EP0505348A1 - Permanentmagnetwerkstoff bzw. gesinterter Permanentmagnet und Verfahren zu dessen Herstellung - Google Patents

Permanentmagnetwerkstoff bzw. gesinterter Permanentmagnet und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP0505348A1
EP0505348A1 EP92890055A EP92890055A EP0505348A1 EP 0505348 A1 EP0505348 A1 EP 0505348A1 EP 92890055 A EP92890055 A EP 92890055A EP 92890055 A EP92890055 A EP 92890055A EP 0505348 A1 EP0505348 A1 EP 0505348A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
phase
permanent magnet
base material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92890055A
Other languages
English (en)
French (fr)
Other versions
EP0505348B1 (de
Inventor
Adolf Dipl.-Ing. Diebold
Oskar Dr. Pacher
Siegfried Dr. Heiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Boehler Ybbstalwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Ybbstalwerke GmbH filed Critical Boehler Ybbstalwerke GmbH
Publication of EP0505348A1 publication Critical patent/EP0505348A1/de
Application granted granted Critical
Publication of EP0505348B1 publication Critical patent/EP0505348B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the invention relates to a sintered permanent magnet (material) containing 8 to 30 at.% Rare earths (SE), 2 to 28 at.% Boron (B), remainder iron (Fe) or iron and cobalt (Co).
  • SE Rare earths
  • B Boron
  • Fe remainder iron
  • Co iron and cobalt
  • Permanent magnets or permanent magnet materials made essentially of an alloy of iron (Fe,) optionally cobalt (Co), boron (B) and rare earths (SE) in the sintering process are preferably used when high coercive force, high remanence and / or large Energy product are required.
  • the component forming or containing the magnetic phase of the SE2Fe14B type, some of the Fe atoms being able to be replaced by Co atoms, is produced and pulverized by melt metallurgy, which powder, if appropriate mixed with additives, is pressed into a green compact in the magnetic field and this is sintered and the sintered body can optionally be subjected to at least one further heat treatment.
  • EP-A1 0265006 discloses a process for producing sintered permanent magnets, in which stoichiometrically composed crystalline RE2 (FeCo) 14B material (RE means rare earths) is ground with another material, this other material being a second during the sintering process forms non-magnetic phase on the surface of the magnetic grains of Re2 (FeCo) 14B.
  • RE means rare earths
  • the invention has for its object to eliminate the disadvantages of the known SE, (FeCo), B- containing magnets (materials) and their manufacturing processes and to specify and create sintered permanent magnets, the high saturation magnetization, high coercive force and high energy product with good temperature stability and have a high Curie point at low manufacturing costs.
  • Another object of the invention is to make the height of the Curie point of the permanent magnets (materials) adjustable according to the requirements in a simple manner.
  • the hard magnetic component is formed from a plurality of magnetic phases which, as has been found completely surprisingly, interact with one another in an advantageous manner. It is important here that one or more magnetic phases as the central phase or core phase is formed from surface-smoothed or diffusion-molded grains, whereby according to the latest knowledge, a surface recrystallization can take place by diffusion and a further magnetic phase component is oriented towards the central phase or is attached to the central phase assigns. This allows a high proportion of magnetic volume in the material to be achieved Domain wall formation and / or domain wall displacement can be reduced, as a result of which an increase in the coercive force and in the consequence of the energy product occurs.
  • the paramagnetic intermediate or binding phase should have a higher concentration of SE than the magnetic phases and, if appropriate, inclusions and / or additives, as a result of which a further blocking of domain walls is accomplished.
  • Special magnetic properties of the material are achieved if the grains of the central or core phase have a diameter of 10 to 100 ⁇ m and the magnetic peripheral phase or phases are or are deposited around the grains in a shell-like manner.
  • the SE portion in the magnetic phases is essentially formed by light rare earths (LSE), in particular Nd, and the SE portion in the intermediate or binding phase contains heavy rare earths (SSE) achieved particularly high magnetic characteristics of the magnet
  • the invention further relates to a method for producing rare earth (SE) containing (s), magnetically aligned (s), sintered (s) permanent magnet (s) (material (s)), its base material or starting material by melt metallurgy is made. According to the invention, such a method is characterized by the characterizing features of claim 8.
  • the advantages of the invention consist in particular in that at least two magnetic phase-forming base materials or starting materials with different chemical compositions and therefore different magnetic properties are produced, comminuted to powder and mixed, whereby an interaction of the base materials which has a favorable influence on the magnetic characteristics can be achieved.
  • the crushing of a base material takes place to powder with smaller particle sizes or to fine powder, which shows an earlier softening or plasticity during the sintering of the green compact pressed under magnetic field alignment and produces particularly good contact with the particles or grains of the coarse powder. This is important for the effect of the diffusion treatment or annealing, the phase boundaries being designed to be correspondingly favorable.
  • the SE concentration of the base materials is dimensioned higher than that of the magnetic phase of type SE2 (FECo) 14B, the compositions SE16 (FECo ) 77B7, SE15 (FeCo) 77B8 and SE14 (FeCo) 80B6 are particularly suitable. If at least one base material is alloyed with Co and the iron portion of the magnetic phase up to 40% is substituted by Co, particularly good temperature stability and high Curie temperatures of the magnets can be achieved.
  • the SE portion of the base materials is essentially formed by LSE, the remanence and the energy product are increased.
  • one or more base materials are comminuted into coarse powder with a grain diameter of 10 to 100 ⁇ m, preferably 10 to 60 ⁇ m, in particular 15 to 30 ⁇ m, and at least one further base material is ground to fine powder with a particle diameter of 0.5 to 8 ⁇ m, in particular from 3 to 8 ⁇ m, different Co contents in the coarse and fine powder further improving the magnetic characteristics.
  • compounds of SSE such as Dy203 and / or borides, e.g. Fe2B, and / or metals, e.g. Al, and / or oxides, e.g. Al203 and / or SE oxides are introduced, in particular the powders are mechanically alloyed with these substances, domain wall formation and domain wall displacement are further reduced and higher coercive forces are achieved.
  • a particularly important characteristic of the invention is a diffusion treatment of the sintered magnet (s) (material), which is advantageously carried out at a temperature below the sintering temperature and advantageously in the pendulum annealing process, because the grains are molded in or the grain surfaces of the coarse powder are smoothed and An essentially shell-like accumulation of the phase formed by the fine powder is brought about on the smoothed grain surfaces in a microstructure-oriented manner, which brings about a significant improvement in the magnetic characteristics.
  • s sintered magnet
  • FIG. 1 and 2 show schematically the sequence of the manufacture of permanent magnet materials according to the invention.
  • Table 1 shows compositions of the base materials with stoichiometric parameters.
  • Table 2 shows the composition and the magnetic characteristics of reference magnets (materials) with the designations V 1 to V 7.
  • Tables 3a and 3b under numbers 1 to 23 list permanent magnets (materials) according to the invention.
  • high magnetic characteristics are achieved at elevated Curie temperature in the permanent magnets according to the invention by the construction with a plurality of differently composed magnetic phases with diffusion molded grains and deposits.
  • the interaction of the microstructure-oriented magnetic phases which are attached to one another or assigned to one another synergistically leads to improved magnetic properties in comparison with conventional RE permanent magnets.

