EP0536732B1 - Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif - Google Patents

Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif Download PDF

Info

Publication number
EP0536732B1
EP0536732B1 EP92117138A EP92117138A EP0536732B1 EP 0536732 B1 EP0536732 B1 EP 0536732B1 EP 92117138 A EP92117138 A EP 92117138A EP 92117138 A EP92117138 A EP 92117138A EP 0536732 B1 EP0536732 B1 EP 0536732B1
Authority
EP
European Patent Office
Prior art keywords
electron
image
emitting
fine particles
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92117138A
Other languages
German (de)
English (en)
Other versions
EP0536732A1 (fr
Inventor
Ichiro C/O Canon Kabushiki Kaisha Nomura
Hidetoshi C/O Canon Kabushiki Kaisha Suzuki
Takashi C/O Canon Kabushiki Kaisha Noma
Yoshikazu c/o Canon Kabushiki Kaisha Banno
Rie C/O Canon Kabushiki Kaisha Ueno
Naoto C/O Canon Kabushiki Kaisha Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP97106945A priority Critical patent/EP0790631B1/fr
Priority claimed from JP26871492A external-priority patent/JP3072809B2/ja
Publication of EP0536732A1 publication Critical patent/EP0536732A1/fr
Application granted granted Critical
Publication of EP0536732B1 publication Critical patent/EP0536732B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/316Cold cathodes, e.g. field-emissive cathode having an electric field parallel to the surface, e.g. thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members

