EP0528160B1 - Dampfblaskasten - Google Patents

Dampfblaskasten Download PDF

Info

Publication number
EP0528160B1
EP0528160B1 EP92111543A EP92111543A EP0528160B1 EP 0528160 B1 EP0528160 B1 EP 0528160B1 EP 92111543 A EP92111543 A EP 92111543A EP 92111543 A EP92111543 A EP 92111543A EP 0528160 B1 EP0528160 B1 EP 0528160B1
Authority
EP
European Patent Office
Prior art keywords
steam
blow
chamber
chest according
steam blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92111543A
Other languages
English (en)
French (fr)
Other versions
EP0528160A1 (de
Inventor
Stefan H. Winheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VIB Apparatebau GmbH
Original Assignee
VIB Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6437230&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0528160(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by VIB Apparatebau GmbH filed Critical VIB Apparatebau GmbH
Publication of EP0528160A1 publication Critical patent/EP0528160A1/de
Application granted granted Critical
Publication of EP0528160B1 publication Critical patent/EP0528160B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/008Steam showers

Definitions

  • the invention relates to a steam blow box for applying steam to a passing material web with at least one steam blow chamber, which is completely enclosed by a free housing wall with a number of steam outlet openings and further chamber walls and has a steam valve for the inlet of steam into the steam blow chamber.
  • Such a steam blow box is known from DE 37 01 407 C1.
  • Such steam blow boxes are mainly used in papermaking.
  • the known steam blower box serves to raise the temperature of the material web with the help of the steam applied to the material web in order to facilitate the dewatering of the material web.
  • Another use of steam blow boxes is the application of steam to the surface of the material web before a surface treatment such as is carried out, for example, with so-called soft compact calenders.
  • the surface of the material web can be smoothed, for example.
  • the soft rolls wear out during operation and have to be renewed from time to time.
  • the time required to replace such a soft roller is on the order of a few tens of minutes, for example 20 minutes.
  • the treatment of the material web is interrupted during this time. Since steam does not have to be applied to the material web during this time, the steam blowing chamber does not become one either Fresh steam supplied.
  • the steam-blowing chamber cools down and the steam still in it condenses. Although a large part of the condensed water can be removed via a drain, this has the disadvantage that a considerable amount of steam is required when restarting after the roll change in order to heat up the water remaining in the steam-blowing chamber and to convert it back into steam.
  • EP-A-0 275 914 shows a similar steam blow box, the housing of which at the beginning of the inlet zone and at the end of the outlet zone each has a wall element which is at a smaller distance from the material web than the housing part in which the steam outlet openings are arranged. These wall elements are steam-heated so that water parts located on the outside evaporate, so they cannot have a detrimental effect on the material web.
  • DE-OS 22 03 973 describes a method and an apparatus for moistening a web.
  • steam is sprayed from lines directly onto a material web, which is supported at the spray point by a tempered roller or another guide.
  • the lines are routed within a housing wall delimiting a space.
  • the steam jet directed onto the material web is also directed towards the room, so that steam reflected from the material web enters the room.
  • the housing inner walls can be heated will be provided or devices for discharging drip liquid from the web area. This largely prevents dripping of liquid onto the web during operation.
  • the measures are not sufficient to ensure, even when starting off, that the steam acting on the material web is at least largely free of droplets.
  • WO 91/14045 which was published after the filing date of the present application, discloses a device for applying steam, in which two steam channels or lines branch off from a steam feed line. The first is used to heat a series of steam distribution rooms connected in series. The second serves as a feed line for feeding the first of the steam distribution rooms.
  • the problem also arises here that when restarting after an interruption in operation condensed steam can lead to water droplets. Recognizing this deficiency, wire nets or meshes are arranged in the steam path in the known device, on which such liquid droplets are to be deposited.
  • the invention has for its object to provide a steam blow box, with which the treatment of the material web can be continued faster after a roll change.
  • Sufficient heat is introduced into the interior of the steam-blowing chamber via the heated wall of the steam-blowing chamber, so that the steam in the steam-blowing chamber can no longer or no longer condense to the extent known to date.
  • the steam-blowing chamber is therefore kept at an elevated temperature even when the production process is interrupted, for example when changing the rolls.
  • the steam fed into the steam-blowing chamber after restarting then no longer has to be used to heat the steam-blowing chamber, but rather can perform its intended functions, namely the application of pressure to the surface of the web.
  • the risk of droplets forming in the steam-blowing chamber is significantly reduced, so that damage to the material web no longer occurs, even if the downtimes are longer than planned.
  • the first and the second steam channel form the two legs of a U, so to speak.
  • the base of the U forms the connection between the first and the second steam channel.
  • All steam-blowing chambers are then flowed around by steam on at least two sides, so that at least two walls of the steam-blowing chambers are heated.
  • liquid droplets that may have formed during the transport of the steam from the boiler to the steam blow box are separated. The heating then takes place exclusively with dry steam. Since the steam used for loading the material web is only removed after the steam drying section, it is ensured that no condensate droplets can get onto the material web.
  • the steam valve and the heater are connected to the same steam supply connection. No separate steam supply connection is then necessary for the heating device.
  • a single line is sufficient, which connects a steam source, for example a boiler, to the steam blower box.
  • the advantage here is that at least the free housing wall is heated. If water drops have formed, they will be moved in the direction of the free housing wall by the escaping steam. If they hit the free housing wall, they will evaporate there.
  • the heating device preferably has at least one steam channel which is delimited on one side by the heated wall.
  • the steam duct forces the steam to flow along the wall to be heated. Here he gives off heat to this wall and heats it.
  • a plurality of steam blow chambers separated by partitions are arranged side by side in a row transversely to the running direction of the material web, the heating device having at least one steam channel which heats all steam blow chambers. Accordingly, this steam-blowing duct is also arranged transversely to the running direction of the material web. With this relatively simple measure, all steam blow chambers can be heated to some extent evenly.
  • approximately U-shaped profiles are applied to the free housing wall, which run essentially parallel to the second steam channel, the opening of the U being covered by the free housing wall.
  • the free housing wall is so thin that it cannot accommodate steam channels.
  • the steam used to heat the free housing wall must be channeled, since it would otherwise act on the passing material web to the same extent as the free housing wall.
  • the U-shaped profiles are provided for this purpose. Since there is a pressure difference between the two ends of the second steam channel and the U-shaped profiles run essentially parallel to the second steam channel, a steam flow also arises in the channels formed by the U-shaped profiles, so that the free housing wall in its entire width or , with multiple steam chambers, the free housing walls of all steam chambers are evenly heated.
  • the profiles advantageously run between the steam outlet openings. This allows a strict separation between the steam used to heat the steam blow chambers and the steam used to treat the material web.
  • the partitions have heating channels which connect the first and the second steam channels to one another.
  • five of the six are then the steam blow chamber Heated walls. It can be operated at relatively low temperatures since the steam chamber is heated from almost all sides. The temperature gradient inside the steam chamber is relatively flat.
  • the first and the second steam channel protrude towards the material web opposite the free housing wall.
  • the edges of the steam box are heated.
  • each steam valve can be controlled individually.
  • the amount of steam or the steam pressure that is applied to the material web from each steam blowing chamber can then be controlled over the width of the material web. This enables control of the moisture profile.
  • the steam valve preferably has a number of valve nozzles, the axis of which encloses an angle in the range from 69 ° to 75 ° with the side walls of the steam blowing chamber.
