EP0530743B1 - Einrichtung zur Erfassung von Rädern schienengebundener Fahrzeuge - Google Patents

Einrichtung zur Erfassung von Rädern schienengebundener Fahrzeuge Download PDF

Info

Publication number
EP0530743B1
EP0530743B1 EP92114914A EP92114914A EP0530743B1 EP 0530743 B1 EP0530743 B1 EP 0530743B1 EP 92114914 A EP92114914 A EP 92114914A EP 92114914 A EP92114914 A EP 92114914A EP 0530743 B1 EP0530743 B1 EP 0530743B1
Authority
EP
European Patent Office
Prior art keywords
wheel
sensor
train
sensors
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92114914A
Other languages
English (en)
French (fr)
Other versions
EP0530743A3 (en
EP0530743A2 (de
Inventor
Hermann Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stein GmbH
Original Assignee
Stein GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19914129138 external-priority patent/DE4129138C1/de
Application filed by Stein GmbH filed Critical Stein GmbH
Priority claimed from DE19924229131 external-priority patent/DE4229131C1/de
Publication of EP0530743A2 publication Critical patent/EP0530743A2/de
Publication of EP0530743A3 publication Critical patent/EP0530743A3/de
Application granted granted Critical
Publication of EP0530743B1 publication Critical patent/EP0530743B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • B61L1/10Electric devices associated with track, e.g. rail contacts actuated by electromagnetic radiation; actuated by particle radiation