Abstract

Die Erfindung bezieht sich auf einen Permanentmagnet (-werkstoff) enthaltend 8 bis 30 At.-% Seltene Erden ( SE), 2 bis 28 At.-% Bor, Rest Eisen (Fe) und Kobalt (Co) sowie ein Verfahren zu dessen Herstellung. Um hohe magnetische Kennwerte bei verbesserten Temperaturstabilität und erhöhter Curie-Temperatur des Permanentmagneten(-werkstoffes) zu erreichen, ist erfindungsgemäß vorgesehen, daß der hartmagnetische Anteil aus mindestens zwei magnetischen Phasen besteht, wobei an die diffusionseingeformten Körner mindestens einer Zentralphase mindestens eine weitere Peripherphase angelagert oder dieser zugeordnet ist und die paramagnetischen Bindephasen eine höhere Konzentration an SE aufweisen.

Description

  • Die Erfindung betrifft einen gesintertern Permanentmagnet(-werkstoff) enthaltend 8 bis 30 At.-% Seltene Erden ( SE), 2 bis 28 At.-% Bor (B), Rest Eisen ( Fe) oder Eisen und Kobalt (Co).
  • Permanentmagnete bzw. Permanentmagnetwerkstoffe aus im wesentlichen einer Legierung von Eisen (Fe,) gegebenenfalls Kobalt (Co), Bor (B) und Seltenen Erden (SE) im Sinterverfahren gefertigt, werden bevorzugt dann verwendet, wenn hohe Koerzitivkraft, hohe Remanenz und/ oder großes Energieprodukt gefordert sind. Dabei wird der die magnetische Phase vom Typ SE2Fe14B, wobei ein Teil der Fe-Atome durch Co-Atome ersetzt sein können, bildende oder enthaltende Bestandteil schmelzmetallurgisch hergestellt und pulverisiert, welches Pulver gegebenenfalls mit Zusätzen vermengt im Magnetfeld zu einem Grünling verpreßt und dieser gesintert wird und der Sinterkörper gegebenenfalls mindestens einer weiteren Wärmebehandlung unterworfen werden kann.
  • Aus der EP-B1-0126802 sind gesinterte Permanentmagnete des Typs Fe-B-R ( R bedeutet mindestens ein SE-Element einschließlich Y) bekannt geworden, bei welchen Fe teilweise durch Co ersetzt werden kann. Die Elemente sind dabei auf Grund des verwendeten Herstellverfahrens in der magnetischen Phase homogen verteilt und eine Wärme -oder Alterungsbehandlung des Sinterkörpers soll die magnetischen Werte verbessern. Wird Fe teilweise durch Co ersetzt, so erfolgt dadurch eine Erhöhung des Curie-Punktes bzw. der Curie-Temperatur ( Tc) des Magnetwerkstoffes, dessen Koerzitivkraft, wie dem Fachmann bekannt ist, jedoch mit steigendem Co-Gehalt sinkt, wodurch auch das Energieprodukt nachteilig beeinflußt werden kann.
  • Um Permanentmagnete mit verbesserten magnetischen Eigenschaften bei Raumtemperatur zu schaffen, wird gemäß EP-B1-0102552 vorgeschlagen, eine Co-freie Legierung mit einem Gehalt an Fe-B-R einzusetzen, die mindestens eine stabile Verbindung des ternären Systems Fe-B-R enthält, wobei R mindestens ein Seltenerdenelement einschließlich Yttrium bedeutet. Die magnetische Hauptphase muß dabei eine intermetallische Verbindung mit konstanter Zusammensetzung sein, was eine homogene Verteilung der Legierungselemente bedingt. Abgesehen von dem großen legierungstechnischen Aufwand bei der Fertigung der Ausgangslegierung und den starken Streuungen der magnetischen Werte des sintertechnisch hergestellten Magnetwerkstoffes weist dieser eine signifikante Abnahme der magnetischen Kennwerte mit steigender Temperatur im Bereich von Raumtemperatur bis 200°C auf, wobei der Curie-Punkt schon bei etwa 300°C erreicht wird.
  • Ferner ist aus der EP-A1 0265006 ein Verfahren zur Herstellung von gesinterten Permanentmagneten bekannt, bei welchem stöchiometrisch zusammengesetztes kristallines RE2(FeCo)14B-Material ( RE bedeutet Seltene Erden) mit einem anderen Material gemahlen wird, wobei dieses andere Material beim Sinterprozeß eine zweite nicht magnetische Phase an der Oberfläche der magnetischen Körner aus Re2(FeCo)14B bildet. Damit soll erreicht werden, daß die genaue chemische Zusammensetzung bei homogener Verteilung aller Elemente der magnetischen Phase im Magnetwerkstoff unabhängig von der zweiten paramagnetischen Phase, die besondere schmelztechnische Eigenschaften und/oder Zusammensetzungen aufweisen kann, einstellbar ist. Bei dieser Ausführungsform besteht jedoch der Nachteil im großen legierungstechnichen Aufwand und der schlechten Reproduzierbarkeit der magnetischen Werkstoffdaten.
  • Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten SE,(FeCo),B- enthaltenden Magnete(-werkstoffe) sowie ihrer Herstellverfahren zu beseitigen und gesinterte Permanentmagnete anzugeben sowie zu erstellen, die hohe Sättigungsmagnetisierung, hohe Koerzitivkraft und hohes Energieprodukt bei guter Temperaturstabilität und hohem Curie-Punkt bei geringen Herstellkosten aufweisen. Ein weiteres Ziel der Erfindung ist, die Höhe des Curie-Punktes der Permanentmagnete(-werkstoffe) den Anforderungen entsprechend auf einfache Weise einstellbar zu machen.