  • the steam that flows out of the valve has a strong component towards the wall.
  • it is reflected on the wall at an appropriate angle, so that there is a very even distribution of steam in the steam chamber.
  • the uniformity of the steam distribution in the steam blower chamber also results in a very uniform steam outlet profile on the free housing wall, ie the steam emerges from all steam outlet openings at approximately the same speed. It is therefore not necessary to take any measures to disarm individual steam jets that could hit the material web. Due to the uniform distribution of the steam, the pressure in the steam-blowing chamber can also be kept relatively low, so that the exit noise is reduced.
  • the steam-blowing chamber preferably has a water outlet opening in the region of the free housing wall and / or in the region of the wall opposite the free housing wall.
  • the steam blow boxes are arranged so that they are above or below the material web.
  • the free housing wall is then on the top or on the bottom of the steam blower box, but is in any case facing the material web. If larger amounts of condensed water are produced, they can easily flow away from the lowest point of the steam chamber. If the steam blower box is located above the material web, this is arranged in the area of the free housing wall, if the steam blower box is located below the material web, on the opposite side. This saves you from having to heat the steam blower chamber, for example at the start of operation, until all of the liquid has evaporated.
  • the water outlet opening is preferably connected to a siphon in which there is a permanent water column that is higher than a target pressure in the steam-blowing chamber.
  • the water column forms the counterweight to the vapor pressure. Since the water column exerts a higher pressure than the set pressure in the steam chamber, no steam can escape through the siphon. On the other hand, condensed water can flow off unhindered.
  • the steam outlet openings preferably have a diameter which is smaller than the thickness of the free housing wall.
  • Directional steam jets are thus generated on the outside of the free housing wall, which are suitable for effectively applying the steam to the material web.
  • the at least one wall in the steam-blowing chamber advantageously has a temperature in the range between 102 ° C. and 110 ° C. Such a temperature is sufficient to prevent the steam from condensing in the steam blowing chamber.
  • a steam blow box 1 has a plurality of steam blow chambers 2, which are separated from a free housing wall 3 and further walls, namely a front wall 4, a rear wall 5, a left side wall 6 and a right side wall 7 or an intermediate wall 8, which separates individual steam blow chambers 2, and a ceiling 9 is limited.
  • a steam valve 10 opens into the steam blowing chamber 2. Each steam valve 10 can be controlled individually via a drive 11.
  • the steam blow box has a first steam channel 12 and a second steam channel 13, which are connected to one another via a connecting channel 14.
  • a throttle device 15 can be arranged between the connecting duct 14 and the second steam duct 13 his.
  • the throttle device 15 is shown here as a discrete element. However, it can also be formed by the geometry of the individual steam channels 13 and 14. The only decisive factor is that the throttle device 15 creates a pressure difference between the connecting duct 14, that is to say the beginning of the second steam duct 13, and the end of the second steam duct 13.
  • the first steam channel 12 is connected to a steam connection 16 via which steam is fed into the steam blower box.
  • the end of the second steam duct 13, that is to say the end of the second steam duct 13 facing away from the connecting duct 14, is connected to an outlet 17, at which steam or water condensed from the steam can flow out of the steam blower box 1.
  • the steam in the first and second steam channels 12, 13 flows around the steam blowing chambers 2 in an approximately U-shape, i.e. the front wall 4 and the rear wall 5 of each steam-blowing chamber 2 are connected on their outside to the steam flowing in the steam channels 12, 13.
  • the steam gives off heat to the walls 4, 5 here.
  • the walls 4, 5 in turn heat the steam-blowing chamber 2 again.
  • the left side wall 6 and the right side wall 7 are also heated by the steam flowing past.
  • U-shaped profiles 18 are welded to the intermediate walls 8, which separate two adjacent steam-blowing chambers 2, in such a way that the open end of the U is covered by the intermediate walls 8.
  • the channels 19 formed in the profiles are sealed so that the steam which has been fed into the steam blowing chamber 2 via the steam valve 10 does not coincide with the steam in the channels 19 comes into contact and is mixed.
  • the partition walls 8 are thus also heated.
  • Similar profiles 20 are attached to the outside of the free housing wall 3. They form channels 21 which extend across the width of the steam-blowing chambers transversely to the running direction of a web 22.
  • the steam valves 10 are connected to the second steam channel 13 via connecting pipes 24.
  • the steam valve 10 has a series of openings 25 which are directed so that their axis forms an angle A with the side walls, i.e. the front wall 4, the rear wall 5, the left side wall 6, the right side wall 7 or the intermediate wall 8, which is in the range from 69 ° to 75 °. Since the steam valve 10 is essentially cylindrical in shape, but the walls of the steam-blowing chamber 2 essentially form a rectangle, these angles only apply to the openings 25 of the steam valve, which are located in a plane perpendicular to the walls 4 to 8 mentioned. For all other openings, the angle of the axis of the openings 25 must be projected onto the corresponding plane.
  • the first and the second steam channels 12, 13 project in relation to the free housing wall 3 in the direction of the material web 22.
  • a steam spreading space 27 can form between the material web 22 and the free housing wall 3, in which the steam can even out after flowing out of the steam blow-out openings 23.
  • the housing of the steam blower box 1 is also heated at its edges 28, 29 facing the material web 22.
  • the first steam channel 12 is designed as a steam drying section.
  • the steam supplied via the steam connection 16 can contain condensed steam in the form of water droplets, in particular if the path from the steam source, such as a steam boiler, to the steam blow box is longer. These water droplets are separated in the first steam channel 12. With this simple measure, it can be achieved that the steam after the first steam channel 12 is dry, so that it can be used directly as process steam for loading the material web 22.
  • Drain openings 30, 31, 32 and 33 are arranged at the lowest points of the steam blower chamber 2 or the first or second steam channel 12, 13 or also the connecting channel 14. Water which condenses in the steam blowing chamber 2 or in the steam channels 12, 13, 14 can flow through these openings.
  • the drain openings 30 to 33 are provided in the event that the steam blower box 1 is operated as shown in FIGS. 1 and 2, namely with the free housing wall 3 downwards.
  • the steam blower box 1 is located above the material web 22.
  • further drain openings 34, 35, 36 are provided at the highest points.
  • the steam blow box 1 can be arranged not only above the material web, the steam flowing out of the steam blowing chamber 2 downwards, but also below the material web 22, the steam flowing upwards.
  • the drain openings 34, 35, 36 which are in the position shown in FIGS. 1 and 2 at the highest point, are at the lowest point of the Steam blowing chamber or the steam channels 12, 13 arranged.
  • the connecting channel 14 can also have such a drain opening.
  • the drain opening 35 is connected to a siphon 37.
  • the steam blow box is operated in a position rotated by 180 ° C., that is to say the material web 22 is located above the steam blow box 1.
  • the steam blowing chamber 2 is then dewatered via the opening 35 and the siphon 37.
  • the siphon 37 two water columns are formed on the principle of communicating tubes.
  • the free gas passage through which steam could escape is blocked between the outlet opening 35 and the outlet of the siphon.
  • the water column is so high that it withstands the pressure prevailing in the steam blowing chamber 2, that is to say it cannot be pushed out of the siphon 37 to the extent that steam can escape.
  • water can flow out on the other side of the siphon 37, that is to say at the outlet thereof, since an equilibrium must be established again according to the principle of the communicating tubes. Drainage via a siphon is used for all drain openings 30 to 36. For reasons of clarity, however, it is only shown for the drain opening 35.
  • the steam in the first and second steam channels 12, 13, in the connecting channel 14 and in the channels 19 and 21 heats the walls of the steam blowing chamber to a temperature in the range from 102 ° C. to 110 ° C. This temperature is sufficient to prevent condensation on the walls.
  • the entire steam blower box 1 is permanently under steam pressure.
  • the profiles 20 can also be arranged inside the steam-blowing chamber 2, so that the free housing wall 3 is smooth on its outside.
  • the intermediate walls can also be double-walled, in which case the steam flows between the two walls.