Definitions

  • the invention relates to a wheel sensor for detecting wheels of rail-bound vehicles, preferably for counting the wheels in a track section, with the features specified in the preamble of claim 1.
  • a wheel sensor for detecting wheels of rail-bound vehicles, preferably for counting the wheels in a track section, with the features specified in the preamble of claim 1.
  • Such a sensor arrangement is known from DE-C-958 848.
  • Wheel sensors on rails are known in which a coupling change or a damping change occurs in the wheel sensors by driving over the wheels of rail-bound vehicles (SANDER, "rail contacts - a system comparison" in Signal + Draht, 1973, H.10, S.179-183) .
  • the wheel sensors are attached on one side to the running rail (US Pat. No. 4,283,031) or act only on one side, even if e.g. the transmitter coil of the wheel sensor on one side, whose receiver coil is attached to the other side of the rail (SCHMIDT, "Der Achsbeatener Standarrd Elektrik Lorenz AG type Azl 70 - Detail 1" in Signal + Draht, 1976, H.6, p.116- 123).
  • the wheel sensors essentially react to the wheel flange of a wheel. With the known wheel sensors, the direction of travel can be detected by arranging them one behind the other (FRECH, SCHMIDT, "The axle counter of Standard Elektrik Lorenz AG” in Signal + Draht, H.11, 1967, p.165-174).
  • the safety of the wheel detection of the known wheel sensors also depends on their precise adjustment on the rail, which is more difficult with different rail profiles.
  • Short-circuit currents in the rails can also have a negative effect on the reliability of the wheel count in the known wheel sensors.
  • the wheel sensor according to the invention has the particular advantage that a symmetrical arrangement of at least two inductive sensors and a relative evaluation of their level compensates for interference influences of an electrical, inductive, thermal or mechanical nature by comparing them directly or indirectly.
  • the second sensor can expediently be arranged on the opposite travel rail.
  • sensors can also be arranged one behind the other on a running rail, if, for example a rail hike cannot be ruled out.
  • the asymmetry of a wheel with a wheel flange can be used to check the plausibility of the sensor, which is mainly influenced and faces the wheel crane.
  • Filters arranged differently in the processing and output branches of the levels can reduce interference and suppress runtime differences, suppress levels that are too low or too high by means of threshold switches, and adapt the level of the wheel sensor to its task by forming quotients and / or differences.
  • a longitudinal arrangement of the wheel sensors makes it possible to recognize the direction of passage and a reversal of the direction after the vehicle has come to a standstill.
  • FIG. 1 shows a typical arrangement of a wheel sensor with two associated inductive sensors (1, 3) known per se.
  • the sensors (1, 3) are arranged symmetrically to a travel rail (4) in the track (2).
  • a wheel (6) rolling over the travel rail (4) influences the sensors (1, 3) differently due to its asymmetry.
  • the sensor (3) facing the wheel rim is influenced more because of the relatively closer, larger mass of the wheel (6), so that there is a more influenced level (9) at the output of this sensor (3).
  • a wheel with a wheel flange can be clearly identified despite all interfering influences that act symmetrically or almost symmetrically on the sensors (1, 3).
  • These interferences can be eliminated by comparing the levels (7, 9) of the sensors (1, 3).
  • such interferences can be electrical, inductive, thermal or mechanical, among other things.
  • sensor 1 If sensor 1 is influenced to a greater extent, this indicates an error that can be displayed on an output (11) of a comparator (5).
  • a typical evaluation circuit of a wheel sensor is shown in FIG.
  • the levels (7, 9) of two assigned inductive sensors (1, 3) are routed to a comparator (5), which outputs a wheel-recognizing level (11) at the output if the levels are not the same.
  • the wheel-recognizing output level (11) can be suppressed in the comparator (5) and / or a further output level (13) indicating an error are given by the comparator (5).
  • variable levels (7, 9) of the sensors (1, 3) known per se can e.g. rectified or non-rectified voltages or currents based on changes in the influence of their inductance, inductance coupling, resonant circuit damping, phase or frequency by a wheel (6) of a rail vehicle.
  • Fig. 3 shows different arrangements of typical wheel sensors in the track (2).
  • the assigned sensors (1, 3) can, for. B. consist of a damped by a wheel (6) resonant circuit or a transmitting and receiving coil, the coupling of which is influenced by a wheel (6).
  • the transmitting and receiving coils of a sensor (1, 3) are arranged horizontally apart from one another, the transmitting coils are shown in FIG. 3 as a triangle and the receiving coils as a square.
  • the coils can be, for example, concentrated air coils, a ferrite core contain or be designed as larger frame coils.
  • the 3a corresponds to the top view of the inductive sensors (1, 3) of a wheel sensor according to FIG. 3.
  • the sensors (1, 3) can contain only one coil or vertically arranged transmitting and receiving coils.
  • Fig. 3b sensors (1, 3) of a wheel sensor are attached to both rails (4) in the same transverse direction. Since the wheel flanges of the wheels (6) of one axle face each other, the same effect results as in the arrangement according to FIG. 3a.
  • 3c shows a wheel sensor with horizontally offset transmission and reception coils of sensors 1 and 3.
  • FIG. 3d shows a further arrangement of a wheel sensor with sensors (1, 3) having several coils.
  • the wheel sensor according to FIG. 3e consists of two sensors (1, 3) arranged along a track, with the level (23) of the sensor first traveled being delayed until the other sensor is used for the purpose of comparison (5).
  • FIG. 4 shows a circuit principle for comparison of sensors (1, 3) of a wheel sensor arranged along the travel rail (4).
  • the levels (7, 9) of the sensors (1, 3) are fed to a switch (15) which detects the change in level of the sensor first traveled and transfers this level (23) to a memory (19) which stores the level or level curve with a delay and then only outputs to the comparator (5) when the switch (15) detects the change in level when the other sensor is driven, the level (21) of which supplies the switch (15) to the comparator (5) directly or via an adapter circuit (17) so that this level and the level delayed by the memory can be compared as if the sensors (1, 3) had been run over at the same time.
  • the memory (19) can, for example, be based on the known, not known, basis of a sample / hold circuit, a bucket chain circuit, a signal processor or an analog / digital converter with a serial FIFO memory connected downstream.
  • a matching circuit (17) for example an analog / digital converter, is necessary in order to achieve the same type of level at the input of the comparator (5).
  • the filters (25, 27, 29) can reduce interference and suppress runtime differences.
  • the filter 29 after the level comparison essentially serves to suppress runtime differences.
  • Threshold switches (31, 33, 35) suppress levels that are too low in order to eliminate only small deviations or changes in the levels. By responding to levels that are too high and suppressing them, excessive influences can be eliminated with the threshold switches (31, 33, 35); the influences of a very strongly excited eddy current brake can e.g. B. combat in addition to the symmetrical suppression properties of the wheel sensor.
  • the comparator (5) can also compare the input levels (7, 9) in a manner known per se, not shown in more detail, on the basis of the formation of the quotient and / or difference, the unwanted dependence on absolute levels being better suppressed.
  • FIG. 6 shows a typical evaluation circuit of a wheel sensor which contains a logic circuit (61).
  • the sensor pair gives the predominant level of the sensor (43) facing the wheel flange (41, 43) corresponding to the passage of a proper wheel, a wheel signal (51), at approximately the same level of both sensor pairs (41, 43) corresponding to a metallic object passing symmetrically to the rail head, a detection signal (55) and at a predominant level of that facing away from the wheel flange Sensor (41) an error signal (53).
  • the levels (47, 49) in Fig. 7b are approximately the same size corresponding to a symmetrical, metallic object above the pair of sensors (41, 43), which leads to the detection signal (55) at the output of the associated AND gate in Fig. 7a, if the switching threshold S in Fig. 7b is exceeded by both levels.
  • the levels (47, 49) shown by way of example in FIG. 7c differ in size according to a correct wheel above the sensor pair (41, 43), which leads to the wheel signal (51) at the output of the associated AND gate in FIG. 7a if the switching threshold S in FIG. 7c falls below the level 47 and is exceeded by the level 49 and the levels are lowered with the same resistances R to such an extent that the level 47 is below the switching threshold in the fault-free case shown.
  • the error signal (53) is expediently used to reject the entire measuring process of the wheel sensor.
  • the temporal sequence (56) of the wheel signals (51) or the detection signals (55) is obtained from the latter signals by an OR gate (FIG. 7a).
  • the logic circuit (61) is better constructed from analog elements already mentioned at the beginning for better interference suppression.
  • FIG. 9 shows an example of a current data pattern, this occurs when the wheel signal (51) is clocked out as a 1-bit sequence with the temporal sequence signal (56).
  • the wheels are recorded as binary ones and the symmetrical metal objects as binary zeros.
  • the data pattern can be seen in the example 3 wheels 1 symmetrical metal object 2 wheels 1 symmetrical metal object n wheels
  • Train types can thus be set as data patterns on the train and recorded with the sensor pairs (41, 43), primarily from the first bit sequences, which are assigned to the train's drive unit, for example. If there is insufficient identification due to the consequence of wheel and eddy current brakes and / or magnetic rail brakes, coding plates on the train can also be used.
  • the number of binary ones in the example corresponds to the number of axles of the train and can easily be separated for evaluation.
  • FIG. 6 shows how the signals or current data patterns mentioned (FIG. 9) are fed to a computer (63) in the evaluation circuit (45).
  • the computer (63) has a memory (not shown) and a program and is connected to a timer (57).
  • the computer can recognize the train type and its possible speed and acceleration by comparing the current data pattern (FIG. 9) detected by the sensor pairs and the evaluation circuit.
  • the computer can use these known calculation methods to determine the time span from which these trains travel, for example, on average or at the earliest a certain distance. If the calculation is based on the maximum possible speed, the earliest arrival of the train at a location with a known distance from the wheel sensor can be predetermined. Data or messages about this can be output (65) or via a data transmission (67) at their output (69).
  • the data or messages are transmitted via the data transmission (67), for example, to a location of a construction site in the track area on which the calculation is based and evaluated there, a time-delayed but nevertheless timely warning can be triggered there, which results from the calculation. Construction work does not have to be interrupted prematurely.
  • a computer (not described in more detail) with equivalent properties such as the computer 63 together with a data transmission similar to the data transmission 67 can be used for the evaluation.
  • the computer (63) can, however, also measure the temporal sequence of at least the first wheel and / or recognition signals (51, 55) and stored data associated with the train type about the absolute distances of at least the first wheel axles and / or metallic passing by symmetrically to the rail head Objects determine the current speed of the train. With this current speed and the maximum possible acceleration, the arrival of the train at locations relative to the wheel sensor can be determined more precisely according to known calculation methods.
  • the computer (63) can determine the levels (47a, 47b or 49a, 49b) of the coils of the sensor pairs (41, 43) also easier to determine the current speed of the train.
  • FIG. 8 shows a D flip-flop circuit (41a, 41b, or 43a, 43b), which is contained in the evaluation circuit (45) and with which the direction of pull can be detected.
  • a D flip-flop circuit 41a, 41b, or 43a, 43b
  • the designations 41a, 41b, 47a, 47b, 47c and 47c are assigned to the sensor 41, the rest to the sensor 43.
  • the mode of operation is identical for both sensors.
  • the inductively influenced coils of the sensor pairs (41, 43) arranged along the track in succession are given correspondingly successive levels (47a, 47b, or 49a, 49b) from the inputs of the D flip-flop circuit (41a, 41b, or 43a, 43b). For example, if the level 47a at the data input of the D flip-flop 41a occurs before the level 47b at its clock input, the former level is passed to the output of the D flip-flop 41a as a direction signal 49c when the level 47b arrives. The D flip-flop 41b, on the other hand, does not pass any level to its output. With the reverse order of the levels, the D flip-flops behave in reverse.
  • the outputs (47c, 47d, or 49c, 49d) differ according to the order of the levels and show the direction of travel of the train. After the direction signals have been recognized, the D flip-flops are reactivated by resetting, which is not shown in FIG. 8 for reasons of clarity.
  • the information about the train direction can be used, for example, in connection with the notification of the arrival of the train at certain locations or for the direction-dependent axle counting.
  • the computer (63) in FIG. 6 can also contain analog / digital converters (not shown), advantageously one for each signal-emitting coil of the sensor pair (41, 43). If the levels (47, 49) of the sensor pairs (41, 43) are converted into digital values so quickly that at least 3 values are stored when a sensor and a wheel and / or a metallic object are affected, then an increasing number of values per Influencing a better and better resolved equivalent recognition pattern of the measured object in the form of a table of values. In contrast to angular brakes, a wheel is characterized, for example, by small increments in the associated value table because of its round shape. The significance of the measured objects can be determined by known calculation methods using comparison tables permanently stored in the computer (63). The safety of the wheel sensor can be increased to a level necessary for signal-technical safety in modern railroad operation in a logical connection with wheel signals (51) or detection signals (55) or error signals (53).
  • the signals 51, 53, 55, 56 of the evaluation circuit (45) in FIG. 6 and / or the current data pattern (FIG. 9) or the like can also be transmitted to a remote location via the data transmission 67 and processed there in a similar or identical manner are in the computer 63.
  • the data can be compressed, for example the current data pattern in the example of FIG as a sequence of digits 3, 1, 2, 1, n instead of the bit sequence.
  • the pair of sensors (41, 43) can each contain a first transmitter and / or receiver (71). If the trains themselves each contain a second transmitter and / or receiver (73) immediately above the rail, data can be exchanged wirelessly between the transmitters and / or receivers (71, 73) in a manner known per se, the computer (63) corresponds to the first transmitter and / or receiver (71) via a data line (65) and the train corresponds to the second transmitter and / or receiver (73) via line 75.
  • the first transmitter and / or receiver (71) can also be part or all of the coils of the sensor pair (41, 43) on an inductive basis, in particular if the coils to prevent the mutual influence of the transmission of the data and the measurements in a generally known compensating manner Bridge circuit are arranged.
  • Signal security can be achieved if the evaluation circuit (45), possibly also the data transmission (67) and / or the transmitter / receiver (71, 73) and the corresponding connections (47, 49, 65, 69, 75) as a second decoupled functional unit are present again, the functional units work in the same way and monitor each other for the same and simultaneous output signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Chain Conveyers (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

  • Die Erfindung betrifft einen Radsensor zur Erfassung von Rädern schienengebundener Fahrzeuge, vorzugsweise zur Zählung der Räder in einem Gleisabschnitt, mit den im Oberbegriff des Patentanspruchs 1 angegebenen Merkmalen. Eine solche Sensoranordnung ist aus DE-C-958 848 bekannt.
  • Bekannt sind Radsensoren an Fahrschienen, bei denen durch das Überfahren der Räder schienengebundener Fahrzeuge eine Kopplungsänderung oder eine Dämpfungsänderung in den Radsensoren erfolgt (SANDER, "Schienenkontakte - ein Systemvergleich" in Signal + Draht, 1973, H.10, S.179-183). Die Radsensoren sind einseitig an der Fahrschiene befestigt (US-Pat 4 283 031) oder wirken nur einseitig, auch wenn z.B. die Sendespule des Radsensors an der einen, dessen Empfangsspule an der anderen Seite der Fahrschiene angebracht ist (SCHMIDT, "Der Achszähler Standarrd Elektrik Lorenz AG Bauform Azl 70 - Teil 1" in Signal + Draht, 1976, H.6, S.116-123). Die Radsensoren reagieren im Wesentlichen auf den Spurkranz eines Rades. Mit den bekannten Radsensoren läßt sich durch eine Hintereinanderanordnung eine Fahrtrichtungserkennung durchführen (FRECH, SCHMIDT, "Der Achszähler der Standard Elektrik Lorenz AG" in Signal + Draht, H.11, 1967, S.165-174).
  • Bei breiten, spurkranzlosen Rädern steht soviel Metallmasse über die Innenseite der Schiene hervor, daß dadurch die Masse eines Spurkranzes sporadisch vorgetäuscht sein kann, auf der die bekannten Radsensoren reagieren und eine fehlerhafte Zählung der Räder vornehmen.
  • Bei auf die Fahrschiene abgesenkten Magnetschienenbremsen entsteht durch die große Masse und zusätzlich durch die Erregung das gleiche Problem der Fehlzählung, erschwert durch die Anhebung der unbenutzten Magnetbremsen.
  • Ebenso reagieren die bekannten Radsensoren bei Überfahren von Wirbelstrombremsen (KRÖGER, "Prinzip, Entwicklung und Konstruktion der linearen Wirbelstrombremsen" in ZEV-Glasers Annalen, 1985, H.9, S.368-374) durch deren Erregung falsch, wobei auch hierbei keine eindeutige Radzählung möglich ist. Ein ungelöstes Problem ist auch die kurzfristige, erhebliche Erhitzung der Fahrschiene und an dieser angeordneten Radsensoren bei erregter Wirbelstrombremse, weil die kurzfristige Temperaturkompensation der Kupferspulen der Radsensoren versagt.
  • Auch ist die Sicherheit der Raddetektion der bekannten Radsensoren von deren genauer Justierung an der Schiene abhängig, erschwert bei unterschiedlichen Schienenprofilen.
  • Durch den Verschleiß des Schienenkopfes ergibt sich bei den bekannten Radsensoren das weitere Problem der Notwendigkeit des rechtzeitigen und häufigen Nachjustierens an der Fahrschiene.
  • Kurzschlußströme in den Fahrschienen können ebenfalls negativ auf die Zuverlässigkeit der Radzählung bei den bekannten Radsensoren wirken.
  • Aus der Deutschen Auslegeschrift DE-AS 1 268 650 ist bekannt, daß Sensoren mit Auswerteeinrichtungen ausgerüstet sind, die in einen Bezirk ein- und aus ihm herausfahrende Achsen zählen und die Zählergebnisse zum Stellwerk zur weiteren Verarbeitung zwecks Freimeldung des Bezirks übertragen. Es ist auch bekannt, Sensorsignale doppelkanalig zu verarbeiten und über eine Datenübertragungseinrichtung an eine zentrale Stelle zu übermitteln (KORTHAUER, MÜLLER, "Anrückmelder zur Rottenwarnung" in Signal + Draht 1977,H.1/2,S.32-33). Es nicht möglich, eine zeitrichtige Meldung des Eintreffens von Zügen zu Orten relativ zu den Sensoren mit diesen Einrichtungen vorzunehmen. Ebenso ist eine Plausibilitätskontrolle der Raderfassung nicht möglich.
  • Aufgabe der Erfindung ist es daher, einen Radsensor anzugeben, der keine Fehlzählungen bei dem Überfahren durch spurkranzlose Räder, Magnetschienenbremsen oder Wirbelstrombremsen aufweist, geringe Ansprüche an die Justierung stellt und unempfindlich gegen elektrische Störungen ist.
  • Diese Aufgabe wird erfindungsgemäß bei einem gattungsgemäßen Radsensor durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Der Radsensor gemäß der Erfindung hat den besonderen Vorteil, daß durch eine symmetrische Anordnung mindestens zweier induktiver Sensoren und eine relative Auswertung deren Pegel Störeinflüsse elektrischer, induktiver, thermischer oder mechanischer Art durch deren direkten oder indirekten Vergleich kompensiert werden.
  • Nachfolgend sind vorteilhafte Varianten und Weiterbildungen der Erfindung erwähnt.
  • Bei engen Platzverhältnissen im Schwellenfach oder bei beidseitig einer Fahrschiene angeordneten Spulen eines Sensors kann der zweite Sensor zweckmäßig an der gegenüberliegenden Fahrschiene angeordnet sein.
  • Durch die Anwendung eines gesteuerten, verzögerten Speichers können Sensoren auch an einer Fahrschiene hintereinander angeordnet sein, falls z.B. eine Schienenwanderung nicht auszuschließen ist.
  • Die Asymmetrie eines Rades mit Spurkranz kann ausgenutzt werden zur Plausibilitätskontrolle des überwiegend beeinflußten, dem Spurkrans zugewandten Sensors.
  • Durch unterschiedlich in die Verarbeitungs- und Ausgangszweige der Pegel angeordnete Filter können Störungen reduziert und Laufzeitunterschiede unterdrückt, durch Schwellwertschalter zu geringe oder zu große Pegel unterdrückt und durch Quotienten- und/oder Differenzbildung der Pegel der Radsensor an seine Aufgabe angepaßt werden.
  • Durch eine Längsanordnung der Radsensoren, auch mit nur zwei einzelnen Sensoren, läßt sich die Überfahrrichtung und eine Umkehr der Richtung nach Stillstand über dem Radsensor erkennen.
  • Durch Messungen der zeitlichen Folge von über dem Radsensor hinwegfahrenden Rädern und anderen metallischen Gegenständen ist es möglich, Zugtypen zu erkennen und aus zugeordneten Geschwindigkeiten zeitrichtige Meldungen des Eintreffens von Zügen zu Orten relativ zu dem Radsensor auszulösen. Bei langsam fahrenden Zügen wird so z.B. eine zu frühzeitige Räumung des Gleises bei Baustellen in einiger Entfernung verhindert.
  • Weitere Ausgestaltungen beschreiben Verbesserungen der Raderkennung, die Modifizierung der Radsensoren als Datenübertragungseinrichtung sowie eine sichere Verarbeitungseinheit.
  • Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher erläutert. Es zeigt
  • Fig. 1
    eine Anordnung eines Radsensors an einer Fahrschiene im Gleis,
    Fig. 2
    eine Auswerteschaltung eines Radsensors,
    Fig. 3
    weitere Anordnungen von Radsensoren im Gleis,
    Fig. 4
    eine weitere Auswerteschaltung eines Radsensors,
    Fig. 5
    Zusätze zur Auswerteschaltung eines Radsensors,
    Fig. 6
    eine weitere Auswerteschaltung eines Radsensors,
    Fig. 7
    eine Verknüpfungsschaltung in der Auswerteschaltung,
    Fig. 8
    eine richtungserkennende Schaltung in der Auswerteschaltung,
    Fig. 9
    ein aktuelles Datenmuster.
  • In Fig. 1 ist eine typische Anordnung eines Radsensors mit zwei an sich bekannten, zugeordneten, induktiven Sensoren (1, 3) gezeigt. Die Sensoren (1, 3) sind symmetrisch zu einer Fahrschiene (4) im Gleis (2) angeordnet. Ein über die Fahrschiene (4) rollendes Rad (6) beeinflußt die Sensoren (1, 3) durch seine Asymmetrie unterschiedlich. Der dem Radkranz zugewandte Sensor (3) wird wegen der relativ näheren größeren Masse des Rades (6) stärker beeinflußt, sodaß sich am Ausgang dieses Sensors (3) ein stärker beeinflußter Pegel (9) ergibt. Durch Vergleich der Pegel (7, 9) der Sensoren (1, 3) läßt sich ein Rad mit Spurkranz eindeutig trotz aller Störeinflüsse, die symmetrisch oder nahezu symmetrisch auf die Sensoren (1, 3) einwirken, erkennen. Diese Störeinflüsse können durch Vergleich der Pegel (7, 9) der Sensoren (1, 3) eliminiert werden. Solche Störeinflüsse können, wie bereits erwähnt, unter anderem elektrischer, induktiver, thermischer oder mechanischer Art sein.
  • Ist der Sensor 1 stärker beeinflußt, so deutet dies auf einen Fehler hin, der an einem Ausgang (11) eines Vergleichers (5) angezeigt werden kann.
  • In Fig. 2 ist eine typische Auswerteschaltung eines Radsensors gezeigt. Die Pegel (7, 9) zweier zugeordneter induktiver Sensoren (1, 3) sind auf einen Vergleicher (5) geführt, der bei ungleichen zugeführten Pegeln am Ausgang einen raderkennenden Pegel (11) abgibt.
  • Überwiegt die Beeinflussung des Pegels (9) des dem Spurkranz des Rades (6) zugeordneten Sensors (3) nicht, so kann der raderkennende Ausgangspegel (11) im Vergleicher (5) unterdrückt werden und/oder ein einen Fehler anzeigender weiterer Ausgangspegel (13) vom Vergleicher (5) abgegeben werden.
  • Die veränderlichen Pegel (7, 9) der an sich bekannten Sensoren (1, 3) können z.B. gleichgerichtete oder nicht gleichgerichtete Spannungen oder Ströme sein, die auf Änderungen der Beeinflusssung deren Induktivität, Induktivitätskopplung, Schwingkreisdämpfung, -phase oder -frequenz durch ein Rad (6) eines Schienenfahrzeuges beruht.
  • Fig. 3 zeigt verschiedene Anordnungen von typischen Radsensoren im Gleis (2). Die zugeordneten Sensoren (1, 3) können z. B. aus einem durch ein Rad (6) bedämpften Schwingkreis oder einer Sende- und Empfangsspule bestehen, deren Kopplung durch ein Rad (6) beeinflußt wird. Soweit die Sende- und Empfangsspulen eines Sensors (1, 3) horizontal entfernt voneinander angeordnet sind, sind in Fig. 3 die Sendespulen als Dreieck und die Empfangsspulen als Quadrat dargestellt. Die Spulen können z.B. konzentrierte Luftspulen sein, einen Ferritkern enthalten oder auch als größere Rahmenspulen ausgebildet sein.
  • Fig. 3a entspricht der Draufsicht der induktiven Sensoren (1, 3) eines Radsensors nach Fig. 3. Die Sensoren (1, 3) können nur eine Spule oder vertikal angeordnete Sende- und Empfangsspulen enthalten.
  • In Fig. 3b sind Sensoren (1, 3) eines Radsensors an beiden Fahrschienen (4) in gleicher Querrichtung angebracht. Da die Spurkränze der Räder (6) einer Achse einander zugewandt sind, ergibt sich die gleiche Wirkung wie bei der Anordnung nach Fig. 3a.
  • Fig. 3c zeigt einen Radsensor mit horizontal versetzten Sende- und Empfangsspulen der Sensoren 1 und 3.
  • Fig. 3d stellt eine weitere Anordnung eines Radsensors mit mehrere Spulen aufweisenden Sensoren (1, 3) dar.
  • Der Radsensor nach Fig. 3e besteht aus zwei längs eines Gleises angeordneten, schienenübergreifenden Sensoren (1, 3), wobei zwecks Vergleich (5) der Pegel (23) des erstbefahrenen Sensors bis zum Befahren des anderen Sensors verzögert wird.
  • In schaltungsstechnisch an sich bekannter Weise kann mit einer Anordnung der Radsensoren nach Fig. 3e, 3f oder 3g durch die nacheinander befahrenen Sensoren und deren dadurch zeitlich versetzte Ausgangspegel die Fahrrichtung erkannt werden, bei Überlappung der Beeinflussungszonen und der resultierenden Pegel auch eine Richtungsumkehr nach einem Stillstand. Für eine Anordnung nach Fig. 3g sind nur zwei Sensoren (1, 3), aber eine wie bei Fig. 3e erwähnte Pegelverzögerung zwecks Vergleich notwendig.
  • Fig. 4 zeigt ein Schaltungsprinzip zum Vergleich längs der Fahrschiene (4) angeordneter Sensoren (1, 3) eines Radsensors. Die Pegel (7, 9) der Sensoren (1, 3) werden einer Weiche (15) zugeführt, die die Pegeländerung des erstbefahrenen Sensors detektiert und diesen Pegel (23) an einen Speicher (19) leitet, der den Pegel oder Pegelverlauf verzögernd speichert und dann erst an den Vergleicher (5) abgibt, wenn die Weiche (15) die Pegeländerung bei Befahren des anderen Sensors detektiert, dessen Pegel (21) die Weiche (15) direkt oder über eine Anpaßschaltung (17) dem Vergleicher (5) zuführt, sodaß dieser Pegel und der vom Speicher verzögerte Pegel so verglichen werden können, als seien die Sensoren (1, 3) gleichzeitig überfahren worden. Der Speicher (19) kann z.B. auf der nicht näher dargestellten, an sich bekannten Basis einer Sample-/Holdschaltung, einer Eimerkettenschaltung, eines Signalprozessors oder Analog/Digitalwandlers mit nachgeschaltetem seriellen FIFO-Speicher bestehen. In einigen dieser Schaltungen ist eine Anpaßschaltung (17), z.B. ein Analog-/Digitalwandler, notwendig, um die gleiche Art der Pegel am Eingang des Vergleichers (5) zu erzielen.
  • Fig. 5 weist zweckmäßige Zusätze (25 bis 35) auf, um die Störsicherheit der Schaltung nach Fig. 2 zu erhöhen, wobei diese Zusätze auch sinngemäß in die Schaltung nach Fig. 4 einzubringen sind, was nicht näher dargestellt ist.
  • Durch die Filter (25, 27, 29) können Störungen reduziert und Laufzeitunterschiede unterdrückt werden. Der Unterdrückung von Laufzeitunterschieden dient im Wesentlichen das Filter 29 nach dem Pegelvergleich.
  • Durch Schwellwertschalter (31, 33, 35) werden zu geringe Pegel unterdrückt, um nur kleine Abweichungen oder Änderungen der Pegel zu eliminieren. Durch Ansprechen auf zu große Pegel und deren Unterdrückung lassen sich mit den Schwellwertschaltern (31, 33, 35) übergroße Beeinflussungen eliminieren; die Einflüsse einer sehr stark erregten Wirbelstrombremse lassen sich z. B. so zusätzlich zu den symmetrischen Unterdrückungseigenschaften des Radsensors bekämpfen.
  • Der Vergleicher (5) kann in an sich bekannter, nicht näher dargestellten Weise die Eingangspegel (7, 9) auch auf der Basis der Quotienten- und/oder Differenzbildung vergleichen, wobei die ungewollte Abhängigkeit von absoluten Pegeln besser unterdrückt wird.
  • In Fig. 6 ist eine typische Auswerteschaltung eines Radsensors gezeigt, der eine Verknüpfungsschaltung (61) enthält. Abhängig von den Pegeln (47, 49) zweier zugeordneter induktiver Sensorpaare (41, 43) gibt diese bei überwiegendem Pegel des dem Radspurkranz zugewandten Sensors (43) des Sensorpaares (41, 43) entsprechend dem Vorbeilaufen eines ordnungsgemäßen Rades ein Radsignal (51), bei etwa gleich großem Pegel beider Sensorpaare (41, 43) entsprechend eines symmetrisch zum Schienenkopf vorbeilaufenden metallischen Gegenstands ein Erkennungssignal (55) und bei überwiegendem Pegel des dem Radspurkranz abgewandten Sensors (41) ein Fehlersignal (53) ab.
  • In Fig. 7a ist eine mögliche, stark vereinfachte Verknüpfungsschaltung (61) mit den oben angeführten Eigenschaften gezeigt.
  • Die Pegel (47, 49) in Fig. 7b sind etwa gleich groß entsprechend einem symmetrischen, metallischen Gegenstand über dem Sensorpaar (41, 43), was zu dem Erkennungssignal (55) am Ausgang des zugehörigen UND-Gatters in Fig. 7a führt, wenn die Schaltschwelle S in Fig. 7b von beiden Pegeln überschritten ist.
  • Die in Fig. 7c beispielhaft dargestellten Pegel (47, 49) sind unterschiedlich groß entsprechend eines ordnungsgemäßen Rades über dem Sensorpaar (41, 43), was zu dem Radsignal (51) am Ausgang des zugehörigen UND-Gatters in Fig. 7a führt, wenn die Schaltschwelle S in Fig. 7c vom Pegel 47 unterschritten und vom Pegel 49 überschritten ist und die Pegel mit gleichen Widerständen R soweit abgesenkt sind, daß der Pegel 47 im dargestellten störungsfreien Fall unter der Schaltschwelle liegt.
  • Für das Fehlersignal (53) gilt Äquivalentes wie bei dem Radsignal (51) erwähnten, wobei jedoch die Größen der Pegel (47, 49) vertauscht sind. Es entspräche quasi einem Radkranz an der falschen Seite eines vorbeilaufenden Rades. Das Fehlersignal (53) wird zweckmäßig zum Verwerfen des gesamten Meßvorgangs des Radsensors herangezogen.
  • Die zeitliche Folge (56) der Radsignale (51) oder der Erkennungssignale (55) wird durch ein ODER-Glied (Fig. 7a) aus letzteren Signalen gewonnen.
  • Die Verknüpfungsschaltung (61) wird zur besseren Störunterdrückung besser aus analogen, eingangs bereits aufgezeigten Elementen aufgebaut.
  • In Fig. 9 ist ein Beispiel eines aktuellen Datenmusters gezeigt, das entsteht, wenn das Radsignal (51) als 1-Bit-Folge mit dem zeitlichen Folgesignal (56) ausgetaktet wird. Die Räder sind als binäre Einsen und die symmetrischen Metallgegenstände als binäre Nullen erfaßt. Erkennbar ist in dem Beispiel das Datenmuster