  • Diese Aufgabe wird bei einem Permanentmagnet(-werkstoff) der eingangs genannten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.
  • Beim erfindungsgemäßen Permanentmagnet(-werkstoff) werden synergetisch eine Reihe von Vorteilen erreicht, wobei nachteilige Wechselwirkungen von einzelnen Maßnahmen weitgehend unterdrückt sind und die Gesamtheit der magnetischen Eigenschaften wesentlich erhöht wird. Die wissenschaftlichen Grundlagen und Ursachen dieser Kombinationseffekte sind noch nicht vollkommen geklärt; es handelt sich jedoch im wesentlichen dabei um physikalisch-chemische Wirkungen im Verbindung mit der Magnetokinetik.
  • Beim erfindungsgemäßen Permanentmagnet(-werkstoff) wird der hartmagnetische Anteil aus mehreren magnetischen Phasen gebildet, die, wie sich völlig überraschend gezeigt hat, in vorteilhafter Wechselwirkung zueinander stehen. Wichtig dabei ist, daß eine oder mehrere magnetische Phasen als Zentralphase oder Kernphase aus oberflächengeglätteten bzw. diffusionseingeformten Körnern gebildet ist, wobei nach neuesten Erkenntnissen durch Diffusion ein oberflächliches Umkristallisieren erfolgen kann und ein weiterer magnetischer Phasenanteil sich orientiert als Peripherphase an die Zentralphase anlagert bzw. dieser zuordnet. Dadurch kann ein hoher Anteil an magnetischem Volumen im Werkstoff erreicht und eine Domänwandbildung und/oder Domänwandverschiebung vermindert werden, wodurch eine Vergrößerung der Koerzitivkraft und in der Folge des Energieproduktes eintritt. Die paramagnetische Zwischen- oder Bindephase soll eine höhere Konzentration an SE als die magnetischen Phasen und gegebenenfalls Einlagerungen und/oder Zusätze aufweisen, wodurch eine weitere Blockierung von Domänwänden bewerkstelligt wird. Besondere magnetische Eigenschaften des Werkstoffes werden erreicht, wenn die Körner der Zentral- oder Kernphase einen Durchmesser von 10 bis 100 µm aufweisen und um die Körner die magnetische Peripherphase oder Phasen schalenartig angelagert ist oder sind.
  • Wenn zwei oder gegebenenfalls mehrere magnetische Phasen unterschiedliche SE-Elemente und/oder Co-Konzentrationen besitzen und insbesondere zumindest eine Zentral- oder Kernphase einen höheren Co-Gehalt aufweist, so wird synergetisch ein hoher Sättigungsmagnetismus bei hoher Koerzitivkraft des Permanentmagneten erreicht werden. Gute magnetische Stabilität bei hohen magnetischen Kennwerten werden erhalten, wenn die örtliche Co-Konzentration an den Korngrenzen bzw. in Korngrenzenbereich zwischen Phasen mit unterschiedlichem Co- Gehalt diffusionskinetisch gebildete Übergänge, das bedeutet einen überproportionalen Anstieg vom niedrigen Niveau mit einer anschließenden asymptotischen Angleichung an ein höheres Niveau, aufweist. Trotz orientierter Anlagerung zwischen zwei magnetischen Phasen wird wahrscheinlich auf Grund der unterschiedlichen Austauschkopplung der magnetischen Momente durch den diffusionskinetisch gebildeten Übergang der Co- Konzentration im Grenzenbereich eine für Domänwände wirkende energetische Barriere gebildet.
  • Wenn gemäß einer bevorzugten Form der SE-Anteil in den magnetischen Phasen im wesentlichen durch leichte Seltene Erden ( LSE), insbesondere Nd, gebildet ist und der SE-Anteil in der Zwischen- oder Bindephase schwere Seltene Erden ( SSE) enthält, werden besonders hohe magnetische Kennwerte des Magneten erreicht
  • Die Erfindung betrifft ferner ein Verfahren zur Herstellung von Seltenen Erden (SE) enthaltendem(n), magnetisch ausgerichtetem(n), gesintertem(n) Permanentmagnet(en) (-werkstoff(en)), dessen (deren) Grundwerkstoff bzw. Ausgangsmaterial schmelzmetallurgisch hergestellt ist.
    Erfindungsgemäß ist ein derartiges Verfahren durch die kennzeichnenden Merkmale des Anspruchs 8 bezeichnet.
  • Die Vorteile der Erfindung bestehen insbesondere darin, daß mindestens zwei magnetische Phasen bildende Grundwerkstoffe bzw. Ausgangsmaterialien mit unterschiedlichen chemischen Zusammensetzungen und daher unterschiedlichen magnetischen Eigenschaften hergestellt, zu Pulver zerkleinert und vermengt werden, wodurch eine die magnetischen Kennwerte günstig beeinflussende Wechselwirkung der Grundwerkstoffe erreicht werden kann. Die Zerkleinerung eines Grundwerkstoffes erfolgt dabei zu Pulver mit geringeren Teilchengrößen bzw. zu Feinpulver, welches bei der Sinterung des unter Magnetfeldausrichtung gepreßten Grünlings eine frühere Erweichung bzw. Plastizität zeigt und einen besonders guten Kontakt zu den Teilchen bzw. Körnern des Grobpulvers herstellt. Dies ist für die Wirkung der Diffusionsbehandlung bzw.- glühung , wobei die Phasengrenzen entsprechend günstig ausgebildet werden, wichtig.
