EP0520945B1 - Verfahren und Vorrichtung zum Puffern und Takten von Druckprodukten in Schuppenformation und zum Schliessen von Lücken in der Schuppenformation - Google Patents

Verfahren und Vorrichtung zum Puffern und Takten von Druckprodukten in Schuppenformation und zum Schliessen von Lücken in der Schuppenformation Download PDF

Info

Publication number
EP0520945B1
EP0520945B1 EP92810457A EP92810457A EP0520945B1 EP 0520945 B1 EP0520945 B1 EP 0520945B1 EP 92810457 A EP92810457 A EP 92810457A EP 92810457 A EP92810457 A EP 92810457A EP 0520945 B1 EP0520945 B1 EP 0520945B1
Authority
EP
European Patent Office
Prior art keywords
buffer storage
buffer
storage means
brake
claw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810457A
Other languages
English (en)
French (fr)
Other versions
EP0520945A1 (de
Inventor
Walter Reist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferag AG
Original Assignee
Ferag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferag AG filed Critical Ferag AG
Publication of EP0520945A1 publication Critical patent/EP0520945A1/de
Application granted granted Critical
Publication of EP0520945B1 publication Critical patent/EP0520945B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/66Advancing articles in overlapping streams
    • B65H29/6654Advancing articles in overlapping streams changing the overlapping figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/22Distance