Landscapes

  • Drying Of Solid Materials (AREA)
  • Paper (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Coating Apparatus (AREA)
  • Saccharide Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Dental Preparations (AREA)
  • Steroid Compounds (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

  • Die Erfindung betrifft einen Dampfblaskasten zum Aufbringen von Dampf auf eine vorbeilaufende Materialbahn mit mindestens einer Dampfblaskammer, die von einer freien Gehäusewand mit einer Anzahl von Dampfaustrittsöffnungen und weiteren Kammerwänden vollständig umschlossen ist und ein Dampfventil zum Einlaß von Dampf in die Dampfblaskammer aufweist.
  • Ein derartiger Dampfblaskasten ist aus DE 37 01 407 C1 bekannt. Derartige Dampfblaskästen werden hauptsächlich bei der Papierherstellung verwendet. Der bekannte Dampfblaskasten dient dazu, mit Hilfe des auf die Materialbahn aufgebrachten Dampfes die Temperatur der Materialbahn zu erhöhen, um die Entwässerung der Materialbahn zu erleichtern. Eine weitere Verwendung von Dampfblaskästen ist die Beaufschlagung der Oberfläche der Materialbahn mit Dampf vor einer Oberflächenbehandlung, wie sie beispielsweise mit sogenannten Soft-Compact-Kalandern durchgeführt wird. Hierbei kann die Oberfläche der Materialbahn beispielsweise geglättet werden. Bei Kalandern mit weichen Walzen, also Walzen mit weichen Oberflächen, nutzen sich die weichen Walzen im Betrieb ab und müssen von Zeit zu Zeit erneuert werden. Die Zeit, die für den Austausch einer solchen weichen Walze benötigt wird, liegt in der Größenordnung von einigen zehn Minuten, beispielsweise 20 Minuten. In dieser Zeit ist die Behandlung der Materialbahn unterbrochen. Da die Materialbahn in dieser Zeit nicht mit Dampf beaufschlagt werden muß, wird der Dampfblaskammer auch kein frischer Dampf Zugeführt. Die Dampfblaskammer kühlt ab und der noch in ihr befindliche Dampf kondensiert. Obwohl ein Großteil des Kondenswassers über einen Abfluß entfernt werden kann, hat dies den Nachteil, daß beim Wiederanfahren nach dem Walzenwechsel eine erhebliche Dampfmenge benötigt wird, um das in der Dampfblaskammer verbliebene Wasser aufzuheizen und in Dampf zurück zu verwandeln. Bei den relativ geringen Dampfmengen, die zur Oberflächenbehandlung verwendet werden, ist der Energiegehalt des Dampfstromes durch die Dampfblaskammer in der Regel zu gering, um eine ausreichende Aufheizung des Kondenswassers und eine Rückwandlung in Dampf zu gewährleisten. Dies führt dann dazu, daß Wassertröpfchen von dem Dampf mitgerissen werden und aus den Dampfblasöffnungen austreten. Beim Auftreffen auf die Materialbahn wirken sie wie massive Körper, die geschoßartig die Materialbahn durchschlagen. Andere Wassertröpfchen setzen sich auf der Oberfläche der weichen Walze fest und zerschneiden oder durchstoßen bei jedem Umlauf der weichen Walze die Materialbahn, so daß hier eine Art Perforation entsteht. Bis zu stabilen Betriebsbedingungen ist daher nach dem Walzenwechsel eine relativ lange Zeitspanne notwendig, in der praktisch nur Ausschußmaterial produziert wird.
  • EP-A-0 275 914 zeigt einen ähnlichen Dampfblaskasten, dessen Gehäuse am Anfang der Einlaufzone und am Ende der Ausgangszone jeweils ein Wandelement aufweist, das einen geringeren Abstand zur Materialbahn hat als der Gehäuseteil, in dem die Dampfaustrittsöffnungen angeordnet sind. Diese Wandelemente sind dampfbeheizt, so daß an der Außenseite befindliche Wasserteilen verdampfen, also die Materialbahn nicht schädlich beeinflussen können.
  • DE-OS 22 03 973 beschreibt ein Verfahren und eine Vorrichtung zum Befeuchten einer Bahn. Bei der bekannten Vorrichtung wird Dampf aus Leitungen direkt auf eine Materialbahn gesprüht, die an der Sprühstelle von einer temperierten Walze oder einer anderen Führung unterstützt ist. Die Leitungen sind innerhalb einer einen Raum begrenzenden Gehäusewand geführt. Der auf die Materialbahn gerichtete Dampfstrahl ist auch zum Raum hin gerichtet, so daß von der Materialbahn reflektierter Dampf in den Raum gelangt. Um zu verhindern, daß an den Gehäusewänden sich bildendes Kondensat auf die zu behandelnde Bahn tropft, können die Gehäuseinnenwände beheizt werden oder Einrichtungen zum Abführen von Tropfflüssigkeit aus dem Bahnbereich vorgesehen sein. Damit wird zwar ein Herabtropfen von Flüssigkeit auf die Bahn im Betrieb weitgehend vermieden. Die Maßnahmen reichen jedoch nicht aus, um auch beim Anfahren zu gewährleisten, daß der die Materialbahn beaufschlagende Dampf zumindest weitgehend tröpfchenfrei ist.
  • WO 91/14045, die nach dem Anmeldetag der vorliegenden Anmeldung veröffentlicht wurde, offenbart eine Vorrichtung zum Aufbringen von Dampf, bei der von einer Dampfzuleitung zwei Dampfkanäle oder -leitungen abgehen. Der erste dient zur Beheizung einer Reihe von hintereinander geschalteten Dampfverteilräumen. Der zweite dient als Speiseleitung zur Speisung des ersten der Dampfverteilerräume. Auch hier tritt das Problem auf, daß beim Wiederanfahren nach einer Betriebsunterbrechung in der Speiseleitung kondensierter Dampf zu Wassertröpfchen führen kann. In Erkenntnis dieses Mangels sind bei der bekannten Vorrichtung Drahtnetze oder -geflechte im Dampfweg angeordnet, an denen sich derartige Flüssigkeitströpfchen niederschlagen sollen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Dampfblaskasten anzugeben, mit dem die Behandlung der Materialbahn nach einem Walzenwechsel schneller weitergeführt werden kann.
  • Diese Aufgabe wird bei einem Dampfblaskasten der eingangs genannten Art dadurch gelöst, daß Wände der Dampfblaskammer durch eine mit Dampf betriebene Heizeinrichtung beheizt sind, wobei die Heizeinrichtung einen als Dampftrocknungsabschnitt ausgebildeten ersten Dampfkanal aufweist, der von einem Ende im wesentlichen quer zur Laufrichtung der Materialbahn bis zum anderen Ende verläuft und einen zweiten Dampfkanal, der vom anderen Ende im wesentlichen quer zur Laufrichtung der Laufrichtung der Materialbahn zum einen Ende verläuft, wobei die mindestens eine Dampfblaskammer zwischen dem ersten und dem zweiten Dampfkanal angeordnet ist, der erste und der zweite Dampfkanal am anderen Ende miteinander in Verbindung stehen, der Dampf die Dampfblaskammer in etwa U-förmig umströmt und der für die Beaufschlagung der Materialbahn verwendete Dampf erst nach dem Dampftrocknungsabschnitt entnommen wird.