  • Insbesondere im Hinblick auf eine Oxidation bei der Zerkleinerung hat es sich als vorteilhaft herausgestellt, wenn die SE-Konzentration der Grundwerkstoffe höher bemessen wird als diejenige der magnetischen Phase vom Typ SE2(FECo)14B, wobei, wie gefunden wurde, die Zusammensetzungen SE16(FECo)77B7, SE15(FeCo)77B8 und SE14(FeCo)80B6 besonders gute Eignung aufweisen. Ist zumindest ein Grundwerkstoff mit Co legiert und der Eisenanteil der magnetischen Phase bis zu 40 % durch Co substitiert, so sind besonders gute Temperaturstabilität und hohe Curie-Temperaturen der Magnete erreichbar.
  • Wenn weiters in günstiger Weise vorgesehen der SE-Anteil der Grundwerkstoffe im wesentlichen durch LSE gebildet wird, sind die Remanenz und das Energieprodukt erhöht. Im Sinne besonders guter magnetischer Kennwerte hat es sich als günstig erwiesen, wenn ein oder mehrere Grundwerkstoffe zu Grobpulver mit einem Korndurchmesser von 10 bis 100 µm, vorzugsweise von 10 bis 60 µm, insbesondere von 15 bis 30 µm, zerkleinert werden und mindestens ein weiterer Grundwerkstoff zu Feinpulver mit einem Teilchendurchmesser von 0,5 bis 8 µm, insbesondere von 3 bis 8 µm, gemahlen wird, wobei unterschiedliche Co- Gehalte im Grob- und Feinpulver die magnetischen Kennwerte weiters verbessern.
  • Wenn gemäß einer bevorzugten Form als Zusätze zu den Pulvern Verbindungen von SSE wie beispielsweise Dy203 und/oder Boride, z.B. Fe2B, und/oder Metalle, z.B. Al, und/oder Oxide, z.B. Al203, und/oder SE- Oxide eingebracht, insbesondere die Pulver mit diesen Stoffen mechanisch legiert werden, werden eine Domänwandbildung und eine Domänwandverschiebung weiter vermindert und höhere Koerzitivkräfte erreicht.
  • Ein besonders wichtiges Kennzeichen der Erfindung ist eine Diffusionsbehandlung des gesinterten Magnet(en)(-werkstoffes), welche vorteilhaft bei einer Temperatur unterhalb der Sintertemperatur und günstigerweise im Pendelglühverfahren erfolgt, weil dabei eine Einformung der Körner bzw. eine Glättung der Kornoberflächen des Grobpulvers erfolgt und an den geglätteten Kornoberflächen mikrostrukturorientiert eine im wesentlichen schalige Anlagerung der vom Feinpulver gebildeten Phase bewirkt wird, was eine wesentliche Verbesserung der magnetischen Kennwerte erbringt.
    Fertigungstechnisch, jedoch auch im Hinblick auf besondere magnetische Einzelwerte kann es weiters günstig sein, wenn Pulver mit bestimmten Zusammensetzungen, insbesondere Co-Gehalten, anteilsmäßig vermengt werden. Auf einfache Weise und besonders wirtschaftlich sind dadurch Permanentmagnete mit für bestimmte Anwendungen bzw. Anforderungen besonders ausgebildeten magnetischen Einzelwerten herstellbar.
  • Aus den Zeichnungen kann die Erfindung beispielsweise ersehen werden.
    Es zeigen Fig. 1 und Fig. 2 schematisch den Ablauf der erfindungsgemäßen Herstellung von Permanentmagnetwerkstoffen.
  • Im folgenden wird die Erfindung anhand von beiliegenden Tabellen 1,2, 3a und 3b, in welchen Legierungsgehalte und Mittelwerte von magnetischen Messungen von Permanentmagnetkörpern angegeben sind, weiter erläutert.
    In Tabelle 1 sind Zusammensetzungen der Grundwerkstoffe mit stöchiometrischen Parametern bezeichnet.
    In Tabelle 2 sind mit der Bezeichnung V 1 bis V 7 die Zusammensetzung und die magnetischen Kennwerte von Vergleichsmagneten(-werkstoffen) angegeben.
    In Tabelle 3a und 3b unter den Nummern 1 bis 23 werden erfindungsgemäße Permanentmagnet(-werkstoffe) angeführt.
    Wie aus den Mittelwerten der magnetischen Messungen hervorgeht, werden bei den erfindungsgemäßen Permanentmagneten durch den Aufbau mit mehreren unterschiedlich zusammengesetzten magnetischen Phasen mit diffusionseingeformten Körnern und Anlagerungen hohe magnetische Kennwerte bei erhöhter Curie- Temperatur erreicht. Die Wechselwirkung der mikrostrukturorientiert aneinander angelagerten oder einander zugeordneten magnetischen Phasen führt dabei synergetisch, im Vergleich mit üblichen SE- Permanentmagneten, zu verbesserten magnetischen Eigenschaften.