Definitions

  • the invention is in the field of further processing of printed products and relates to a method and a device according to the preamble of the corresponding independent claims, which serve to produce flat products, in particular multilayer, folded printed products in scale formation during transport on a transport route provided for buffering to buffer and cycle as needed, and to close gaps in the scale formation.
  • Printed products in particular multilayer, folded printed products, are laid out for further processing, for example by rotary machines or from winding in scale formation. It is advantageous to switch buffers between the design of such shingled streams and their further processing for two reasons: first, the propagation of disturbances and systematic irregularities upstream can be avoided or alleviated, secondly, gaps in the streams can be closed and thirdly, the shingled stream can be clocked simultaneously . In the event of a malfunction in the further processing, which thereby runs more slowly or even stops, the buffer absorbs the products which arise during an unavoidable reaction time for a reaction of the feeder or even allows a shorter processing interruption by only one Slow down the supply and fill the buffer accordingly, which saves stopping and re-accelerating large masses.
  • the further processing contains systematic irregularities, such that the supplied product is not used continuously for the further processing step, such as for example when inserting it in a personalized manner, the supply can nevertheless continuously supply products into the buffer with a correspondingly lower output.
  • the buffer thus serves as a collecting station for errors and irregularities both upstream and downstream.
  • Buffer methods and devices of this type are also described, for example in US Pat. 4887809, 4892186 and 4201286 by the same applicant.
  • the buffer systems described in these documents all work with buffering agents (clamps, hooks, grippers, brake cams) which act on the printed products of the shingled stream over a buffering section of constant length, i.e. transport them more or less actively, the number of buffering agents on the buffering section and so that the distance between the buffer means is variable.
  • the mean distance between the buffer means on the buffer section is Heiner than when the buffer is empty, since when the buffer is full more buffer means are positioned on the buffer section.
  • the buffer systems described thus work on the basic idea of the buffer section with a constant length and a variable distance between the buffer means.
  • the variable distance between the buffer means is realized, for example, by free movement of the buffer means along a movement path, whereby they are pushed by the subsequent buffer means, or by elastic connections between the buffer means, which are pulled by the leading buffer means.
  • All these buffer systems described have the disadvantage that they have individually guided elements which cannot be driven by common traction means, such as chains, for example, and which have to be re-clocked after the buffering, and that the printed products are transferred to the buffer means in most cases have to be transported over the buffer section, which usually requires special spatial arrangements.
  • the systems described require a great deal of sensor technology geared to the printed products, not only to measure the fill level of the buffer for controlling the design and / or further processing, but also to detect and close gaps in the shingled stream supplied. Such sensors must be reset when changing the product format, for example.
  • Publication CH-A-5805311 describes a device with which the distances between printed products which are conveyed as a scale formation on a means of transport are made more uniform by the fact that they are slowed down by equidistant braking means and at a distance which is smaller than that Distance of the printed products in the original scale formation. So that the device can also compensate for larger irregularities, the brake means are pivoted one after the other into the transport path of the printed products, and always when a printed product hits the leading brake means and the latter is braked.
  • Such a device can now obviously also be used in the sense of a buffer, the braking means serving as buffering means which are not spaced apart from one another as in the case of the buffer devices mentioned above.
  • the buffer means are at a fixed distance from one another, but due to the activation of the buffer means initiated by the printed products, the number of buffer means that are active is variable, that is, it is a buffer with a variable length of the buffer path and a constant distance between the buffer means .
  • the stream of shingles is transported over the route provided for buffering essentially on a conveyor belt which can be easily switched into the transport routes of other conveyor belts.
  • the section intended for buffering is functionally divided into two sections, into a downstream, effective buffer section and an upstream reserve section, the boundary (transition point) between these two sections moving depending on the fill level of the buffer , that is, the relative length of the two sections is variable.
  • the reserve section has a minimal length
  • the buffer section has a minimal length.
  • the printed products are transported in shingled formation over the entire route, first by means of a conveyor belt over the reserve route and then with the help of the buffering agents over the buffer route.
  • the speed and product distance on the reserve route can depend on the supply performance, the further processing performance and also on the fill level of the buffer, while the product distance on the buffer route is fixed and the speed is determined by the further processing performance.
  • the scale distances and the speed on the buffer section are always smaller than on the reserve section.
  • Such a buffering process can best be compared to a liquid buffer in the form of a vessel with inflow and outflow and a different level depending on the degree of buffer filling.
  • the degree of filling has no influence on the properties of the liquid in the buffer vessel.
  • the only thing that changes with the degree of filling is the liquid level or in other words the path of the supplied water to the liquid surface in the buffer vessel (reserve section) and the path of the liquid from this surface to the outlet (buffer section).
  • Such a buffer system buffers a scale flow without converting it into another form of delivery flow, but only by reducing the scale distance to a length that is characteristic of the buffer and cannot be changed, the length of the buffer depending on the number of printed products to be buffered.
  • Such a buffering method is implemented by a conveyor belt and the buffer means, both of which run over the entire distance intended for buffering, the buffer means only acting on the buffer products on the printed products and being ineffective on the reserve route, so that the conveyor belt on the reserve route is solely for is responsible for the transport.
  • buffer means with a constant spacing are required, which act on the printed products over a variable distance.
  • These buffering means are implemented as means which change their state at the transition point from the reserve section to the buffer section in such a way that they have no effect on the stream of shingles before the transition point, after the transition point but act on the printed products in such a way that the transporting effect of the conveyor belt is completely eliminated or at least restricted.
  • the buffering means are designed in such a way that they switch from a print product to be buffered when they arrive at the transition point from the reserve section to the buffer section from the ineffective to the active state.Therefore, no sensors are required for the effective buffering operation and the fill level of the buffer can simply be removed from the state (effective or ineffective) of the buffering means at individual points on the route provided for buffering and can be used for the control of feed performance and / or further processing performance. In particular, there is no need for a sensor system that is oriented to the printed products, which would have to check, for example, whether a buffering agent is transporting a printed product or not, a sensor system that would have to be reset when the product format changes.
  • Figure 1 shows a schematic diagram for the buffer method according to the invention. It shows a section of a transport route provided for buffering with a conveyor belt 10, on which a shingled stream of printed products 11.1 / 2/3 .... is conveyed in the transport direction F, and buffering means 12.1 / 2/3/4 Vietnamese , for example in the form of brake cams.
  • the transport route provided for buffering is functionally divided into two sections: a buffer route P and a reserve route R, the buffer route P being located in front of the reserve route R in the transport direction.
  • the reserve route R On the reserve route R, the printed products (11.7 / 8/9 .7) are conveyed through the conveyor belt 10 and at an adjustable belt speed v R , while the buffer means (12.8 / 9/10 ...) are ineffective, for example under the Conveyor belt are sunk.
  • the distance of the printed products d R on the reserve path R is determined by the speed v R and by the feed power (Z) of any feed device which is not shown.
  • the product distances d P and the speed v P of the printed products (11.1 to 11.6) are determined by the speed and distance of the buffering means, since these are effective on this section and act on the printed products, for example by protruding over the conveyor belt and the printed products brake while they are still moving forward from the conveyor belt.
  • the distance d P between the printed products on the buffer path P corresponds to the fixed distance between the buffer means and the speed v P becomes in accordance with a further processing performance W set any further processing device, not shown, so that the buffer means pass on the printed products correctly timed at the output of the buffer device.
  • the function of the buffer device is now as follows:
  • the speed v P is set in this way and is regulated during operation in such a way that the output power of the buffer corresponds as far as possible to the number of printed products per unit of time required by the further processing. Since the buffer is a small and therefore not very sluggish device, this speed can also be regulated accordingly without difficulties in the further processing performance.
  • the speed v R of the conveyor belt is set such that it is greater than the speed v P , for example by a factor of 2.5, and such that the distances between the printed products on the reserve path R are greater than those on the buffer path P.
  • the speed v R can be set constant or proportional to the speed v P for certain ranges of the feed power, as long as the above-mentioned conditions are met.
  • the drives of the conveyor belt and buffering means should not be coupled, since if the further processing stops the buffering means must stop (further processing power is zero), but not the conveyor belt, which can fill up the buffer even when stopped, so that the feed is not stopped got to.
  • the cycle on the reserve line and on the buffer line is the same, i.e. every product on the buffer line (or each buffer medium somewhere on the transport line) covers the distance d P in the same time as each product the distance d R on the reserve route.
  • a new product always arrives at the transition point U when the preliminary product with the corresponding buffering agent has traveled the distance d P and the next buffering agent is therefore at the same point.
  • This buffering agent becomes effective and brakes the product in such a way that it continues to move at the speed v P. With such a mode of operation, the transition point between reserve section R and buffer section P will always remain at the same location.
  • the cycle time on the buffer line is longer than on the reserve line, i.e. a buffer medium moves by more than the line d P in the time in which a printed product on the reserve line moves by d R emotional.
  • a next product will therefore only arrive at the transition point U when a next buffer medium has already moved over this point, and the corresponding printed product will only hit it later or further downstream and will be braked by it.
  • the transition point U has shifted to the left in the figure, or in other words the buffer path has become shorter and the buffer has become empty.
  • the buffer will correspondingly fill up more.
  • the buffering agents are effective on the buffer section P, that is, they act on a product, on the reserve section R ineffective, that is, they do not act on products.
  • a buffering agent at the transition point U (in the figure, buffering agent 12.7) must be active insofar as it has to brake a next product, but does not yet act on any product, it is not yet effective, it is ready".
  • the buffering means must therefore be designed in such a way that they can assume three states: ineffective (on the reserve route), effective (on the buffer route), ready (at the transition point).
  • an ineffective buffering agent is made available at the transition point by switching the leading buffering agent from ready to effective; a ready buffering agent is activated when it enters the buffer zone by a printed product bumping into it and braking it.
  • Both the conveyor belt and the buffer media are moved from the end of the buffer line (handover of the products to further processing) on a return to the beginning of the reserve line. During this return the buffering agents must be switched from effective to ineffective.
  • Speeds and product distances in the buffer system according to the invention should be set in such a way that each transported printed product encounters a buffer medium before the end of the buffer zone so that it can be passed on to the further processing at an exactly clocked rate, in other words, the buffer zone should always be at least one have effective buffering agent. This is advantageously ensured by the fact that each buffering agent is reliably activated at the exit of the buffer section, for example by the effect of the deflection to the return.
  • the buffer system act simultaneously as a clock generator, with which irregularities in the shingled stream supplied are compensated to a limited extent, and only in this way is it ensured that the buffer function can be resumed automatically after the transport route provided for buffering has been completely emptied or after the buffer has emptied.
  • the buffer system according to the invention also automatically closes gaps in the shingled stream supplied. Since such a gap no longer comes into contact with the ready buffer medium (transition point), this will continue to move towards the buffer exit before it is activated, that is to say the transition point will move towards the left in the figure or the buffer will be complete otherwise the gap will have no effect on buffering or further processing if there is enough buffer.
  • the method according to the invention if it works, as described, with brake cams which can be lowered under the conveyor belt as buffer means, requires a shingled stream in which the leading edges of the printed products are directed downwards, in which case one product is partially covered by the leading products. In such a stream, it is not possible to close gaps that are wider than the respective overlap of two products by simply pushing them open, as would be done in the described method without special aids. Since the products no longer lie one on top of the other in such a large gap, the subsequent product must be pushed under the preliminary product to close the gap, for which appropriate aids are necessary.
  • FIGS. 2 and 3 show in detail an exemplary embodiment of buffer means according to the invention, as a view transverse to the transport direction (FIG. 2) and cut transversely to the transport direction as a view against the transport direction. It is a retractable under the conveyor belt 10 Brake claw, which, if not sunk, stops the printed products in the middle area of their downward leading edge and slows their movement on the conveyor belt from the speed of the conveyor belt to the lower speed of the buffer means.
  • the conveyor belt is designed, for example, in the form of two parallel sub-belts, a pull chain 30 with the brake claws being positioned in the central gap between the two sub-belts such that the claws are in their effective and ready (not sunk) state the transport surface of the conveyor belt is sufficient to be moved under the transport surface in its ineffective (sunken) state.
  • the conveyor belt 10 is only indicated in the two drawings by a level line that designates its transport surface.
  • the pull chain 30 is indicated as a dashed line.
  • FIG. 2 shows a series of 4 buffer means according to the invention in the form of brake claws 121, 122, 123, 124 (120 and 125 only partially shown), which are to move from right to left in a transport direction F, driven by a pull chain 30 ( indicated in Figure 3).
  • the brake claw 121 is in its effective state
  • the second brake claw 122 is in its ready state
  • the two rear brake claws 123 and 124 are in their inactive state, the figure is therefore a representation of the transition point U from the reserve line R to the buffer line P.
  • FIG. 3 shows one Brake claw in its effective or ready state (121, 120 or 122).
  • Each brake claw consists of a claw body 20 in which two chain pins 23 and 25 are rotatably mounted in two guides 24 and 26.
  • the guide 24 of the rear chain pin 23 in the transport direction is slot-shaped
  • the guide 26 of the front chain pin 25 in the transport direction is designed as an angled slot, such that the claw body 20 can move laterally relative to the chain pins 23 and 25 essentially parallel to the transport direction and in its rearward position with respect to its lateral movement rear chain pin 23 can be pivoted.
  • This pivoting movement is limited by the front guide 26 in such a way that, in an upper extreme position of a claw 21 attached to the front of the claw body 20, it projects over the conveyor belt, in a lower extreme position of the claw 21 it is sunk under the conveyor belt.
  • the claw 21 is pressed into its upper position and the claw body 20 into its rear position by a force means, for example a spring 28.
  • the spring 28 can be, for example, a coil spring arranged around the chain pin, which is clamped on the claw body 20 with the aid of two ends extending from the screw shape between the chain and a corresponding spring cam 27.
  • the power means can also be a permanent magnet which is arranged in the front, lower region of the claw body 20 in such a way that the claw 21 is pulled into its upper pivoting position and the claw body 20 into its rear position by the magnetic attraction between the magnet and the chain pin 25.
  • the claw body 20 carries the claw 21 at the front in the transport direction and a holding cam 22 and a recess 29 at the rear.
  • the two guides 24 and 26 are arranged in the claw body in such a way that the axis of the pivoting movement (chain pin 23) lies far to the rear, so that during a pivoting movement the The change in position of the claw 22 and the holding cam 21 is significantly greater than that of the indentation 29.
  • the brake claws are dimensioned and arranged on the pull chain 30 in such a way that they overlap in a transport direction on a straight line.
  • This overlap enables an interaction between the holding cams 22 on the front sides of the claw bodies 20 with the corresponding indentations 29 on the rear side of the leading claw body 20, but only if the holding cams 22 and the indentation 29 are essentially at the same level.
  • This is the case when the claw 21 is in its lower pivot position.
  • the pivot position of the indentation 29 is insignificant, that is to say that a holding bolt 22 pivoted into the lower position can interact with an indentation 29 of a leading brake claw with the claw 21 pivoted downwards or upwards.
  • the overlap of the claw bodies in the transport direction is smaller than the amount of lateral movement that a claw body can perform.
  • the claw 21 is pressed into its upper pivot position by the spring 28 if it is not held in the lower pivot position by the interaction of the holding cam 22 with the indentation 29 of a leading brake claw.
  • a brake claw with claw 21 in the upper pivot position can be moved from the rear to the front position by a printed product striking it from behind at a higher speed.
  • the brake claws move through the reserve section R, in their effective state via the buffer section P.
  • the already buffered print products are braked by brake claws and move in the conveying direction at a speed which is less than the speed of the conveyor belt, towards the end of the buffer line.
  • a brake claw now observed follows the last brake claw with the printed product of the buffer section.
  • a next printed product is moved from behind at the speed of the conveyor belt against the observed brake claw and hits it once.
  • the observed brake claw has an upwardly pivoted claw 21, since the leading brake claw has been moved into its forward position by the last printed product of the buffer section and an interaction between the observed brake claw and the leading brake claw is no longer possible.
  • each brake claw passes the end of the buffer section in its effective state. This is the case as long as the buffer always contains at least one printed product.
  • the buffer runs empty, for example due to Heiner feed capacity or if the feed is interrupted, it is essential for the buffer function to resume automatically that the brake claws at the end of the buffer section are switched to their effective state even without print products to be buffered. This is achieved by appropriately designing the deflection point, which deflects the brake claws onto their return strand.
  • the deflection radius of the interaction point must be larger than the deflection radius of the chain bolts that no interaction is possible during the deflection.
  • the brake claws must be repositioned during the redirection after the end of the buffer line, during the return run or during the redirection to the beginning of the reserve line so that they enter the reserve line in an ineffective state. This is achieved, for example, in that they are moved to their rear state by a corresponding movement template during the deflection after the end of the buffer section and are moved into the lower pivot point of the claw with a different template during the deflection into the beginning of the reserve section, so that they are kept ineffective by the template until the interaction occurs on the straight-line reserve route. In this way, the brake claws pass the return run in the ready state, which is only possible for one brake claw on the forward route. It would just as well be possible to move the brake claws through the return section in an effective state and to arrange the corresponding template only at the second deflection point.
  • Brake claws which, as already mentioned, carry a magnet instead of a spring 28 (FIG. 2), can be carried out at the deflection points via corresponding steel links, which are designed in such a way that the magnetic attraction between the permanent magnet and the Steel link is greater than the magnetic attraction between the permanent magnet and the chain pin and that magnetic forces are generated in the area of the first deflection, which bring the brake claws into their rear position, at the second deflection such that magnetic forces are created that push the brake claws into it Swivel the swivel position in which the claw is down.
  • the brake claws according to the invention can, as shown in FIG. 3, be arranged centrally on the chain pins, that is to say between the link plates, or else on one side, that is to say outside the link plates. If arranged on the side, the brake claws can be installed by simply attaching them. Commercially available chains can be used.
  • the brake claws are advantageously made of plastic.
  • grippers are also conceivable as a buffer. If brake claws are used as a buffering means, it is advantageous to arrange the distance provided for buffering slightly decreasing, but it can also be horizontal, but not increasing. If grippers are used as a buffer, there are no restrictions with regard to the location of the transport route provided for buffering.
  • FIG. 4 shows schematically an entire transport route equipped for buffering, which is also equipped with an auxiliary device necessary for closing larger gaps in the shingled stream. This figure is also to be used to describe how a corresponding device is monitored and controlled. Parts mentioned in connection with the figures already described are identified by the same reference numbers.
  • the conveyor belt 10 runs over two deflection rollers (not visible in the figure).
  • the traction element (30) with the buffering means 12 also runs over two deflection rollers 31 and 32.
  • An auxiliary device 40 for closing larger gaps in the stream of shingles entering the buffering is arranged over the transport section equipped for buffering (preheating section of the buffering means).
  • the transport route equipped for buffering there are at least two sensors 13.1 / 2 in the area of the entrance of the reserve route and in the area of the exit of the Arranged buffer route, which generate signals to determine the state of the passing buffer means.
  • sensors 13.1 / 2 are, for example, light barrier sensors that are interrupted or not by parts of the buffering agent, depending on the state. If the output sensor 13.1 reports ineffective buffer means, this means that the minimum tolerable buffer filling is not reached. If the input sensor 13.2 reports effective buffering agents, this means that the maximum tolerable buffer filling has been exceeded.
  • control signals are generated for an increase or decrease in the feed power and / or an increase or decrease in the processing power and corresponding control signals for changing the speeds v P of the buffering means and / or v R of the conveyor belt.
  • More than two sensors can also be arranged and the controls can be carried out in stages accordingly.
  • the messages from sensors 13.1 and 13.2 and corresponding additional sensors can also be used to detect malfunctions.
  • the auxiliary device 40 has a carriage 41 which can be moved over the entire transport path and which carries two sensors 42.1 and 42.2 and a jack 43.
  • the two sensors 42.1 / 2 are designed in such a way that they detect interruptions in the shingled stream (gaps larger than the overlap of the printed products), the sensor 42.1, which is at the rear in the transport direction, detects the beginning of a gap, and the sensor 42.2 at the front in the transport direction the end of such a gap .
  • the lifter 43 is designed in such a way that when it is guided in the transport direction over an interruption in the shingled stream, it reaches under the product transported before the interruption and lifts it off the conveyor belt and that it can be pulled over the products when it is guided against the transport direction, without moving it.
  • the lifter 43 is arranged such that its end is positioned directly above the conveyor belt in the rest position and that it can be swung out of this rest position in the transport direction.
  • the jack 43 is arranged such that its end lies between the areas of the two sensors 42.1 and 42.2.
  • the function of the auxiliary device is as follows: Your starting position is at the entrance to the transport route. As soon as the rear sensor 42.1 detects the beginning of an interruption, the auxiliary device is put on standby. As soon as the interruption reaches the area of the front sensor 42.2, the carriage 41 moves in the transport direction at the same speed as the interruption and printed products and thus always remains above the interruption. It moves until it reaches the buffered products, more precisely until the rear sensor 42.1 is positioned over the buffered products, that is to say it no longer sees an interruption. This means that the end of the lifter has already lifted the buffered products or at least the rear edge of the last buffered product and the product following the interruption has been pushed underneath. The carriage stops moving forward and is then moved back to its starting position. If he finds another interruption on his way, the procedure is the same.
  • the carriage 41 is driven by an electric, pneumatic or hydraulic linear motor.
  • FIG. 5 shows an application example for the buffer method according to the invention and the buffer device according to the invention.
  • This is the supply to a collecting drum 53 from a winding station 50 with two windings 50.1 and 50.2, one of which is unwound (50.1), while in the other winding position (50.2) an empty winding core can be exchanged for a new winding .
  • the device 51 according to the invention is connected between the winding station 50 and a transfer station 52.
  • the shingled stream S.1 laid out by the unwinding roll 50.1 is guided on a conveyor belt 50.3 to the buffer device 51.
  • the speed of the feed belt 50.3 will be lower than the speed of the buffer belt 51.1, so that the shingled stream S.1 is pulled apart with larger shingled gaps at the transition from the feed belt 50.3 to the buffer belt 51.1 to a shingled stream S.2.
  • the shingled stream S.2 passes through the buffer device 51 in that, depending on the buffer fill level, it is braked sooner or later by buffering means 51.2 and is set to a smaller shingled distance (S.3).
  • the printed products are passed to a transfer station 52, the scale stream S.3 being pulled apart again at the transition point to a scale stream S.4 with a greater scale distance.
  • a pressure roller or pressure belt (not shown in the figure).
  • the shingled stream S.4 is diverted to a shingled stream S.5 with the reverse position of the printed products and then converted to a conveying stream S.6 with grippers by transferring the individual printed products to corresponding grippers.
  • the flow S.6 with grippers is then guided to the collecting drum 53, where the printed products are collected into groups of different printed products.
  • the transport route through which the buffer means 51.2 and the conveyor belt 51.1 have the same length. It is quite conceivable that the conveyor belt 51.1 is longer than the pulling element of the buffering means and projects above it upstream. The transport route provided for buffering is then only as long as the transport route with buffering means, the beginning of the transport route of the conveyor belt being only a feed route.
  • Suitable winding stations for the application of the device according to the invention illustrated in FIG. 5 are described, for example, in US Pat. 4898336, corresponding transfer stations in US Patent No. 4201286 and corresponding collecting drums in US Patent No. 4684116 by the same applicant.

