzophenone and derivatives, acetophenone and derivatives, for example 2,2-diethoxyacetophenone, thioxanthone and derivatives, anthraquinone, 1-benzoylcyclohexanol, organophosphorus compounds, such as, for. B. acylphosphine oxides.
  • the photoinitiators can be used alone or in combination.
  • other synergistic components e.g. B. tertiary amines can be used.
  • thermolabile radicals Initiators are: organic peroxides, organic azo compounds or CC-cleaving initiators, such as dialkyl peroxides, peroxocarboxylic acids, peroxodicarbonates, peroxide esters, hydroperoxides, ketone peroxides, azodinitriles or benzpinacol silyl ethers.
  • CC-cleaving initiators are particularly preferred, since no thermal decomposition products are formed during thermal cleavage, which can lead to faults in the lacquer layer.
  • the preferred amounts are between 0.1 and 5% by weight, based on the sum of free-radically polymerizable prepolymers, reactive diluents and initiators.
  • the initiators can also be used in a mixture.
  • Binding agents for cationically polymerizable coating agents are, for example, polyfunctional epoxy oligomers which contain more than two epoxy groups in the molecule. It is advantageous if the binders are free from aromatic structures.
  • epoxy oligomers are described for example in DE-OS 36 15 790. It is, for example, polyalkylene glycol diglycidyl ether, hydrogenated bisphenol A glycidyl ether, epoxy urethane resins, glycerol triglycidyl ether, diglycidyl hexahydrophthalate, diglycidyl ester of dimer acids, epoxidized derivatives of (methyl) cyclohexene, such as, for. B.
  • the number average molecular weight of the polyepoxide compounds is preferably less than 10,000.
  • reactive thinners i.e. H. reactive liquid compounds, such as. B. cyclohexene oxide, butene oxide, butanediol diglycidyl ether or hexanediol diglycidyl ether.
  • reactive solvents are alcohols, polyalkylene glycols, polyalcohols, hydroxy-functional polymers, cyclic carbonates or water. These can also contain solid components, such as solid polyalcohols, such as trimethylolpropane.
  • Photoinitiators for cationically curing systems are used in amounts of 0.5-5% by weight, alone or in combination, based on the total of cationically polymerizable prepolymers, reactive diluents and initiators.
  • onium salts that Release Lewis acids photolytically under irradiation. Examples include diazonium salts, sulfonium salts or iodonium salts. Triarylsulfonium salts are particularly preferred.
  • Non-reactive solvents for free-radically and cationically curing systems are customary paint solvents, such as esters, ethers, ketones, for example butyl acetate, ethylene glycol ether, methyl ethyl ketone, methyl isobutyl ketone and aromatic hydrocarbons.
  • esters, ethers, ketones for example butyl acetate, ethylene glycol ether, methyl ethyl ketone, methyl isobutyl ketone and aromatic hydrocarbons.
  • C2-C2 alkanols and preferably water are also suitable as solvents.
  • Light stabilizers are preferably added to the clearcoats used according to the invention.
  • these are phenyl salicylates, benzotriazole and derivatives, HALS compounds and oxalanilide derivatives, if appropriate also in combination.
  • Usual concentrations are 0.5-5% by weight, preferably 1-2% by weight, based on the total clearcoat.
  • additives are, for example, elastifying agents, polymerization inhibitors, defoamers, leveling agents, antioxidants, transparent dyes or optical brighteners.
  • transparent colorless fillers and / or pigments can be added to the coating agent.
  • the amount is up to 10% by weight, based on the total clear coat. Examples are silicon dioxide, mica, magnesium oxide, titanium dioxide or barium sulfate.
  • the particle size is preferably less than 200 nm. In the case of UV-curable systems, care must be taken that the coating film remains transparent to UV radiation in the layer thickness used.
  • Other additives that can be used are, for example, conventional matting agents of an inorganic or organic type. These can be added in conventional amounts, for example up to 10% by weight.
  • matting agents are silicates, pyrogenic silicas, such as Aerosil, Bentone, or condensed and crosslinked urea-formaldehyde resins, natural and synthetic waxes.
  • the particle sizes Such matting agents are generally up to 100 »m, preferably up to 30» m.
  • the various crosslinking reactions can be started with mixtures of the corresponding initiators.
  • mixtures of UV initiators with different absorption maximums are possible.
  • different emission maxima of one or more radiation sources can be used. This can be done simultaneously or one after the other.
  • curing can be initiated with the radiation from one radiation source and continued with that of another.
  • the reaction can then be carried out in two or more stages, if appropriate also spatially separated.
  • the radiation sources used can be the same or different.
  • thermoly cleaving initiators can optionally be used in addition to one or more photoinitiators.
  • photoinitiators is not necessary for electron beam curing.
  • the two-stage or multi-stage mode of operation can be favorable in order to first achieve, for example, a gelation.
  • B. Avoid running on painted vertical surfaces.
  • the gelation is also favorable in solvent-containing systems in order to allow the solvent to be sealed off.
  • the photoinitiators are preferably chosen so that they do not disintegrate in light with a wavelength of over 550 nm. If thermally splitting initiators are used, they should be selected so that they do not disintegrate under the application conditions of the coating material. In this way it is possible to reprocess and use the overspray of the coating agent directly since a chemical reaction during the application is avoided.
  • the crosslinking density of the paint film can be adjusted via the functionality of the binder components used. The selection can be made in such a way that the crosslinked clear lacquer coating has sufficient hardness and an excessive degree of crosslinking is avoided in order to prevent films which are too brittle.
  • the process according to the invention gives multilayer coatings which comprise a clear lacquer coating with high scratch resistance and high gloss and with high mechanical resistance.
  • the overspray of the coating agent to be applied can be directly recycled on the basis of the process parameters and the chosen crosslinking mechanism.
  • the method according to the invention is particularly suitable for use in automotive serial painting, for example for painting automobile bodies and their parts.
  • the radiation-curing clearcoats were applied in a room illuminated exclusively by red light sources (light wavelength greater than 600 nm).
  • a radiation-curable clear lacquer coating agent was formulated by mixing the following components: Parts by weight 44.5 Novacure 3200 (aliphatic epoxy acrylate from Interorgana) 32.2 Ebecryl 264 (aliphatic urethane acrylate from UCB) 3.0 Irgacure 184 (photoinitiator from CIBA) 10.0 dipropylene glycol diacrylate 10.0 trimethylolpropane triacrylate 0.3 Ebecryl 350 (silicone acrylate from UCB)
  • a lacquer structure was then produced as follows: A KTL-primed (20 »m) and pre-coated with a commercially available filler (35» m) was coated once with conventional water-based paint, in a second case with solvent-based paint (15 »m dry film thickness) and then in both cases for 20 min at 140 ° C branded. The above lacquer system was then applied in a layer thickness of 35 »m.
  • the horizontal sample sheet was irradiated for curing at a belt speed of 9 m / min with two medium pressure mercury lamps of 100 W / cm each at a distance of 10 cm from the surface to be hardened (irradiation time thus 1 - 2 sec).
  • a well-adhering, glossy and hard surface was obtained both on water-based coat and on conventional base-coat.
  • the sticky back which was only partially cross-linked by radiation, was baked for 15 minutes at 110 ° C. in a forced air oven.
  • Example 1 was repeated with the same painting result. Only the basecoat layers were baked here at 120 ° C for 30 minutes and pre-coated polycarbonate sheets were used.
  • Example 1 To 100 parts of the clear lacquer coating agent from Example 1, 2 parts of anthracene were added as a sensitizer. The application was carried out as described in Example 1. Subsequently, at a belt speed of 1 m / min, lying was irradiated with 10 black light tubes at a distance of 10 cm from the wet lacquer surface (irradiation time thus 90-120 sec). A sticky, partially cross-linked surface was obtained. The sample sheet was then suspended for 5 minutes and then irradiated freely suspended by uniformly moving the still sticky surface at a distance of 10 cm within 5 seconds on a medium-pressure mercury lamp as mentioned in Example 1. A painting result as mentioned in Example 1 was obtained. The surface was run-free.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Claims (13)