Claims (18)

  1. Gesinterter Permanentmagnet(-werkstoff) enthaltend 8 bis 30 At.-% Seltene Erden (SE), 2 bis 28 At.-% Bor (B), Rest Eisen ( Fe) oder Eisen und Kobalt (Co), dadurch gekennzeichnet, daß dessen hartmagnetischer Anteil vom Typ SE2Fe14B, wobei ein Teil der Fe-Atome durch Co-Atome ersetzt sein können, mindestens 65 Vol.-% beträgt und dieser hartmagnetische Anteil aus mindestens zwei magnetischen Phasen besteht, wobei mindestens eine magnetische Phase als Zentralphase oder Kernphase aus oberflächengeglätteten bzw. in ihrer Oberflächenenergie verringerten oder minimierten diffusionseingeformten Körnern gebildet ist, an welchen mindestens eine weitere magnetische Phase als Peripherphase angelagert oder dieser zugeordnet ist und dessen im wesentlichen paramagnetische Zwischen- oder Bindephase(n) im Vergleich mit den magnetischen Phasen eine höhere Konzentration an SE und gegebenenfalls Einlagerungen und/oder Zusätze aufweist(en).
  2. Gesinterter Permanentmagnet(-werkstoff) nach Anspruch 1, dadurch gekennzeichnet, daß die diffusionseingeformten Körner der magnetichen Zentral- oder Kernphase(n) einen Durchmesser von 10 bis 100 µm, vorzugsweise von 10 bis 60 µm, insbesondere von 15 bis 30 µm, aufweisen.
  3. Gesinterter Permanentmagnet(-werkstoff) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die magnetische Peripherphase(n) im wesentlichen an den diffusionseingeformten Korngrenzen der magnetischen Zentral- oder Kernphase(en) insbesondere schalenförmig angelagert ist (sind).
  4. Gesinterter Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die magnetischen Zentral- oder Kernphase(n) und/oder die magnetische(n) Peripherphase(n) verschiedene SE-Elemente und/oder unterschiedliche Co-Konzentrationen aufweisen.
  5. Gesinterter Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zumindest eine magnetische Zentral- oder Kernphase eine höhere Co-Konzentration aufweist als die magnetische(n) Peripherphase(n), welche vorzugsweise Co-arm bzw. Co-frei ist (sind).
  6. Gesinterter Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die örtlichen Co-Konzentrationen an den Korngrenzen bzw. im Korngrenzenbereich zwischen Phasen mit unterschiedlichem Co-Gehalt diffusionskinetisch gebildete Übergänge aufweisen.
  7. Gesinterter Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der SE- Anteil in den magnetischen Phasen im wesentlichen durch leichte Seltene Erden ( LSE), insbesondere durch Nd, gebildet ist und der SE- Anteil in der(den) Zwischen- oder Bindephase(n), welche Zusätze von Boriden und/oder Oxiden und/oder Metallen aufweisen kann (können), im wesentlichen schwere Seltene Erden ( SSE), insbesondere Dy, enthält (enthalten).
  8. Verfahren zur Herstellung von Seltene Erden (SE) enthaltendem(n), magnetisch ausgerichtetem(n), gesintertem(n) Permanentmagnet(en)(-werkstoff(en)), dessen ( deren) Grundwerkstoff bzw. Ausgangsmaterial schmelzmetallurgisch hergestellt ist, dadurch gekennzeichnet, daß mindestens zwei Grundwerkstoffe bzw. Ausgangsmaterialien mit bestimmten chemischen Zusammensetzungen erschmolzen und erstarren gelassen werden, wobei bei mindestens einem Grundwerkstoff eine von dem (den) anderen Grundwerkstoff(en) verschiedene chemische Zusammensetzung eingestellt wird und die Grundwerkstoffe zu Pulver zerkleinert werden, wobei die Zerkleinerung von mindestens einem Grundwerkstoff zu einem Pulver mit im wesentlichen geringeren Teilchengrößen bzw. Korndurchmessern durchgeführt wird, worauf Zusätze beigegeben und die pulverisierten Grundwerkstoffe vermengt werden, wonach das Gemenge unter Magnetfeldausrichtung zu einem Grünling gepreßt und dieser gesintert wird und der Sinterkörper einer Diffusionsbehandlung bzw. -glühung und gegebenenfalls einer oder mehreren weiteren Wärmebehandlung/en) unterworfen wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Grundwerkstoffe mit einer höheren SE-Konzentration als jener, die der magnetischen Phase vom Typ SE2(FeCo)14B entspricht, erschmolzen, insbesondere mit Zusammensetzungen entsprechend