Description

  • Die Erfindung liegt auf dem Gebiete der Weiterverarbeitung von Druckprodukten und bezieht sich auf ein Verfahren und eine Vorrichtung gemäss dem Oberbegriff der entsprechenden unabbängigen Patentansprüche, die dazu dienen, flächige Erzeugnisse, insbesondere mehrlagige, gefaltete Druckprodukte in Schuppenformation während dem Transport auf einer zur Pufferung vorgesehenen Transportstrecke nach Bedarf zu puffern und zu takten, und lücken in der Schuppenformation zu schliessen.
  • Druckprodukte, insbesondere mehrlagige, gefaltete Druckprodukte werden beispielsweise von Rotationsmaschinen oder ab Wickeln in Schuppenformation zur Weiterverarbeitung ausgelegt. Es ist vorteilhaft, zwischen der Auslegung derartiger Schuppenströme und ihrer Weiterverarbeitung Puffer einzuschalten aus zwei Gründen: erstens kann dadurch die Fortpflanzung von Störungen und systematischen Unregelmässigkeiten stromaufwärts vermieden oder gemildert werden, zweitens können Lücken in den Strömen geschlossen werden und drittens kann der Schuppenstrom gleichzeitig getaktet werden. Bei einer Störung in der Weiterverarbeitung, die dadurch langsamer läuft oder gar stoppt, nimmt der Puffer die während einer unvermeidbaren Reaktionszeit für ein Reagieren der Zuführung anfallenden Produkte auf oder erlaubt es sogar, einen kürzeren Verarbeitungsunterbruch durch ledigliches Verlangsamen der Zuführung und entsprechendes Auffüllen des Puffers zu überbrücken, wodurch das Anhalten und Wiederbeschleunigen grosser Massen erspart bleibt. Wenn die Weiterverarbeitung systematische Unregelmässigkeiten beinhaltet, derart, dass das zugeführte Produkt für den Weiterverarbeitungsschritt nicht kontinuierlich gebraucht wird, wie beispielsweise beim personalisierten Einstecken, kann die Zuführung mit entsprechend kleinerer Leistung trotzdem kontinuierlich Produkte in den Puffer zuführen. Bei störungsfreier, kontinuierlicher Weiterverarbeitung ist es trotzdem vorteilhaft mit einem Puffer zu arbeiten, da damit Lücken im zugeführten Schuppenstrom eliminiert werden können ohne Auswirkungen auf den Gang der Weiterverarbeitung. Der Puffer dient also als Auffangstation von Fehlern und Unregelmässigkeiten sowohl stromaufwärts als auch stromabwärts.
  • Es sind denn auch derartige Pufferverfahren und Vorrichtungen beschrieben, beispielsweise in den US-Patentschriften No. 4887809, 4892186 und 4201286 derselben Anmelderin. Die in diesen Schriften beschriebenen Puffersysteme arbeiten durchwegs mit Puffermitteln (Klammem, Haken, Greifer, Bremsnocken), die über eine Pufferstrecke konstanter Länge auf die Druckprodukte des Schuppenstromes wirken, d.h sie mehr oder weniger aktiv transportieren, wobei die Anzahl der Puffermittel auf der Pufferstrecke und damit der Abstand zwischen den Puffermitteln variabel ist. Bei vollerem Puffer ist der mittlere Abstand zwischen den Puffermitteln auf der Pufferstrecke Heiner als bei leererem Puffer, da bei vollerem Puffer mehr Puffermittel auf der Pufferstrecke positioniert sind. Die beschriebenen Puffersysteme arbeiten also auf der Grundidee der Pufferstrecke mit konstanter Länge und einem variablen Abstand zwischen den Puffermitteln. Der variable Abstand zwischen den Puffermitteln wird beispielsweise realisiert durch freie Beweglichkeit der Puffermittel entlang einer Bewegungsbahn, wobei sie von den nachfolgenden Puffermitteln geschoben werden, oder durch elastische Verbindungen zwischen den Puffermitteln, wobei diese von den vorlaufenden Puffermitteln gezogen werden.
  • Alle diese beschriebenen Puffersysteme weisen den Nachteil auf, dass sie einzeln geführte Elemente aufweisen, die nicht durch gängige Zugmittel, wie beispielsweise Ketten angetrieben werden können und die nach der Pufferung wieder eingetaktet werden müssen, und dass die Druckprodukte in den meisten Fällen an die Puffermittel übergeben werden müssen, um über die Pufferstrecke transportiert zu werden, was meist spezielle räumliche Anordnungen notwendig macht. Daneben benötigen die beschriebenen Systeme viel auf die Druckprodukte ausgerichtete Sensorik, nicht nur um den Füllstand des Puffers für die Steuerung der Auslegung und/oder der Weiterverarbeitung zu messen sondern auch um Lücken im zugeführten Schuppenstrom zu erkennen und zu schliessen. Derartige Sensorik muss bei einem Wechsel beispielsweise des Produkteformates neu eingestellt werden.
  • In der Publikation CH-A-5805311 ist andererseits eine Vorrichtung beschrieben, mit der die Abstände zwischen Druckprodukten, die als Schuppenformation auf einem Transportmittel gefördert werden, vergleichmässigt werden dadurch, dass sie durch äquidistante Bremsmittel verlangsamt und auf deren Abstand, der kleiner ist als der Abstand der Druckprodukte in der ursprünglichen Schuppenformation, eingestellt werden. Damit die Vorrichtung auch grössere Unregelmässigkeiten ausgleichen kann, werden die Bremsmittel nacheinander einzeln in den Transportweg der Druckprodukte geschwenkt, und zwar immer dann, wenn auf das vorlaufende Bremsmittel ein Druckprodukt auftrifft und dieses abgebremst wird.
  • Eine derartige Vorrichtung kann nun offensichtlich auch im Sinne eines Puffers verwendet werden, wobei die Bremsmittel als Puffermittel dienen, die nicht wie bei den oben erwähnten Puffervorrichtungen einen variablen Abstand voneinander haben. Die Puffermittel haben einen festen Abstand voneinander, durch das durch die Druckprodukte initiierte Aktivwerden der Puffermittel ist aber die Zahl der Puffermittel, die aktiv sind, variabel, das heisst, es handelt sich um einen Puffer mit variabler Länge der Pufferstrecke und konstantem Abstand zwischen den Puffermitteln.
  • Der Schuppenstrom wird über die zur Pufferung vorgesehene Strecke im wesentlichen auf einem Transportband transportiert, das einfach in Transportwege anderer Transportbänder eingeschaltet werden kann. Zur Realisierung der variablen Länge der Pufferstrecke wird die für die Pufferung vorgesehene Strecke funktionsmässig in zwei Teilstrecken aufgeteilt, in eine stromabwärts liegende, effektive Pufferstrecke und eine stromaufwärts liegende Reservestrecke, wobei die Grenze (Übergangsstelle) zwischen diesen beiden Strecken sich je nach Füllstand des Puffers bewegt, das heisst, die relative Länge der beiden Teilstrecken variabel ist. Bei vollem Puffer hat die Reservestrecke eine minimale Länge, bei leerem Puffer hat die Pufferstrecke eine minimale Länge. Die Druckprodukte werden in Schuppenformation über die ganze Strecke transportiert, zuerst mittels Transportband über die Reservestrecke und dann unter Mitwirkung der Puffermittel über die Pufferstrecke. Dabei können Geschwindigkeit und Produkteabstand auf der Reservestrecke von der Zuführungsleistung, der Weiterverarbeitungsleistung und auch vom Füllstand des Puffers abhängig sein, während der Produkteabstand auf der Pufferstrecke fest und die Geschwindigkeit durch die Weiterverarbeitungsleistung bestimmt ist. Die Schuppenabstände und die Geschwindigkeit auf der Pufferstrecke sind dabei immer kleiner als auf der Reservestrecke.
  • Ein derartiges Pufferverfahren lässt sich am besten vergleichen mit einem Flüssigkeitspuffer in Form eines Gefässes mit Zufluss und Abfluss und je nach Pufferfüllgrad verschieden hohem Niveau. Der Füllgrad hat auch in diesem Falle keinen Einfluss auf die Eigenschaften der Flüssigkeit im Puffergefäss. Das einzige, was sich mit dem Füllgrad ändert, ist das Flüssigkeitsniveau oder mit anderen Worten der Weg des zugeführten Wassers bis zur Flüssigkeitsoberfläche im Puffergefäss (Reservestrecke) und der Weg der Flüssigkeit von dieser Oberfläche bis zum Ausgang (Pufferstrecke).
  • Ein derartiges Puffersystem puffert einen Schuppenstrom, ohne ihn in eine andere Form von Förderstrom umzuwandeln, sondern lediglich durch Verkleinerung des Schuppenabstandes auf eine für den Puffer charakteristische, unveränderbare Länge, wobei sich die Länge des Puffers nach der Anzahl zu puffernder Druckprodukte richtet. Auf der für die Pufferung vorgesehenen Transportstrecke gibt es nur zwei verschiedene Druckprodukteabstände und zwar je im Bereiche zweier verschiedener Transportarten, dem Transport mittels Transportband auf der Reservestrecke und dem Transport unter Mitwirkung der Puffermittel auf der Pufferstrecke.
  • Ein derartiges Pufferverfahren wird realisiert durch ein Transportband und die Puffermittel, die beide über die ganze für die Pufferung vorgesehene Strecke laufen, wobei die Puffermittel nur auf der Pufferstrecke auf die Druckprodukte wirken und auf der Reservestrecke unwirksam sind, sodass das Transportband auf der Reservestrecke allein für den Transport verantwortlich ist. Zur Durchführung eines derartigen Verfahrens sind also Puffermittel mit konstantem Abstand notwendig, die über eine variable Strecke auf die Druckprodukte wirken. Diese Puffermittel werden realisiert als Mittel, die an der Übergangsstelle von der Resevestrecke zur Pufferstrecke ihren Zustand derart verändern, dass sie vor der Übergangsstelle keine Wirkung auf den Schuppenstrom haben, nach der Übergangsstelle aber derart auf die Druckprodukte wirken, dass die transportierende Wirkung des Transportbandes ganz ausgeschaltet oder wenigstens eingeschränkt wird.
  • Die Puffermittel sind derart ausgestaltet, dass sie von einem zu puffernden Druckprodukt, wenn sie an der Übergangsstelle von der Reservestrecke zur Pufferstrecke anlangen, vom unwirksamen in den wirksamen Zustand geschaltet werden Aus diesem Grunde ist für die effektive Puffertätigkeit keine Sensorik notwendig und der Füllstand des Puffers kann einfach über den Zustand (wirksam oder unwirksam) der Puffermittel an einzelnen Punkten der für die Pufferung vorgesehenen Strecke abgenommen und für die Steuerung von Zuführungsleistung und/oder Weiterverarbeitungsleistung weiteverwendet werden. Insbesondere ist keine auf die Druckprodukte ausgerichtete Sensorik notwendig, die beispielsweise prüfen müsste, ob ein Puffermittel ein Druckprodukt transportiert oder nicht, eine Sensorik, die bei einem Wechsel des Produkteformates neu eingestellt werden müsste.