       3 Räder
       1 symmetrischer Metallgegenstand
       2 Räder
       1 symmetrischer Metallgegenstand
       n Räder
    Damit lassen sich Zugtypen als Datenmuster am Zug einstellen und mit den Sensorpaaren (41, 43) erfassen, vornehmlich aus den ersten Bit-Folgen, die z.B. der Triebeinheit des Zuges zugeordnet sind. Bei mangelnder Kennzeichnung durch die Folge Rad und Wirbelstrombremsen und/oder Magnetschienenbremsen können auch Kodierbleche am Zug zuhilfe genommen werden.
  • Die Anzahl der binären Einsen im Beispiel entspricht der Achszahl des Zuges und kann zur Auswertung leicht separiert werden.
  • In Fig. 6 ist gezeigt, wie die erwähnten Signale, bzw. aktuellen Datenmuster (Fig. 9) einem Rechner (63) in der Auswerteschaltung (45) zugeführt werden. Der Rechner (63) hat einen nicht dargestellten Speicher und ein Programm und ist mit einem Zeitgeber (57) verbunden.
  • Wenn der Rechner Datenmuster verschiedener Zugtypen mit zugeordneten Daten über die mögliche Geschwindigkeit und Beschleunigung des Zugtyps gespeichert hat, so kann er durch Vergleich des durch die Sensorpaare und die Auswerteschaltung erfaßten aktuellen Datenmusters (Fig. 9) den Zugtyp und dessen mögliche Geschwindigkeit und Beschleunigung erkennen. Aus diesen Größen kann der Rechner nach an sich bekannten Berechnungsmethoden die Zeitspanne ermitteln, in der der Zug z.B. durchschnittlich oder frühestens eine bestimmte Strecke zurückgelegt. Legt man der Berechnung die maximal mögliche Geschwindigkeit zugrunde, so ist das früheste Eintreffen des Zuges an einem Ort mit bekannter Entfernung zum Radsensor vorherbestimmbar. Daten, bzw. Meldungen hierüber können ausgangsseitig (65) oder über eine Datenübertragung (67) an deren Ausgang (69) zur Verfügung stehen. Wenn die Daten, bzw. Meldungen über die Datenübertragung (67) z.B. an einen der Berechnung zugrunde gelegten Ort einer Baustelle im Gleisbereich übertragen und dort ausgewertet werden, so kann dort eine aus der Berechnung resultierende zeitverzögerte, aber dennoch rechtzeitige Warnung ausgelöst werden. Der Baubetrieb muß so nicht vorzeitig unterbrochen werden. Zur Auswertung kann ein nicht näher beschriebener Rechner mit äquivalenten Eigenschaften wie der Rechner 63 zusammen mit einer Datenübertragung ähnlich der Datenübertragung 67 herangezogen werden.
  • Der Rechner (63) kann aber auch durch Messen der zeitlichen Folge mindestens der ersten Rad-, bzw. Erkennungssignale (51, 55) und aus dem Zugtyp zugeordnet gespeicherten Daten über die absoluten Abstände zumindest der ersten Radachsen und/oder symmetrisch zum Schienenkopf vorbeilaufenden metallischen Gegenständen die aktuelle Geschwindigkeit des Zuges ermitteln. Mit dieser aktuellen Geschwindigkeit und der maximal möglichen Beschleunigung läßt sich nach an sich bekannten Berechnungsmethoden das zeitliche Eintreffen des Zuges an Orten relativ zum Radsensor noch genauer bestimmen.
  • Bei bekanntem Abstand der Spulen von längs des Gleises angeordneten Sensorpaaren (41, 43) kann der Rechner (63) aus dem zeitlichen Abstand der Pegel (47a, 47b, bzw. 49a, 49b) der zeitlich aufeinanderfolgend induktiv beeinflußten Spulen der Sensorpaare (41, 43) auch einfacher die aktuelle Geschwindigkeit des Zuges bestimmen.
  • In Fig. 8 ist beispielhaft eine D-Flip-Flop-Schaltung (41a, 41b, bzw. 43a, 43b) gezeigt, die in der Auswerteschaltung (45) enthalten ist, und mit der die Zugrichtung erfasst werden kann. Es sind wie vor zwei längs des Gleises angeordnete Spulen pro Sensor (41, 43) angenommen. Die Bezeichnungen 41a, 41b, 47a, 47b, 47c und 47c sind dem Sensor 41 zugeordnet, die übrigen dem Sensor 43. Die Wirkungsweise ist für beide Sensoren identisch.
  • Die zeitlich aufeinanderfolgend induktiv beeinflußten Spulen der längs des Gleises angeordneten Sensorpaare (41, 43) geben entsprechend zeitlich aufeinanderfolgende Pegel (47a, 47b, bzw. 49a, 49b) an die Eingänge der D-Flip-Flop-Schaltung (41a, 41b, bzw. 43a, 43b) ab. Wenn z.B. der Pegel 47a am Dateneingang des D-Flip-Flops 41a vor dem Pegel 47b an seinem Takteingang eintritt, so wird ersterer Pegel mit Eintreffen des Pegels 47b an den Ausgang des D-Flip-Flops 41a als Richtungssignal 49c geleitet. Das D-Flip-Flop 41b gibt dagegen keinen Pegel an seinen Ausgang weiter. Bei der umgekehrten Reihenfolge der Pegel verhalten sich die D-Flip-Flops umgekehrt. Die Ausgänge (47c, 47d, bzw. 49c, 49d) unterscheiden sich damit entsprechend der Reihenfolge der Pegel und zeigen die Fahrtrichtung des Zuges an. Nach Erkennen der Richtungssignale werden die D-Flip-Flops durch Rücksetzen wieder aktiviert, was wegen der Übersichtlichkeit in Fig. 8 nicht dargestellt ist. Die Information über die Zugrichtung kann z.B. im Zusammenhang mit der Meldung des Eintreffens des Zuges an bestimmte Orte oder zur richtungsabhängigen Achszählung benutzt werden.
  • Der Rechner (63) in Fig. 6 kann auch nicht dargestellte Analog/Digitalwandler enthalten, zweckmäßigerweise je einen für jede signalabgebende Spule des Sensorpaares (41, 43). Wenn die Pegel (47, 49) der Sensorpaare (41, 43) so schnell in digitale Werte gewandelt werden, daß mindestens 3 Werte bei Beeinflussung eines Sensors durch ein Rad und/oder einen metallischen Gegenstand gespeichert werden, so entsteht mit zunehmend vielen Werten pro Beeinflussung quasi ein immer besser aufgelöstes äquivalentes Erkennungsmuster des gemessenen Gegenstands in Form einer Wertetabelle. Ein Rad ist wegen seiner Rundform im Gegensatz zu kantigen Bremsen z.B. durch kleine Inkremente in der zugehörigen Wertetabelle gekennzeichnet. Durch fest im Rechner (63) gespeicherte Vergleichstabellen läßt sich die Signifikanz der gemessenen Gegenstände nach an sich bekannten Berechnungsmethoden bestimmen. In logischer Verknüpfung mit Radsignalen (51), bzw. Erkennungssignalen (55), bzw. Fehlersignalen (53) läßt sich die Sicherheit des Radsensors auf ein für signaltechnische Sicherheit im neuzeitlichen Eisenbahnbetrieb erforderliches Maß steigern.
  • Die Signale 51, 53, 55, 56 der Auswerteschaltung (45) in Fig. 6 und/oder das aktuelle Datenmuster (Fig. 9) oder dergleichen können auch über die Datenübertragung 67 an einen fernen Ort übertragen und dort in ähnlicher oder gleicher Weise verarbeitet werden im Rechner 63. Dabei können die Daten komprimiert werden, das aktuelle Datenmuster im Beispiel der Fig. 9 z.B. als Ziffernfolge 3, 1, 2, 1, n anstelle der Bit-Folge.
  • Gemäß Fig. 6 kann das Sensorpaar (41, 43) je einen ersten Sender und/oder Empfänger (71) enthalten. Wenn die Züge ihrerseits unmittelbar oberhalb der Schiene je einen zweiten Sender und/oder Empfänger (73) enthalten, lassen sich Daten in an sich bekannter Weise zwischen den Sendern und/oder Empfängern (71, 73) drahtlos austauschen, wobei der Rechner (63) über eine Datenleitung (65) mit dem ersten Sender und/oder Empfänger (71) und der Zug über eine Leitung 75 mit dem zweiten Sender und/oder Empfänger (73) korrespondiert. Der erste Sender und/oder Empfänger (71) kann auf induktiver Basis auch Teil oder Ganzes der Spulen des Sensorpaares (41, 43) sein, insbesondere wenn die Spulen zur Verhinderung der gegenseitigen Beeinflussung der Übertragung der Daten und der Messungen in einer allgemein bekannten kompensierenden Brückenschaltung angeordnet sind.
  • Signaltechnische Sicherheit läßt sich erreichen, wenn die Auswerteschaltung (45), gegebenenfalls auch die Datenübertragung (67) und/oder die Sender/Empfänger (71, 73) sowie die entsprechenden Verbindungen (47, 49, 65, 69, 75) als eine zweite entkoppelte Funktionseinheit noch einmal vorhanden sind, die Funktionseinheiten gleichartig arbeiten und sich gegenseitig auf gleiche und zeitgleiche Ausgangssignale überwachen.

Claims (15)

  1. Radsensor zur Erfassung von Rädern schienengebundener Fahrzeuge, vorzugsweise zur Zählung der Räder in einem Gleisabschnitt,
    - unter Verwendung von an den Fahrschienen befindlichen, Metall detektierenden, induktiven Sensorpaaren (1, 3, 41, 43),
    - deren elektrische Pegel einer Auswerteschaltung (5, 45) zugeführt werden, wobei
    - die Sensoren des Sensorpaares (1, 3, 41, 43) so angeordnet sind, daß sich ein Sensor (1, 41) auf der Seite einer Fahrschiene (4) befindet, auf der kein Radspurkranz vorbeiläuft und daß sich der andere Sensor (3, 43) auf der Seite einer Fahrschiene (4) befindet, auf der ein Radspurkranz vorbeiläuft, dadurch gekennzeichnet,
    - daß die Auswerteschaltung (5, 45) einen Vergleicher enthält, und
    - daß der Vergleicher (5) bei ungleichen Pegeln an seinen Eingängen ein Ausgangssignal (11, 51) ausgibt, das dem Vorbeilaufen eines ordnungsgemäßen Rades, bzw. Radsatzes einer Achse dann entspricht, wenn der Pegel des dem Spurkranz zugewandten Sensors (3, 43) dem Pegel des anderen Sensors (1, 41) überwiegt.
  2. Radsensor nach Anspruch 1, dadurch gekennzeichnet,
    daß die Sensoren (1, 3, 41, 43) längs des Gleises (2) direkt gegenüber angeordnet sind (Fig. 3a bis 3d).
  3. Radsensor nach Anspruch 1, dadurch gekennzeichnet,
    daß die Sensoren (1, 3, 41, 43) längs des Gleises (2) versetzt angeordnet sind (Fig. 3e, 3g) und ein den Pegel oder Pegelverlauf des erstbefahrenen Sensors bis zum Befahren des zugeordneten Sensors verzögernder Speicher (19) vor dem Vergleicher (5) angeordnet ist und eine die zeitliche Reihenfolge der Sensorpegel (7, 9, 47, 49) detektierende Weiche (15) den ersteintreffenden Pegel (23) über den Speicher (19) und den anderen Pegel (21) direkt oder über eine Anpaßschaltung (17) an den Vergleicher (5) leitet.
  4. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    daß der Vergleicher (5) auf der Basis der Quotienten- und/oder Differenzbildung seiner Eingangspegel arbeitet und die Sensor- und/oder Ausgangspegel wahlweise über Störungen oder Laufzeitunterschiede absorbierende Filter (25, 27, 29) und/oder den Ansprechbereich eingrenzende Schwellwertschalter (31, 33, 35) geführt sind.
  5. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    daß zwei Sensorpaare (1, 3, 41, 43) längs des Gleises (2) angeordnet sind (Fig. 3f) und die induktive Beeinflussung jedes Rades (6) zeitlich aufeinanderfolgt und sich vorzugsweise überlappt.
  6. Radsensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    daß ein Sensorpaar (1, 3, 41, 43) längs des Gleises (2) versetzt angeordnet ist (Fig. 3e, 3g) und die induktive Beeinflussung jedes Rades (6) zeitlich aufeinanderfolgt und sich vorzugsweise überlappt.
  7. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß die Auswerteschaltung (5, 45) einen Zeitgeber (57), einen damit verbundenen Rechner (63) - einen Speicher und ein Programm enthaltend - und eine Verknüpfungsschaltung (61) aufweist, die ein dem Vorbeilaufen eines ordnungsgemäßen Rades entsprechendes Radsignal (11, 51) bei überwiegendem Pegel des dem Radspurkranz zugewandten Sensors (43) des Sensorpaares (1, 3, 41, 43) und ein dem symmetrisch zum Schienenkopf vorbeilaufenden metallischen Gegenstands entsprechendes Erkennungssignal (55) bei etwa gleich großem Pegel beider Sensorpaare (1, 3, 41, 43) in der zeitlichen Folge (56) beider Signale (51, 55) unterscheidbar, gemeinsam in den Speicher des Rechners (63) als ein dem Zugtyp entsprechendes, aktuelles Datenmuster (Fig. 4) einschreibt, und
    - daß das aktuelle Datenmuster (Fig. 4) am Ausgang (65) des Rechners und gegebenenfalls - vorzugsweise in an sich bekannter Weise komprimiert - über eine Datenübertragung (67) an deren Ausgang (69) zur Verfügung steht.
  8. Radsensor nach Anspruch 7, dadurch gekennzeichnet,
    daß der symmetrische, metallische Gegenstand eine Wirbelstrombremse und/oder eine Magnetschienenbremse und/oder ein Kodierblech am Zug ist.
  9. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß in dem Rechner (63) bekannte Datenmuster der Zugtypen mit zugeordneten Daten über die mögliche Geschwindigkeit und Beschleunigung des Zugtyps gespeichert sind,
    - daß der Rechner (63) das aktuelle Datenmuster (Fig. 4) mit im Rechner (63) gespeicherten bekannten Datenmustern der Zugtypen vergleicht und bei Übereinstimmung den Zugtyp erkennt, die dem Zugtyp zugeordnet gespeicherten Daten über die mögliche Geschwindigkeit und Beschleunigung des Zugtyps liest und daraus Daten über das zeitliche Eintreffen des Zuges an Orten relativ zum Radsensor nach an sich bekannten Berechnungsmethoden ermittelt und ausgangsseitig (65, 69) zur Verfügung stellt, und/oder
    - daß der Rechner (63) die im aktuellen Datenmuster (Fig. 4) enthaltenen, aus dem Radsignal (51) gebildeten, der Achszahl des Zuges entsprechenden Daten ausgangsseitig (65, 69) zur Verfügung stellt.
  10. Radsensor nach Anspruch 9, dadurch gekennzeichnet,
    daß der Rechner (63) durch Messen der zeitlichen Folge mindestens der ersten Rad-, bzw. Erkennungssignale (51, 55) und aus im Rechner (63) dem Zugtyp zugeordnet gespeicherten Daten über die absoluten Abstände zumindest der ersten Radachsen und/oder symmetrisch zum Schienenkopf vorbeilaufenden metallischen Gegenständen die aktuelle Geschwindigkeit des Zuges und Daten über das zeitliche Eintreffen des Zuges an Orten relativ zum Radsensor nach an sich bekannten Berechnungsmethoden ermittelt und ausgangsseitig (65, 69) zur Verfügung stellt.
  11. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß die Auswerteschaltung (5, 45) eine rücksetzbare D-Flip-Flop-Schaltung (41a, 41b, bzw. 43a, 43b) aufweist,
    - daß die zeitlich aufeinanderfolgend induktiv beeinflußten Spulen der längs des Gleises angeordneten Sensorpaare (1, 3, 41, 43) entsprechend zeitlich aufeinanderfolgende Pegel (47a, 47b, bzw. 49a, 49b) je an einen Daten- und einen Takteingang je eines D-Flip-Flops (41a, 41b, bzw. 43a, 43b) leiten, die je nach Reihenfolge der Pegel Richtungssignale (47c, 47d, bzw. 49c, 49d) abgeben, die der Zugrichtung entsprechen, danach rückgesetzt werden und
    - daß der Rechner (63) durch Messen des zeitlichen Abstands der Pegel (47a, 47b, bzw. 49a, 49b) bei bekanntem Abstand der Spulen der Sensorpaare (1, 3, 41, 43) die aktuelle Geschwindigkeit des Zuges und Daten über das zeitliche Eintreffen des Zuges an Orten relativ zum Radsensor nach an sich bekannten Berechnungsmethoden ermittelt und ausgangsseitig (65, 69) zusammen mit den Richtungssignalen (47c, 47d, bzw. 49c, 49d) zur Verfügung stellt.
  12. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    daß die Verknüpfungsschaltung (61) ein Fehlersignal (53) bei überwiegendem Pegel des dem Radspurkranz abgewandten Sensors (1, 41) abgibt und/oder ausgangsseitig (65, 69) zur Verfügung stellt.
  13. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß der Rechner (63) Analog/Digitalwandler enthält,
    - daß die Pegel (7, 9, 47, 49) der Sensorpaare (1, 3, 41, 43) in digitale Werte in einer Zeitfolge gewandelt werden, daß mindestens 3 Werte bei Beeinflussung eines Sensors durch ein Rad und/oder einen metallischen Gegenstand gespeichert werden,
    - daß der Rechner (63) diese Werte mit im Rechner gespeicherten Wertemustern von signifikanten Rädern, metallischen Gegenständen und Störern auf Ähnlichkeit nach an sich bekannten Berechnungsmethoden vergleicht und bei Entsprechung Meldesignale - vorzugsweise in logischer Verknüpfung mit Radsignalen (51), bzw. Erkennungssignalen (55), bzw. Fehlersignalen (53) - ausgangsseitig (65, 69) zur Verfügung stellt.
  14. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß das Sensorpaar (1, 3, 41, 43) je einen ersten, vorzugsweise induktiven Sender und/oder Empfänger (71) enthält,
    - daß Züge unmittelbar oberhalb der Schiene je einen zweiten, vorzugsweise induktiven Sender und/oder Empfänger (73) enthalten,
    - daß der erste Sender und/oder Empfänger (71) mit dem Rechner (63), bzw. der Datenübertragung (67) über die Datenleitung (65) korrespondiert, und
    - daß Daten in an sich bekannter Weise zwischen den Sendern und/oder Empfängern (71, 73) drahtlos ausgetauscht werden.
  15. Radsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - daß die Auswerteschaltung (5, 45), gegebenenfalls auch die Datenübertragung (67) und/oder die Sender/Empfänger (71, 73) sowie die entsprechenden Verbindungen (7, 9, 47, 49, 65, 69, 75) als eine zweite entkoppelte Funktionseinheit noch einmal vorhanden sind, und
    - daß die Funktionseinheiten gleichartig arbeiten und sich gegenseitig auf gleiche und zeitgleiche Ausgangssignale überwachen.
EP92114914A 1991-09-02 1992-09-01 Einrichtung zur Erfassung von Rädern schienengebundener Fahrzeuge Expired - Lifetime EP0530743B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19914129138 DE4129138C1 (en) 1991-09-02 1991-09-02 Rail vehicle wheel sensor system - uses metal detecting inductive sensors arranged symmetrically on rail and suppresses interference to enable differentiation between flanged and flangeless wheels
DE4129138 1991-09-02
DE4229131 1992-09-01
DE19924229131 DE4229131C1 (de) 1992-09-01 1992-09-01