       SE16(Fe,Co)77B7
       SE15(Fe,Co)77B8
       SE14(Fe,Co)80B6
    hergestellt werden, wobei der Ausdruck ( Fe, Co) den Anteil von Fe, der gegebenenfalls teilweise durch Co sustituiert ist, bedeutet.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß zumindest ein Grundwerkstoff mit Co legiert und der Eisenanteil bis 40 % durch Co substituiert wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß der SE-Anteil der Grundwerkstoffe im wesentlichen mit leichten Seltenen Erden (LSE) gebildet wird.
  12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß ein oder mehrere Grundwerkstoff(e) zu Grobpulver mit einem Teilchen- bzw. Korndurchmesser von 10 bis 100 µm, vorzugsweise von 10 bis 60 µm, insbesondere von 15 bis 30 µm, zerkleinert wird (werden) und daß mindestens ein weiterer Grundwerkstoff zu Feinpulver mit einem Korndurchmesser von 0,5 bis 8, insbesondere von 3 bis 8 um, gemahlen wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der oder zumindest ein Grundwerkstoff, welcher zu Grobpulver zerkleinert wird, im Vergleich mit dem oder zumindest einem Grundwerkstoff, welcher zu Feinpulver gemahlen wird, mit verschiedenen SE und/oder mit unterschiedlichen Co- Gehalten hergestellt wird.
  14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß dem Grob-und/oder Feinpulver der Grundwerkstoffe, insbesondere vor oder bei deren Vermahlen oder Vermengen, Zusätze in fester und/oder flüssiger Form, z.B. metallorganische Verbindungen, eingebracht und im Pulvergemenge homogen verteilt werden.
  15. Verfahren nach Anspruch 8 ud 14, dadurch gekennzeichnet, daß als Zusätze Verbindungen von schweren Seltenen Erden ( SSE) und gegebenenfalls Metalle, Boride, z.B. des Eisens und/oder Aluminiums, Oxide, z.B. Al203, oder Oxide von SE und dergleichen dem (den) pulverförmigen Grundwerkstoff(en) beigegeben und homogen verteilt werden.
  16. Verfahren nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, daß der aus dem mit Zusätzen versehenen homogenen Pulvergemenge unter Magnetfeldausrichtung gepreßte Grünling gesintert und nachfolgend bei einer unterhalb der Sintertemperatur liegendenden Temperatur, vorzugsweise im Pendelglühverfahren um diese Temperatur, diffusionsbehandelt wird.
  17. Verfahren nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, daß die Körner der (des) Grobpulver(s) diffusionseingeformt werden und an den geglätteten Kornoberflächen mikrostrukturorientiert eine vorzugsweise schalige Anlagerung der vom Feinpulver gebildeten Phase bewirkt wird.
  18. Verfahren nach einem der Ansprüche 8 bis 17, dadurch gekennzeichnet, daß Grundstoffe mit bestimmten Co-Gehalten erschmolzen und entsprechend gewünschten magnetischen Kennwerten des Permanentmagneten die aus den Grundwerkstoffen hergestellten Pulver anteilsmäßig vermengt werden.
EP92890055A 1991-03-18 1992-03-11 Permanentmagnetwerkstoff bzw. gesinterter Permanentmagnet und Verfahren zu dessen Herstellung Expired - Lifetime EP0505348B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0059691A AT399415B (de) 1991-03-18 1991-03-18 Verfahren zur herstellung von seltene erden enthaltendem(n) permanentmagnet(-en) (-werkstoffen)
AT596/91 1991-03-18