  1. Procédé de production d'un laquage multicouche par dépôt d'un revêtement de vernis transparent sur une couche de peinture de base colorée et/ou à effet spécial réticulée ou séchée caractérisé en ce que pour produire le revêtement de vernis transparent on utilise un revêtement durcissant exclusivement par voie radicalaire et/ou polymérisation cationique, le dépôt du revêtement a lieu avec éclairage par une lumière d'une longueur d'onde supérieure à 550 nm ou à l'abri de la lumière, ensuite on initialise le durcissement par un rayonnement énergétique et/ou on poursuit ainsi le durcissement complet.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on initialise le durcissement et/ou on le poursuit complètement avec un rayonnement UV dans le domaine de longueurs d'ondes de 180 à 420 nm.
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on initialise et/ou on réalise complètement le durcissement par rayonnement électronique.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on réalise le durcissement avec deux ou plusieurs sources de rayonnement énergétique successivement en deux étapes ou plus.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on réalise le durcissement après initialisation du durcissement par rayonnement énergétique, en plus par des moyens thermiques ou on poursuit le durcissement par des moyens thermiques.
  6. Procédé selon la revendication 5, caractérisé en ce qu'on réalise un revêtement durcissable par polymérisation radicalaire, qui contient un ou plusieurs photoinitiateurs et un ou plusieurs initiateurs de radicaux activables thermiquement.
  7. Procédé selon la revendication 5, caractérisé en ce qu'on le réalise avec un revêtement durcissable par polymérisation cationique, qui contient un ou plusieurs photoinitiateurs.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on le réalise avec un revêtement qui contient des pigments transparents et/ou des colorants solubles.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un revêtement qui est sensiblement exempt de solvants ou qui contient de l'eau comme solvant.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on dépose le revêtement de vernis transparent de façon à obtenir une épaisseur de couche sèche de 10-80 »m.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on applique le revêtement par dépôt par pulvérisation et qu'on recycle le surplus de pulvérisation obtenu après complément le cas échéant des teneurs volatiles, pour réaliser à nouveau le dépôt par pulvérisation.
  12. Utilisation de revêtements durcissables par polymérisation radicalaire et/ou cationique transparents contenant le cas échéant des pigments transparents et/ou des colorants solubles comme vernis transparents lors de la préparation de laquages multicouches.
  13. Utilisation selon la revendication 12 pour produire des laquages multicouches dans le secteur des véhicules automobiles.
EP92116937A 1991-10-08 1992-10-03 Procédé pour la fabrication de revêtement multicouche avec l'utilisation d'une laque transparente polymérisable radicalairement ou cationiquement Expired - Lifetime EP0540884B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4133290 1991-10-08
DE4133290A DE4133290A1 (de) 1991-10-08 1991-10-08 Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken

Publications (2)

Publication Number Publication Date
EP0540884A1 EP0540884A1 (fr) 1993-05-12
EP0540884B1 true EP0540884B1 (fr) 1995-06-28

Family

ID=6442255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92116937A Expired - Lifetime EP0540884B1 (fr) 1991-10-08 1992-10-03 Procédé pour la fabrication de revêtement multicouche avec l'utilisation d'une laque transparente polymérisable radicalairement ou cationiquement

Country Status (8)

Country Link
US (1) US5486384A (fr)
EP (1) EP0540884B1 (fr)
JP (1) JPH05222319A (fr)
KR (1) KR930007519A (fr)
AT (1) ATE124299T1 (fr)
CA (1) CA2079498A1 (fr)
DE (2) DE4133290A1 (fr)
ES (1) ES2076643T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048824A1 (de) 2009-10-09 2011-04-28 Linde Ag Vorrichtung zur Strahlungshärtung von Werkstücken
DE102010013342A1 (de) 2010-03-30 2011-10-06 Daimler Ag Verfahren und Vorrichtung zum Beschichten einer Objektoberfläche mit einer strahlungshärtbaren Substanz

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215070A1 (de) * 1992-05-07 1993-11-11 Herberts Gmbh Verfahren zur Herstellung von Mehrschichtlackierungen
DE4421558C2 (de) * 1994-06-20 2000-02-03 Maximilian Zaher Verfahren zum Beschichten von Metallsubstraten und nach dem Verfahren beschichtete Metallerzeugnisse
KR100454366B1 (ko) * 1995-11-16 2005-04-28 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 가교결합성하이드록시작용성폴리디엔중합체코팅조성물및이의제조방법
JP3786964B2 (ja) * 1995-12-06 2006-06-21 関西ペイント株式会社 塗膜形成方法
DE19546899C1 (de) * 1995-12-15 1997-01-09 Herberts Gmbh Überzugsmittel und Verwendung des Überzugsmittels
DE19635447C1 (de) * 1996-08-31 1997-11-20 Herberts Gmbh Verfahren zur Herstellung einer Reparaturlackierung
US5922473A (en) * 1996-12-26 1999-07-13 Morton International, Inc. Dual thermal and ultraviolet curable powder coatings
DE19709467C1 (de) * 1997-03-07 1998-10-15 Basf Coatings Ag Beschichtungsmittel sowie Verfahren zur Herstellung von Mehrschichtlackierungen
DE19709560C1 (de) * 1997-03-07 1998-05-07 Herberts Gmbh Überzugsmittel zur Mehrschichtlackierung und Verwendung der Überzugsmittel in einem Verfahren zur Lackierung
DE19709465C2 (de) 1997-03-07 2001-07-12 Basf Coatings Ag Beschichtungsmittel, Verfahren zur Herstellung von Mehrschichtlackierungen und Verwendung der Beschichtungsmittel hierfür
US5891942A (en) * 1997-05-01 1999-04-06 Fibre Glass-Evercoat Company, Inc. Coating composition with improved water and mar resistance
US6488993B2 (en) 1997-07-02 2002-12-03 William V Madigan Process for applying a coating to sheet metal
DE19736083A1 (de) * 1997-08-20 1999-02-25 Basf Coatings Ag Mehrschichtlackierungen und Verfahren zu deren Herstellung
DE19751481A1 (de) * 1997-11-20 1999-07-29 Herberts & Co Gmbh Verfahren zur mehrschichtigen Lackierung von Substraten
DE19751478A1 (de) * 1997-11-20 1999-06-24 Herberts & Co Gmbh Verfahren zur mehrschichtigen Lackierung von Substraten
US6531188B1 (en) 1997-11-20 2003-03-11 E. I. Du Pont De Nemours And Company Method for multi-layered coating of substrates
US6534130B1 (en) 1997-11-20 2003-03-18 E. I. Du Pont De Nemours And Company Method for multi-layered coating of substrates
ATE214643T1 (de) 1997-11-20 2002-04-15 Du Pont Verfahren zur mehrschichtigen lackierung von substraten
DE19751479A1 (de) * 1997-11-20 1999-07-29 Herberts & Co Gmbh Verfahren zur mehrschichtigen Lackierung von Substraten
DE19857941C2 (de) * 1998-12-16 2002-08-29 Herberts Gmbh Verfahren zur Mehrschichtlackierung
DE19857940C1 (de) * 1998-12-16 2000-07-27 Herberts Gmbh Verfahren zur Mehrschichtlackierung mit strahlenhärtbaren Beschichtungsmitteln
DE19908001A1 (de) 1999-02-25 2000-08-31 Basf Coatings Ag Hochkratzfeste Mehrschichtlackierung, Verfahren zu ihrer Herstellung und ihre Verwendung
US6630211B1 (en) 1999-02-25 2003-10-07 Basf Coatings Ag Utilization of tricyclodecandimethanol for producing multilayer lacquers
DE19909894A1 (de) 1999-03-06 2000-09-07 Basf Coatings Ag Sol-Gel-Überzug für einschichtige oder mehrschichtige Lackierungen
DE19914898C2 (de) 1999-04-01 2002-10-24 Basf Coatings Ag Vernetzungsmittel für auf der Basis von Pyrimidin für thermisch härtbare Zusammensetzungen und deren Verwendung
DE19914896A1 (de) 1999-04-01 2000-10-05 Basf Coatings Ag Thermisch und/oder mit aktinischer Strahlung härtbarer wäßriger Beschichtungsstoff und seine Verwendung