  • Über die beheizte Wand der Dampfblaskammer wird ausreichend Wärme in das Innere der Dampfblaskammer hineingeführt, so daß der in der Dampfblaskammer befindliche Dampf nicht mehr oder nicht mehr in dem bisher bekannten Ausmaß kondensieren kann. Die Dampfblaskammer wird also auch bei Unterbrechungen des Produktionsvorganges, also beispielsweise bei einem Walzenwechsel, auf einer erhöhten Temperatur gehalten. Der nach dem Wiederanfahren in die Dampfblaskammer eingespeiste Dampf muß dann nicht mehr dazu verwendet werden, die Dampfblaskammer aufzuheizen, er kann vielmehr seine bestimmungsgemäßen Aufgaben, nämlich die Beaufschlagung der Oberfläche der Warenbahn wahrnehmen. Die Gefahr einer Tröpfchenbildung in der Dampfblaskammer wird hierbei entscheidend vermindert, so daß Beschädigungen der Warenbahn nicht mehr vorkommen, auch wenn die Stillstandszeiten länger als geplant ausfallen. Dampf steht ohnehin zur Verfügung, so daß keine weiteren Energieträger, wie etwa Strom, in den Dampfblaskasten hineingeführt werden müssen. Der erste und der zweite Dampfkanal bilden sozusagen die beiden Schenkel eines U. Die Basis des U bildet die Verbindung zwischen dem ersten und dem zweiten Dampfkanal. Alle Dampfblaskammern sind dann an mindestens zwei Seiten von Dampf umströmt, so daß mindestens zwei Wände der Dampfblaskammern beheizt sind. In dem Dampftrocknungsabschnitt werden Flüssigkeitströpfchen, die sich möglicherweise auf dem Transport des Dampfes vom Kessel zum Dampfblaskasten gebildet haben, ausgeschieden. Die Beheizung erfolgt dann ausschließlich mit trockenem Dampf. Da der für die Beaufschlagung der Materialbahn verwendete Dampf erst nach dem Dampftrocknungsabschnitt entnommen wird, ist sichergestellt, daß keine Kondensat-Tröpfchen auf die Materialbahn gelangen können.
  • Das Dampfventil und die Heizeinrichtung sind mit dem gleichen Dampfzufuhranschluß verbunden. Für die Heizeinrichtung ist dann kein getrennter Dampfzufuhranschluß notwendig. Es reicht eine einzige Leitung aus, die eine Dampfquelle, beispielsweise einen Kessel, mit dem Dampfblaskasten verbindet.
  • Hierbei ist von Vorteil, daß zumindest die freie Gehäusewand beheizt ist. Wenn sich Wassertropfen gebildet haben, werden sie durch den ausströmenden Dampf auf jeden Fall in Richtung der freien Gehäusewand bewegt. Wenn sie auf die freie Gehäusewand auftreffen, werden sie dort verdampft.
  • Bevorzugterweise weist die Heizeinrichtung mindestens einen Dampfkanal auf, der an einer Seite durch die beheizte Wand begrenzt ist. Der Dampfkanal zwingt den Dampf, entlang der zu beheizenden Wand zu strömen. Hierbei gibt er Wärme an diese Wand ab und beheizt sie.
  • Vorteilhafterweise sind mehrere durch Zwischenwände getrennte Dampfblaskammern in einer Reihe quer zur Laufrichtung der Materialbahn nebeneinander angeordnet, wobei die Heizeinrichtung mindestens einen Dampfkanal aufweist, der alle Dampfblaskammern beheizt. Dieser Dampfblaskanal ist dementsprechend ebenfalls quer zur Laufrichtung der Materialbahn angeordnet. Mit dieser relativ einfachen Maßnahme können alle Dampfblaskammern einigermaßen gleichmäßig beheizt werden.
  • Bevorzugterweise herrscht zwischen den beiden Enden des zweiten Dampfkanals eine Druckdifferenz. Dies bewirkt eine Dampfströmung im zweiten Dampfkanal.
  • In einer vorteilhaften Ausgestaltung sind auf die freie Gehäusewand annähernd U-förmige Profile aufgebracht, die im wesentlichen parallel zum zweiten Dampfkanal verlaufen, wobei die Öffnung des U durch die freie Gehäusewand abgedeckt ist. Die freie Gehäusewand ist so dünn, daß sie keine Dampfkanäle aufnehmen kann. Andererseits muß der zum Beheizen der freien Gehäusewand verwendete Dampf kanalisiert werden, da er ansonsten die vorbeilaufende Materialbahn in gleichem Maße wie die freie Gehäusewand beaufschlagen würde. Zu diesem Zweck sind die U-förmigen Profile vorgesehen. Da zwischen den beiden Enden des zweiten Dampfkanals eine Druckdifferenz herrscht und die U-förmigen Profile im wesentlichen parallel zum zweiten Dampfkanal verlaufen, entsteht auch in den durch die U-förmigen Profile gebildeten Kanälen eine Dampfströmung, so daß die freie Gehäusewand in ihrer gesamten Breite oder, bei mehreren Dampfblaskammern, die freien Gehäusewände aller Dampfblaskammern gleichmäßig beheizt werden.
  • Vorteilhafterweise verlaufen die Profile zwischen den Dampfaustrittsöffnungen. Hierdurch läßt sich eine strikte Trennung zwischen dem zum Beheizen der Dampfblaskammern und dem zur Behandlung der Materialbahn verwendeten Dampfes erreichen.
  • Auch ist bevorzugt, daß die Zwischenwände Heizkanäle aufweisen, die den ersten und den zweiten Dampfkanal miteinander verbinden. Bei dieser Ausführungsform sind dann fünf von den sechs die Dampfblaskammer begrenzenden Wände beheizt. Es kann mit relativ niedrigen Temperaturen gefahren werden, da die Dampfblaskammer von fast allen Seiten beheizt wird. Der Temperaturgradient innerhalb der Dampfblaskammer ist relativ flach.
  • Vorteilhafterweise stehen der erste und der zweite Dampfkanal gegenüber der freien Gehäusewand in Richtung auf die Materialbahn vor. Dies führt dazu, daß die Kanten des Dampfblaskastens beheizt sind.
  • In einer bevorzugten Ausführungsform ist vorgesehen, daß jedes Dampfventil einzeln steuerbar ist. Die Dampfmenge bzw. der Dampfdruck, der von jeder Dampfblaskammer auf die Materialbahn aufgebracht wird, läßt sich dann über die Breite der Materialbahn steuern. Hierdurch ist eine Steuerung des Feuchteprofils möglich.
  • Bevorzugterweise weist das Dampfventil eine Anzahl von Ventildüsen auf, deren Achse mit den Seitenwänden der Dampfblaskammer einen Winkel im Bereich von 69° bis 75° einschließt. In diesem Winkelbereich hat der Dampf, der aus dem Ventil ausströmt, zwar eine starke Komponente in Richtung auf die Wand. Er wird an der Wand aber unter einem entsprechenden Winkel reflektiert, so daß sich eine sehr gleichmäßige Dampfverteilung in der Dampfblaskammer ergibt. Durch die Gleichmäßigkeit der Dampfverteilung in der Dampfblaskammer ergibt sich auch an der freien Gehäusewand ein sehr gleichmäßiges Dampfaustritts-Profil, d.h. der Dampf tritt aus allen Dampfaustrittsöffnungen mit annähernd der gleichen Geschwindigkeit aus. Man muß also keine Maßnahmen vorsehen, um einzelne Dampfstrahlen, die auf die Materialbahn auftreffen könnten, zu entschärfen. Durch die gleichmäßige Verteilung des Dampfes läßt sich der Druck in der Dampfblaskammer auch relativ niedrig halten, so daß das Austrittsgeräusch vermindert wird.
  • Bevorzugterweise weist die Dampfblaskammer im Bereich der freien Gehäusewand und/oder im Bereich der der freien Gehäusewand gegenüberliegenden Wand eine Wasserauslaßöffnung auf. Normalerweise werden die Dampfblaskästen so angeordnet, daß sie sich über- oder unterhalb der Materialbahn befinden. Die freie Gehäusewand befindet sich dann an der Oberseite oder an der Unterseite des Dampfblaskasten, ist aber auf jedem Fall der Materialbahn zugewandt. Wenn größere Mengen an kondensiertem Wasser entstehen, können diese problemlos vom tiefsten Punkt der Dampfblaskammer abfließen. Dieser ist, wenn sich der Dampfblaskasten oberhalb der Materialbahn befindet, im Bereich der freien Gehäusewand angeordnet, wenn sich der Dampfblaskasten hingegen unterhalb der Materialbahn befindet, auf der gegenüberliegenden Seite. Man erspart sich dadurch, daß man, beispielsweise bei Betriebsbeginn, die Dampfblaskammer so weit aufheizen muß, bis sämtliche Flüssigkeit verdampft ist.
  • Bevorzugterweise ist hierbei die Wasserauslaßöffnung mit einem Siphon verbunden, in dem eine Wassersäule permanent steht, die höher ist, als es einem Solldruck in der Dampfblaskammer entspricht. Die Wassersäule bildet das Gegengewicht zu dem Dampfdruck. Da die Wassersäule einen größeren Druck ausübt als der Solldruck in der Dampfblaskammer, kann kein Dampf durch den Siphon entweichen. Kondenswasser andererseits kann aber ungehindert abfließen.
  • Bevorzugterweise weisen die Dampfaustrittsöffnungen einen Durchmesser auf, der kleiner als die Dicke der freien Gehäusewand ist. Es werden hiermit also auf der Außenseite der freien Gehäusewand gerichtete Dampfstrahlen erzeugt, die zu einem effektiven Aufbringen des Dampfes auf die Materialbahn geeignet sind.
  • Mit Vorteil weist die mindestens eine Wand in der Dampfblaskammer eine Temperatur im Bereich zwischen 102°C und 110°C auf. Eine derartige Temperatur ist ausreichend, um zu verhindern, daß der Dampf in der Dampfblaskammer kondensiert.
  • Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Es zeigen:
  • Fig. 1
    einen Querschnitt durch einen Dampfblaskasten,
    Fig. 2
    einen Längsschnitt durch den Dampfblaskasten und
    Fig. 3
    eine Draufsicht auf den Dampfblaskasten.
  • Ein Dampfblaskasten 1 weist mehrere Dampfblaskammern 2 auf, die von einer freien Gehäusewand 3 und weiteren Wänden, nämlich einer Vorderwand 4, einer Rückwand 5 einer linken Seitenwand 6 und einer rechten Seitenwand 7 bzw. einer Zwischenwand 8, die einzelne Dampfblaskammern 2 voneinander trennt, und einer Deckenwand 9, begrenzt ist. In die Dampfblaskammer 2 mündet ein Dampfventil 10. Jedes Dampfventil 10 ist über einen Antrieb 11 einzeln steuerbar.
  • Der Dampfblaskasten weist einen ersten Dampfkanal 12 und einen zweiten Dampfkanal 13 auf, die über einen Verbindungskanal 14 miteinander in Verbindung stehen. Zwischen dem Verbindungskanal 14 und dem zweiten Dampfkanal 13 kann eine Drosselvorrichtung 15 angeordnet sein. Die Drosselvorrichtung 15 ist hier als diskretes Element gezeigt. Sie kann aber auch durch die Geometrie der einzelnen Dampfkanäle 13 und 14 gebildet sein. Entscheidend ist lediglich, daß durch die Drosselvorrichtung 15 eine Druckdifferenz zwischen dem Verbindungskanal 14, also dem Anfang des zweiten Dampfkanals 13, und dem Ende des zweiten Dampfkanals 13 hervorgerufen wird. Der erste Dampfkanal 12 steht mit einem Dampfanschluß 16 in Verbindung über den Dampf in den Dampfblaskasten eingespeist wird. Das Ende des zweiten Dampfkanals 13, also das dem Verbindungskanal 14 abgewandte Ende des zweiten Dampfkanals 13 steht mit einem Ausgang 17 in Verbindung, an dem Dampf bzw. aus dem Dampf kondensiertes Wasser aus dem Dampfblaskasten 1 abfließen kann.
  • Der Dampf im ersten und zweiten Dampfkanal 12, 13 umströmt die Dampfblaskammern 2 in etwa U-förmig, d.h. die Vorderwand 4 und die Rückwand 5 einer jeder Dampfblaskammer 2 steht auf ihrer Außenseite mit dem in den Dampfkanälen 12, 13 strömenden Dampf in Verbindung. Der Dampf gibt hier Wärme an die Wände 4, 5 ab. Die Wände 4, 5 heizen ihrerseits wieder die Dampfblaskammer 2 auf.
  • Die linke Seitenwand 6 und die rechte Seitenwand 7 werden ebenfalls durch den vorbeiströmenden Dampf beheizt. An den Zwischenwänden 8, die zwei benachbarte Dampfblaskammern 2 voneinander trennen, sind U-förmige Profile 18 angeschweißt und zwar so, daß das offene Ende des U von den Zwischenwänden 8 abgedeckt wird. Die in den Profilen gebildeten Kanäle 19 sind dicht, so daß der Dampf, der über das Dampfventil 10 in die Dampfblaskammer 2 eingespeist worden ist, nicht mit dem Dampf in den Kanälen 19 in Berührung kommt und durchmischt wird. Somit sind auch die Zwischenwände 8 beheizt. Ähnliche Profile 20 sind auf der Außenseite der freien Gehäusewand 3 angebracht. Sie bilden Kanäle 21, die sich quer zur Laufrichtung einer Warenbahn 22 über die Breite der Dampfblaskammern erstreckt. Da aufgrund der Drosseleinrichtung 15, die nicht explizit als Drossel ausgebildet sein muß, sondern auch durch die Drosselwirkung der Verbindungsstrecke gebildet sein kann, eine Druckdifferenz zwischen den beiden Enden des zweiten Dampfkanals 13 herrscht, wird Dampf durch die Kanäle 21 quer zur Bewegungsrichtung der Warenbahn 22 über die freie Gehäusewand geführt, ohne daß dieser Dampf auf die Warenbahn 22 gelangt. Zwischen den U-förmigen Profilen 20 sind Dampfausblasöffnungen 23 vorgesehen, durch die der Dampf aus der Dampfblaskammer 2 auf die Warenbahn gelangen kann. Hierbei haben die Dampfausblasöffnungen einen Durchmesser, der kleiner als die Dicke der freien Gehäusewand 3 ist.
  • Durch die durch die Drosseleinrichtung 15 hervorgerufene Druckdifferenz strömt auch Dampf von dem ersten Dampfkanal 12 zum zweiten Dampfkanal 13 und beheizt so die Zwischenwände. Der Dampffluß ist in Fig. 3 durch Pfeile angedeutet.
  • Die Dampfventile 10 stehen über Verbindungsrohre 24 mit dem zweiten Dampfkanal 13 in Verbindung. Der dort herrschende Druck reicht aus, um auch in der Dampfblaskammer 2 den notwendigen Druck zu erzeugen, der den Dampf in Richtung auf die Warenbahn 22 treibt.
  • Das Dampfventil 10 weist eine Reihe von Öffnungen 25 auf, die so gerichtet sind, daß ihre Achse einen Winkel A mit den Seitenwänden, d.h. der Vorderwand 4, der Rückwand 5, der linken Seitenwand 6, der rechten Seitenwand 7 oder der Zwischenwand 8, einschließen, der im Bereich von 69° bis 75° liegt. Da das Dampfventil 10 im wesentlichen zylinderförmig aufgebaut ist, die genannten Wände der Dampfblaskammer 2 jedoch im wesentlichen ein Rechteck bilden, gelten diese Winkelangaben nur für die Öffnungen 25 des Dampfventils, die in einer senkrecht auf den genannten Wänden 4 bis 8 stehenden Ebene liegen. Für alle anderen Öffnungen muß der Winkel der Achse der Öffnungen 25 auf die entsprechende Ebene projiziert werden.
  • Sämtliche dampftransportierenden und außenliegenden Kanäle, also insbesondere der erste Dampfkanal und der zweite Dampfkanal, sind nach außen durch eine Isolierung 26 abgedeckt. Diese Isolierung ist in den Fig. 2 und 3 aus Gründen der Übersichtlichkeit weggelassen.
  • Wie aus Fig. 1 ersichtlich, stehen der erste und der zweite Dampfkanal 12, 13 gegenüber der freien Gehäusewand 3 in Richtung auf die Materialbahn 22 vor. Dies führt dazu, daß sich zwischen der Materialbahn 22 und der freien Gehäusewand 3 ein Dampfausbreitungsraum 27 bilden kann, in dem sich der Dampf nach dem Ausströmen aus den Dampfausblasöffnungen 23 vergleichmäßigen kann. Darüberhinaus hat dies aber auch zur Folge, daß das Gehäuse des Dampfblaskastens 1 an seinen der Materialbahn 22 zugewandten Kanten 28, 29 ebenfalls beheizt ist.
  • Der erste Dampfkanal 12 ist als Dampftrocknungsabschnitt ausgebildet. Der über den Dampfanschluß 16 zugeführte Dampf kann, insbesondere wenn der Weg von der Dampfquelle, wie einem Dampfkessel, zum Dampfblaskasten länger ist, kondensierten Dampf in Form von Wassertröpfchen enthalten. Diese Wassertröpfchen werden in dem ersten Dampfkanal 12 abgeschieden. Mit dieser einfachen Maßnahme läßt sich erreichen, daß der Dampf nach dem ersten Dampfkanal 12 trocken ist, so daß er unmittelbar als Prozeßdampf für die Beaufschlagung der Materialbahn 22 verwendet werden kann.
  • An den jeweils tiefsten Stellen der Dampfblaskammer 2 bzw. des ersten oder zweiten Dampfkanals 12, 13 oder auch des Verbindungskanals 14 sind Ablaßöffnungen 30, 31, 32 und 33 angeordnet. Durch diese Öffnungen kann Wasser, das in der Dampfblaskammer 2 oder in den Dampfkanälen 12, 13, 14 kondensiert, abfließen. Die Ablaßöffnungen 30 bis 33 sind für den Fall vorgesehen, daß der Dampfblaskasten 1 wie in den Fig. 1 und 2 dargestellt betrieben wird, nämlich mit der freien Gehäusewand 3 nach unten. Hierbei befindet sich der Dampfblaskasten 1 oberhalb der Materialbahn 22. Weiterhin sind an den jeweils höchsten Stellen weitere Ablaßöffnungen 34, 35, 36 vorgesehen. Der Dampfblaskasten 1 kann nicht nur oberhalb der Materialbahn angeordnet werden, wobei der Dampf aus der Dampfblaskammer 2 nach unten ausströmt, sondern auch unterhalb der Materialbahn 22, wobei der Dampf nach oben strömt. Hierbei wird die Unterseite der Materialbahn 22 mit Dampf beaufschlagt. In diesem Fall sind die Ablaßöffnungen 34, 35, 36, die sich in der in Fig. 1 und 2 dargestellten Position an der höchsten Stelle befinden, an der tiefsten Stelle der Dampfblaskammer bzw. der Dampfkanäle 12, 13 angeordnet. Selbstverständlich kann auch der Verbindungskanal 14 eine derartige Ablaßöffnung aufweisen. Wie in Fig. 2 exemplarisch dargestellt, ist die Ablaßöffnung 35 mit einem Siphon 37 verbunden. Zur Erläuterung sei angenommen, daß der Dampfblaskasten in einer um 180°C gedrehten Position betrieben wird, die Materialbahn 22 sich also oberhalb des Dampfblaskastens 1 befindet. Die Dampfblaskammer 2 wird dann über die Öffnung 35 und den Siphon 37 entwässert. Im Siphon 37 bilden sich nach dem Prinzip der kommunizierenden Röhren zwei Wassersäulen aus. Zwischen der Auslaßöffnung 35 und dem Ausgang des Siphons ist der freie Gasdurchgang, durch den Dampf entweichen könnte, versperrt. Die Wassersäule ist so hoch, daß sie dem in der Dampfblaskammer 2 herrschenden Druck standhält, also von dem Dampfdruck nicht soweit aus dem Siphon 37 herausgedrückt werden kann, daß Dampf entweichen kann. Sobald aber Wasser durch den Abfluß 35 in den Siphon 37 hineinfließt, kann Wasser auf der anderen Seite des Siphons 37, also an dessen Ausgang abfließen, da sich nach dem Prinzip der kommunizierenden Röhren wieder ein Gleichgewicht einstellen muß. Die Entwässerung über einen Siphon wird bei allen Ablaßöffnungen 30 bis 36 verwendet. Sie ist jedoch aus Gründen der Übersichtlichkeit nur für die Ablaßöffnung 35 dargestellt.
  • Durch den Dampf im ersten und zweiten Dampfkanal 12, 13, im Verbindungskanal 14 und in den Kanälen 19 und 21 werden die Wände der Dampfblaskammer auf eine Temperatur im Bereich von 102°C bis 110°C aufgeheizt. Diese Temperatur reicht aus, um eine Kondensatbildung an den Wänden zu verhindern.
  • Der gesamte Dampfblaskasten 1 steht permanent unter Dampfdruck. Die Steuerung des Dampfes, der aus den Dampfblaskammern 2 in Richtung auf die Materialbahn 22 austritt, erfolgt ausschließlich über das Dampfventil 10. Dadurch ist eine sehr feine Steuerung des Dampfdurchsatzes durch die Dampfblaskammer 2 möglich. Diese feine Steuerung erlaubt es, auch sehr geringe Dampfmengen in der Größenordnung von 1 bis 10 kg/h, also wenige Kubikmeter Dampf pro Stunde, mit einer ausreichenden hohen Genauigkeit zu steuern. Im Dampfblaskasten 1 herrscht dazu ein Druck im Bereich von 1,2 bis 1,3 bar.
  • Von der dargestellten Ausführungsform kann in vielerlei Hinsicht abgewichen werden. So können beispielsweise die Profile 20 auch im Innern der Dampfblaskammer 2 angeordnet sein, so daß die freie Gehäusewand 3 auf ihrer Außenseite glatt ist. Die Zwischenwände können auch doppelwandig ausgebildet werden, wobei dann der Dampf zwischen den beiden Wänden hindurchströmt.

Claims (15)

  1. Dampfblaskasten zum Aufbringen von Dampf auf eine vorbeilaufende Materialbahn mit mindestens einer Dampfblaskammer, die von einer freien Gehäusewand mit einer Anzahl von Dampfaustrittsöffnungen und weiteren Kammerwänden vollständig umschlossen ist und ein Dampfventil zum Einlaß von Dampf in die Dampfblaskammer aufweist, dadurch gekennzeichnet, daß Wände (3-8) der Dampfblaskammer (2) durch eine mit Dampf betriebene Heizeinrichtung (19, 21, 12, 12, 14) beheizt sind, wobei die Heizeinrichtung einen als Dampftrocknungsabschnitt ausgebildeten ersten Dampfkanal (12) aufweist, der von einem Ende im wesentlichen quer zur Laufrichtung der Materialbahn (22) bis zum anderen Ende verläuft und einen zweiten Dampfkanal (13), der vom anderen Ende im wesentlichen quer zur Laufrichtung der Materialbahn (22) zum einen Ende verläuft, wobei die mindestens eine Dampfblaskammer (2) zwischen dem ersten und dem zweiten Dampfkanal (12, 13) angeordnet ist, der erste und der zweite Dampfkanal (12, 13) am anderen Ende miteinander in Verbindung (14) stehen, der Dampf die Dampfblaskammer (2) in etwa U-förmig umströmt und der für die Beaufschlagung der Materialbahn verwendete Dampf erst nach dem Dampftrocknungsabschnitt entnommen wird.
  2. Dampfblaskasten nach Anspruch 1, dadurch gekennzeichnet, daß zumindest die freie Gehäusewand (3) beheizt ist.
  3. Dampfblaskasten nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Heizeinrichtung mindestens einen Dampfkanal (12, 13, 14, 19, 21) aufweist, der an einer Seite durch die beheizte Wand (3, 4, 5, 6, 8) begrenzt ist.
  4. Dampfblaskasten nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mehrere durch Zwischenwände (8) getrennte Dampfblaskammern in einer Reihe quer zur Laufrichtung der Materialbahn (22) nebeneinander angeordnet sind, wobei die Heizeinrichtung mindestens einen Dampfkanal (12, 13, 19) aufweist, der alle Dampfblaskammern beheizt.
  5. Dampfblaskasten nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß zwischen den beiden Enden des zweiten Dampfkanals (13) eine Druckdifferenz herrscht.
  6. Dampfblaskasten nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß auf die freie Gehäusewand (3) annähernd U-förmige Profile (20) aufgebracht sind, die im wesentlich parallel zum zweiten Dampfkanal (13) verlaufen, wobei die Öffnung des U durch die freie Gehäusewand (3) abgedeckt ist.
  7. Dampfblaskasten nach Anspruch 6, dadurch gekennzeichnet, daß die Profile (20) zwischen den Dampfaustrittsöffnungen (23) verlaufen.
  8. Dampfblaskasten nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Zwischenwände (8) Heizkanäle (19) aufweisen, die den ersten und den zweiten Dampfkanal (12, 13) miteinander verbinden.
  9. Dampfblaskasten nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der erste und der zweite Dampfkanal (12, 13) gegenüber der freien Gehäusewand (3) in Richtung auf die Materialbahn (22) vorstehen.
  10. Dampfblaskasten nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß jedes Dampfventil (10) einzeln steuerbar ist.
  11. Dampfblaskasten nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Dampfventil (10) eine Anzahl von Ventildüsen (25) aufweist, deren Achse mit den Seitenwänden (4, 5, 6, 7, 8) der Dampfblaskammer (2) einen Winkel (A) im Bereich von 69° bis 75° einschließt.
  12. Dampfblaskasten nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Dampfblaskammer (2) im Bereich der freien Gehäusewand (3) und/oder im Bereich der der freien Gehäusewand (3) gegenüberliegenden Wand (9) eine Wasserauslaßöffnung (30 bis 36) aufweist.
  13. Dampfblaskasten nach Anspruch 12, dadurch gekennzeichnet, daß die Wasserauslaßöffnung (35) mit einem Siphon (37) verbunden ist, in dem eine Wassersäule permanent steht, die höher ist, als es einem Solldruck in der Dampfblaskammer (2) entspricht.
  14. Dampfblaskasten nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Dampfaustrittsöffnungen (23) einen Durchmesser aufweisen, der kleiner als die Dicke der freien Gehäusewand (3) ist.
  15. Dampfblaskasten nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die mindestens eine Wand in der Dampfblaskammer (2) eine Temperatur im Bereich von 102°C bis 110°C aufweist.
EP92111543A 1991-07-29 1992-07-08 Dampfblaskasten Expired - Lifetime EP0528160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4125062A DE4125062C2 (de) 1991-07-29 1991-07-29 Dampfblaskasten
DE4125062 1991-07-29

Publications (2)

Publication Number Publication Date
EP0528160A1 EP0528160A1 (de) 1993-02-24
EP0528160B1 true EP0528160B1 (de) 1995-10-11

Family

ID=6437230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111543A Expired - Lifetime EP0528160B1 (de) 1991-07-29 1992-07-08 Dampfblaskasten

Country Status (8)

Country Link
US (1) US5282323A (de)
EP (1) EP0528160B1 (de)
JP (1) JPH0816318B2 (de)
AT (1) ATE129036T1 (de)
CA (1) CA2074787C (de)
DE (1) DE4125062C2 (de)
ES (1) ES2078601T3 (de)
FI (1) FI106643B (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125062C2 (de) * 1991-07-29 1994-12-08 Vib Apparatebau Gmbh Dampfblaskasten
DE4301023C3 (de) * 1993-01-16 2001-07-26 V I B Systems Gmbh Vorrichtung zum Erhöhen von Glanz und/oder Glätte einer Papierbahn
US5429303A (en) * 1993-03-20 1995-07-04 V.I.B. Apparatebau Gmbh Steam spray tube with linear acceleration channel
DE4401220C1 (de) * 1994-01-18 1995-06-29 Voith Gmbh J M Dampfblaskasten
DE4402278C2 (de) * 1994-01-18 1999-11-11 J M Voith Gmbh & Co Beteiligun Vorrichtung zum Aufbringen von Dampf
DE4431803C1 (de) * 1994-09-07 1996-02-29 Voith Sulzer Finishing Gmbh Querprofilsteuerungssystem für Warenbahnen
DE19500752C2 (de) * 1995-01-12 2000-11-30 V I B App Bau Gmbh Dampfbefeuchtungseinrichtung
US5749158A (en) * 1995-01-19 1998-05-12 Voith Sulzer Papiermaschinen Gmbh Apparatus for the application of steam onto a paper web
DE19534573C2 (de) * 1995-09-18 2001-08-23 Voith Sulzer Papiermasch Gmbh Dampfblaskasten und Verfahren zum zonenweisen Temperieren einer laufenden Papierbahn
FI107065B (fi) * 1999-10-21 2001-05-31 Metso Paper Automation Oy Paperikoneen höyrylaatikko
US6732452B2 (en) 2001-12-21 2004-05-11 Kimberly-Clark Worldwide, Inc. Apparatus and process for throughair drying of a paper web
DE10343949A1 (de) * 2003-09-23 2005-04-28 Voith Paper Patent Gmbh Einrichtung zur berührungslosen Führung und/oder Trocknung einer laufenden Papier-, Karton- oder anderen Warenbahn
US6910283B1 (en) * 2003-12-19 2005-06-28 Kimberly-Clark Worldwide, Inc. Method and system for heat recovery in a throughdrying tissue making process
US8061055B2 (en) * 2007-05-07 2011-11-22 Megtec Systems, Inc. Step air foil web stabilizer
DE102010041762A1 (de) * 2010-09-30 2012-04-05 Voith Patent Gmbh Vorrichtung zum Befeuchten der Oberflächenschicht einer Faserstoffbahn

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2203973A1 (de) * 1972-01-28 1973-08-09 Erich Pagendarm Verfahren und vorrichtung zum befeuchten einer bahn
CA996040A (en) * 1972-04-21 1976-08-31 Norman F. Dove Steam supply apparatus
JPS5756599A (en) * 1980-09-16 1982-04-05 Arakawa Rinsan Kagaku Kogyo Kk Size composition for papermaking
US4422575A (en) * 1981-08-17 1983-12-27 Dove Norman F Steam distributor with plug valve
JPS611559A (ja) * 1984-06-12 1986-01-07 Nissan Jidosha Hanbai Kk 自動車床下洗浄装置
DE3701406A1 (de) * 1987-01-20 1988-07-28 Vib Apparatebau Gmbh Vorrichtung zum aufbringen von dampf auf eine materialbahn, wie papier
DE3701407C1 (de) * 1987-01-20 1988-04-07 V I B Appbau Gmbh Dampfblaskasten
US5211813A (en) * 1990-03-09 1993-05-18 Sawley David J Steam shower with reduced condensate drip
DE4125062C2 (de) * 1991-07-29 1994-12-08 Vib Apparatebau Gmbh Dampfblaskasten

Also Published As

Publication number Publication date
FI923390A0 (fi) 1992-07-27
DE4125062A1 (de) 1993-02-04
CA2074787C (en) 1996-08-06
FI106643B (fi) 2001-03-15
JPH0816318B2 (ja) 1996-02-21
EP0528160A1 (de) 1993-02-24
FI923390A (fi) 1993-01-30
JPH06299492A (ja) 1994-10-25
US5282323A (en) 1994-02-01
ES2078601T3 (es) 1995-12-16
DE4125062C2 (de) 1994-12-08
ATE129036T1 (de) 1995-10-15
CA2074787A1 (en) 1993-01-30

Similar Documents

Publication Publication Date Title
EP0528160B1 (de) Dampfblaskasten
EP0275914B1 (de) Vorrichtung zum Aufbringen von Dampf auf eine Materialbahn, wie Papier
DE4301023C3 (de) Vorrichtung zum Erhöhen von Glanz und/oder Glätte einer Papierbahn
DE19534573C2 (de) Dampfblaskasten und Verfahren zum zonenweisen Temperieren einer laufenden Papierbahn
DE4213707A1 (de) Stoffauflaufeinrichtung für eine Papiermaschine
DE3701407C1 (de) Dampfblaskasten
EP2063206B1 (de) Vorrichtung zum Behandeln einer Substratbahn
DE102005031444A1 (de) Vorrichtung zum Befeuchten einer Materialbahn
DE19500752C2 (de) Dampfbefeuchtungseinrichtung
DE1939078A1 (de) Verfahren und Vorrichtung zur Abgabe von trockenem Dampf
DE19614887A1 (de) Maschine zur Herstellung einer Materialbahn
DE1206718B (de) Trockenvorrichtung fuer Faserstoffbahnen
DE9116910U1 (de) Dampfblaskasten
DE3801138C2 (de) Vorrichtung zur kontinuierlichen Behandlung einer breit geführten Gewebebahn
DE69018135T2 (de) Befeuchtungsvorrichtung für bandförmiges Material, insbesondere Papier.
EP1248060A1 (de) Vorrichtung zum Trocknen von Feststoffisolationen eines elektrischen Gerätes
EP1279763B1 (de) Verfahren und Vorrichtung zum Reinigen eines umlaufenden Bandes
EP1674614B1 (de) Vorrichtung und Verfahren zum Behandeln einer Materialbahn
DE1939078C (de) Vorrichtung zum Befeuchten von Papierbahnen durch Aufbringen von Dampf
EP4036505A2 (de) Vorwärmkammer zum vorwärmen einer textilen warenbahn mittels luft, trockenanordnung sowie verwendung einer solchen in einer maschine zur herstellung oder bearbeitung einer textilen warenbahn
DE3621547C2 (de)
DE2512162C3 (de) Verfahren und Vorrichtung zum Schnelltrocknen von Cellulosepulpe
WO2012041552A1 (de) Vorrichtung zum befeuchten der oberflächenschicht einer faserstoffbahn
DE102004044743A1 (de) Verfahren zur Benetzung einer Papierbahn und Netzapparat einer Papierbahn
DE1046301B (de) Verfahren zur Befeuchtung fortlaufend gefuehrter Bahnen aus Folien aus Kunststoffen, wie Cellulosederivaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930318

17Q First examination report despatched

Effective date: 19941229

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 129036

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951010

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078601

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VALMET CORPORATION

Effective date: 19960708

NLR1 Nl: opposition has been filed with the epo

Opponent name: VALMET CORPORATION

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19980301

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060731

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070621

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070704

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070726

Year of fee payment: 16

Ref country code: SE

Payment date: 20070705

Year of fee payment: 16

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070625

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080724

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080722

Year of fee payment: 17

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080708

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080708

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080709