Publications (2)

Publication Number Publication Date
EP0505348A1 true EP0505348A1 (de) 1992-09-23
EP0505348B1 EP0505348B1 (de) 1996-10-16

Family

ID=3494767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92890055A Expired - Lifetime EP0505348B1 (de) 1991-03-18 1992-03-11 Permanentmagnetwerkstoff bzw. gesinterter Permanentmagnet und Verfahren zu dessen Herstellung

Country Status (9)

Country Link
EP (1) EP0505348B1 (de)
AT (2) AT399415B (de)
CZ (1) CZ281163B6 (de)
DE (1) DE59207356D1 (de)
DK (1) DK0505348T3 (de)
ES (1) ES2095454T3 (de)
GR (1) GR3022263T3 (de)
HU (1) HU216373B (de)
PL (1) PL293878A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331563A1 (de) * 1992-09-18 1994-03-24 Hitachi Metals Ltd Nd-Fe-B-Sintermagnete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002156A1 (en) * 1987-09-02 1989-03-09 Max-Planck-Gesellschaft Zur Förderung Der Wissensc OPTIMIZATION OF THE MICROSTRUCTURE OF SINTERED Fe-Nd-B MAGNETS
EP0395625A2 (de) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Verfahren zur Herstellung eines Permanentmagnet(en) bzw. -werkstoffs
EP0425469A2 (de) * 1989-10-25 1991-05-02 BÖHLER YBBSTALWERKE Ges.m.b.H. Permanentmagnet(-werkstoff) sowie Verfahren zur Herstellung desselben