Definitions

  • the present invention relates to a cold-cathode type of an electron-emitting device.
  • the present invention also relates to an electron beam-generating apparatus, and an image-forming apparatus employing the electron-emitting device.
  • Cold cathode devices are known as devices capable of emitting electrons with a simple structure.
  • a cold cathode device is reported by M.I. Elinson (Radio Eng. Electron Phys., vol. 10, pp. 1290-1296 (1965)). These devices are based on the phenomenon that electrons are emitted by a flow of an electric current in parallel through a thin film of small area formed on a substrate. Such devices are called generally surface-conduction type electron-emitting devices.
  • the surface-conduction type electron-emitting devices include the ones using a thin SnO 2 (Sb) film developed by M.I. Elinson as mentioned above; the ones using a thin Au film (G. Dittmer: "Thin Solid Films", vol. 9, p. 317, (1972)); and the ones using a thin ITO film (M. Hartwell and C.G. Fonstad: IEEE Trans. ED Conf., p. 519 (1975)).
  • FIG. 30 A typical construction of the surface conduction type electron-emitting device is shown in Fig. 30.
  • This device comprises electrodes 82, 83 for an electric connection, a thin film 85 formed of an electron-emitting material, a substrate (insulating base) 81, and an electron-emitting portion 84.
  • the electron-emitting portion is formed by an electric current-heating treatment called "forming".
  • forming an electric current-heating treatment
  • an electric voltage is applied between the electrode 82 and the electrode 83 to cause a flow of electric current through the thin film 85 and to destroy, deform, or denature locally the thin film 85 by utilizing Joule heat generated.
  • the electron-emitting portion 84 having high electric resistance is formed, and thus the function of electron emission is obtained.
  • the state of the high electric resistance results from a discontinuity of the thin film 85 in which cracks of 0.5 to 5 ⁇ m in length are formed locally and the cracks have an island structure therein.
  • the island structure means a state of the film in which the film contains fine particles of several tens of angstroms to several microns in diameter and the particles are discontinuous but the film is electrically continuous.
  • voltage is applied to the aforementioned discontinuous high-resistance film through the electrodes 82, 83 to cause a current flow at the surface of the device, thereby electron being emitted from the fine particles.
  • a novel surface conduction type electron-emitting device in which electron-emitting fine particles are distributed between electrodes was disclosed by the inventors of the present invention in Japanese Patent Application Laid-Open Nos. Hei-1-200532 and Hei-2-56822.
  • This electron-emitting device has advantages that (1) high electron-emitting efficiency can be obtained, (2) the device can be readily prepared because of its simple construction, (3) many devices can be arranged on one and the same substrate, and so forth.
  • Fig. 31 shows a typical construction of such a surface conduction type electron-emitting device, which comprises electrodes 82, 83 for electric connection, an electron-emitting portion 86 having electron-emitting fine particles dispersed therein, and a substrate 81.
  • Fig. 32 illustrates an image-forming apparatus having a number of the aforementioned electron-emitting devices arranged therein.
  • the apparatus comprises wiring electrodes 92, 93, electron-emitting portions 94, grid electrodes 95, electron-passing holes 96, and an image-forming member 97.
  • This image-forming member is made of a material such as fluorescent materials and resist materials which cause light-emission, color change, electrification, denaturing or like changes on collision of electrons.
  • the linear electron sources have a plurality of electron-emitting portions 94 arranged between the electrodes 92, 93, and grid electrodes 95 are driven in XY matrix, and electrons are made to collide against the image-forming member 97 in correspondence with information signals to form an image.
  • the electric characteristics (current-voltage characteristics) of conventional surface conduction type of electron-emitting devices are explained by reference to Fig. 6.
  • electron emission increases rapidly from a certain device voltage Ve (voltage applied to the device) with increase of the device voltage, and at a device voltage Vd, sufficient electron beam comes to be emitted: for example, a sufficient electron beam for forming an image in the above-mentioned image-forming apparatus.
  • the device current If (current which flows in the device) increases with the device voltage, and the rate of the increase becomes larger at around the device voltage Ve.
  • a strong ineffective current which is useless for electron emission, as shown in Fig. 6.
  • the ratio of the ineffective current to the device current If rises in some cases to as much as about 50 %. Such increase of the ineffective current will cause increase of power consumption in driving the electron-emitting device, and increase of heat generation in the electron-emitting device to deteriorate electron-emitting characteristics (electron-emission efficiency, electron-emission stability, etc.).
  • the increase of the ineffective current gives rise to the problems, when the electron-emitting device in which the ineffective current is remarkable is used for an image-forming apparatus: 1) the ineffective current flows to wiring electrodes to cause a voltage drop, whereby the quantity of electron emission varies with the electron-emitting devices, and 2) the ineffective current varies depending on the kind of the image (namely, difference in inputted information signal) to cause a voltage drop in wiring electrode, whereby the quantity of the emitted electrons varies.
  • Such disadvantageous phenomena further cause lowering of contrast and sharpness of the formed image; and in particular, in the case where the formed image is a fluorescent image, bring about variation and change of luminance of the fluorescent images, which makes it difficult to obtain fineness of the image and to enlarge a picture screen, and further increase the power consumption.
  • Another object of the present invention is to provide an electron-emitting device and an electron beam-generating apparatus which are excellent in electron emission characteristics such as electron-emission efficiency, and electron-emission stability, and which consumes less electric power.
  • a further object of the present invention is to provide an electron beam-generating apparatus in which an ineffective current is extremely weak in the whole apparatus, and which gives an image with high contrast and high sharpness with less power consumption, in particular an electron beam-generating apparatus capable of forming a luminescent image with extremely low variation and low fluctuation of luminance.
  • an electron emitting device according to claim 1, 24 or 47, respectively.
  • Fig. 1 is a plan view illustrating schematically an electron-emitting device of the present invention.
  • Fig. 2 is a sectional view of the electron-emitting device at A-A' in Fig. 1.
  • Fig. 3 is a sectional view of the electron-emitting device at B-B' in Fig. 2.
  • Fig. 4A is an SEM photograph of an electron-emitting region between electrodes of an electron-emitting device of the present invention (magnification: ⁇ 30,000).
  • Fig. 4B is a sketch of an SEM photograph of an electron-emitting region of Fig. 4A (plan view).
  • Fig. 5A is an enlarged SEM photograph of an electron-emitting region of the electron-emitting device of Fig. 4 (magnification: ⁇ 150,000).
  • Fig. 5B is an enlarged SEM photograph of an electron-emitting region of the electron-emitting device of Fig. 4 (magnification: ⁇ 800,000).
  • Fig. 5C is a sketch of the enlarged SEM photograph of an electron-emitting region of Fig. 5A (plan view).
  • Fig. 6 shows a current-voltage relation of a conventional electron-emitting device.
  • Fig. 7 shows a current-voltage relation of an electron-emitting device of the present invention.
  • Fig. 8A is an SEM photograph (magnification: ⁇ 150,000) to explain the method for measuring the voltage application length of the electron-emitting device of the present invention.
  • Fig. 8B is a sketch of the SEM photograph of Fig. 8A.
  • Fig. 9A is another SEM photograph (magnification: ⁇ 150,000) to explain the method for measuring the voltage application length of the electron-emitting device of the present invention.
  • Fig. 9B is a sketch of the SEM photograph of Fig. 9A.
  • Fig. 10 is a drawing to explain the method for measuring the voltage application length of the electron-emitting device of the present invention.
  • Figs. 11A to 11C are drawings to explain a method for preparing the electron-emitting device of the present invention (sectional view).
  • Fig. 12 shows a wave form of the pulse voltage on forming treatment of an electron-emitting device of the present invention.
  • Fig. 13 shows another wave form of the pulse voltage on forming treatment of an electron-emitting device of the present invention.
  • Figs 14A to 14E are drawings to explain a method for preparing the electron-emitting device of the present invention (sectional view).
  • Figs. 15A to 15D are drawings to explain a method for preparing the electron-emitting device of the present invention (sectional view).
  • Fig. 16 illustrates schematically the construction of the measurement apparatus of electron emission characteristics of an electron-emitting device.
  • Fig. 17 is a perspective view illustrating schematically an electron beam-generating apparatus of the present invention.
  • Fig. 18 is a perspective view illustrating schematically another electron beam-generating apparatus of the present invention.