DE19920799A1 (de) 1999-05-06 2000-11-16 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19921223A1 (de) * 1999-05-07 2000-11-16 Herberts Gmbh & Co Kg Verfahren zur Elektrotauchlackierung von Kanten aufweisenden Substraten
DE19921457B4 (de) 1999-05-08 2006-05-04 Basf Coatings Ag Modulsystem zur Herstellung wäßriger Beschichtungsstoffe, Verfahren zu deren Herstellung und Verwendung sowie damit hergestellte Lackierungen
DE19924172A1 (de) 1999-05-25 2000-11-30 Basf Coatings Ag Beschichtungsstoff mit einer Mischung aus Kieselsäuren und Harnstoff und/oder Harnstoffderivaten
US6231932B1 (en) 1999-05-26 2001-05-15 Ppg Industries Ohio, Inc. Processes for drying topcoats and multicomponent composite coatings on metal and polymeric substrates
US7011869B2 (en) * 1999-05-26 2006-03-14 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with multi-component composite coating compositions
US6596347B2 (en) 1999-05-26 2003-07-22 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with a first powder coating and a second powder coating
US6113764A (en) * 1999-05-26 2000-09-05 Ppg Industries Ohio, Inc. Processes for coating a metal substrate with an electrodeposited coating composition and drying the same
US6863935B2 (en) 1999-05-26 2005-03-08 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with multi-component composite coating compositions
US6221441B1 (en) 1999-05-26 2001-04-24 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with liquid basecoat and powder topcoat
US6291027B1 (en) 1999-05-26 2001-09-18 Ppg Industries Ohio, Inc. Processes for drying and curing primer coating compositions
DE19924674C2 (de) * 1999-05-29 2001-06-28 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19932497A1 (de) 1999-07-12 2001-01-18 Basf Coatings Ag Wäßriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE19938759A1 (de) 1999-08-16 2001-02-22 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung hochkratzfester mehrschichtiger Klarlackierungen
DE19940858A1 (de) 1999-08-27 2001-03-01 Basf Coatings Ag Sol-Gel-Überzug für einschichtige oder mehrschichtige Lackierungen
DE19947433A1 (de) * 1999-10-02 2001-04-19 Herberts Gmbh & Co Kg Verfahren zur Herstellung von transparenten Versiegelungsschichten
ES2226930T3 (es) * 1999-10-02 2005-04-01 E.I. Du Pont De Nemours And Company Procedimiento para la produccion de barnizados de dos capas de barniz de base/barniz y transparente y/o capas de sellado transparente.
AU1455701A (en) * 1999-11-02 2001-05-14 Ppg Industries Ohio, Inc. Liquid coating systems for metal stock, metal stock coated therewith, and processes for preparing such coated metal stock
DE19953203A1 (de) 1999-11-05 2007-12-06 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Mehrschichtlackierungen unter Verwendung selbstvernetzender Pfropfmischpolymerisate von Polyurethanen sowie neue selbstvernetzende Polyurethane und ihre Propfmischpolymerisate
DE19957900A1 (de) * 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas
CA2396815A1 (fr) * 1999-12-06 2001-06-07 Allied Photochemical, Inc. Compositions reticulables sous l'effet des uv pour la production de peintures multicouches
DE19958726B4 (de) * 1999-12-06 2004-01-15 Basf Coatings Ag Pulverslurry und deren Verwendung zur Herstellung einer farb- und/oder effektgebenden Mehrschichtlackierung auf einem grundierten oder ungrundierten Substrat
DE19964282B4 (de) * 1999-12-06 2004-01-29 Basf Coatings Ag Verfahren zur Herstellung einer farb- und/oder effektgebenden Mehrschichtlackierung auf einem grundierten oder ungrundierten Substrat und mit Hilfe des Verfahrens herstellbare Mehrschichtlackierungen
DE10004487A1 (de) 2000-02-02 2001-08-16 Basf Coatings Ag Physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbare wässrige Zusammensetzungen und ihre Folgeprodukte sowie deren Herstellung
DE10004494A1 (de) 2000-02-02 2001-08-16 Basf Coatings Ag Physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbarer wässriger Beschichtungsstoff und seine Verwendung
DE10004726A1 (de) * 2000-02-03 2001-08-16 Basf Coatings Ag Thermisch und/oder mit aktinischer Strahlung härtbarer wäßriger Beschichtungsstoff und seine Verwendung
DE10009822C1 (de) * 2000-03-01 2001-12-06 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
US6350792B1 (en) * 2000-07-13 2002-02-26 Suncolor Corporation Radiation-curable compositions and cured articles
DE10041636A1 (de) * 2000-08-24 2002-03-28 Basf Coatings Ag Thermisch härtbares Stoffgemisch und seine Verwendung
DE10041634C2 (de) 2000-08-24 2002-10-17 Basf Coatings Ag Wäßrige Dispersion und ihre Verwendung zur Herstellung von thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen, Klebstoffen und Dichtungsmassen
US6685985B2 (en) 2001-02-09 2004-02-03 Basf Corporation Method of improving the appearance of coated articles having both vertical and horizontal surfaces, and coating compositions for use therein
DE10126651A1 (de) 2001-06-01 2002-12-12 Basf Coatings Ag Pulverlacksuspensionen (Pulverslurries) und Pulverlacke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10129899A1 (de) 2001-06-21 2003-01-09 Basf Coatings Ag Physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbarer wäßriger Beschichtungsstoff und seine Verwendung
DE10130972C1 (de) 2001-06-27 2002-11-07 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen aus thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen und mit dem Verfahren herstellbare Lackierungen
US6582770B2 (en) 2001-07-31 2003-06-24 E.I. Du Pont De Nemours And Company Process for coating
US6852771B2 (en) 2001-08-28 2005-02-08 Basf Corporation Dual radiation/thermal cured coating composition
US6835759B2 (en) 2001-08-28 2004-12-28 Basf Corporation Dual cure coating composition and processes for using the same
DE10200929A1 (de) * 2002-01-12 2003-07-31 Basf Coatings Ag Polysiloxan-Sole, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10242719A1 (de) 2002-09-13 2004-03-18 Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg Vorrichtung zur Härtung strahlungshärtbarer Beschichtungen
DE10345903B4 (de) 2003-06-25 2012-05-31 Daimler Ag Reaktive thermisch oder kombiniert thermisch und UV-initiiert härtbare Lacke, deren Verwendung sowie Verfahren zu deren Härtung
DE102004029667A1 (de) 2003-09-04 2005-04-07 Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg Verfahren und Vorrichtung zur Härtung einer strahlenhärtbaren Beschichtung sowie Bestrahlungskammer
US7399793B2 (en) * 2003-10-31 2008-07-15 Basf Corporation Coating composition curable with ultraviolet radiation
EP1680323A4 (fr) * 2003-11-03 2007-08-08 M I 6 Technologies Inc Film de protection de peinture applique par pulverisation et procede d'application de celui-ci
DE10352447A1 (de) * 2003-11-11 2005-06-16 Dupont Performance Coatings Gmbh & Co Kg Verfahren zur Herstellung einer Klarlackdeckschicht auf Kraftfahrzeugkarossen
DE10353638A1 (de) 2003-11-17 2005-06-23 Basf Coatings Ag Strukturviskose, wässrige Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102004017047B4 (de) * 2004-04-02 2007-05-16 Hoenle Ag Dr Verfahren und Vorrichtung zur Härtung von radikalisch polymerisierbaren Beschichtungen
US7510746B2 (en) * 2004-06-04 2009-03-31 E.I. Du Pont De Nemours And Company Process for production of multilayer coating including curing clear-coat composition with high-energy radiation
DE102004030674A1 (de) 2004-06-24 2006-01-19 Basf Ag Vorrichtung und Verfahren zum Härten mit energiereicher Strahlung unter Inertgasatmosphäre
DE102004044534B4 (de) * 2004-07-01 2006-05-11 Daimlerchrysler Ag Verfahren zur Aushärtung von Lacken
US7297397B2 (en) * 2004-07-26 2007-11-20 Npa Coatings, Inc. Method for applying a decorative metal layer
DE102004048005A1 (de) * 2004-10-01 2006-04-13 Dr. Hönle AG Gasentladungslampe, System und Verfahren zum Härten von durch UV-Licht härtbare Materialien sowie durch UV-Licht gehärtetes Material
DE102005044784A1 (de) 2004-12-27 2006-07-13 Daimlerchrysler Ag Verfahren zur Aushärtung einer Zusammensetzung
US20060173122A1 (en) * 2005-02-01 2006-08-03 Carmen Flosbach Non-aqueous, liquid coating compositions curable by free-radical polymerization of olefinic double bonds
US20060199028A1 (en) * 2005-03-02 2006-09-07 Dimitry Chernyshov Process for coating
US20070185266A1 (en) * 2006-02-07 2007-08-09 Carmen Flosbach Non-aqueous, liquid coating compositions curable by free-radical polymerization of olefinic double bonds
CA2650477C (fr) 2006-04-27 2014-10-14 Sachtleben Chemie Gmbh Couche de fond durcissable aux uv
JP2007319800A (ja) * 2006-06-01 2007-12-13 Ulvac Japan Ltd インク塗布装置
DE102006041753B4 (de) * 2006-09-04 2010-04-15 Wolf Verwaltungs Gmbh & Co. Kg Trocknungskabine
DE102008014717A1 (de) 2006-09-18 2009-09-24 Nano-X Gmbh Verfahren zur Herstellung eines hoch abriebfesten Fahrzeuglackes, Fahrzeuglack und dessen Verwendung
US20080085402A1 (en) * 2006-10-09 2008-04-10 Leininger Marshall E Method for applying a decorative layer and protective coating
DE102007060105A1 (de) * 2007-12-13 2009-06-18 Eisenmann Anlagenbau Gmbh & Co. Kg Vorrichtung zum Trocknen von Gegenständen, insbesondere lackierten Fahrzeugkarosserien
US8236479B2 (en) * 2008-01-23 2012-08-07 E I Du Pont De Nemours And Company Method for printing a pattern on a substrate
US20090191482A1 (en) * 2008-01-30 2009-07-30 E.I. Du Pont De Nemours And Company Device and method for preparing relief printing form
US8241835B2 (en) 2008-01-30 2012-08-14 E I Du Pont De Nemours And Company Device and method for preparing relief printing form
DE102008010346B4 (de) * 2008-02-14 2019-05-09 Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg UV-härtbare Zusammensetzung, ihre Verwendung als Beschichtungsmittel und Verfahren zur Lackierung von Fahrzeugachsen
DE102008017356A1 (de) 2008-04-04 2009-10-15 Airbus Deutschland Gmbh Nachleuchtende Beschichtung für Innenkabinen
DE102008054283A1 (de) 2008-11-03 2010-06-02 Basf Coatings Japan Ltd., Yokohama Farb- und/oder effektgebende Mehrschichtlackierungen mit pigmentfreien Lackierungen als Füller-Ersatz, ihre Herstellung und Verwendung
US8899148B2 (en) 2009-07-02 2014-12-02 E I Du Pont De Nemours And Company Method for printing a material onto a substrate
DE102009046407A1 (de) * 2009-11-04 2011-05-05 Dürr Systems GmbH Vorrichtung zur Strahlungsbehandlung einer Beschichtung
DE102010018704A1 (de) 2010-04-29 2011-11-03 Daimler Ag Vorrichtung und Verfahren zum Härten einer Beschichtung eines Bauteils
EP2748678B1 (fr) 2011-08-26 2018-07-04 E. I. du Pont de Nemours and Company Procédé de préparation d'une forme d'impression à reliefs
US9097974B2 (en) 2012-08-23 2015-08-04 E I Du Pont De Nemours And Company Method for preparing a relief printing form
DE202014100482U1 (de) * 2014-02-04 2015-05-05 P.A. Jansen Gmbh U. Co., Kg Farblose, mit Kreide entfernbar beschreibbare Wandfarbe
DE102014007805A1 (de) 2014-05-27 2015-12-03 WindplusSonne GmbH Solarabsorber, Verfahren zu seiner Herstellung und seine Verwendung
DE102014013600A1 (de) 2014-09-13 2016-03-17 WindplusSonne GmbH Solarabsorber, Verfahren zu seiner Herstellung und seine Verwendung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073609B (en) * 1980-04-14 1984-05-02 Ici Ltd Coating process
US4326001A (en) * 1980-10-01 1982-04-20 Gaf Corporation Radiation cured coating and process therefor
US4504374A (en) * 1983-03-09 1985-03-12 Desoto, Inc. Ultraviolet cured coating method to provide stone chip resistance
DE3322037A1 (de) * 1983-06-18 1984-12-20 Basf Farben + Fasern Ag, 2000 Hamburg Ueberzugsmasse, insbesondere zur herstellung einer transparenten deckschicht
US4618659A (en) * 1984-12-05 1986-10-21 Ppg Industries, Inc. Low molecular weight acrylic polymers
GB2171030B (en) * 1985-01-10 1988-09-28 Kansai Paint Co Ltd Coating method
JPS61261365A (ja) * 1985-05-14 1986-11-19 Nippon Oil Co Ltd 光硬化性被覆組成物
JPH0689293B2 (ja) * 1986-05-27 1994-11-09 日本油脂株式会社 紫外線硬化型塗料
ATE94782T1 (de) * 1987-12-21 1993-10-15 Union Carbide Corp Verwendung von superkritischen fluessigkeiten als verduenner beim aufspruehen von ueberzuegen.
EP0323061B1 (fr) * 1987-12-31 1993-07-14 Minnesota Mining And Manufacturing Company Procédé pour durcir des revêtements organiques utilisant de la chaleur de condensation et de l'énergie rayonnante
GB2226566B (en) * 1988-12-12 1992-04-08 Croda Applic Chemicals Limited Automotive sealing process
DE3919028A1 (de) * 1989-06-10 1990-12-13 Hoechst Ag Ueberzugsmasse, verfahren zur herstellung von ueberzuegen und damit beschichtete substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048824A1 (de) 2009-10-09 2011-04-28 Linde Ag Vorrichtung zur Strahlungshärtung von Werkstücken
DE102010013342A1 (de) 2010-03-30 2011-10-06 Daimler Ag Verfahren und Vorrichtung zum Beschichten einer Objektoberfläche mit einer strahlungshärtbaren Substanz

Also Published As

Publication number Publication date
ES2076643T3 (es) 1995-11-01
CA2079498A1 (fr) 1993-04-09
US5486384A (en) 1996-01-23
DE4133290A1 (de) 1993-04-15
ATE124299T1 (de) 1995-07-15
JPH05222319A (ja) 1993-08-31
EP0540884A1 (fr) 1993-05-12
KR930007519A (ko) 1993-05-20
DE59202711D1 (de) 1995-08-03

Similar Documents

Publication Publication Date Title
EP0540884B1 (fr) Procédé pour la fabrication de revêtement multicouche avec l'utilisation d'une laque transparente polymérisable radicalairement ou cationiquement
EP0568967B1 (fr) Procédé pour la préparation d'enduits de laque à plusieurs couches
EP0968059B2 (fr) Procede de mise en peinture multicouche et agent de revetement pour ce procede
EP0826431B1 (fr) Utilisation d'une lampe eclaire pour la production d'une peinture de réparation
EP1032476B2 (fr) Procede de laquage multicouche de substrats
DE10009822C1 (de) Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
EP1087843B1 (fr) Procede de laquage a plusieurs couches
EP1089829A1 (fr) Procede de laquage de carrosserie ou de parties de carrosserie de vehicule
EP1060029B1 (fr) Procede pour appliquer une peinture a plusieurs couches comportant des agents de revetement durcissables au moyen d'un rayonnement
EP1032474A1 (fr) Procede de reparation laquage multicouche de substrats
WO2001024946A2 (fr) Procede de fabrication de vernissages bi-couches vernis de base/vernis clair et/ou de couches couvre-noeuds transparentes
EP1152841B2 (fr) Procede pour l'application d'une peinture a plusieurs couches
DE19757080A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
DE19751481A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
DE19751479A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten
DE19757083A1 (de) Verfahren zur mehrschichtigen Lackierung von Substraten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19931104

17Q First examination report despatched

Effective date: 19941025

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE ES FR GB IT NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950628

REF Corresponds to:

Ref document number: 124299

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950630

REF Corresponds to:

Ref document number: 59202711

Country of ref document: DE

Date of ref document: 19950803

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO CONS. BREVETTUALE S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951003

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076643

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050804

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051017

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

BERE Be: lapsed

Owner name: *HERBERTS G.M.B.H.

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071009

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071003

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091001

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59202711

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502