  • Der Nachteil des bekannten Pufferverfahrens (Publikation CH-A-580531) mit variabler Pufferlänge und konstantem Puffermittelabstand besteht nun darin, dass das Transportmittel auf der einen Seite (unten) der Schuppenformation wirkt und das Puffermittel auf der anderen Seite (oben). Dadurch ist das Verfahren nicht anwendbar für Schuppenformationen mit untenliegenden, vorlaufenden Kanten und es ist schwierig, im gleichen Bereiche noch weitere Funktionen vorzusehen.
  • Die Erfindung stellt sich nun die Aufgabe, ein Verfahren aufzuzeigen zum Puffern und Takten von in einer Schuppenformation geförderten Druckprodukten und zum Schliessen von Lücken in dieser Schuppenformation. Die Erfindung stellt sich des weiteren die Aufgabe, eine Vorrichtung zu schaffen, mit deren Hilfe das Verfahren durchführbar ist.
  • Diese Aufgaben werden gelöst durch das erfindungsgemässe Verfahren und durch die erfindungsgemässe Vorrichtung, wie sie beide in den Patentansprüchen definiert sind.
  • Das erfindungsgemässe Verfahren und eine beispielhafte Ausführungsform der erfindungsgemässen Vorrichtung werden anhand der folgenden Figuren detailliert beschrieben. Dabei zeigen:
  • Figur 1
    ein Schema des erfindungsgemässen Verfahrens;
    Figur 2
    eine beispielhafte Ausführungsform eines erfindungsgemässen Puffermittels in seinen verschiedenen Zuständen, quer zur Transportrichtung gesehen;
    Figur 3
    ein Puffermittel gemäss Figur 2, quer zur Transportrichtung geschnitten;
    Figur 4
    ein Schema einer für die Pufferung vorgesehenen Transportstrecke;
    Figur 5
    Ein Anwendungsbeispiel für die erfindungsgemässe Puffervorrichtung.
  • Figur 1 zeigt ein Prinzipschema für das erfindungsgemässe Pufferverfahren. Sie zeigt einen Ausschnitt aus einer zur Pufferung vorgesehenen Transportstrecke mit einem Transportband 10, auf dem ein Schuppenstrom von Druckprodukten 11.1/2/3.... in Transportrichtung F gefördert wird, und Puffermitteln 12.1/2/3/4....., beispielsweise in Form von Bremsnocken.
  • Die für die Pufferung vorgesehene Transportstrecke ist funktionsmässig in zwei Teilstrecken geteilt: eine Pufferstrecke P und eine Reservestrecke R, wobei die Pufferstrecke P in Transporichtung vor der Reservestrecke R liegt. Auf der Reservestrecke R werden die Druckprodukte (11.7/8/9....) durch das Transportband 10 gefördert und zwar mit einer regulierbaren Bandgeschwindigkeit vR, während die Puffermittel (12.8/9/10...) unwirksam, beispielsweise unter dem Transportband versenkt sind. Der Abstand der Druckprodukte dR auf der Reservestrecke R ist bestimmt durch die Geschwindigkeit vR und durch die Zuführungsleistung (Z) irgend einer Zuführungseinrichtung, die nicht dargestellt ist.
  • Auf der Pufferstrecke P werden die Produkteabstände dP und die Geschwindigkeit vP der Druckprodukte (11.1 bis 11.6) durch Geschwindigkeit und Abstand der Puffermittel bestimmt, da diese auf dieser Strecke wirksam sind und auf die Druckprodukte wirken, indem sie beispielsweise über das Transportband ragen und die Druckprodukte bremsen, während diese immer noch vom Transportband vorwärts bewegt werden. Der Abstand dP zwischen den Druckprodukten auf der Pufferstrecke P entspricht dem festen Abstand zwischen den Puffermitteln und die Geschwindigkeit vP wird entsprechend einer Weiterverarbeitungsleistung W irgend einer nicht dargestellten Weiterverarbeitungseinrichtung eingestellt, sodass die Puffermittel die Druckprodukte am Ausgang der Puffervorrichtung richtig getaktet weitergeben.
  • Die Funktion der Puffervorrichtung ist nun die folgende: Die Geschwindigkeit vP ist derart eingestellt und wird während dem Betrieb derart geregelt, dass die Abgabeleistung des Puffers möglichst der durch die Weiterverarbeitung benötigten Anzahl Druckprodukte pro Zeiteinheit entspricht. Da der Puffer eine kleine und dadurch wenig träge Vorrichtung ist, kann diese Geschwindigkeit auch ohne Schwierigkeiten der Weiterverarbeitungsleistung entsprechend geregelt werden. Die Geschwindigkeit vR des Transportbandes wird derart eingestellt, dass sie grösser ist als die Geschwindigkeit vP, beispielsweise um einen Faktor 2,5, und derart gross, dass die Abstände der Druckprodukte auf der Reservestrecke R grösser sind als diejenigen auf der Pufferstrecke P. Die Geschwindigkeit vR kann für bestimmte Bereiche der Zuführungsleistung konstant oder proportional zur Geschwindigkeit vP eingestellt werden, solange die obengenannten Bedingungen erfüllt sind. Die Antriebe von Transportband und Puffermitteln sollten aber nicht gekoppelt sein, da bei einem Stopp der Weiterverarbeitung zwar die Puffermittel stoppen müssen (Weiterverarbeitungsleistung gleich Null), nicht aber das Transportband, das auch bei einem Stopp den Puffer auffüllen kann, sodass die Zuführung nicht gestoppt werden muss.
  • Ist der Schuppenabstand dR kleiner als der Abstand der Puffermittel dP werden von jedem Puffermittel mehr als ein Produkt zusammen gepuffert, was je nach Weiterverarbeitung eine erwünschte Verfahrensvariante sein kann.
  • Ist die Weiterverarbeitungsleistung W und die Zuführungsleistung Z gleich gross (gleich viele Druckprodukte pro Zeiteinheit, also gleicher Takt) und soll der Füllstand des Puffers konstant gehalten werden, ist auch der Takt auf der Reservestrecke und auf der Pufferstrecke gleich, das heisst jedes Produkt auf der Pufferstrecke (bzw. jedes Puffermittel irgendwo auf der Transportstrecke) legt den Abstand dP in derselben Zeit zurück wie jedes Produkt auf der Reservestrecke den Abstand dR. Dadurch trifft an der Übergangsstelle U immer ein neues Produkt ein, wenn das Vorprodukt mit dem entsprechenden Puffermittel sich um die Strecke dP entfernt hat und also das nächste Puffermittel sich an eben derselben Stelle befindet. Dieses Puffermittel wird wirksam und bremst das Produkt derart, dass es sich mit der Geschwindigkeit vP weiterbewegt. Bei einer derartigen Funktionsweise wird die Übergangsstelle zwischen Reservestrecke R und Pufferstrecke P immer am gleichen Ort bleiben.
  • Ist die Zuführungsleistung Z Heiner als die Weiterverarbeitungsleistung W, ist die Taktzeit auf der Pufferstrecke grösser als auf der Reservestrecke, das heisst ein Puffermittel bewegt sich um mehr als die Strecke dP in der Zeit, in der sich ein Druckprodukt auf der Resevestrecke um dR bewegt. Ein nächstes Produkt wird also erst an der Übergangsstelle U ankommen, wenn sich ein nächstes Puffermittel bereits über diese Stelle bewegt hat, und das entsprechende Druckprodukt wird erst später oder weiter stromabwärts darauf treffen und von ihm gebremst werden. Damit hat sich die Ubergangsstelle U in der Figur nach links verschoben oder mit anderen Worten die Pufferstrecke ist kürzer, der Puffer leerer geworden. Für den Fall, dass die Zuführüngsleistung höher ist als die Weiterverarbeitungsleistung, wird sich der Puffer sinngemäss mehr füllen.
  • Die Puffermittel sind auf der Pufferstrecke P wirksam, das heisst, sie wirken auf ein Produkt, auf der Reservestrecke R unwirksam, das heisst sie wirken nicht auf Produkte. Ein Puffermittel an der Übergangsstelle U (in der Figur das Puffermittel 12.7) muss insofern aktiv sein, als es ein nächstes Produkt bremsen muss, wirkt aber noch auf kein Produkt, es ist noch nicht wirksam, es ist "bereit". Die Puffermittel müssen also derart konstruiert sein, dass sie drei Zustände einnehmen können: unwirksam (auf der Reservestrecke), wirksam (auf der Pufferstrecke), bereit (an der Übergangsstelle). Erfindungsgemäss wird ein unwirksames Puffermittel an der Ubergangsstelle bereit geschaltet dadurch dass das vorlaufende Puffermittel von bereit auf wirksam geschaltet wird; ein bereites Puffermittel wird beim Eintritt in die Pufferstrecke wirksam geschaltet, dadurch, dass ein Druckprodukt darauf stösst und gebremst wird. Daraus ergeben sich auf der gesamten Strecke immer eine Anzahl unwirksamer Puffermittel (Reservestrecke), ein bereites Puffermittel (Übergangsstelle) und eine Anzahl wirksamer Puffermittel (Pufferstrecke), wobei die relativen Anzahlen von der Anzahl Druckprodukte auf der gesamten Strecke abhängig ist.
  • Sowohl das Transportband als auch die Puffermittel werden vom Ende der Pufferstrecke (Übergabe der Produkte an eine Weiterverarbeitung) auf einem Retourtrum wieder an den Anfang der Reservestrecke bewegt. Während diesem Retourtrum müssen die Puffermittel von wirksam auf unwirksam geschaltet werden.
  • Geschwindigkeiten und Produkteabstände im erfindungsgemässen Puffersystem sollen derart eingestellt sein, dass jedes transportierte Druckprodukt vor dem Ende der Pufferstrecke auf ein Puffermittel stösst, damit es von diesem exakt getaktet an die Weiterverarbeitung abgegeben werden kann, das heisst mit anderen Worten, die Pufferstrecke soll immer mindestens ein wirksames Puffermittel aufweisen. Dies wird vorteilhafterweise dadurch sicher gestellt, dass jedes Puffermittel am Ausgang der Pufferstrecke, beispielsweise durch die Wirkung der Umlenkung zum Retourtrum, sicher wirksam geschaltet wird. Nur auf diese Weise kann das Puffersystem gleichzeitig als Taktgeber wirken, mit dem Unregelmässigkeiten im zugeführten Schuppenstrom in beschränktem Masse ausgeglichen werden und nur auf diese Weise wird sicher gestellt, dass nach einem totalen Leerlaufen der für die Pufferung vorgesehenen Transportstrecke oder nach einem Leerlaufen des Puffers die Pufferfunktion automatisch wieder aufgenommen werden kann.
  • Das erfindungsgemässe Puffersystem schliesst auch Lücken im zugeführten Schuppenstrom automatisch. Da bei einer derartigen Lücke länger kein Produkt auf das bereite Puffermittel (Übergangsstelle) stösst, wird dieses sich weiter gegen den Pufferausgang bewegen, bevor es wirksam geschaltet wird, das heisst, die Übergangsstelle wird sich in der Figur gegen links bewegen oder der Puffer an Vollheit verlieren, sonst aber wird die Lücke keinen Effekt auf die Pufferung oder die Weiterverarbeitung haben, sofern genügend Puffer vorhanden ist.