  • Fig. 19 is a perspective view illustrating schematically still another electron beam-generating apparatus of the present invention.
  • Fig. 20 is a perspective view illustrating schematically still another electron beam-generating apparatus of the present invention.
  • Fig. 21 is a perspective view illustrating schematically still another electron beam-generating apparatus of the present invention.
  • Fig. 22 is a perspective view illustrating schematically an image-forming apparatus of the present invention.
  • Fig. 23 is a perspective view illustrating schematically another image-forming apparatus of the present invention.
  • Fig. 24 is a perspective view illustrating schematically still another image-forming apparatus of the present invention.
  • Fig. 25 is a perspective view illustrating schematically still another image-forming apparatus of the present invention.
  • Figs. 26A and 26B illustrate schematically an image-forming apparatus (optical printer) of the present invention.
  • Fig. 27 illustrates schematically another image-forming apparatus (optical printer) of the present invention.
  • Fig. 28 illustrates schematically an image forming apparatus provided with a supporting member of the present invention (assembling drawing).
  • Fig. 29 is a sectional view of the apparatus of Fig. 28.
  • Fig. 30 is a plan view illustrating schematically construction of a conventional electron-emitting device.
  • Fig. 31 is a plan view illustrating schematically construction of another conventional electron-emitting device.
  • Fig. 32 is a perspective view of a conventional image-forming apparatus.
  • Fig. 1 plan view
  • Fig. 2 sectional view at A-A' in Fig. 1
  • Fig. 3 sectional view at B-B' in Fig. 2).
  • the numeral 1 denotes an insulating substrate; 2 and 3, each an electrode; 5, an electron-emitting region; 4, a fine particle film having an electric resistance lower than that of the electron-emitting region 5; and 6, a fine particle dispersed in the electron-emitting region 5.
  • the electron-emitting device of the present invention is required essentially to have an electron-emitting region 5 having fine particles 6 dispersed therein, and electrodes 2 and 3 to apply voltage to the interior of the region 5.
  • the electron-emitting device of the present invention serves in such a mechanism that electrons pass (or current flows) through the electron-emitting region by application of voltage between the electrodes 2 and 3, and the electrons are emitted out from the gap formed by the fine particles 6 (or spacing between the fine particles) in the region.
  • the fine particle film 4 having lower resistance is not an essential requirement in the present invention, but is preferred to improve further the electrical contact between the electron-emitting region 5 and the electrodes 2 and 3.
  • the electron-emitting region and the fine particles constituting the fine particle film 4 are both made of an electroconductive material.
  • the electron-emitting device of the present invention has to satisfy further another requirement shown below, and is classified into two types of embodiments according to the requirement. It is described in detail.
  • the areal occupation ratio of the fine particles is in the range of 20 to 75 % in the electron-emitting region 5.
  • Fig. 4A, Fig. 5A, and Fig. 5B are SEM (scanning electron microscope) photographs of an electron-emitting region of an electron-emitting device of the present invention prepared as examples described later.
  • Fig. 4B and Fig. 5C are sketches of the SEM photographs.
  • Fig. 4A and Fig. 4B shows a view of the region A-A' of Fig. 2 observed from the top.
  • Fig. 5A and Fig. 5C shows a view of the region A-A' of Fig. 2 observed from the top.
  • the areal occupation ratio in the present invention means the value measured as follows. As shown by the dotted-line area in Fig. 5C, the SEM image of the inside of the electron-emitting region 15 of the element is taken at a magnification such that 10 to 1000 fine particles are observed (Fig. 5B).
  • the relations of the areal occupation ratio of the fine particles with the aforementioned ineffective current flowing in the device, and with the electron-emitting characteristics of the device are considered as below by the inventors of the present invention. If the areal occupation ratio of the fine particles is excessively large, the ratio of the aforementioned gap to the entire electron-emitting region is extremely small, and the the electron-emitting region behaves as a continuous film. Therefore, the quantity of electrons flowing through the continuous film is larger than the quantity of electrons emitted from the gap. As the results, the the ineffective current becomes stronger, and quantity of the emitted electrons decreases.
  • the areal occupation ratio of the fine particles is in the range of from 20 to 75 %, more preferably from 35 to 60 %, the ineffective current of the electron-emitting device is effectively made extremely small, and the quantity of electron emission is increased, and further thereby the electron-emission efficiency and the electron-emission stability are improved effectively. Consequently, the present invention has been completed.
  • the average particle diameter of the fine particles dispersed in the electron-emitting region is adjusted preferably to be in the range of from 5 to 300 ⁇ , more preferably 5 to 80 ⁇ . With the average diameter within this range, the ineffective current flowing through very large particles can be suppressed, the ineffective current in the whole device can further be reduced, and the electron emission efficiency and the electron emission stability (in particular, flickering of electron emission) are improved more.
  • the gap between the fine particles 6 in the electron-emitting region 5 is in the range of from 5 to 100 ⁇ , and the average particle diameter of the fine particles is in the range of from 5 to 1000 ⁇ .
  • the gap between the fine particles in the present invention means the spacing of particles as shown by the symbol S in Fig. 3.
  • the gap S of the fine particles and the average particle diameter t are measured as follows. As shown by the dotted-line area in Fig. 5, the SEM image of the inside of the electron-emitting region 15 (photograph) of the element is taken at a magnification such that 10 to 1000 fine particles are observed.
  • the dependence of the ineffective current flowing in the device and the electron emission characteristics of the device on the fine particle gap and the average diameter are considered as below by the inventors of the present invention. If the average particle diameter is excessively large and the fine particle gap is extremely small, the ratio of the aforementioned gap to the entire electron-emitting region is too small, and the electron-emitting region behaves as a continuous film. Therefore, the quantity of electrons flowing through the continuous film is larger than the quantity of electrons emitted from the gap. As the results, the ineffective current becomes large, and quantity of the emitted electrons decreases.
  • the gap of the fine particles is adjusted to be within the range of from 5 to 100 ⁇ , preferably 5 to 50 ⁇ , the ineffective current of the electron-emitting device is effectively made extremely small, and the quantity of electron emission is increased, and further thereby the electron emission efficiency and the electron emission stability are improved effectively. Consequently, the present invention has been completed.
  • the average particle diameter of the fine particles dispersed in the electron-emitting region is adjusted preferably to be in the range of from 5 to 300 ⁇ , more preferably 5 to 80 ⁇ due to the same reason as in the above-described first embodiment.
  • the electron-emitting device which meets simultaneously the both requirements of the two types of embodiments is more preferable in the present invention. That is, if the areal occupation ratio in the electron-emitting region is from 20 to 75 %, the gap of the particles is from 5 to 100 ⁇ , and the average particle diameter of the fine particles is from 5 to 1000 ⁇ , then the electron-emitting device is improved in comparison with each of the above embodiments in reducing the ineffective current in the device and is superior in electron emission quantity, electron emission efficiency, and electron emission stability (prevention of flickering of electron emission), and further the device is driven with lower voltage and has longer life.
  • the above effects are more remarkable if the areal occupation ratio is from 35 to 60 %, and the particle gap is from 5 to 50 ⁇ .
  • the effects are still more remarkable if the average particle diameter is from 5 to 300 ⁇ , more preferably 5 to 80 ⁇ .
  • the methods for controlling the areal occupation ratio, the fine particle gap, and the fine particle diameter are described below.
  • the control of these parameters were practiced as follows.
  • the gap between the electrodes was set in the range of 0.2 to 5 ⁇ m.
  • An electroconductive film having a sheet resistance of 3 ⁇ 10 3 ⁇ /cm 2 to 10 7 ⁇ /cm 2 was formed by placing electroconductive particles of 5 to 100 ⁇ in particle diameter in dispersion between the electrodes.
  • a specified wave form of voltage pulse was applied to the electrodes.
  • the applied voltage pulse is suitably decided depending on the shape of the electrodes, the material of the electroconductive film, and the material of the substrate.
  • the material of the electroconductive particles includes metals such as Pd, Nb, Mo, Rh, Hf, Ta, W, Re, Ir, Pt, Ti, Au, Ag, Cu, Cr, Al, Co, Ni, Fe, Pb, Cs, and Ba; borides such as LaB 6 , CeB 6 , HfB 4 , and GdB 4 ; carbides such as TiC, ZrC, HfC, TaC, SiC, and WC; nitrides such as TiN, ZrN, and HfN; metal oxides such as PdO, Ir 2 O 3 , SnO 2 , and Sb 2 O; semiconductors such as Si, and Ge; carbon, Ag, Mg, and the like.