Publications (3)

Publication Number Publication Date
EP0530743A2 EP0530743A2 (de) 1993-03-10
EP0530743A3 EP0530743A3 (en) 1993-05-12
EP0530743B1 true EP0530743B1 (de) 1995-01-11

Family

ID=25906922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92114914A Expired - Lifetime EP0530743B1 (de) 1991-09-02 1992-09-01 Einrichtung zur Erfassung von Rädern schienengebundener Fahrzeuge

Country Status (4)

Country Link
EP (1) EP0530743B1 (de)
AT (1) ATE116919T1 (de)
DE (1) DE59201186D1 (de)
ES (1) ES2069947T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1774275T3 (pl) * 2004-07-16 2011-07-29 Lynxrail Corp Urządzenie do detekcji kołysania i kąta natarcia zestawu kołowego pojazdu szynowego
PL237272B1 (pl) * 2016-09-19 2021-03-22 Voestalpine Signaling Sopot Spolka Z Ograniczona Odpowiedzialnoscia Sposób i układ do strojenia czujników indukcyjnych do wykrywania obecności kół taboru szynowego
EP4155162A1 (de) * 2021-09-22 2023-03-29 Siemens Mobility GmbH Verfahren und vorrichtung mit achszähler zum betreiben eines bahnübergangs
CN114670893B (zh) * 2022-04-26 2024-04-30 南京拓控信息科技股份有限公司 一种车轮掉块的检测方法
DE102022210357A1 (de) * 2022-09-29 2024-04-04 Siemens Mobility GmbH Verfahren und System zum Überwachen eines Gleisabschnitts
CN117208034A (zh) * 2023-10-07 2023-12-12 温州市铁路与轨道交通投资集团有限公司 二取二架构计轴设备数据处理方法、装置及计轴设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE764957C (de) * 1942-08-18 1953-06-08 Ver Eisenbahn Signalwerke G M Einrichtung zur Zeichenuebertragung von Eisenbahnzuegen auf die Strecke durch induktive Einwirkung der Raeder auf an der Strecke angeordnete Eisenkerne
DE958848C (de) * 1953-10-13 1957-02-28 Siemens Ag Anordnung bei Eisenbahnen zur UEbertragung von Zeichen vom Zuge auf die Strecke
US2892078A (en) * 1957-03-14 1959-06-23 Itt Detecting apparatus
FR2617315A1 (fr) * 1987-06-23 1988-12-30 Sfim Procede et dispositif de discrimination du type d'un vehicule automobile en circulation

Also Published As

Publication number Publication date
EP0530743A3 (en) 1993-05-12
ES2069947T3 (es) 1995-05-16
ATE116919T1 (de) 1995-01-15
EP0530743A2 (de) 1993-03-10
DE59201186D1 (de) 1995-02-23

Similar Documents

Publication Publication Date Title
WO2012004251A1 (de) Induktive sensoreinrichtung sowie induktiver näherungssensor mit einer induktiven sensoreinrichtung
DE2124089A1 (de) Einrichtung bei Schienenbahnen zur Informationsübertragung von der Strecke auf die Fahrzeuge
EP0530743B1 (de) Einrichtung zur Erfassung von Rädern schienengebundener Fahrzeuge
EP3976439B1 (de) Sensoreinrichtung für eine anordnung zur detektion und analyse eines entlang einer spur, insbesondere entlang eines gleises, bewegten rades eines fahrzeugs
EP1086873B1 (de) Verfahren zum Feststellen von an einem Zählpunkt vorübergelaufenen Schienenfahrzeugrädern
DE2735422A1 (de) Einrichtung zum erfassen einer fahrzeugposition
DE4229131C1 (de)
DE3236367A1 (de) Einrichtung zur gleisfreimeldung, zugortung und geschwindigkeitsmessung
DE4129138C1 (en) Rail vehicle wheel sensor system - uses metal detecting inductive sensors arranged symmetrically on rail and suppresses interference to enable differentiation between flanged and flangeless wheels
EP1101684B1 (de) Verfahren zur Gleisfreimeldung mittels Achszaehlung
EP0623499B1 (de) Verfahren zur Gleisfreimeldung mittels Achszählung mit automatischer Zählfehlerkorrektur
DE2652233B2 (de) Einrichtung zur selbsttätigen Korrektur von Zählfehlern in Achszähleinrichtungen
WO2009030655A1 (de) Verfahren zur achszählung bei schienenfahrzeugen
DE4444517A1 (de) Einrichtung zum Synchronisieren eines fahrzeugseitigen Wegzählers
DE19817636C2 (de) Elektrisch ortsbediente Weiche
DE4436011B4 (de) System zur Steuerung von spurgebundenen Fahrzeugen mit verbesserter Fahrzeugortung
DE102007038819B4 (de) Vorrichtung zur fahrzeugseitigen Gleisfrei- und/oder Gleisbesetztmeldung
DE19627343A1 (de) Einrichtung zur Eigenortung eines spurgeführten Fahrzeugs
DE3047119C2 (de) Anordnung zur Ermittlung der Fahrtrichtung schienengebundener Fahrzeuge
EP1026062B1 (de) Verfahren zur Auswertung von Schienenkontaktsignalen
DE1455382C3 (de) Schaltungsanordnung zum automatischen überwachen des Verkehrs von Unterpflaster- und Straßenbahnen
DE3223327A1 (de) Sichere gleisfreimeldeeinrichtung
DE19522584A1 (de) Verfahren zur Behandlung von Zählstörungen bei der Gleisfreimeldung mittels Achszählung und Einrichtung zur Durchführung des Verfahrens
EP0396798B1 (de) Verfahren und Anordnung zur Erkennung von Schienenfahrzeugen
WO2024068313A1 (de) Verfahren und system zum überwachen eines gleisabschnitts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

17P Request for examination filed

Effective date: 19930921

17Q First examination report despatched

Effective date: 19940208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950111

Ref country code: DK

Effective date: 19950111

Ref country code: BE

Effective date: 19950111

REF Corresponds to:

Ref document number: 116919

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59201186

Country of ref document: DE

Date of ref document: 19950223

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19950411

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069947

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: STEIN GMBH TRANSFER- HERMANN STEIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERMANN STEIN TRANSFER- SCHWEIZER ELECTRONIC M2S A

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030811

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030815

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030819

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030910

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040901

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040902