  • Das erfindungsgemässe Verfahren braucht, wenn es, wie beschrieben, mit unter dem Transportband versenkbaren Bremsnocken als Puffermitteln arbeitet, einen Schuppenstrom, in dem die Vorderkanten der Druckprodukte nach unten gerichtet sind, in dem also jeweils ein Produkt von den vorlaufenden Produkten teilweise überdeckt ist. In einem derartigen Strom ist es nicht möglich, Lücken, die breiter sind als die jeweilige Überlappung von zwei Produkten, durch reines Aufschieben, wie es in dem beschriebenen Verfahren ohne spezielle Hilfsmittel geschehen würde, zu schliessen. Da bei einer derart grossen Lücke die Produkte nicht mehr aufeinander liegen, muss zum Schliessen der Lücke das Folgeprodukt unter das Vorprodukt geschoben werden, wofür entsprechende Hilfsmittel notwendig sind.
  • Figuren 2 und 3 zeigen im Detail eine beispielhafte Ausführungsform erfindungsgemässer Puffermittel, als Ansicht quer zur Transportrichtung (Figur 2) und quer zur Transportrichtung geschnitten als Ansicht gegen die Transportrichtung. Es handelt sich dabei um eine unter dem Transportband 10 versenkbare Bremskralle, die, wenn sie nicht versenkt ist, die Druckprodukte im Mittelbereich ihrer nach unten gerichteten Vorderkante aufhält und ihre Bewegung auf dem Transportband von der Geschwindigkeit des Transportbandes auf die geringere Geschwindigkeit der Puffermittel bremst. Das Transportband ist für diese Ausführungsform beispielsweise in der Form von zwei parallel laufenden Teilbändern ausgestaltet, wobei in der mittigen Lücke zwischen den beiden Teilbändern eine Zugkette 30 mit den Bremskrallen derart positioniert ist, dass die Krallen in ihrem wirksamen und bereiten (nicht versenkten) Zustand über die Transportfläche des Transportbandes reichen, in ihrem unwirksamen (versenkten) Zustand unter der Transportfläche bewegt werden.
  • Das Transportband 10 ist in den beiden Zeichnungen nur durch eine Niveaulinie angedeutet, die seine Transportfläche bezeichnet. Die Zugkette 30 ist als gestrichelte Linie angedeutet.
  • Die Figur 2 zeigt eine Reihe von 4 erfindungsgemässen Puffermitteln in der Form von Bremskrallen 121, 122, 123, 124 (120 und 125 nur teilweise dargestellt), die sich in einer Transportrichtung F von rechts nach links bewegen sollen, angetrieben durch eine Zugkette 30 (in Figur 3 angedeutet). Dabei ist die Bremskralle 121 in ihrem wirksamen, die zweite Bremskralle 122 in ihrem bereiten und die beiden hinteren Bremskrallen 123 und 124 in ihrem unwirksamen Zustand, die Figur ist also eine Darstellung der Übergangsstelle U von der Reservestrecke R zur Pufferstrecke P. Figur 3 zeigt eine Bremskralle in ihrem wirksamen oder bereiten Zustand (121, 120 oder 122).
  • Jede Bremskralle besteht aus einem Krallenkörper 20, in dem in zwei Führungen 24 und 26 zwei Kettenbolzen 23 und 25 drehbar gelagert sind. Die Führung 24 des in Transportrichtung hinteren Kettenbolzens 23 ist schlitzförmig, die Führung 26 des in Transportrichtung vorderen Kettenbolzens 25 als gewinkelter Schlitz ausgebildet, derart, dass der Krallenkörper 20 sich relativ zu den Kettenbolzen 23 und 25 lateral im wesentlichen parallel zur Transportrichtung begrenzt bewegen kann und dass er in seiner bezüglich seiner lateralen Bewegung hinteren Position um den hinteren Kettenbolzen 23 geschwenkt werden kann. Diese Schwenkbewegung wird durch die vordere Führung 26 derart begrenzt, dass in einer oberen Extremstellung einer vorne am Krallenkörper 20 angebrachten Kralle 21 diese über das Transportband ragt, in einer unteren Extremstellung der Kralle 21 diese unter dem Transportband versenkt ist.
  • Durch ein Kraftmittel, beispielsweise eine Feder 28 wird die Kralle 21 in ihre obere Position und der Krallenkörper 20 in seine hintere Position gedrückt. Die Feder 28 kann beispielsweise eine um den Kettenbolzen angeordnete Schraubenfeder sein, die mit Hilfe von zwei aus der Schraubenform ausgreifenden Enden zwischen der Kette und einem entsprechenden Federnocken 27 auf dem Krallenkörper 20 eingespannt ist. Das Kraftmittel kann auch ein permaneter Magnet sein, der derart im vorderen, unteren Bereich des Krallenkörpers 20 angeordnet ist, dass die Kralle 21 durch die magnetische Anziehung zwischen Magnet und Kettenbolzen 25 in ihre obere Schwenkposition und der Krallenkörper 20 in seine hintere Position gezogen wird.
  • Der Krallenkörper 20 trägt in Transportrichtung vorne die Kralle 21 und einen Haltenocken 22 und hinten eine Einformung 29. Die beiden Führungen 24 und 26 sind derart im Krallenkörper angeordnet, dass die Achse der Schwenkbewegung (Kettenbolzen 23) weit hinten liegt, sodass bei einer Schwenkbewegung die Lageveränderung der Kralle 22 und des Haltenockens 21 bedeutend grösser ist als diejenige der Einformung 29.
  • Die Bremskrallen sind derart bemessen und auf der Zugkette 30 angeordnet, dass sie sich auf einer geradlinigen Transportstrecke in Transportrichtung überlappen. Durch diese Überlappung wird eine Interaktion zwischen den Haltenocken 22 an den Vorderseiten der Krallenkörper 20 mit den entsprechenden Einformungen 29 an der Hinterseite des vorlaufenden Krallenkörpers 20 möglich, aber nur, wenn Haltenocken 22 und Einformung 29 im wesentlichen auf demselben Niveau sind. Dies ist der Fall, wenn die Kralle 21 in ihrer unteren Schwenkposition ist. Die Schwenkposition der Einformung 29 ist dabei unwesentlich, das heisst, dass ein in die untere Stellung geschwenkter Haltebolzen 22 in Interaktion treten kann mit einer Einformung 29 einer vorlaufenden Bremskralle mit nach unten oder nach oben geschwenkter Kralle 21. Die Überlappung der Krallenkörper in Transportrichtung ist kleiner als die Grösse der lateralen Bewegung, die ein Krallenkörper ausführen kann.
  • Die Kralle 21 wird von der Feder 28 in ihre obere Schwenkposition gedrückt, wenn sie nicht durch die Interaktion des Haltenockens 22 mit der Einformung 29 einer vorlaufenden Bremskralle in der unteren Schwenkposition gehalten wird. Eine Bremskralle mit Kralle 21 in oberer Schwenkposition kann durch ein mit grösserer Geschwindigkeit von hinten darauf treffendes Druckprodukt von der hinteren in die vordere Position bewegt werden.
  • Die Bremskrallen 20 haben drei mögliche Extrempositionen:
    • Der Krallenkörper 20 ist in seiner vorderen Stellung, die Kralle 21 durch die Kraft der Feder 28 nach oben geschwenkt (121). Dies ist der wirksame Zustand der Bremskralle (121). Eine Interaktion zwischen dem Haltenocken 22 und der Einformung 29 einer vorlaufenden Bremskralle (120) ist nicht möglich, da diese nicht auf gleichem Niveau sind. Eine Interaktion der Einformung 29 mit dem Haltenocken 22 einer folgenden Bremskralle (122) ist nicht möglich, da die folgende Bremskralle in ihrer vorderen Stellung mit nach unten geschwenkter Kralle 21 sein müsste, eine Stellung, die sie nicht einnehmen kann.
    • Der Krallenkörper 20 ist in seiner hinteren Stellung, die Kralle 21 durch die Kraft der Feder 28 nach oben geschwenkt (122). Dies ist der bereite Zustand der Bremskralle (122). Eine Interaktion zwischen dem Haltenocken 22 und der Einformung 29 der vorlaufenden Bremskralle (121) ist nicht möglich, da diese nicht auf gleichem Niveau sind. Eine folgende Bremskralle (123) kann nur in ihrer hinteren Stellung sein und eine Interaktion zwischen der Einformung 29 und dem Haltenocken 21 dieser folgenden Bremskralle ist möglich, wenn deren Kralle in ihrer unteren Schwenkposition ist.
    • Der Krallenkörper 20 ist in seiner hinteren Stellung, die Kralle 21 durch den Druck des Haltenockens 22 einer folgenden Bremskralle gegen die Kraft der Feder 28 nach unten geschwenkt (123 bzw. 124). Dies ist der unwirksame Zustand der Bremskralle (123 oder 124). Eine Interaktion zwischen dem Haltenocken 22 und der Einformung 29 einer vorlaufenden Bremskralle (122 bzw. 123) ist nur möglich, wenn diese auch in ihrer hinteren Position ist, das heisst, es besteht keine Interaktion zwischen den Krallen 122 und 123, wohl aber zwischen 123 und 124. Eine folgende Bremskralle (124 bzw. 125) kann nur in ihrer hinteren Stellung sein und eine Interaktion zwischen der Einformung 29 und dem Haltenocken 22 dieser folgenden Bremskralle (124 bzw. 125) ist notwendig, um die Bremskralle 123 bzw. 124 in dieser Stellung zu halten.
  • Die Bremskrallen bewegen sich in ihrem unwirksamen Zustand durch die Reservestrecke R, in ihrem wirksamen Zustand über die Pufferstrecke P. An der Übergangsstelle U geschieht folgendes: Die bereits gepufferten Druckprodukte werden von Bremskrallen gebremst und bewegen sich in Förderrichtung mit einer Geschwindigkeit, die kleiner ist als die Geschwindigkeit des Transportbandes, gegen das Ende der Pufferstrecke. Auf die letzte Bremskralle mit Druckprodukt der Pufferstrecke folgt eine nun beobachtete Bremskralle. Ein nächstes Druckprodukt wird mit der Geschwindigkeit des Transportbandes von hinten gegen die beobachtete Bremskralle bewegt und stösst einmal darauf. Die beobachtete Bremskralle hat eine nach oben geschwenkte Kralle 21, da die vorlaufende Bremskralle durch das letzte Druckprodukt der Pufferstrecke in ihre vordere Position bewegt wurde und dadurch eine Interaktion zwischen der beobachteten Bremskralle und der vorlaufenden Bremskralle nicht mehr möglich ist. Durch die Bremsung des nun auf die beobachtete Bremskralle treffenden Druckproduktes wird auch diese in ihre vordere Stellung (wirksamer Zustand) bewegt, sodass die Interaktion mit der folgenden Bremskralle aufgehoben wird und die Kralle 21 dieser folgenden Bremskralle in ihre obere Position geschwenkt wird (bereiter Zustand). Der Schaltvorgang vom unwirksamen in den bereiten und vom bereiten in den wirksamen Zustand an der Übergangsstelle wird also lediglich durch die Druckprodukte ausgelöst und benötigt keine äussere Steuerung und deshalb auch keine Sensorik.
  • Solange der Puffer ordnungsgemäss funktioniert, passiert jede Bremskralle das Ende der Pufferstrecke in ihrem wirksamen Zustand. Dies ist der Fall, solange der Puffer immer mindestens ein Druckprodukt enthält. Für den Fall des Leerlaufens des Puffers, beispielsweise wegen zu Heiner Zuführungsleistung oder bei einem Unterbruch in der Zuführung, ist es für eine automatische Wiederaufnahme der Pufferfunktion unerlässlich, dass die Bremskrallen am Ende der Pufferstrecke auch ohne zu puffernde Druckprodukte in ihren wirksamen Zustand geschaltet werden. Dies wird erreicht durch entsprechende Gestaltung der Umlenkstelle, die die Bremskrallen auf ihren Retourtrum umlenkt. Der Umlenkradius der Interaktionsstelle muss dabei derart grösser sein als der Umlenkradius der Kettenbolzen, dass während der Umlenkung keine Interaktion möglich ist.