  • the above method is preferred in controlling the parameters.
  • the large ineffective current of the conventional electron-emitting device as described above was further studied by the inventors of the present invention. As the results, it was found that the strength of the ineffective current flowing through the electron-emitting device varies depending on the size of the region where the voltage for driving the device is effectively applied (the size being referred to as "voltage application length"). It was further found that the ineffective current can be suppressed to extremely small by adjusting the voltage application length within a certain range, the ineffective current of the device being negligible at the voltage application length of from 5 to 300 ⁇ , preferably 5 to 50 ⁇ .
  • the voltage application length in more detail, means a length of the region where the voltage is effectively applied as described above in the electron-emitting device. In this region, voltage drops substantially, but outside the region, the voltage does not drop substantially.
  • Fig. 8A is an SEM photograph of an area between the electrodes on application of voltage to an electron-emitting device of the present invention.
  • Fig. 8B is a sketch of the SEM photograph of Fig. 8A.
  • Fig. 9A is an SEM photograph of an area between the electrodes of the same electron-emitting device on application of voltage in the reversed direction.
  • Fig. 9B is a sketch of the SEM photograph of Fig. 9A. In Fig 8B and Fig.
  • the numeral 15 denotes an electron-emitting region
  • the numeral 14 denotes an electroconductive film for sufficient electric contact of electrodes (not shown in the drawing) with the electron-emitting region
  • the numeral 17 denotes a portion from which the secondary electron emission is less. This portion is observed to be dark in the actual SEM image (Fig. 8A and Fig. 9B).
  • the SEM photograph of the area between the device electrodes to be measured is taken by applying to the electrodes a voltage of 1.5 V to 4.0 V under a vacuum of 1 ⁇ 10 3 to 1 ⁇ 10 -6 torr. Then, the same SEM photograph is taken by applying the same voltage in the reversed direction at the same magnification.
  • the obtained two SEM images are superposed as shown in Fig. 10.
  • the maximum width L of the blank area 18 in the electron-emitting region 15 is measured, from which the real length is calculated in consideration of the magnification of the SEM.
  • STM may be employed for measurement.
  • a voltage of 1 to 2.5 V is applied to the device, and the probe of the STM is driven to scan the area to be measured from the negative potential side to the positive potential electrode side.
  • the length of the region where 30 % to 70 % of the applied voltage is observed is taken as the voltage application length.
  • the control of the voltage application length and the electric field strength of the electron-emitting device was practiced as below.
  • the gap between the electrodes was set in the range of from 0.2 to 5 ⁇ m.
  • An electroconductive film having a sheet resistance of from 3 ⁇ 10 3 ⁇ /square to 10 7 ⁇ /square was formed.
  • a specified wave form of voltage pulse was applied through the electrodes.
  • the applied voltage pulse is suitably decided depending on the shape of the electrodes, the material of the electroconductive film, and the material of the substrate.
  • the electroconductive film is preferably formed, as described later in Examples, by placing electroconductive particles of from 5 to 1000 ⁇ in particle diameter in dispersion between the electrodes, the material thereof is those mentioned above.
  • the electron-emitting devices of the above embodiments exhibit extremely small ineffective current, the ineffective current being 2% or less, in more preferred embodiment, 1 % or less.
  • the electron-emitting device of any embodiment of the present invention is excellent in electron-emitting characteristics such as electron emission quantity, electron emission efficiency, and emission stability (prevention of flickering of electron emission).
  • the electron beam-generating apparatus and the image-forming apparatus of the present invention are described below in detail.
  • the electron beam-generating apparatus and the image-forming apparatus of the present invention are characterized by the use of the above-described electron-emitting devices.
  • the electron beam-generating apparatus of the present invention comprises a plurality of the above electron-emitting devices, and modulation means for modulating electron beams emitted from the electron-emitting devices in accordance with information signals.
  • the numeral 41 denotes an insulating substrate; 42 and 43, electrodes; 45, an electron-emitting region; 44, an electroconductive film for obtaining sufficient electric contact between the electrode and the electron-emitting region; and 46, a modulation means.
  • linear electron-emitting devices having a plurality of electron-emitting regions are juxtaposed on the substrate, and a plurality of grid electrodes (modulation electrodes) 46 are placed in an XY matrix with the linear electron-emitting devices.
  • the grid electrodes are placed above the electron-emitting face of the electron-emitting device in Fig. 18; juxtaposed on the same substrate plane as the electron-emitting devices in Fig.
  • a plurality of electron-emitting devices having each a single electron-emitting portion are arranged in matrix, and each element is connected to a signal wiring electrode 50 and a scanning wiring electrode 51 as shown in the drawing.
  • This construction is called a simple matrix construction, in which the signal wiring electrodes 50 and the scanning wiring electrodes 51 serves as the modulation means.
  • the electron beam-generating apparatuses exemplified above are driven as below. To drive the apparatus illustrated in Fig.
  • a pulsing voltage of 10 to 35 V is applied to the electrodes 42 and 43 of one line of the linear electron-emitting devices to cause emission of electron beams from a plurality of the electron-emitting portions.
  • the emitted electron beams are turned on and off by the application of a voltage of 50 V to -70 V to the grid electrodes 46 in correspondence with information signals to obtain electron emission corresponding to the information signals for the one line.
  • Such operation is conducted sequentially for the adjacent lines of the linear electron-emitting devices to obtain electron beam emission for one picture image.
  • a pulsing voltage is applied with the scanning wiring electrode 51 to the plurality of the electron-emitting devices on one line, and subsequently a pulsing voltage is applied to the signal wiring electrodes 50 in correspondence with information signals to obtain electron emission corresponding to information signal for one line. Such operation is conducted sequentially for adjacent lines to obtain electron beam emission for one picture image.
  • the electron beam-generating apparatus of the present invention is advantageous in that the ineffective current in the whole apparatus is extremely week, electron-emitting characteristics such as electron emission efficiency and electron emission stability are excellent, and power consumption is low.
  • the image-forming apparatus of the present invention has a constitution such that an image-forming member is placed on the electron beam emission side of the aforementioned electron beam-generating apparatus.
  • the image-forming member is constituted of a material which causes light emission, color change, electrification, denaturing, etc. on collision of electrons, such as a light-emitting material like a fluorescent material, and a resist material.
  • Fig. 22 illustrates one embodiment of an image-forming apparatus of the present invention.
  • the apparatus of Fig. 22 comprises a rear plate 52 (which may serve also as the aforementioned insulating substrate 41), modulation means 46 (which are shown in a form of grid electrodes of Fig. 18, but may be the grid electrodes of Fig.
  • Electrodes 42 and 43 for obtaining sufficient electric contact between the electrodes and the electron-emitting regions, a face plate 58, a glass plate 57, a transparent electrode 55, and a fluorescent material 56.
  • a voltage of 0.5 KV to 10 KV is applied to the image-forming member (transparent electrode 55 in Fig. 22), and then the apparatus is driven in the same manner as driving of the above-described electron beam-generating apparatus, and thus an image corresponding to information signals is obtained on the image-forming member (fluorescent image in Fig. 22).
  • the image-forming member is made of a light-emitting material such as a fluorescent material
  • a full-color image display can be obtained by using three light-emitting materials of three primary colors of red, green, and blue for one picture element.
  • the electron beam-generating apparatus and the image-forming apparatus described above are usually driven at a vacuum of 10 -4 to 10 -9 torr.
  • the image-forming apparatus of the present invention includes the embodiment shown in Fig. 28 and Fig. 29.
  • a supporting member for supporting the atmospheric pressure is provided between the face plate 58 and the rear plate 52 in the image-forming apparatus of Fig. 23, Fig. 24, or Fig. 25.
  • Fig. 28 illustrates schematically the construction of an image-forming member of the present invention.
  • Fig. 29 is a sectional view of the image-forming apparatus viewed at around the atmospheric pressure-supporting member of the image-forming apparatus shown in Fig 28.
  • the numeral 95 denotes an atmospheric pressure-supporting member; 96, a supporting frame; and 97, a luminescent spot of the fluorescent substance.