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002156A1 (en) * 1987-09-02 1989-03-09 Max-Planck-Gesellschaft Zur Förderung Der Wissensc OPTIMIZATION OF THE MICROSTRUCTURE OF SINTERED Fe-Nd-B MAGNETS
EP0395625A2 (de) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Verfahren zur Herstellung eines Permanentmagnet(en) bzw. -werkstoffs
EP0425469A2 (de) * 1989-10-25 1991-05-02 BÖHLER YBBSTALWERKE Ges.m.b.H. Permanentmagnet(-werkstoff) sowie Verfahren zur Herstellung desselben

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MAGNETICS. Bd. 22, Nr. 5, September 1986, NEW YORK US Seiten 904 - 909; M.TOKUNAGA ET AL: 'MICROSTRUCTURE OF R-Fe-B SINTERED MAGNET' *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 165 (C-496)(3012) 18. Mai 1988 & JP-62 274 046 ( INOUE JAPAX RES INC ) 28. November 1987 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331563A1 (de) * 1992-09-18 1994-03-24 Hitachi Metals Ltd Nd-Fe-B-Sintermagnete

Also Published As

Publication number Publication date
EP0505348B1 (de) 1996-10-16
HUT62341A (en) 1993-04-28
ATE144348T1 (de) 1996-11-15
CZ281163B6 (cs) 1996-07-17
GR3022263T3 (en) 1997-04-30
ES2095454T3 (es) 1997-02-16
ATA59691A (de) 1994-09-15
DK0505348T3 (da) 1997-03-24
DE59207356D1 (de) 1996-11-21
PL293878A1 (en) 1992-10-19
AT399415B (de) 1995-05-26
CZ78492A3 (en) 1993-12-15
HU9200889D0 (en) 1992-05-28
HU216373B (hu) 1999-06-28

Similar Documents

Publication Publication Date Title
DE602004009979T2 (de) R-T-B-Seltenerd-Permanentmagnet
DE69911138T2 (de) Gesinterter R-T-B-Dauermagnet
DE69720206T2 (de) Verbundmagnet mit niedrigen Verlusten und leichter Sättigung
DE60221448T2 (de) Seltenerdlegierungs Sinterformteil
DE69935231T2 (de) Leistungsfähige magnetische Materalien, die Eisen, Seltenerdmetalle, Bor, schwer schmelzende Metalle und Kobalt einschließen
DE60319800T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis und magnetzusammensetzung
DE60311421T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
DE60009772T2 (de) Abgeschrecktes, dünnes Band aus einer Magnetlegierung auf Basis Seltene Erde/Eisen/Bor
DE2631781A1 (de) Permanentmagnet und verfahren zur herstellung desselben
DE102017222062A1 (de) Permanentmagnet auf R-T-B-Basis
DE10310572A1 (de) Permanentmagnet und Motor
DE60031914T2 (de) Magnetpulver und isotroper Verbundmagnet
DE19814441B4 (de) Permanentmagnet-Material und Verbundmagnet
AT393177B (de) Permanentmagnet(-werkstoff) sowie verfahren zur herstellung desselben
CH638566A5 (de) Material fuer permanente magneten und verfahren zu dessen herstellung.
DE60311960T2 (de) Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis
DE2321368A1 (de) Neues sinterprodukt aus einer intermetallischen kobalt-neodym-samarium-verbindung und daraus hergestellte permanentmagnete
DE2121453A1 (de) Verfahren zur Herstellung gesinterter intermetallischer Verbindungen aus Kobalt und seltenem Erdmetall unter Verwendung eines festen Sinterzusatzes
DE60010385T2 (de) Dauermagnetmaterialien vom typ r-fe-b und herstellungsverfahren dafür
EP0505348B1 (de) Permanentmagnetwerkstoff bzw. gesinterter Permanentmagnet und Verfahren zu dessen Herstellung
AT393178B (de) Permanentmagnet(-werkstoff) sowie verfahren zur herstellung desselben
AT398861B (de) Gesinterter permanentmagnet(-werkstoff) sowie verfahren zu dessen herstellung
DE3038555A1 (de) Verfahren zur herstellung von pulver aus einer legierung von kobalt und seltenem erdmetall
DE3928389C2 (de)
DE2121452A1 (de) Wärmegealterte, gesinterte intermetallische Verbindung aus Kobalt und seltenem Erdmetall und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940504

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VACUUMSCHMELZE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 144348

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59207356

Country of ref document: DE

Date of ref document: 19961121

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095454

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022263

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980311

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980320

Year of fee payment: 7

Ref country code: ES

Payment date: 19980320

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980325

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980330

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990312

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 92890055.4

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 92890055.4

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020627

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050222

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050318

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060311

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060311

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070425

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001