  • Die Bremskrallen müssen während der Umlenkung nach dem Ende der Pufferstrecke, während dem Retourtrum oder während der Umlenkung zum Anfang der Reservestrecke wieder derart positioniert werden, dass sie die Reservestrecke in unwirksamem Zustand betreten. Dies wird beispielsweise dadurch erreicht, dass sie während der Umlenkung nach dem Ende der Pufferstrecke durch eine entsprechende Bewegungsschablone in ihren hinteren Zustand bewegt werden und während der Umlenkung in den Anfang der Reservestrecke mit einer anderen Schablone in den unteren Schwenkpunkt der Kralle bewegt werden, sodass sie durch die Schablone im unwirksamen Zustand gehalten werden, bis sich auf der geradlinigen Resevestrecke die Interaktion einstellt. Auf diese Art passieren die Bremskrallen den Retourtrum im bereiten Zustand, der auf der Vorwärtsstrecke immer nur für eine Bremskralle möglich ist. Es wäre ebensogut möglich, die Bremskrallen in wirksamem Zustand durch den Retourtrum zu bewegen und die entsprechende Schablone erst an der zweiten Umlenkungsstelle anzuordnen.
  • Bremskrallen, die wie bereits erwähnt, anstelle einer Feder 28 (Figur 2) ein Magnet tragen, können für die Wiedererstellung des unwirksamen Zustandes an den Umlenkstellen über entsprechende Stahlkulissen geführt werden, die derart ausgestaltet sind, dass die magnetische Anziehung zwischen dem permanenten Magneten und der Stahlkulisse grösser ist als die magnetische Anziehung zwischen dem permanenten Magneten und dem Kettenbolzen und dass im Bereiche der ersten Umlenkung magnetische Kräfte entstehen, die die Bremskrallen in ihre hintere Lage bringen, an der zweiten Umlenkung derart, dass magnetische Kräfte entstehen, die die Bremskrallen in diejenige Schwenkposition schwenken, in der die Kralle unten ist.
  • Die erfindungsgemässen Bremskrallen können, wie in der Figur 3 dargestellt, mittig auf den Kettenbolzen, also zwischen den Kettenlaschen, angeordnet sein, oder aber auch auf der einen Seite, das heisst ausserhalb der Kettenlaschen. Bei seitlicher Anordnung können die Bremskrallen durch einfaches Aufstecken montiert werden. Es können handelsübliche Ketten verwendet werden. Die Bremskrallen sind vorteilhaft aus Kunststoff hergestellt.
  • Statt Bremskrallen sind auch Greifer als Puffermittel denkbar. Werden Bremskrallen als Puffermittel angewendet, ist es vorteilhaft, die für die Pufferung vorgesehene Strecke leich sinkend anzuordnen, sie kann aber auch horizontal, nicht aber steigend sein. Werden Greifer als Puffermittel angewendet, bestehen bezüglich Lage der für die Pufferung vorgesehenen Transportstrecke keine Einschränkungen.
  • Figur 4 zeigt schematisch eine ganze für eine Pufferung ausgerüstete Transportstrecke, die auch mit einer für das Schliessen von grösseren Lücken im Schuppenstrom notwendigen Hilfsvorrichtung ausgerüstet ist. Anhand dieser Figur soll auch beschrieben werden, wie eine entsprechende Vorrichtung überwacht und gesteuert wird. Im Zusammenhang mit den bereits beschriebenen Figuren erwähnte Teile sind mit denselben Bezugsnummern bezeichnet.
  • Das Transportband 10 läuft über zwei Umlenkrollen (in der Figur nicht sichtbar). Das Zugorgan (30) mit den Puffermitteln 12, läuft ebenfalls über zwei Umlenkrollen 31 und 32. Über der für die Pufferung ausgerüsteten Transportstrecke (Vorwärstrum der Puffermittel) ist eine Hilfsvorrichtung 40 zur Schliessung von grösseren Lücken im in die Pufferung einlaufenden Schuppenstrom angeordnet.
  • Im Bereiche der für die Pufferung ausgerüsteten Transportstrecke (Vorwärtstrum des Transportbandes 10) sind mindestens zwei Sensoren 13.1/2 im Bereiche des Einganges der Reservestrecke und im Bereiche des Ausganges der Pufferstrecke angeordnet, die Signale erzeugen zur Feststellung des Zustandes der passierenden Puffermittel. Es handelt sich dabei beispielsweise um Lichtschrankensensoren, die von Teilen der Puffermittel je nach Zustand unterbrochen werden oder nicht. Meldet der Ausgangssensor 13.1 unwirksame Puffermittel, bedeutet dies, dass die minimal tolerierbare Pufferfüllung unterschritten ist. Meldet der Eingangssensor 13.2 wirksame Puffermittel, bedeutet dies, dass die maximal tolerierbare Pufferfüllung überschritten ist. Aus derartigen Meldungen der Sensoren 13.1/2 werden Steuersignale erzeugt für eine Erhöhung bzw. Senkung der Zuführungsleistung und/oder eine Erhöhung bzw. Senkung der Verarbeitungsleistung und entsprechende Steuersignale für die Veränderung der Geschwindigkeiten vP der Puffermittel und/oder vR des Transportbandes. Es können auch mehr als zwei Sensoren angeordnet sein und die Steuerungen entsprechend stufenweise vorgenommen werden. Die Meldungen der Sensoren 13.1 und 13.2 und entsprechender Zusatzsensoren können auch zur Detektierung von Fehlfunktionen herangezogen werden.
  • Die Hilfsvorrichtung 40 weist einen über der ganzen Transportstrecke beweglichen Schlitten 41 auf, der zwei Sensoren 42.1 und 42.2 und einen Heber 43 trägt. Die beiden Sensoren 42.1/2 sind derart ausgebildet, dass sie Unterbrüche im Schuppenstrom (Lücken grösser als die Überlappung der Druckprodukte) erkennen, wobei der in Transportrichtung hintere Sensor 42.1 den Anfang einer Lücke detektiert, der in Transportrichtung vordere Sensor 42.2 das Ende einer derartigen Lücke. Der Heber 43 ist derart ausgebildet, dass er, wenn er in Transportrichtung über einen Unterbruch im Schuppenstrom geführt wird, unter das vor dem Unterbruch transportierte Produkt greift und dieses vom Transportband anhebt und dass er beim Führen gegen die Transportrichtung über die Produkte gezogen werden kann, ohne diese zu verschieben. Zu diesem Zwecke ist der Heber 43 derart angeordnet, dass sein Ende in Ruhelage direkt über dem Transportband positioniert ist und dass er in Transportrichtung aus dieser Ruhelage ausschwenkbar ist. Der Heber 43 ist derart angeordnet, dass sein Ende zwischen den Bereichen der beiden Sensoren 42.1 und 42.2 liegt.
  • Die Funktion der Hilfsvorrichtung ist die folgende: Ihre Ausgangposition ist beim Eingang zur Transportstrecke. Sobald der hintere Sensor 42.1 den Beginn eines Unterbruches entdeckt, wird die Hilfsvorrichtung in Bereitschaft gesetzt. Sobald der Unterbruch in den Bereich des vorderen Sensors 42.2 gerät, bewegt sich der Schlitten 41 mit der gleicher Geschwindigkeit wie Unterbruch und Druckprodukte in Transportrichtung und bleibt so immer über dem Unterbruch. Er bewegt sich so lange, bis er die gepufferten Produkte erreicht, genauer, bis der hintere Sensor 42.1 über den gepufferten Produkten positioniert ist, das heisst keinen Unterbruch mehr sieht. Dies bedeutet, dass das Ende des Hebers bereits die gepufferten Produkte oder mindestens die hintere Kante des letzten gepufferten Produktes aufgehoben und das auf den Unterbruch folgende Produkt darunter geschoben wurde. Der Schlitten hält seine Vorwärtsbewegung an und wird von da zurück an seine Ausgangsposition bewegt. Sollte er auf seinem Wege einen nächsten Unterbruch feststellen, ist das Vorgehen dasselbe.
  • Der Schlitten 41 wird durch einen elektrischen, pneumatischen oder hydraulischen Linearmotor angetrieben.
  • Figur 5 zeigt ein Anwendungsbeispiel für das erfindungsgemässe Pufferverfahren und die erfindungsgemässe Puffervorrichtung. Es handelt sich dabei um die Zuführung zu einer Sammeltrommel 53 von einer Wickelstation 50 mit zwei Wickeln 50.1 und 50.2, von denen der eine abgewickelt wird (50.1), während auf der anderen Wickelposition (50.2) ein leerer Wickelkern gegen einen neuen Wickel ausgetauscht werden kann. Die erfindungsgemässe Vorrichtung 51 ist zwischen die Wickelstation 50 und eine Übergabestation 52 geschaltet.
  • Der vom abwickelnden Wickel 50.1 ausgelegte Schuppenstrom S.1 wird auf einem Transportband 50.3 zur Puffervorrichtung 51 geführt. In den meisten Anwendungsfällen wird die Geschwindigkeit des Zuführbandes 50.3 kleiner sein als die Geschwindigkeit des Pufferbandes 51.1, sodass der Schuppenstrom S.1 beim Übergang vom Zuführungsband 50.3 auf das Pufferband 51.1 zu einem Schuppenstrom S.2 mit grösseren Schuppensabständen auseinander gezogen wird. Es ist vorteilhaft an dieser Ubergangsstelle den Schuppenstrom mit einer Anpressrolle 50.4 oder einem Anpressband auf die Transportbänder zu pressen. Der Schuppenstrom S.2 durchläuft die Puffervorrichtung 51, indem er je nach Pufferfüllstand früher oder später von Puffermitteln 51.2 gebremst und auf einen kleineren Schuppensabstand (S.3) eingestellt wird. Am Ausgang des Puffers werden die Druckprodukte in eine Übergabestation 52 geführt, wobei der Schuppenstrom S.3 an der Übergangsstelle wieder zu einem Schuppenstrom S.4 mit grösserem Schuppenabstand auseinander gezogen wird. Auch an dieser Ubergangsstelle ist es vorteilhaft, die Druckprodukte mittels Anpressrolle oder Anpressband (in der Figur nicht dargestellt) auf das Transportband zu pressen. Dann wird der Schuppenstrom S.4 zu einem Schuppenstrom S.5 mit umgekehrter Lage der Druckprodukte umgelenkt und dann zu einem Förderstrom S.6 mit Greifern gewandelt, indem die einzelnen Druckprodukte an entsprechende Greifer übergeben werden. Der Förderstrom S.6 mit Greifern wird dann auf die Sammeltrommel 53 geführt, wo die Druckprodukte zu Gruppen verschiedener Druckprodukte gesammelt werden.
  • Es ist offensichtlich nicht zwingend, dass die von den Puffermitteln 51.2 durchlaufene Transportstrecke und das Transportband 51.1 dieselbe Länge haben. Es ist durchaus vorstellbar, dass das Transportband 51.1 länger ist als das Zugorgan der Puffermittel und dieses stromaufwärts überragt. Die für die Pufferung vorgesehene Transportstrecke ist dann nur so lang wie die Transportstrecke mit Puffermitteln, wobei der Anfang der Transportstrecke des Transportbandes lediglich Zuführungsstrecke ist.
  • Für die in der Figur 5 illustrierte Anwendung der erfindungsgemässen Vorrichtung geeignete Wickelstationen sind beispielsweise in der US-Patentschrift No. 4898336, entsprechende Übergabestationen in der US-Patentschrift No. 4201286 und entsprechende Sammeltrommeln in der US-Patentschrift No. 4684116 derselben Anmelderin beschrieben.