  • An envelop of the image-forming apparatus is constructed of a face plate 58, a rear plate 52, and a supporting frame 96.
  • the internal pressure is kept at a vacuum of 10 -4 to 10 -9 torr.
  • an atmospheric pressure-supporting member is provided desirably.
  • the atmospheric pressure-supporting members 95 are placed usually at intervals of 1 mm to 100 mm between the picture elements so that image defect may be avoided.
  • the material of the atmospheric pressure-supporting member 95 is an insulating material such as glass.
  • the supporting member When the image-forming apparatus having an atmospheric supporting member 95 as shown in Fig. 28 and Fig. 29 is driven, the supporting member is liable to be electrically charged by unexpected collision of electron beam or ions against the supporting member 95 since the supporting member 95 is electrically floating.
  • This electric charging bends the locus of the electron beam and changes the amount of the electron beam colliding to the fluorescent material, causing irregularity of luminance and color.
  • the disadvantage caused by the electric charging of the supporting member relates to driving voltage of the electron-emitting device. If the ineffective current of the electron-emitting device is large, the voltage applied to the device is high, and the supporting member 95 becomes liable to be charged. Accordingly, in the present invention, use of an electron-emitting device causing weak ineffective current makes it possible to obtain an image-forming apparatus with a large picture area and light weight.
  • the image-forming apparatus of the present invention includes the embodiments shown in Fig. 26 and Fig. 27, which are examples of optical printers employing as the light source of the image-forming apparatus illustrated in Fig. 22.
  • the numeral 62 denotes the light source; 65 a drum; 63, a delivery roller; and 64, a heat-sensitive or light-sensitive sheet.
  • the optical printer records an image on a recording medium by driving the light source as described above (as driving of the image-forming apparatus of Fig. 22) to emit light in correspondence with information signals onto the recording medium 64 with scanning of the recording medium 64 supported by a support 65 or 63, or the light source 62.
  • Fig. 27 illustrates another embodiment of the optical printer.
  • the numeral 71 denotes a light source; 72, a drum-shaped recording medium; 77, a developer; 75, a static eliminator; 74, a cleaner; 73, an electric charger; and 76, an image-transfer medium.
  • This optical printer records an image by electrically charging the recording medium 72 with an electric charger 73, projecting a light beam emitted from the light source 71 in a manner as above (driving method of the image-forming apparatus of Fig. 22) to the recording medium 72 to eliminate electric charge from the illuminated area, adhering a toner on the non-illuminated area by means of a developer 77, and transferring the toner onto the image-transfer medium 76 by eliminating the electric charge at the position of the static eliminator 75.
  • the image-forming apparatus of the present invention as described above is capable of forming an image with high contrast and sharpness with less consumption of electric power.
  • the image-forming apparatus utilizing luminescent image gives extremely small variation or flickering of the luminance.
  • Electron-emitting devices of the type'shown in Figs. 1 to 3 were prepared. The procedure of the preparation is described below by reference to Fig. 11.
  • the pulse width T 1 was 1.0 millisecond, and the pulse interval T 2 was 10 milliseconds in this Example.
  • the forming treatment was conducted at the forming voltage as shown below. under a vacuum environment of about 1 ⁇ 10 -6 torr.
  • the electron-emitting region 25 was formed between the fine palladium oxide film 4, and was composed of fine palladium particles 6 as shown in Fig. 3.
  • the fine particles 6 had an average diameter of 10 ⁇ .
  • Three devices of different areal occupation ratio of the fine particles 6 were prepared by changing the amount of the coating of the organic palladium to change a sheet resistance of the fine particle film 24 in the step (2) and changing the forming voltage in the step (3).
  • Fig. 16 illustrates schematically the construction of the measuring apparatus.
  • the measuring apparatus comprises an insulating substrate 21, electrodes 22 and 23, an electron-emitting region 25, electroconductive films 24 for obtaining electric contact, a power source 31 for applying voltage to the device, an ammeter 30 for measuring the device current (If), an anode electrode 34 for measuring emission current (Ie) emitted from the device, a high-voltage power source 33 for applying a voltage to the anode electrode 34, and an ammeter 32 for measuring the emission current.
  • the aforementioned device current means the current measured by the ammeter 30, and the emission current means the current measured by the ammeter 32.
  • Electron-emitting devices were prepared by the procedure below.
  • Two kinds of devices were prepared by changing the voltage in the forming treatment.
  • An electron-emitting device was prepared in the same manner as in Example 2 except that the sheet resistance of the fine particle film 24 was 5 ⁇ 10 5 ⁇ /square and the forming voltage was 4 V. In the resulting device, the areal occupation ratio of the fine particles 6 was 50 %, and the average particle diameter of the fine particles 6 was 5 ⁇ . The electron-emitting device exhibited approximately the same effect as the ones in Example 2 (ineffective current being not more than 1 %).
  • Electron-emitting devices were prepared as below.
  • Three kinds of devices were prepared by changing the amount of the coating of the organic palladium to change the sheet resistance of the fine particle film 24 and by changing the forming voltage as below:
  • An electron-emitting device was prepared in the same manner as in Example 4 except that the sheet resistance of the fine particle film 24 was 1 ⁇ 10 5 ⁇ /square and the forming voltage was 4 V. In the resulting device, the average particle gap was 5 ⁇ , and the average particle diameter was 50 ⁇ . The electron-emitting device exhibited approximately the same effect as the ones in Example 4 (ineffective current being not more than 3 %).
  • An electron-emitting device was prepared in the same manner as in Example 4 except that the sheet resistance of the fine particle film 24 was 5 ⁇ 10 3 ⁇ /square and the forming voltage was 14 V. In the resulting device, the average particle gap was 100 ⁇ , and the average particle diameter was 50 ⁇ . The electron-emitting device exhibited approximately the same effect as the ones in Example 4 (ineffective current being not more than 1 %).
  • Electron-emitting devices were prepared as below.
  • Two kinds of devices were prepared by changing the amount of coating to change the sheet resistance of the fine particle film 24, and by changing the forming voltage.
  • An electron-emitting device was prepared in the same manner as in Example 7 except that the sheet resistance of the fine particle film 24 was 3 ⁇ 10 5 ⁇ /square and the forming voltage was 4 V. In the resulting device, the average particle gap was 30 ⁇ , and the average particle diameter was 5 ⁇ . The electron-emitting device exhibited approximately the same effect as the ones in Example 7 (ineffective current being not more than 1.0 %).
  • Electron-emitting devices were prepared as below. The procedures explained by reference to Fig. 14.
  • Figs. 14A to 14C were practiced in the same manner as in the steps (1) to (3) in Example 1 except that the forming treatment was conducted with the voltage wave form as shown in Fig. 12 at the forming voltage of 8 V, the pulse width of T 1 of 1 millisecond, and the pulse interval T 2 of 10 milliseconds.
  • An electron-emitting device was prepared in the same manner as in Example 9 except that the steps (4) and (5) were conducted four times.
  • the areal occupation ratio of the fine particles in the electron-emitting region was 75 %
  • the average particle diameter of the fine particles was 35 ⁇
  • the average gap of the fine particles was 5 ⁇ .
  • the device was evaluated in the same manner as in Example 9. The effect was nearly the same as that of Example 9 (ineffective current: not more than 2.0 %).
  • An electron-emitting device was prepared in the same manner as in Example 9 except that in the step (4) the forming voltage was 12 V.
  • the areal occupation ratio of the fine particles in the electron-emitting region was 20 %
  • the average particle diameter of the fine particles was 25 ⁇
  • the average gap of the fine particles was 100 ⁇ .
  • the device was evaluated in the same manner as in Example 9. The effect was nearly the same as that of Example 9 (ineffective current: not more than 0.2 %).
  • An electron-emitting device was prepared in the same manner as in Example 9 except that in the step (4) the forming voltage was 12 V, and the steps (4) and (5) were conducted twice.
  • the areal occupation ratio of the fine particles in the electron-emitting region was 50 %
  • the average particle diameter of the fine particles was 300 ⁇
  • the average gap of the fine particles was 30 ⁇ .
  • Example 9 The device was evaluated in the same manner as in Example 9. The effect was nearly the same as that of Example 9 (ineffective current: not more than 1.0 %).
  • Electron-emitting devices were prepared as below. The procedures explained by reference to Fig. 15.
  • An electron ray-generating apparatus was prepared by arranging in a line a plurality of the electron-emitting devices prepared in Examples 1 - 13 as shown in Fig. 17.