Claims (18)

  1. Verfahren zum Puffern und Takten von in Schuppenformation geförderten Druckprodukten, insbesondere mehrlagigen, gefalteten Druckprodukten, und zum Schliessen von Lücken in einer solchen Schuppenformation, während die Schuppenformation über eine Transportstrecke gefördert wird, wobei die Schuppenformation von Druckprodukten auf einem Transportband (10) mit der Geschwindigkeit vR über einen ersten Teil der für die Pufferung vorgesehenen Transportstrecke, die Reservestrecke (R), gefördert wird, wobei die Druckprodukte dann an einer Übergangsstelle (U) durch die an dieser Stelle einsetzende Wirkung von Puffermitteln (12) auf die einzelnen Druckprodukte auf eine Geschwindigkeit vP, die kleiner ist als die Geschwindigkeit vR, gebremst werden, wodurch der Schuppenabstand (dR) auf den festen Abstand (dP) der Puffermittel (12) eingestellt wird, wobei die Druckprodukte der Schuppenformation dann durch die Wirkung der Puffermittel (12) oder durch eine kombinierte Wirkung von Transportband (10) und Puffermittel (12) über den zweiten Teil der für die Pufferung vorgesehenen Transportstrecke, die effektive Pufferstrecke (P), transportiert wird und wobei sich die Lage der Übergangsstelle (U) auf der für die Pufferung vorgesehenen Transportstrecke je nach der Anzahl der sich auf dieser Strecke aufhaltenden Druckprodukte automatisch verschiebt, dadurch gekennzeichnet, dass die Druckprodukte der Schuppenformation mit auf dem Transportband (10) untenliegenden vorlaufenden Kanten transportiert werden, dass die Puffermittel (12) bremsend von unten auf diese untenliegenden vorlaufenden Kanten wirken und dass Lücken in der Schuppenformation dadurch geschlossen werden, dass im Bereiche der Übergangsstelle (U) die vor der Lücke laufenden Druckprodukte von hinten angehoben und die auf die Lücke folgenden Druckprodukte durch das Transportband (10) darunter geschoben werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Transportband (10) und die Puffermittel (12) über die ganze für die Pufferung vorgesehene Transportstrecke geführt sind und dass die Puffermittel (12) am Anfang dieser Transportstrecke in einem unwirksamen Zustand sind und während ihrer Bewegung entlang der Transportstrecke durch die zu puffernden Druckprodukte in einen bereiten und dann in einen wirksamen Zustand geschaltet werden, in dem sie den Rest der Transportstrecke durchlaufen und auf je mindestens ein Druckprodukt wirken.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zwischen den Puffermitteln in unwirksamem Zustand eine Interaktion besteht, die durch ein ein Puffermittel einholendes Druckprodukt aufgehoben wird, sofern der Zustand des vorlaufenden Puffermittels dies erlaubt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass jedes Puffermittel während seinem Durchgang durch die für die Pufferung vorgesehene Transportstrecke durch den Schaltvorgang des vor ihm laufenden Puffermittels vom bereiten in den wirksamen Zustand vom unwirksamen in den bereiten Zustand geschaltet wird und dass es dann durch ein einholendes Druckprodukt vom bereiten in den wirksamen Zustand geschaltet wird, wobei die Interaktion mit dem nachlaufenden Puffermittel aufgehoben und dieses nachlaufende Puffermittel dadurch vom unwirksamen in den bereiten Zustand geschaltet wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Füllstand des Puffers dadurch überwacht wird, dass an mindestens zwei Stellen der Transportstrecke der Zustand der passierenden Puffermittel überwacht wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass durch einen erzwungenen Schaltvorgang am Ende der Transportstrecke jedes Puffermittel in den bereiten Zustand geschaltet wird, wodurch die Pufferfunktion automatisch wieder aufgenommen werden kann, nach einem Zuführungsunterbruch, durch den die für die Pufferung vorgesehene Transportstrecke leergelaufen ist, oder nach einem Leerlaufen des Puffers.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Puffermittel während ihrer Umlenkung auf einen Retourtrum, während dieses Retourtrums oder während ihrer Umlenkung zum Vorwärtstrum von ihrem wirksamen in ihren unwirksamen Zustand geschaltet werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Lücken in der Schuppenformation durch über die Transportstrecke bewegbare Sensoren (42.1 und 42.2) detektiert und bis zur Übergangsstelle (U) verfolgt werden, dass an der Übergangsstelle (U) durch einen mit den Sensoren bewegbaren Heber (43) die vor der Lücke laufenden Produkte von hinten angehoben werden und durch das Transportband (10) die auf die Lücke folgenden Druckprodukte darunter geschoben werden.
  9. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, welche Vorrichtung ein Transportband (10), mit dem ein Schuppenstrom über eine Transportstrecke transportierbar ist, und auf derselben Transportstrecke oder mindestens einem Teil davon ein Zugorgan (30) mit äquidistant daran befestigten, in den Bereich der Schuppenformation schwenkbaren Puffermitteln (12.1/2/3...) aufweist, wobei das Zugorgan mit einer kleineren Geschwindigkeit antreibbar ist als das Transportmittel, dadurch gekennzeichnet, dass das Zugorgan (30) und die Puffermittel derart angeordnet sind, dass die Puffermittel zur Ausübung einer bremsenden Wirkung auf die auf dem Transportband (10) liegenden vorlaufenden Produktekanten in eine Position, in der sie über die Transportfläche des Transportbandes (10) reichen, und in eine Position, in der sie unter die Transportfläche versenkt sind, schwenkbar sind und dass die Vorrichtung eine über dem Transportband und entlang der Transportstrecke bewegbar angeordnete Hilfsvorrichtung (40) zum schließen von Lücken in der Schuppenformation mit einem Heber (43) und Sensoren (42.1, 42.2) aufweist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Transportband (10) aus zwei parallel laufenden Teilbändern mit einer dazwischenliegenden Lücke besteht und dass das Zugorgan mit den Puffermitteln (12.1/2/3...) derart im Bereiche dieser Lücke angeordnet ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Zugorgan als Zugkette (30) und die Puffermittel (12.1/2/3/4....) als Bremskrallen (120 bis 125) ausgestaltet sind und dass die Bremskrallen relativ zur Zugkette lateral beweglich und schwenkbar an der Zugkette befestigt sind.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Bremskrallen (120 bis 125) derart auf der Zugkette (30) angeordnet sind, dass sie sich in ihrer Ausdehnung in Transportrichtung über- Lappen.
  13. Vorrichtung nach einem der Ansprüche Anspruch 9 bis 12, dadurch gekennzeichnet, dass die Hilfsvorrichtung (40) zum Schliessen von Lücken in der Schuppenformation einen Schlitten (41) aufweist, an dem zwei gegen die Transportstrecke gewendete Sensoren (42.1 und 42.2) und ein bis unmittelbar über die Transportfläche reichender Heber (43) angeordnet sind.
  14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass sie im Bereiche der Umlenkungen des Zugorganes mit den Puffermitteln Schaltmittel aufweist, mit denen die Puffermittel von ihrem wirksamen in ihren unwirksamen Zustand geschaltet werden.
  15. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die Schaltmittel Bewegungsschablonen und/oder Stahlkulissen sind.
  16. Vorrichtung nach einem der Ansprüche 11 bis 15 mit einer Zugkette mit Bremskrallen, dadurch gekennzeichnet, dass jede Bremskralle (120 bis 126) durch eine vordere Führung (26) und eine hintere Führung (24) auf zwei benachbarten Kettenbolzen (25 und 23) geführt ist, wobei beide Führungen derart ausgestaltet sind, dass die Bremskralle relativ zur Zugkette parallel zur Transportrichtung bewegbar ist, und die vordere Führung (26) derart ausgestaltet ist, dass die Bremskralle um den hinteren Kettenbolzen (23) schwenkbar ist, dass jede Bremskralle an einem Krallenkörper (20), in dem die Führungen (24 und 26) angeordnet sind, in Transportrichtung vorne eine Kralle (21) und einen Haltenocken (22) und hinten eine Einformung (29) aufweist, dass jeder Bremskralle ein Kraftmittel zugeordnet ist, das sie in ihre hintere und in die obere Stellung der Kralle (21) drückt, und dass die Bremskrallen derart auf der Kette angeordnet sind, dass bei geradliniger Transportstrecke der Haltenocken (22) einer nachlaufenden Bremskralle mit der Einformung (29) einer vorlaufenden Bremskralle mindestens in einer der möglichen Schwenkpositionen der Bremskrallen miteinander in Interaktion bringbar sind.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass das Kraftmittel eine zwischen Kette und Bremskralle gespannte Feder (28) ist.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass das Kraftmittel ein im vorderen unteren Bereich der Bremskralle angeordneter permanenter Magnet ist.
EP92810457A 1991-06-27 1992-06-12 Verfahren und Vorrichtung zum Puffern und Takten von Druckprodukten in Schuppenformation und zum Schliessen von Lücken in der Schuppenformation Expired - Lifetime EP0520945B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1905/91A CH683095A5 (de) 1991-06-27 1991-06-27 Verfahren und Vorrichtung zum Puffern von Druckprodukten in Schuppenformation.
CH1905/91 1991-06-27