  • the apparatus comprises an insulating substrate (a rear plate) 41, wiring electrodes 42 and 43, low-resistance portions 44 having low electric resistance, electron-emitting regions 45, modulation means (grid electrodes) G 1 to G L (46), and electron-passing holes 47.
  • the spacing between the insulating substrate 41 and the modulation means 46 was adjusted to 10 ⁇ m.
  • the electron beam-generating apparatus was driven as described below.
  • the apparatus was placed in the vacuum of 10 -6 torr.
  • a driving voltage (device voltage in Examples 1 - 13) was applied between the wiring electrodes.
  • a voltage of 30 V was applied to the modulation means in accordance with information signals. Thereby, electron beams were emitted from the plurality of the regions 45 in accordance with the information signals.
  • the electron beam-generating apparatus of this Example consumed less electric power because the ineffective current in the device current was extremely low (2 % or less). Therefore, the electron-emitting devices could be arranged in fine pitch in the apparatus. Further, since the current flowing through the electrodes 42 and 43 was weak, the voltage drop between the electrodes 42 and 43 was small, and the quantities of the electron beams (or emission current) emitted from the elements were uniform. Therefore, many elements could be arranged between the electrodes 42 and 43.
  • An electron beam-generating apparatus was prepared by arranging in lines a plurality of linear electron-emitting device groups comprising the electron-emitting devices of Examples 1 - 13, as shown in Fig. 18.
  • the spacing between the insulating substrate 41 and the modulation means 46 was adjusted to 10 ⁇ m, and the interval between the linear electron-emitting device groups was adjusted to 1 mm.
  • the electron beam-generating apparatus was driven as described below.
  • the apparatus was placed in the vacuum of 10 -6 torr.
  • the driving voltage (device voltage in Examples 1 - 13) was applied between the wiring electrodes 42 and 43.
  • a voltage was applied to the modulation means 46 in accordance with information signals: the electron beam being controlled to be off at 0 V or lower, being controlled to be on at +30 V or higher, and to vary continuously between 30 V and 0 V. Consequently, electron beams were emitted from a plurality of electron-emitting region 45 in a line between the wiring electrodes 42 and 43 in accordance with the one line of information. This operation was conducted sequentially for adjacent lines of the linear electron-emitting device group to obtain electron emission for the entire information signals.
  • Example 14 In this Example also, the similar effects as in Example 14 were confirmed.
  • An electron beam-generating apparatus was prepared in the same manner as in Example 15 except that the modulation means (grid electrodes) 46 were placed on the face of the insulating substrate 41.
  • the emission of electron beams could be made in accordance with information signals by driving the apparatus in a similar manner as in Example 15.
  • the electron beams could be controlled by the voltage applied to the modulation means: to be off at -30 V or lower, to be on at +20 V or higher, and to vary continuously between -30 V and +20 V.
  • Example 14 In this Example also, the similar effects as in Example 14 were confirmed.
  • An electron beam-generating apparatus was prepared in the same manner as in Example 15 except that the modulation means (grid electrodes) 46 were placed on the face of the insulating substrate opposite to the electron-emitting face of the linear electron-emitting device groups.
  • the emission of electron could be made in accordance with information signals by driving the apparatus in a similar manner as in Example 15.
  • the electron beams could be controlled by the voltage applied to the modulation means: to be off at -30 V or lower, to be on at +20 V or higher, and to vary continuously between -30 V and +20 V.
  • Example 14 In this Example also, the similar effects as in Example 14 were confirmed.
  • the electron beam-generating apparatus of this Example has the construction shown schematically in Fig. 21.
  • this apparatus having a simple matrix construction, a plurality of electron-emitting devices of any of Examples 1 to 13 are arranged in matrix, and each device is connected to a signal wiring electrode 50 and a scanning wiring electrode 51.
  • the apparatus was driven as described below.
  • the device voltage indicated in Examples 1 to 13 was applied to each of the electron-emitting devices to cause electron emission from the electron-emitting devices. Firstly, pulsing voltage of 0 V or half the device voltage was applied by the scanning wiring electrode 51 to one line of a plurality of the electron-emitting devices. Then another pulsing voltage of 0 V or half the device voltage was applied to the signal wiring electrode 50 in correspondence with information signals to obtain the electron beam emission in correspondence with the information signals for the one line. Such operation was conducted sequentially for adjacent lines to obtain electron beam emission for one picture image.
  • Example 14 In this Example also, the similar effects as in Example 14 were confirmed.
  • FIG. 22 An image-forming apparatus as shown in Fig. 22 was prepared by use of the electron beam-generating apparatus of Example 15.
  • the numeral 58 denotes a face plate; 57, a glass plate; 55, a transparent electrode; and 56, a fluorescent material.
  • the spacing between the face plate 58 and the rear plate 52 was adjusted to be 3 mm.
  • the image-forming apparatus was driven in a manner shown below.
  • the panel vessel constructed from the face plate 58 and the rear plate 52 was evacuated to a vacuum of 10 -6 torr; the voltage of the fluorescent material face was set through the EV terminal 59 at 5 KV to 10 KV; and pulsing voltage (namely the device voltage indicated in Example 1 to 13) was applied to a pair of wiring electrodes 42 and 43.
  • the electron beams were emitted through the modulation means in accordance with the information signals collided against the fluorescent material 56 to display one line of information of the information signal. This operation was sequentially conducted to obtain a display of entire picture.
  • the image displayed by the image-forming apparatus of this Example exhibited low irregularity in luminance, and gave a sharp image with high contrast.
  • the image-forming apparatus having a well-known constitution of a cathode beam tube gave a sharp color image with high contrast with less irregularity of luminance by use of a face plate employing color fluorescent materials of R (red), G (green), and B (blue).
  • An image-forming apparatus as shown in Fig. 23 was prepared by use of the electron beam-generating apparatus of Example 16.
  • the apparatus was driven to display a luminescent image of the fluorescent material in the same manner as in Example 19, except that the voltage applied to the modulation means was - 40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage applied to the modulation means was - 40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage applied to the modulation means was - 40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage range between -40 V to +10 V the quantity of the electron of the electron beam varies continuously, thereby gradation of display being practicable.
  • Example 19 also, the same effects as in Example 19 were confirmed.
  • An image-forming apparatus as shown in Fig. 24 was prepared by use of the electron beam-generating apparatus of Example 17.
  • the apparatus was driven to display a luminescent image of the fluorescent material in the same manner as in Example 19, except that the voltage applied to the modulation means was -40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage applied to the modulation means was -40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage applied to the modulation means was -40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the voltage applied to the modulation means was -40 V or lower to control the electron beam to be off and +10 V or higher to control the electron beam to be on.
  • the quantity of the electron of the electron beam varies continuously, thereby gradation of display being practicable.
  • Example 19 also, the same effects as in Example 19 were confirmed.
  • FIG. 25 An image-forming apparatus shown in Fig. 25 which is similar to the one of Example 19 was prepared by use of the electron beam-generating apparatus of Example 18.
  • the numerals 51 and 52 respectively denote a wiring connected to the scanning wiring electrode and a wiring connected to the signal wiring electrode.
  • the image-forming apparatus was driven in a manner shown below.
  • the panel vessel constructed from the face plate 58 and the rear plate 52 was evacuated to a vacuum of 10 -6 torr; the voltage of the fluorescent material face was set through the EV terminal 59 at 5 KV to 10 KV.
  • Electron beams were emitted from the electron-emitting devices on application of the device voltage indicated in Examples 1 to 13 to the electron-emitting devices. Firstly, pulsing voltage of 0 V or half the device voltage was applied by the scanning wiring electrode 51 to one line of a plurality of the electron-emitting devices.
  • Example 14 In this Example also, the similar effects as in Example 14 were confirmed.
  • An image-forming apparatus shown in Fig. 28 was prepared by providing an atmospheric pressure-supporting member 95 additionally in the image-forming apparatus of Example 22.
  • the apparatus was driven in the same manner as in Example 22, and nearly the same results were obtained, Furthermore, the face plate and the rear plate could be made thinner, whereby the weight of the image-forming apparatus could be reduced, and the picture screen could be enlarged.

Claims (74)

  1. Dispositif d'émission d'électrons ayant une région (5 ; 15) d'émission d'électrons entre des électrodes (2, 3 ; 12, 13) sur un substrat (1), ladite région d'émission d'électrons contenant en dispersion des particules fines (6 ; 16) dans un taux d'occupation surfacique desdites particules fines (6 ; 16) allant de 20 % à 75 % de ladite région d'émission d'électrons (5 ; 15).
  2. Dispositif d'émission d'électrons selon la revendication 1, dans lequel le taux d'occupation surfacique va de 35 à 60 %.
  3. Dispositif d'émission d'électrons selon la revendication 1, dans lequel le diamètre moyen (t) desdites particules fines (6 ; 16) va de 0,5 à 30 nanomètres.
  4. Dispositif d'émission d'électrons selon la revendication 1, dans lequel le courant inefficace circulation dans le dispositif n'est pas supérieur à 2 %.
  5. Appareil de génération de faisceaux d'électrons, comportant plusieurs dispositifs d'émission d'électrons et un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis les dispositifs d'émission d'électrons conformément à des signaux d'informations, ledit dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), et ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) dans un taux d'occupation surfacique desdites particules fines (6 ; 16) allant de 20 % à 75 % de la région d'émission d'électrons.
  6. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel le taux d'occupation surfacique va de 35 à 60 %.
  7. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel le diamètre moyen (t) des particules fines va de 0,5 à 30 nanomètres.
  8. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel le courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  9. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est agencée sur la même face dudit substrat (41).
  10. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec l'interposition d'une couche isolante.
  11. Appareil de génération de faisceaux d'électrons selon la revendication 5, dans lequel le moyen de modulation comporte des électrodes de balayage (51) et des électrodes (50) à signaux d'informations qui sont agencées suivant une matrice XY et sont connectées auxdites régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  12. Appareil de formation d'images, comportant plusieurs dispositifs d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), et ladite région d'émission d'électrons (45) contient en dispersion des particules fines (6 ; 16) à un taux d'occupation surfacique desdites particules fines (6 ; 16) allant de 20 % à 75 % de ladite région d'émission d'électrons (45) ; un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis lesdits dispositifs d'émission d'électrons conformément à des signaux d'informations ; et un élément (58) de formation d'image destiné à former une image sous l'effet d'une irradiation par des faisceaux d'électrons.
  13. Appareil de formation d'images selon la revendication 12, dans lequel le taux d'occupation surfacique va de 35 à 60 %.
  14. Appareil de formation d'images selon la revendication 12, dans lequel le diamètre moyen (t) des particules fines (6 ; 16) va de 0,5 à 30 nanomètres.
  15. Appareil de formation d'images selon la revendication 12, dans lequel le courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  16. Appareil de formation d'images selon la revendication 12, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est agencée sur la même face dudit substrat (41).
  17. Appareil de formation d'images selon la revendication 12, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec l'interposition d'une couche isolante.
  18. Appareil de formation d'images selon la revendication 12, dans lequel ledit moyen de modulation (46) comporte des électrodes de balayage (51) et des électrodes (50) à signaux d'informations qui sont agencées en une matrice XY et sont connectées aux régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  19. Appareil de formation d'images selon la revendication 12, dans lequel ledit élément de formation d'image est formé d'une matière luminescente (56) qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons.
  20. Appareil de formation d'images selon la revendication 19, dans lequel la matière luminescente (56) comprend trois couleurs primaires (R, G, B) de matières luminescentes.
  21. Appareil de formation d'images selon la revendication 12, dans lequel ledit élément de formation d'image est formé d'une matière luminescente (56) qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et un support d'enregistrement (64) est en outre prévu, lequel enregistre une image lors d'une irradiation par de la lumière à partir de ladite matière luminescente (56).
  22. Appareil de formation d'images selon la revendication 12, dans lequel ledit élément de formation d'image est formé d'une matière luminescente (56) qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et ledit élément de formation d'image comporte en outre un moyen de support (65, 63) destiné à supporter un support d'enregistrement (64) qui enregistre une image lors d'une irradiation par de la lumière provenant de ladite matière luminescente (56).
  23. Appareil de formation d'images selon la revendication 12, comportant en outre une enveloppe (52, 58, 96) et un élément de support (95) destiné à supporter ladite enveloppe (52, 58, 96), dans lequel le dispositif d'émission d'électrons (42 à 45), le moyen de modulation (46), l'élément de formation d'image (58) et l'élément de support (95) sont agencés dans ladite enveloppe (52, 58, 96).
  24. Dispositif d'émission d'électrons ayant une région d'émission d'électrons (5) entre des électrodes (2, 3) sur un substrat (1), ladite région d'émission d'électrons (5) contenant des particules fines (6) agencées à des intervalles (s) allant de 0,5 nanomètre à 10 nanomètres et ayant un diamètre moyen (t) de particule de 0,5 nanomètre à 100 nanomètres.
  25. Dispositif d'émission d'électrons selon la revendication 24, dans lequel lesdits intervalles (s) entre lesdites particules fines (6) vont de 0,5 à 5 nanomètres.
  26. Dispositif d'émission d'électrons selon la revendication 24, dans lequel ledit diamètre moyen (t) desdites particules fines (6) va de 0,5 à 30 nanomètres.
  27. Dispositif d'émission d'électrons selon la revendication 24, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  28. Appareil de génération de faisceaux d'électrons comportant plusieurs dispositifs d'émission d'électrons et un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis les dispositifs d'émission d'électrons conformément à des signaux d'informations, ledit dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), et ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) à des intervalles (s) allant de 0,5 à 10 nanomètres et lesdites particules fines (6 ; 16) ayant un diamètre moyen (t) de particule allant de 0,5 à 100 nanomètres.
  29. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel lesdits intervalles (s) entre les particules (6 ; 16) vont de 0,5 à 5 nanomètres.
  30. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel le diamètre moyen (t) des particules fines (6 ; 16) va de 0,5 % à 30 nanomètres.
  31. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  32. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à CL) est agencée sur la même face dudit substrat (41).
  33. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec l'interposition d'une couche isolante.
  34. Appareil de génération de faisceaux d'électrons selon la revendication 28, dans lequel le moyen de modulation (46) comporte des électrodes de balayage (51) et des électrodes (50) à signaux d'informations qui sont agencées en une matrice XY et sont connectées auxdites régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  35. Appareil de formation d'images, comportant plusieurs dispositifs d'émission d'électrons, un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis les dispositifs d'émission d'électrons conformément à des signaux d'informations, et un élément de formation d'image (58) destiné à former une image sous l'effet d'une irradiation par des faisceaux d'électrons ; ledit dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes sur un substrat (41), ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) à des intervalles (s) allant de 0,5 à 10 nanomètres, et les particules fines (6 ; 16) ayant un diamètre moyen (t) de particule allant de 0,5 à 100 nanomètres.
  36. Appareil de formation d'images selon la revendication 35, dans lequel lesdits intervalles (s) entre les particules (6 ; 16) vont de 0,5 à 5 nanomètres.
  37. Appareil de formation d'images selon la revendication 35, dans lequel ledit diamètre moyen (t) des particules fines va de 0,5 à 30 nanomètres.
  38. Appareil de formation d'images selon la revendication 35, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  39. Appareil de formation d'images selon la revendication 35, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est agencée sur la même face dudit substrat (41).
  40. Appareil de formation d'images -selon la revendication 35, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec l'interposition d'une couche isolante.
  41. Appareil de formation d'images selon la revendication 35, dans lequel ledit moyen de modulation (46) comporte des électrodes de balayage (51) et des électrodes (50) à signaux d'informations qui sont agencées en une matrice XY et sont connectées auxdites régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  42. Appareil de formation d'images selon la revendication 35, dans lequel ledit élément de formation d'image (58) est formé d'une matière luminescente (56) qui émet de la lumière sous l'effet d'une irradiation par des faisceaux d'électrons.
  43. Appareil de formation d'images selon la revendication 42, dans lequel la matière luminescente (56) comprend trois couleurs primaires (R, G, B) de matières luminescentes.
  44. Appareil de formation d'images selon la revendication 35, dans lequel ledit élément de formation d'image (58) est formé d'une matière luminescente qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et un support d'enregistrement (46) est en outre prévu, lequel enregistre une image lors d'une irradiation par de la lumière provenant de la matière luminescente.
  45. Appareil de formation d'images selon la revendication 35, dans lequel l'élément de formation d'image (58) est formé d'une matière luminescente (56) qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et ledit élément de formation d'image (58) comporte en outre un moyen de support (65, 63) destiné à supporter un support d'enregistrement (64) qui enregistre une image lors d'une irradiation par de la lumière provenant de la matière luminescente.
  46. Appareil de formation d'images selon la revendication 35, comportant en outre une enveloppe (52, 58, 96) et un élément de support (95) destiné à supporter ladite enveloppe (52, 58, 96), dans lequel le dispositif d'émission d'électrons (42 à 45), le moyen de modulation (46), l'élément de formation d'image (58) et l'élément de support (95) sont agencés dans ladite enveloppe (52, 58, 96).
  47. Dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) à un taux d'occupation surfacique des particules fines (6 ; 16) allant de 20 % à 75 %, et lesdites particules fines (6 ; 16) étant agencées à des intervalles (s) allant de 0,5 à 10 nanomètres et ayant un diamètre moyen (t) de particule allant de 0,5 à 100 nanomètres.
  48. Dispositif d'émission d'électrons selon la revendication 47, dans lequel le taux d'occupation surfacique va de 35 à 60 %.
  49. Dispositif d'émission d'électrons selon la revendication 47, dans lequel lesdits intervalles (s) entre lesdites particules fines (6 ; 16) vont de 0,5 à 5 nanomètres.
  50. Dispositif d'émission d'électrons selon la revendication 47, dans lequel ledit diamètre moyen (t) desdites particules fines (6 ; 16) va de 0,5 à 30 nanomètres.
  51. Dispositif d'émission d'électrons selon la revendication 47, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  52. Appareil de génération de faisceaux d'électrons comportant plusieurs dispositifs d'émission d'électrons et un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis les dispositifs d'émission d'électrons (42 à 45) conformément à des signaux d'informations, le dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) à un taux d'occupation surfacique des particules fines (6 ; 16) allant de 20 % à 75 % de la région d'émission d'électrons (45), des intervalles (s) entre lesdites particules (6 ; 16) allant de 0,5 à 10 nanomètres, et lesdites particules fines (6 ; 16) ayant un diamètre moyen (t) allant de 0,5 à 100 nanomètres.
  53. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel le taux d'occupation surfacique va de 35 à 60 %.
  54. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel lesdits intervalles (s) entre les particules (6 ; 16) vont de 0,5 à 5 nanomètres.
  55. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel ledit diamètre moyen (t) des particules fines (6 ; 16) va de 0,5 à 30 nanomètres.
  56. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2%.
  57. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est agencée sur la même face dudit substrat (41).
  58. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec interposition d'une couche isolante.
  59. Appareil de génération de faisceaux d'électrons selon la revendication 52, dans lequel ledit moyen de modulation (46) comporte des électrodes de balayage (51) et des électrodes (50) à signaux d'informations qui sont agencées en une matrice XY et sont connectées aux régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  60. Appareil de formation d'images, comportant plusieurs dispositifs d'émission d'électrons (42 à 45), un moyen de modulation (46) destiné à moduler les faisceaux d'électrons émis depuis les dispositifs d'émission d'électrons conformément à des signaux d'informations, et un élément de formation d'image (58) destiné à former une image lors d'une irradiation par des faisceaux d'électrons ; ledit dispositif d'émission d'électrons ayant une région d'émission d'électrons (45) entre des électrodes (42, 43) sur un substrat (41), ladite région d'émission d'électrons (45) contenant en dispersion des particules fines (6 ; 16) à un taux d'occupation surfacique des particules fines (6 ; 16) allant de 20 % à 75 % de la région d'émission d'électrons (45), des intervalles (s) entre les particules (6 ; 16) allant de 0,5 à 10 nanomètres et lesdites particules fines (6 ; 16) ayant un diamètre moyen (t) allant de 0,5 à 100 nanomètres.
  61. Appareil de formation d'images selon la revendication 60, dans lequel ledit taux d'occupation surfacique va de 35 à 60 %.
  62. Appareil de formation d'images selon la revendication 60, dans lequel lesdits intervalles (s) entre lesdites particules (6 ; 16) vont de 0,5 à 5 nanomètres.
  63. Appareil de formation d'images selon la revendication 60, dans lequel ledit diamètre moyen (t) des particules fines (6 ; 16) va de 0,5 à 30 nanomètres.
  64. Appareil de formation d'images selon la revendication 60, dans lequel un courant inefficace circulant dans le dispositif n'est pas supérieur à 2 %.
  65. Appareil de formation d'images selon la revendication 60, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est agencée sur la même face dudit substrat (41).
  66. Appareil de formation d'images selon la revendication 60, dans lequel ledit moyen de modulation (46) comporte une électrode de modulation (G1 à GL), et ladite électrode de modulation (G1 à GL) est stratifiée sur le dispositif d'émission d'électrons avec interposition d'une couche isolante.
  67. Appareil de formation d'images selon la revendication 60, dans lequel ledit moyen de modulation (46) comporte des électrodes de balayage (51) et ces électrodes (50) à signaux d'informations qui sont agencées en une matrice XY et sont connectées aux régions d'émission d'électrons (45) des dispositifs d'émission d'électrons.
  68. Appareil de formation d'images selon la revendication 60, dans lequel ledit élément de formation d'image (58) est formé d'une matière luminescente (56) qui émet de la lumière en étant irradiée par des faisceaux d'électrons.
  69. Appareil de formation d'images selon la revendication 68, dans lequel ladite matière luminescente (56) comprend trois couleurs primaires (R, G, B) de matières luminescentes.
  70. Appareil de formation d'images selon la revendication 60, dans lequel ledit élément de formation d'images (58) est formé d'une matière luminescente qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et un support d'enregistrement (64) est en outre prévu, lequel enregistre une image lors d'une irradiation par de la lumière à partir de la matière luminescente.
  71. Appareil de formation d'images selon la revendication 60, dans lequel ledit élément de formation d'image (58) est formé d'une matière luminescente (56) qui émet de la lumière lors d'une irradiation par des faisceaux d'électrons, et l'élément de formation d'image (58) comporte en outre un moyen de support (63, 65) destiné à supporter un support d'enregistrement (64) qui enregistre une image lors d'une irradiation par de la lumière à partir de la matière luminescente.
  72. Appareil de formation d'images selon la revendication 60, comportant en outre une enveloppe (52, 58, 96) et un élément de support (95) destiné à supporter ladite enveloppe (52, 58, 96), dans lequel le dispositif d'émission d'électrons (42 à 45), le moyen de modulation (46), l'élément de formation d'image (58) et l'élément de support (95) sont agencés dans ladite enveloppe (52, 58, 96)
  73. Dispositif d'émission d'électrons selon l'une des revendications précédentes, dans lequel ladite région d'émission d'électrons (5 ; 15) est placée à une partie d'un film conducteur (4 ; 14) située entre lesdites électrodes (2, 3 ; 12, 13).
  74. Dispositif d'émission d'électrons selon la revendication 73, dans lequel ledit film conducteur (4 ; 14) est constitué de particules fines.
EP92117138A 1991-10-08 1992-10-07 Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif Expired - Lifetime EP0536732B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97106945A EP0790631B1 (fr) 1991-10-08 1992-10-07 Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26036191 1991-10-08
JP26036191 1991-10-08
JP260361/91 1991-10-08
JP26871492 1992-10-07
JP268714/92 1992-10-07
JP26871492A JP3072809B2 (ja) 1991-10-08 1992-10-07 電子放出素子と該素子を用いた電子線発生装置及び画像形成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP97106945A Division EP0790631B1 (fr) 1991-10-08 1992-10-07 Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif

Publications (2)

Publication Number Publication Date
EP0536732A1 EP0536732A1 (fr) 1993-04-14
EP0536732B1 true EP0536732B1 (fr) 2001-01-03

Family

ID=26544580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92117138A Expired - Lifetime EP0536732B1 (fr) 1991-10-08 1992-10-07 Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif

Country Status (4)

Country Link
EP (1) EP0536732B1 (fr)
AT (2) ATE198518T1 (fr)
CA (1) CA2080092C (fr)
DE (2) DE69231700T2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2112431C (fr) * 1992-12-29 2000-05-09 Masato Yamanobe Source d'electrons et appareil d'imagerie et methode d'alimentation de cet appareil
US6802752B1 (en) 1993-12-27 2004-10-12 Canon Kabushiki Kaisha Method of manufacturing electron emitting device
CA2126509C (fr) 1993-12-27 2000-05-23 Toshikazu Ohnishi Dispositif emetteur d'electrons et sa methode de fabrication, source d'electrons et appareil d'imagerie
CA2126535C (fr) 1993-12-28 2000-12-19 Ichiro Nomura Appareil a faisceau electronique et appareil d'imagerie
JP3311201B2 (ja) 1994-06-08 2002-08-05 キヤノン株式会社 画像形成装置
JP3072825B2 (ja) * 1994-07-20 2000-08-07 キヤノン株式会社 電子放出素子、電子源、及び、画像形成装置の製造方法
EP0703594B1 (fr) * 1994-09-22 2001-02-21 Canon Kabushiki Kaisha Dispositif émetteur d'électrons et procédé de fabrication
JPH0982214A (ja) 1994-12-05 1997-03-28 Canon Inc 電子放出素子、電子源、及び画像形成装置
AU749823B2 (en) * 1995-03-13 2002-07-04 Canon Kabushiki Kaisha Electron-emitting device and electron source and image-forming apparatus using the same as well as method of manufacturing the same
CN1271663C (zh) * 1995-03-13 2006-08-23 佳能株式会社 电子发射器件和电子源及其成象装置的制造方法
US6473063B1 (en) * 1995-05-30 2002-10-29 Canon Kabushiki Kaisha Electron source, image-forming apparatus comprising the same and method of driving such an image-forming apparatus
JP2001071499A (ja) 1998-09-30 2001-03-21 Canon Inc インクジェット記録ヘッドとこれを備えるインクジェット装置およびインクジェット記録方法
US6629757B1 (en) 1999-06-07 2003-10-07 Canon Kabushiki Kaisha Recording head, substrate therefor, and recording apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730203A (en) * 1985-08-10 1988-03-08 Futaba Denshi Kogyo Kabushiki Kaisha Write head for an optical printer
JPH07114104B2 (ja) 1987-10-09 1995-12-06 キヤノン株式会社 電子放出素子及びその製造方法
US5023110A (en) * 1988-05-02 1991-06-11 Canon Kabushiki Kaisha Process for producing electron emission device
JPH0687392B2 (ja) 1988-05-02 1994-11-02 キヤノン株式会社 電子放出素子の製造方法
JP2981751B2 (ja) * 1989-03-23 1999-11-22 キヤノン株式会社 電子線発生装置及びこれを用いた画像形成装置、並びに電子線発生装置の製造方法

Also Published As

Publication number Publication date
EP0536732A1 (fr) 1993-04-14
ATE198518T1 (de) 2001-01-15
DE69231700T2 (de) 2001-07-05
DE69231700D1 (de) 2001-03-29
DE69231624D1 (de) 2001-02-08
DE69231624T2 (de) 2001-05-31
CA2080092A1 (fr) 1993-04-09
CA2080092C (fr) 1999-03-23
ATE199291T1 (de) 2001-03-15

Similar Documents

Publication Publication Date Title
US5530314A (en) Electron-emitting device and electron beam-generating apparatus and image-forming apparatus employing the device
EP0523702B1 (fr) Dispositif de formation d'images
JP3083076B2 (ja) 画像形成装置
US6005540A (en) Image-forming apparatus and method of driving the same
US6593950B2 (en) Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
EP0536732B1 (fr) Dispositif émetteur d'électrons, appareil générateur d'un faisceau d'électrons et appareil de formation d'image muni d'un tel dispositif
US6657368B1 (en) Electron beam device, method for producing charging-suppressing member used in the electron beam device, and image forming apparatus
EP0834902B1 (fr) Appareil de formation d'images et son procédé de commande
JP2976134B2 (ja) 電子線発生装置とそれを用いた画像形成装置及び記録装置
JP3119368B2 (ja) 画像形成装置
JP3210129B2 (ja) 電子源及び画像形成装置
JPH06203741A (ja) 電子放出素子、電子線発生装置及び画像形成装置
JP2984347B2 (ja) 電子線発生装置とそれを用いた画像形成装置及び記録装置
JPH04326247A (ja) 画像形成装置
JPH087794A (ja) 画像形成装置
JPH04133239A (ja) 電子線発生装置とそれを用いた画像形成装置及び記録装置
JPH07122208A (ja) 電子源及び画像形成装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19930831

17Q First examination report despatched

Effective date: 19940228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19940228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010103

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20010103

REF Corresponds to:

Ref document number: 198518

Country of ref document: AT

Date of ref document: 20010115

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 97106945.5 EINGEREICHT AM 25/04/97.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69231624

Country of ref document: DE

Date of ref document: 20010208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010403

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011007

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101031

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101019

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69231624

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111007