Publications (2)

Publication Number Publication Date
EP0520945A1 EP0520945A1 (de) 1992-12-30
EP0520945B1 true EP0520945B1 (de) 1996-09-25

Family

ID=4221340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810457A Expired - Lifetime EP0520945B1 (de) 1991-06-27 1992-06-12 Verfahren und Vorrichtung zum Puffern und Takten von Druckprodukten in Schuppenformation und zum Schliessen von Lücken in der Schuppenformation

Country Status (5)

Country Link
US (1) US5394974A (de)
EP (1) EP0520945B1 (de)
JP (1) JP3298664B2 (de)
CH (1) CH683095A5 (de)
DE (1) DE59207223D1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119846A (en) * 1998-05-05 2000-09-19 Heidelberger Druckmaschinen Ag Collapsible gripper modules
DE50007436D1 (de) * 1999-06-01 2004-09-23 Ferag Ag Vorrichtung zum Korrigieren der Lage von geschuppt anfallenden flächigen Gegenständen
US7269934B2 (en) * 2003-09-08 2007-09-18 General Mills Cereals, Llc Taco shell nesting apparatus and method
EP2275373B1 (de) * 2009-07-16 2012-12-26 Müller Martini Holding AG Verfahren und Vorrichtung zum kontinuierlichen Zusammenführen von zumindest zwei Schuppenströmen flächiger Druckprodukte
DE102011080769A1 (de) * 2011-08-10 2013-02-14 Mall + Herlan Gmbh Effektive Produktionslinie für Aerosoldosen
DE102017011660A1 (de) * 2017-12-15 2019-06-19 Siempelkamp Maschinen- Und Anlagenbau Gmbh Transportanordnung für Holzfaserplatten und Verfahren zum Transportieren von Holzfaserplatten
JP7432725B2 (ja) * 2019-12-10 2024-02-16 ボブスト メックス ソシエテ アノニム シート要素デッキ用の方法および積み重ね装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964598A (en) * 1974-04-19 1976-06-22 Strachan & Henshaw Limited Stacking mechanism and method
CH580531A5 (en) * 1975-02-21 1976-10-15 Ferag Ag Printed matter constant interval mechanism - has barrier members on endless track travelling slower than items
CH631410A5 (en) * 1978-08-17 1982-08-13 Ferag Ag Device for homogenising an imbricated stream formed from flat products, in particular printed products
US4549729A (en) * 1983-01-18 1985-10-29 Ga-Vehren Engineering Company Overlap conveyor apparatus
SE460722B (sv) * 1983-07-11 1989-11-13 Ferag Ag Foerfarande och anordning foer att framstaella staplar av boejliga alster, saerskilt tryckprodukter och anvaendningen av dessa staplar saasom buffertstaplar
DE3941184A1 (de) * 1989-12-13 1991-06-20 Windmoeller & Hoelscher Vorrichtung zur trennung eines kontinuierlich gefoerderten stroms von geschuppt uebereinander liegenden flachen werkstuecken

Also Published As

Publication number Publication date
JPH069135A (ja) 1994-01-18
DE59207223D1 (de) 1996-10-31
JP3298664B2 (ja) 2002-07-02
EP0520945A1 (de) 1992-12-30
CH683095A5 (de) 1994-01-14
US5394974A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
DE2433694A1 (de) Foerdervorrichtung fuer ein elektrostatographisches bahnmaterial
DE3153613C2 (de)
DE3612021A1 (de) Vorrichtung zum arbeitstaktgerechten transport von blattlagen zu einer weiterverarbeitungsmaschine, beispielsweise zu einer verpackungsmaschine
CH457268A (de) Vorrichtung zum Ablegen flächenhafter Gegenstände zu einem Stapel
DE3038058A1 (de) Einrichtung zum aufstapeln von flachen gegenstaenden,insbesondere von faltschachtel-zuschnitten
DE2642490A1 (de) Vorrichtung zur ueberfuehrung von gegenstaenden mit einem vorbestimmten abstand auf einen aufnahmefoerderer
DE10214684A1 (de) Fördereinrichtung und Verfahren zur Überführung von Stapeln aus Papier oder dgl. auf einen Abtransportförderer
EP0520945B1 (de) Verfahren und Vorrichtung zum Puffern und Takten von Druckprodukten in Schuppenformation und zum Schliessen von Lücken in der Schuppenformation
CH648261A5 (de) Vorrichtung zum herausloesen von mittels eines foerderers gefoerderten druckprodukten aus dem foerderstrom.
DE4224010A1 (de) Vorrichtung zum handhaben von bahn- oder bogenmaterial aus papier
EP2202158B1 (de) Umreifungsvorrichtung und Verfahren zum Betrieb davon
DE1611344A1 (de) Papierbogenfalzmaschine
EP0493669B1 (de) Zwischen einer Spülmaschine und einer Kopslieferstelle angeordnete Vorrichtung zum Abziehen von auf Einzelträger aufgesteckten Spulenhülsen
DE1436064C3 (de) Vorrichtung zum Zusammentragen gefalzter Bogen zu einem Buchblock
DE3214350C2 (de) Vorrichtung zum Transport von Blattlagen
DE2443781C2 (de) Anlage zum automatischen Fördern und Stapeln von Tafeln aus Pappe oder dergleichen
DE1813048B2 (de) Vorrichtung zum abtrennen von an behaeltern aus thermoplastischem kunststoff befindlichen abfallteilen
DE2024150B2 (de) Verfahren und Vorrichtung zur kontinuierlichen Bildung von Stapeln aus Drucklagen
CH699389B1 (de) Zwischenspeichervorrichtung und Stapeleinheit mit Zwischenspeichervorrichtung.
DE1274413B (de) Vorrichtung zum Anhalten einzelner Abschnitte einer kontinuierlich laufenden Materialbahn
DE102008048831A1 (de) Fördervorrichtung für eine Verpackungsmaschine
DE2232394C3 (de) Fördertisch zum Überleiten von flachen Werkstücken, die von einer Bearbeitungsmaschine angeliefert werden, auf eine Vorrichtung, welche die Werkstücke in einem anderen Folgerhythmuü weiterbearbeitet
DE60309133T2 (de) Vorrichtung zur anpassung des abstandes zwischen förderfingern an die länge des produktes
EP0344363B1 (de) Vorrichtung zum Ausrichten und Öffnen flachliegender Kunststoffsäcke
DE4142790C2 (de) Kopstransporteinrichtung in einem Spulautomaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI SE

17P Request for examination filed

Effective date: 19930607

17Q First examination report despatched

Effective date: 19940601

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

REF Corresponds to:

Ref document number: 59207223

Country of ref document: DE

Date of ref document: 19961031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040608

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040613

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040612

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FERAG AG

Free format text: FERAG AG#ZUERICHSTRASSE 74#CH-8340 HINWIL (CH) -TRANSFER TO- FERAG AG#PATENTABTEILUNG Z. H. MARKUS FELIX ZUERICHSTRASSE 74#8340 HINWIL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL