EP0504048A1 - Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline - Google Patents

Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline Download PDF

Info

Publication number
EP0504048A1
EP0504048A1 EP92400637A EP92400637A EP0504048A1 EP 0504048 A1 EP0504048 A1 EP 0504048A1 EP 92400637 A EP92400637 A EP 92400637A EP 92400637 A EP92400637 A EP 92400637A EP 0504048 A1 EP0504048 A1 EP 0504048A1
Authority
EP
European Patent Office
Prior art keywords
quasi
alloy
powders
elements
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92400637A
Other languages
German (de)
English (en)
Other versions
EP0504048B1 (fr
Inventor
Jean-Marie Dubois
Maurice Ducos
Robert Nury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOUVELLE DE METALLISATION INDUSTRIES SNMI Ste
Centre National de la Recherche Scientifique CNRS
Original Assignee
NOUVELLE DE METALLISATION INDUSTRIES SNMI Ste
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOUVELLE DE METALLISATION INDUSTRIES SNMI Ste, Centre National de la Recherche Scientifique CNRS filed Critical NOUVELLE DE METALLISATION INDUSTRIES SNMI Ste
Publication of EP0504048A1 publication Critical patent/EP0504048A1/fr
Application granted granted Critical
Publication of EP0504048B1 publication Critical patent/EP0504048B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2951Metal with weld modifying or stabilizing coating [e.g., flux, slag, producer, etc.]

Definitions

  • the present invention relates to a bead for coating with a blowtorch projection.
  • This orthorhombic phase O1 is said to be approximate to the decagonal phase. It is also so close to it that it is not possible to distinguish its X-ray diffraction pattern from that of the decagonal phase.
  • This phase is an approximate phase of the icosahedral phase.
  • phase C of cubic structure, very often observed in coexistence with the approximate or quasi-crystalline phases true.
  • This phase is isotype of a hexagonal phase, noted ⁇ AlMn, discovered in Al-Mn alloys containing 40% by weight of Mn (MA Taylor, Intermetallic phases in the Aluminum-Manganese Binary System, Acta Metallurgica 8 (1960) 256).
  • the cubic phase, its superstructures and the phases derived therefrom, constitute a class of approximate phases of the quasi-crystalline phases of neighboring compositions.
  • the alloys comprising these quasi-crystalline phases have specific properties which make them particularly advantageous in the form of surface hardening or protective coatings on various substrates.
  • these alloys have good hardness and friction properties as well as good stability at temperatures above 300 ° C.
  • the subject of the present invention is precisely a bead which can be used for forming by blowtorch projection coatings of quasi-crystalline alloy, which makes it possible to avoid this prior operation of manufacturing the alloy and is suitable for producing coatings of quasi-crystalline alloy of any composition fixed in advance.
  • the bead for coating with a blowtorch projection comprises a core comprising an organic binder and a powder or a mixture of powders capable of forming a quasi-crystalline alloy, this core being surrounded by a sheath of organic material.
  • the core of the bead additionally contains a mineral binder which makes it possible, during the spraying operation, to bind the powder particles together until their complete melting.
  • refractory oxide fibers such as alumina fibers.
  • This cord structure is very advantageous since it is possible to choose the organic binder and the sheath material in an appropriate manner in order to obtain a flexible cord, which makes it possible to continuously supply a projection torch.
  • the organic binder and the organic material of the sheath are chosen so that they can be easily removed in the torch during the spraying operation, for example by combustion.
  • organic binder and of organic material which can be used, mention may be made of cellulose derivatives such as methylcellulose, hydroxymethylcellulose, hydroxyethylmethylcellulose and carboxymethylcellulose, and polymers such as polyvinyl alcohol and polymethacrylic acid.
  • the core of the cord comprises water, and / or an organic plasticizer, capable of being easily removed during the spraying operation, for example by evaporation and / or calcination.
  • plasticizer By way of example of plasticizer, mention may be made of glycerin, ethylene glycol and triethanolamine.
  • the proportion by weight of organic binder in the core generally does not exceed 4%.
  • the core contains an inorganic binder
  • its content is preferably less than 6% by weight.
  • This embodiment of the cord of the invention can be used in particular when the quantities of quasi-crystalline alloy to be projected are large and justify the prior preparation of an alloy powder.
  • blowtorch spraying operation generally leads to the production of an almost alloy coating. crystalline not having exactly the same composition as the alloy of the powder, but the properties of a quasi-crystalline deposit are nevertheless retained.
  • the core comprises a mixture of powders capable of forming a quasi-crystalline alloy, for example a mixture of powders of the elements Al, X, B, C, M, N and I with X representing at least one element chosen from Cu and Co, M representing one or more elements of the group comprising Fe, Cr, Mm, Ni, Ru, Os, Mo, V Mg, Zn, Ga and Pd, N representing one or more elements of the group comprising W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge and the rare earths, and I representing one or more alloy impurities, in proportions such that the mixture of powders corresponds to the composition of formula: Al a X b (B, C) c M d N e I f in which X, M, N and I have the meaning given above, and a, b, c, d, e and f represent atomic percentages such that they satisfy the following relationships: 48 ⁇ a
  • This second embodiment of the cord of the invention is much more interesting because it makes it easy to manufacture cords for the projection of quasi-crystalline alloys of compositions very varied. Indeed, it suffices to use in this case commercial powders corresponding to the desired elements to produce the core of the bead and to judiciously dose these powders to obtain the desired alloy composition.
  • the projection cords described above can be prepared by conventional methods, in particular by co-forming two pastes, one of which constitutes the core and the other of which is intended to form the external sheath.
  • a process of this type is described in particular in document FR-A-1 443 142.
  • the bead for coating with a blowtorch projection comprises a core made of a mixture of inorganic powders and a sheath of inorganic material, the powders of the mixture and the sheath consisting of one or more elements chosen from Al, X, B, C, M, N and I with X representing at least one element chosen from Cu and Co, M representing one or more elements from the group comprising Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga and Pd, N representing one or more elements of the group comprising W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge and the rare earths, and I representing one or several alloy impurities, in proportions such that the assembly (sheath + powder mixture) corresponds to an almost crystalline alloy composition.
  • composition of quasi-crystalline alloys can also correspond to the formula Al a X b (B, C) c M d N e I f in which X, M, N, I, a, b, c, d , e and f have the meanings given above.
  • the present invention also relates to a method of depositing on a substrate a coating of quasi-crystalline alloy, which consists in using a spray gun with an oxy-gas flame and / or electric arc or plasma and in supplying this gun with by means of a projection bead as described above, so as to project onto the substrate the almost crystalline alloy obtained by reaction in the flame of the constituents of the bead.
  • the projection cords of the invention are very advantageous in this process because they make it possible to introduce into the core of the flame of a thermal projection device, all of the elements constituting a quasi-crystalline alloy and to ensure a residence time of these elements inside the flame sufficient to guarantee a complete reaction and the formation of a quasi-crystalline alloy.
  • the quasi-crystalline alloy thus produced is sprayed with feed gases from the projection device in the form of finely divided droplets on the substrate.
  • the core of the cord further comprises mineral fibers, for example alumina fibers, these are also projected into the coating formed on the substrate.
  • the organic binder and the sheath of the bead are vaporized during the spraying and they do not intervene either in the reactions of formation of the alloy, or in the coating.
  • This method of projecting quasi-crystalline alloys has several advantages over the prior art thermal spraying techniques which used powder torches. First of all, it makes it possible to dispense with the operation of atomizing a quasi-crystalline powder of specific composition to replace it with a much simpler operation which consists in mixing common powders readily available to form a paste. In addition, it allows the use of simpler projection devices and wide distribution. Finally, it offers the possibility of composing the mixture of powders at will and consequently of obtaining any desired alloy composition.
  • the deposits of quasi-crystalline alloy obtained by this process have an increased hardness and improved coefficients of friction compared to many deposits of the current art. Also, these quasi-crystalline deposits are particularly indicated in any tribological application consisting in reinforcing a metal surface of an iron-based alloy, aluminum-based, copper-based or nickel-based.
  • quasi-crystalline deposits of the invention for the production of metal sublayers with a view to metal-metal, metal-ceramic or metal-oxide bonds whose adhesion strength is remarkable.
  • These quasi-crystalline deposits can also be used as bonding layers between a ceramic layer and a layer. oxide.
  • Figure 1 there is shown very schematically, the end of a projection gun using the projection cord of the invention.
  • the projection cord 1 of the invention is introduced into an oxy-gas flame 3 supplied with combustion gas through the channels 5.
  • the end 1a of the cord which is melted by the flame, reacts in this flame to form the quasi-crystalline alloy and the liquid alloy obtained is sprayed by a gas under pressure, for example by air, introduced by the conduits 7, in the form of droplets which are projected onto a substrate .
  • the combustion gas can be a mixture of hydrogen, acetylene or propane with oxygen and the gas circulating in the pipes 7 can be a jet of pressurized air.
  • the first embodiment of the invention is used to prepare a projection bead from a quasi-crystalline alloy powder obtained by grinding, in a mixer with concentric rollers of carburetted steel, small ingots of '' a quasi-crystalline alloy having the atomic composition: Al 62.8 Cu 19.5 Fe 8.5 Cr 9.1 Mn 0.1
  • a first paste is prepared by adding the sufficient amount of water, then vigorous kneading for one hour.
  • a second paste is then prepared for use in forming the sheath by kneading the same organic binder as that used for the preparation of the first paste with the sufficient amount of water.
  • a co-shaping of these two pastes is then carried out in a press to obtain a flexible bead of 4.75mm of external diameter 60m in length having a sheath thickness of 0.012mm.
  • Example 2 the same procedure is followed as in Example 1 to prepare a projection bead from a quasi-crystalline alloy powder of formula: Al 65.2 Cu 18.4 Fe 8.2 Cr 8.2 but in this case, one starts from a powder obtained by spraying with an argon jet, having a particle size of 20 to 150 ⁇ m.
  • Example 2 the same procedure is followed as in Example 2, to prepare a projection bead in accordance with the first embodiment of the invention, but we start with a quasi-crystalline alloy powder of formula: Al70Cu9Fe 10.5 Cr 10.5 . also obtained by atomization, having a particle size of 20 to 150 ⁇ m.
  • FIG. 4 represents the X-ray diffraction diagram of the starting alloy and demonstrates the presence of the decagonal phases C, O1 and O3.
  • the second embodiment of the cord of the invention is used, that is to say that the core of the cord is prepared, from powders of the constituents taken separately having the characteristics given in table 1 which follows.
  • Example 2 For these preparations, the same procedure is followed as in Example 1, except that the first paste is prepared from a mixture of powders of the various constituents in proportions such that they correspond to the atomic composition given in Table 2, the percentages by weight of powder, fibers and binder being the same as in Example 1.
  • the finely divided aluminum powder was first coated with stearic acid to avoid its oxidation at room temperature.
  • the cords obtained also have an external diameter of 4.75mm and a sheath thickness of 0.012mm.
  • a projection bead corresponding to the variant embodiment of the invention is prepared.
  • a low-carbon steel sheath 18 mm wide and 0.3 mm thick is used and a mixture of aluminum, copper, iron and chromium powders having on this steel strip having the characteristics given in table 1 to obtain a mixture in which the powder + sheath assembly corresponds to the composition: Al 65.3 Cu 18.4 Fe 8.2 Cr 8.1 .
  • the strip is then rolled by mechanical forming to obtain a wire with an external diameter of 4.8mm.
  • square platelets of mild steel with a side of 50mm and a thickness of 2mm are used as substrate, which have been previously etched with a jet of corundum.
  • the coatings obtained by X-ray diffraction at the wavelength of 0.17889 nm are checked to verify that they correspond to quasi-crystalline alloys.
  • the projection beads of the invention make it possible to easily obtain the deposition of quasi-crystalline alloys.
  • FIGS. 5 to 12 are the X-ray diffraction diagrams obtained with the deposits of Examples 11, 12, 14-18 and 20.
  • FIG. 5 which relates to Example 11, it can be seen that the diagram is characteristic of the cubic phase C, the diffraction lines of which are identified by C-100, C-110, C-111, C-200, C -210 and C-220, the figures following the letter C corresponding to the Miller indices of the lines.
  • the other lines which are marked gamma correspond to the aluminum oxide introduced into the deposit from the alumina fibers present in the core of the cord.
  • these deposits are subjected to two types of heat treatment which are either the isothermal maintenance in secondary vacuum, in a sealed quartz bulb, or the isothermal maintenance in air. These treatments are applied to samples in the form of 1x5 cm plates which have been cut with a diamond saw from mild steel substrates coated with quasi-cristatlin alloy obtained in Examples 11, 15 and 20.
  • the sample is cooled to room temperature by natural air convection. It is then examined by X-ray diffraction. Given the wavelength used (0.17889nm), this technique makes it possible to study the coating materials over a depth of a few micrometers from the exposed surface, which allows to detect modifications which would be due to a surface oxidation.
  • FIGS. 13 to 16 are X-ray diffraction diagrams obtained on the samples subjected to the heat treatment.
  • the quasi-crystalline coatings obtained from the projection cords of the invention are particularly stable. Indeed, no change in structure, which would be revealed by changes in the relative intensity of the diffraction peaks or by the appearance of new lines, is detectable after treatment. Likewise, maintaining the temperature in air, including at 750 ° C., does not increase the intensity of the lines corresponding to the alumina, nor does it give rise to lines characteristic of another oxide.
  • the coating materials produced from the beads of the invention therefore resist oxidation particularly well, an advantageous property which is added to their great thermal stability.
  • the hardness of the coatings of quasi-crystalline alloys obtained in Examples 12, 14 and 24 to 28 is determined.
  • a portion of the coated substrate wafers obtained in these examples is cut with a diamond saw to take a 40 ⁇ 10 mm2 test piece.
  • This specimen is then coated with a resin for metallographic use, then it is polished finely for observation with an optical microscope, the specimen having been placed in the coating so that its polished section makes an angle of 40 to 50 °. relative to its surface.
  • the Vickers hardness is then measured on this polished section of the test piece using a Volpert microdurometer actuated by a load of 400g.
  • the average values obtained from at least ten fingerprints by deposit are given in table 5 appended.
  • this table gives the Vickers hardness values also measured under a load of 400 g for quasi-crystalline alloys of the same composition in the form of ingots.
  • the tribological properties of the coatings obtained from the beads of the invention are characterized by determining their coefficient of friction ⁇ which is equal to F t (N) / F n (N), that is to say to the relationship between force of resistance F t in advance of an indenter to which a normal force F n is applied, both being expressed in Newton.
  • a CSEM tester (of the pawn / disc type) is used, fitted either with a Vickers diamond indenter or with a Brinell ball made of tool steel 100C6, 1.58mm in diameter.
  • a sample of the steel substrates coated with quasi-crystalline alloy obtained in Examples 12, 14 and 24 to 28 is placed horizontally on the tester, and they are rotated at a uniform speed of one revolution per minute.
  • the indenter is applied with a constant normal force F n of 5 Newton and a circular stripe with a diameter of 18mm (in the case of the diamond indentor) or 25mm (in the case of the steel Brinell ball). In the case of diamonds, only the first stripe was retained.
  • the coefficient of friction is determined from the measurement of the resistance force, measured tangentially to the path of the indenter, which therefore includes the cumulative effects of plowing the coating and of the true friction force.
  • the coefficients of friction obtained by projecting the coatings from the beads of the invention are equivalent to the coefficients of friction obtained when the coating is carried out by depositing the alloy by means of a plasma torch.
  • Example 12 the thermal and electrical properties of the quasi-crystalline alloy coating obtained in Example 12, which has a thickness of 3 mm, are determined.
  • the thermal conductivity is first evaluated using a circuit for measuring the thermal diffusivity.
  • the coating of the substrate is first separated by mechanical machining of the latter, then a sample of cylindrical shape 3 mm thick and 10 mm in diameter taken from the coating is irradiated, using a laser beam of energy equal to 20J and 5.10 ⁇ 6s of pulse duration.
  • the temperature rise which is established on the opposite side of the sample as a function of time is detected by means of an infrared sensor.
  • the specific heat was measured at room temperature using a SETARAM scanning calorimeter and the specific mass was obtained by weighing, relative to the volume of the sample.
  • a sample of dimension 1x1 ⁇ 10 mm was cut from the quasi-crystalline alloy coating sample of Example 12 separated from its substrate, using an electrolytic saw.
  • the electrical resistivity of this test piece was then measured at room temperature by the so-called 4-point method, using a constant measuring current of 10mA and measuring the voltage at internal electrode terminals with a high-precision nanovoltmeter.
  • thermal conductivity on the one hand, and of electrical conductivity, on the other hand, are particularly low for a material which moreover has essentially metallic characteristics.
  • the deposits of quasi-crystalline alloys of the present invention are particularly interesting for many applications, for example for the realization of thermal barriers, insulation, heating by Joule effect or heating by electromagnetic induction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

L'invention concerne un cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline. Ce cordon (1) comprend une âme comprenant un liant organique et une poudre ou un mélange de poudres apte à former un alliage quasi cristallin, cette âme étant entourée par une gaine en matériau organique. Il permet ainsi de déposer un alliage quasi cristallin sur un substrat en élaborant cet alliage dans la flamme (3) d'un dispositif de projection, à partir de poudres commerciales des constituants de l'alliage quasi cristallin. <IMAGE>

Description

  • La présente invention a pour objet un cordon pour revêtement par projection au chalumeau.
  • De façon plus précise, elle concerne un cordon qui permet de déposer sur un substrat des revêtements superficiels en alliage quasi cristallin, c'est-à-dire en alliage possédant une structure cristallographique spécifique qui se traduit par la présence d'au moins 30% en masse d'une phase quasi cristalline.
  • Des alliages d'aluminium de ce type sont décrits par exemple dans le document EP-A-O 356 287.
  • Dans la présente invention, l'expression "phase quasi cristalline" englobe
    • 1) les phases présentant des symétries de rotation normalement incompatibles avec la symétrie de translation, c'est-à-dire des symétries d'axe de rotation d'ordre 5, 8, 10 et 12, ces symétries étant révélées par la diffraction du rayonnement. A titre d'exemple, on peut citer la phase icosaédrique de groupe pontuel m 3 ¯
      Figure imgb0001
      5 ¯
      Figure imgb0002
      (cf. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, Vol. 53, n° 20, 1984, pages 1951-1953) et la phase décagonale de groupe ponctuel 10/mmm (cf. L. Bendersky, Quasicrystal with One Dimensional Translational Symmetry and a Tenfold Rotation Axis, Physical Review Letters, Vol. 55, n° 14, 1985, pages 1461-1463). Le diagramme de diffraction des rayons X d'une phase décagonale vraie a été publié dans "Diffraction approach to the structure of decagonal quasi crystals, J.M. Dubois, C. Janot, J. Pannetier, A. Pianelli, Physics Letters A 117-8 (1986) 421-427".
    • 2) les phases approximantes ou composés approximants qui sont des cristaux vrais dans la mesure où leur structure cristallographique reste compatible avec la symétrie de translation, mais qui présentent, dans le cliché de diffraction d'électrons, des figures de diffraction dont la symétrie est proche des axes de rotation 5, 8, 10 ou 12.
  • Parmi ces phases, on peut citer à titre d'exemple la phase orthorhombique O₁, caractéristique d'un alliage d'aluminium ayant la composition atomique Al₆₅Cu₂₀Fe₁₀Cr₅ appartenant aux compositions d'alliage décrites dans le document EP-A- 0 356 287, dont les paramètres de maille sont : a₀(1) = 2,366, b₀(1) = 1,267, c₀(1) = 3,252 en nanomètres. Cette phase orthorhombique O₁ est dite approximante de la phase décagonale. Elle en est d'ailleurs si proche qu'il n'est pas possible de distinguer son diagramme de diffraction des rayons X de celui de la phase décagonale.
  • On peut également citer la phase rhomboédrique de paramètres ar = 3,208nm, γ = 36°, présente dans les alliages de composition voisine de Al₆₄Cu₂₄Fe₁₂ en nombre d'atomes (M. Audier et P. Guyot, Microcrystalline AlFeCu Phase of Pseudo Icosahedral Symmetry, in Quasicrystals, eds. M.V. Jaric et S. Lundqvist, World Scientific, Singapore, 1989).
  • Cette phase est une phase approximante de la phase icosaédrique.
  • On peut aussi citer des phases O₂ et O₃ orthorhombiques de paramètres respectifs a₀(2) = 3,83 ; b₀(2) = 0,41 ; c₀(2) = 5,26 et a₀(3) = 3,25 ; b₀(3) = 0,41 ; c₀(3) = 9,8 en nanomètres, présentes dans un alliage de composition Al₆₃Cu17,5Co17,5Si₂ en nombre d'atomes ou encore la phase orthorhombique 0₄ de paramètres a₀(4) = 1,46 ; b₀(4) = 1,23 ; c₀(4) = 1,24 en nanomètres, qui se forme dans l'alliage de composition Al₆₃Cu₈Fe₁₂Cr₁₂ en nombre d'atomes.
  • On peut encore citer une phase C, de structure cubique, très souvent observée en coexistence avec les phases approximantes ou quasi cristallines vraies. Cette phase qui se forme dans certains alliages Al-Cu-Fe et Al-Cu-Fe-Cr, consiste en une surstructure, par effet d'ordre chimique des éléments d'alliage par rapport aux sites d'aluminium, d'une phase de structure type Cs-Cl et de paramètre de réseau a₁ = 0,297nm.
  • Un diagramme de diffraction de cette phase cubique a été publié (C. Dong, J.M. Dubois, M. de Boissieu, C. Janot ; Neutron diffraction study of the peritectic growth of the Al₆₅Cu₂₀Fe₁₅ icosahedral quasi crystal ; J. Phys. Condensed Matter, 2 (1990), 6339-6360) pour un échantillon de phase cubique pure et de composition Al₆₅Cu₂₀Fe₁₅ en nombre d'atomes.
  • On peut aussi citer une phase H de structure hexagonale qui dérive directement de la phase C comme le démontrent les relations d'épitaxie observées par microscopie électronique entre cristaux des phases C et H et les relations simples qui relient les paramètres des réseaux cristallins, à savoir aH = 3 2 a₁ 3
    Figure imgb0003
    (à 4,5% près) et cH = 3 3
    Figure imgb0004
    a₁/2 (à 2,5% près). Cette phase est isotype d'une phase hexagonale, notée Φ AlMn, découverte dans des alliages Al-Mn contenant 40% en poids de Mn (M.A. Taylor, Intermetallic phases in the Aluminium-Manganese Binary System, Acta Metallurgica 8 (1960) 256).
  • La phase cubique, ses surstructures et les phases qui en dérivent, constituent une classe de phases approximantes des phases quasi cristallines de compositions voisines.
  • Outre leur structure cristallographique particulière, les alliages comportant ces phases quasi cristallines possèdent des propriétés spécifiques qui les rendent particulièrement intéressants sous la forme de revêtements superficiels durcissants ou protecteurs sur divers substrats.
  • En effet, ces alliages présentent de bonnes propriétés de dureté et de frottement ainsi qu'une bonne stabilité à des températures supérieures à 300°C.
  • Aussi, ils peuvent être utilisés dans les domaines où l'on recherche une bonne résistance à l'abrasion, à la rayure, au choc, à l'érosion et à la cavitation, ainsi qu'une protection contre l'oxydation et la corrosion. D'autres propriétés comme, par exemple, leur grande résistance électrique ou bien encore leurs propriétés de conduction thermique peuvent être mises utilement à profit dans des dispositifs de chauffage, y compris par couplage électromagnétique, ou comme barrière thermique.
  • Jusqu'à présent, pour utiliser ces alliages quasi cristallins sous la forme de revêtement sur un substrat, on préparait tout d'abord l'alliage quasi cristallin à partir des différents éléments, puis on formait une poudre de cet alliage, soit par broyage, soit par atomisation, et on la projetait ensuite sur le substrat en utilisant par exemple une torche à plasma.
  • Bien que cette technique soit satisfaisante, elle présente l'inconvénient d'être onéreuse lorsque les quantités d'alliage quasi cristallin à projeter sont faibles, puisqu'il faut disposer d'une poudre de cet alliage fabriqué préalablement, alors que de nombreuses compositions d'alliage quasi cristallin peuvent être envisagées.
  • La présente invention a précisément pour objet un cordon utilisable pour former par projection au chalumeau des revêtements d'alliage quasi cristallin, qui permet d'éviter cette opération préalable de fabrication de l'alliage et convient pour réaliser des revêtements d'alliage quasi cristallin de n'importe quelle composition fixée à l'avance.
  • Selon l'invention, le cordon pour revêtement par projection au chalumeau comprend une âme comprenant un liant organique et une poudre ou un mélange de poudres apte à former un alliage quasi cristallin, cette âme étant entourée par une gaine en matériau organique.
  • Avantageusement, l'âme du cordon contient de plus un liant minéral qui permet, lors de l'opération de projection de lier les particules de poudre entre elles jusqu'à leur fusion complète.
  • A titre d'exemple de liant minéral, on peut citer les fibres d'oxyde réfractaire telles que les fibres d'alumine.
  • Cette structure de cordon est très avantageuse car on peut choisir de façon appropriée le liant organique et le matériau de la gaine en vue d'obtenir un cordon souple, ce qui permet de réaliser l'alimentation en continu d'un chalumeau de projection.
  • De plus, le fait de pouvoir utiliser dans ce cordon un mélange de poudres apte à former un alliage quasi cristallin permet de réaliser n'importe quelle composition d'alliage en dosant de façon appropriée les quantités de poudres placées dans l'âme.
  • Ainsi, avec le cordon de l'invention, la réalisation de revêtements d'alliages quasi cristallins ayant des compositions variées n'est plus onéreuse et peut être effectuée à la demande.
  • Dans ce cordon, le liant organique et le matériau organique de la gaine sont choisis de façon à pouvoir être éliminés facilement dans le chalumeau lors de l'opération de projection, par exemple par combustion.
  • A titre d'exemple de liant organique et de matériau organique susceptibles d'être utilisés, on peut citer les dérivés cellulosiques comme la méthylcellulose, l'hydroxyméthylcellulose, l'hydroxyéthylméthylcellulose et la carboxyméthylcellulose, et les polymères tels que l'alcool polyvinylique et l'acide polyméthacrylique.
  • Dans certains cas, l'âme du cordon comprend de l'eau, et/ou un plastifiant organique, susceptible d'être éliminé facilement lors de l'opération de projection, par exemple par évaporation et/ou calcination.
  • A titre d'exemple de plastifiant, on peut citer la glycérine, l'éthylène glycol et la triéthanolamine. La proportion en poids de liant organique dans l'âme ne dépasse généralement pas 4%.
  • Lorsque l'âme contient un liant minéral, sa teneur est de préférence inférieure à 6% en poids.
  • Selon un premier mode de réalisation du cordon de l'invention, l'âme comprend une seule poudre apte à former un alliage quasi cristallin, cette poudre peut être une poudre d'alliage de composition :

            AlaXb(BC)cMdNeIf

    dans laquelle
    • X représente au moins un élément choisi parmi Cu et Co,
    • M représente un ou plusieurs éléments du groupe comprenant Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga et Pd.
    • N représente un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares,
    • I représente une ou plusieurs impuretés d'alliage,
    • a, b, c, d, e et f représentent des pourcentages atomiques tels qu'ils satisfont les relations suivantes :
    48≦a<92
    Figure imgb0005
    0<b≦30
    Figure imgb0006
    0≦c≦5
    Figure imgb0007
    8≦d≦30
    Figure imgb0008
    0≦e≦4
    Figure imgb0009
    0≦f≦2
    Figure imgb0010
    a+b+c+d+e+f=100
    Figure imgb0011
    b+d+e≦45.
    Figure imgb0012
  • Ce mode de réalisation du cordon de l'invention est utilisable notamment lorsque les quantités d'alliage quasi cristallin à projeter sont importantes et justifient la préparation préalable d'une poudre d'alliage.
  • Dans ce cas, toutefois, l'opération de projection au chalumeau conduit généralement à la réalisation d'un revêtement d'alliage quasi cristallin n'ayant pas exactement la même composition que l'alliage de la poudre, mais on conserve néanmoins les propriétés d'un dépôt quasi cristallin.
  • Selon un second mode de réalisation du cordon de l'invention, l'âme comprend un mélange de poudres apte à former un alliage quasi cristallin, par exemple un mélange de poudres des éléments Al, X, B, C, M, N et I avec X représentant au moins un élément choisi parmi Cu et Co, M représentant un ou plusieurs éléments du groupe comprenant Fe, Cr, Mm, Ni, Ru, Os, Mo, V Mg, Zn, Ga et Pd, N représentant un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares, et I représentant une ou plusieurs impuretés d'alliage,
    dans des proportions telles que le mélange de poudres corresponde à la composition de formule :

            AlaXb(B,C)cMdNeIf

    dans laquelle X, M, N et I ont la signification donnée ci-dessus, et a, b, c, d, e et f représentent des pourcentages atomiques tels qu'ils satisfont les relations suivantes : 48≦a<92
    Figure imgb0013
    0<b≦30
    Figure imgb0014
    0≦c≦5
    Figure imgb0015
    8≦d≦30
    Figure imgb0016
    0≦e≦4
    Figure imgb0017
    0≦f≦2
    Figure imgb0018
    a+b+c+d+e+f=100
    Figure imgb0019
    b+d+e≦45
    Figure imgb0020
  • Ce second mode de réalisation du cordon de l'invention est beaucoup plus intéressant car il rend aisé la fabrication de cordons pour la projection d'alliages quasi cristallins de compositions très variées. En effet, il suffit d'utiliser dans ce cas des poudres du commerce correspondant aux éléments voulus pour réaliser l'âme du cordon et de doser judicieusement ces poudres pour obtenir la composition d'alliage souhaitée.
  • Dans ce second mode de réalisation du cordon de l'invention, on peut aussi apporter au moins deux éléments de l'alliage sous la forme d'une combinaison de ces éléments, par exemple sous la forme de poudre préalliée.
  • Les cordons de projection décrits ci-dessus peuvent être préparés par des procédés classiques, en particulier par cofilage de deux pâtes dont l'une constitue l'âme et l'autre est destinée à former la gaine externe. Un procédé de ce type est en particulier décrit dans le document FR-A-1 443 142.
  • Selon une variante de réalisation de l'invention, le cordon pour revêtement par projection au chalumeau comprend une âme constituée d'un mélange de poudres inorganiques et une gaine en matériau inorganique, les poudres du mélange et la gaine étant constituées d'un ou plusieurs éléments choisis parmi Al, X, B, C, M, N et I avec X représentant au moins un élément choisi parmi Cu et Co, M représentant un ou plusieurs éléments du groupe comprenant Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga et Pd, N représentant un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares, et I représentant une ou plusieurs impuretés d'alliage, en proportions telles que l'ensemble (gaine + mélange de poudres) corresponde à une composition d'alliage quasi cristallin.
  • Dans ce cas, la composition d'alliages quasi cristallin peut également répondre à la formule AlaXb(B,C)cMdNeIf dans laquelle X, M, N, I, a, b, c, d, e et f ont les significations données ci-dessus.
  • Dans cette variante de réalisation de l'invention, on peut en particulier réaliser la gaine en acier, en Al, en Cu ou en Ni et obtenir ainsi un fil fourré souple convenant également pour l'alimentation d'un chalumeau.
  • La présente invention a également pour objet un procédé de dépôt sur un substrat d'un revêtement d'alliage quasi cristallin, qui consiste à utiliser un pistolet de projection à flamme oxy-gaz ou/et arc électrique ou plasma et à alimenter ce pistolet au moyen d'un cordon de projection tel que décrit ci-dessus, de façon à projeter sur le substrat l'alliage quasi cristallin obtenu par réaction dans la flamme des constituants du cordon.
  • Les cordons de projection de l'invention sont très avantageux dans ce procédé car ils permettent d'introduire au coeur de la flamme d'un dispositif de projection thermique, l'ensemble des éléments constitutifs d'un alliage quasi cristallin et d'assurer un temps de séjour de ces éléments à l'intérieur de la flamme suffisant pour garantir une réaction complète et la formation d'un alliage quasi cristallin.
  • L'alliage quasi cristallin ainsi élaboré est pulvérisé par des gaz d'alimentation du dispositif de projection sous forme de gouttelettes finement divisées sur le substrat. Lorsque l'âme du cordon comprend de plus des fibres minérales, par exemple des fibres d'alumine, celles-ci se trouvent également projetées dans le revêtement formé sur le substrat. En revanche, le liant organique et la gaine du cordon sont vaporisés pendant la projection et ils n'interviennent ni dans les réactions de formation de l'alliage, ni dans le revêtement.
  • Ce mode de projection d'alliages quasi cristallins présente plusieurs avantages par rapport aux techniques de projection thermique de l'art antérieur qui utilisaient des chalumeaux à poudre. Tout d'abord, il permet de s'affranchir de l'opération d'atomisation d'une poudre quasi cristalline de composition spécifique pour la remplacer par une opération beaucoup plus simple qui consiste à mélanger des poudres courantes facilement disponibles pour former une pâte. De plus, il autorise l'emploi de dispositifs de projection plus simples et de grande diffusion. Enfin, il offre la possibilité de composer à volonté le mélange de poudres et par conséquent d'obtenir toute composition d'alliage souhaitée.
  • Les dépôts d'alliage quasi cristallin obtenus par ce procédé possèdent une dureté accrue et des coefficients de frottement améliorés par rapport à de nombreux dépôts de l'art actuel. Aussi, ces dépôts quasi cristallins sont particulièrement indiqués dans toute application tribologique consistant à renforcer une surface métallique d'alliage à base de fer, à base l'aluminium, à base de cuivre ou à base de nickel.
  • On peut aussi utiliser les dépôts quasi cristallins de l'invention pour la réalisation de sous-couches métalliques en vue de liaisons métal-métal, métal-céramique ou métal-oxyde dont la force d'adhérence est remarquable. On peut aussi utiliser ces dépôts quasi cristallins comme couches de liaison entre une couche céramique et une couche d'oxyde.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la Description qui suit d'exemples de réalisation, donnés bien entendu à titre illustratif et non limitatif, en référence au dessin annexé sur lequel
    • la figure 1 est une représentation schématique d'un dispositif de projection utilisable dans l'invention, et
    • les figures 2 à 16 sont des diagrammes de diffraction de rayons X caractérisant les alliages quasi cristallins obtenus par projection de cordons conformes à l'invention.
  • Sur la figure 1, on a représenté de façon très schématique, l'extrémité d'un pistolet de projection utilisant le cordon de projection de l'invention.
  • Dans ce pistolet, on introduit le cordon de projection 1 de l'invention dans une flamme oxy-gaz 3 alimentée en gaz de combustion par les canaux 5. Dans cette flamme 3, l'extrémité 1a du cordon qui est fondue par la flamme, réagit dans cette flamme pour former l'alliage quasi cristallin et l'alliage liquide obtenu est pulvérisé par un gaz sous pression, par exemple par de l'air, introduit par les conduites 7, sous la forme de gouttelettes qui sont projetées sur un substrat.
  • Dans un pistolet de ce type, le gaz de combustion peut être un mélange d'hydrogène, d'acétylène ou de propane avec de l'oxygène et le gaz circulant dans les conduites 7 peut être un jet d'air sous pression.
  • Les exemples qui suivent illustrent la réalisation de cordons de projection conformes à l'invention et leur utilisation pour réaliser des dépôts d'alliages quasi cristallins sur des substrats en acier doux.
  • Exemple 1.
  • Dans cet exemple, on utilise le premier mode de réalisation de l'invention pour préparer un cordon de projection à partir d'une poudre d'alliage quasi cristallin obtenue par broyage, dans un malaxeur à galets concentriques en acier carburé, de petits lingots d'un alliage quasi cristallin ayant la composition atomique :

            Al62,8Cu19,5Fe8,5Cr9,1Mn0,1

  • Pour préparer le cordon, on mélange intimement dans un malaxeur
    • 96% en poids de la poudre d'alliage obtenue par broyage ayant une granulométrie de 20µm à 150µm,
    • 4% de fibres de boehmite, et
    • 4% de liant organique constitué par de l'hydroxyéthylméthylcellulose.
  • A partir du mélange obtenu, on prépare une première pâte en ajoutant la quantité suffisante d'eau, puis on malaxe énergiquement pendant une heure.
  • On prépare ensuite une deuxième pâte devant servir à former la gaine en malaxant le même liant organique que celui utilisé pour la préparation de la première pâte avec la quantité suffisante d'eau.
  • On réalise ensuite un cofilage de ces deux pâtes dans une presse pour obtenir un cordon souple de 4,75mm de diamètre externe de 60m de longueur ayant une épaisseur de gaine de 0,012mm.
  • Sur la figure 2, on a représenté le diagramme de diffraction des rayons X à une longueur d'onde de 0,17889nm de l'alliage quasi cristallin de la poudre de départ. Ce diagramme démontre la présence des phases décagonale C, O₁ et O₃.
  • Exemple 2.
  • Dans cet exemple, on suit le même mode opératoire que dans l'exemple 1 pour préparer un cordon de projection à partir d'une poudre d'alliage quasi cristallin de formule :

            Al65,2Cu18,4Fe8,2Cr8,2

    mais dans ce cas, on part d'une poudre obtenue par atomisation au jet d'argon, ayant une granulométrie de 20 à 150µm.
  • Le diagramme de diffraction des rayons X de l'alliage de départ est donné sur la figure 3. Il démontre de la présence dans la poudre de départ des phases décagonale C, O₁ et O₃.
  • Exemple 3.
  • Dans cet exemple, on suit le même mode opératoire que dans l'exemple 2, pour préparer un cordon de projection conforme au premier mode de réalisation de l'invention, mais on part d'une poudre d'alliage quasi cristallin de formule :

            Al₇₀Cu₉Fe10,5Cr10,5.

    obtenue également par atomisation, ayant une granulométrie de 20 à 150µm.
  • La figure 4 représente le diagramme de diffraction des rayons X de l'alliage de départ et démontre la présence des phases décagonale C, O₁ et O₃.
  • Exemples 4 à 9.
  • Dans ces exemples, on utilise le second mode de réalisation du cordon de l'invention, c'est-à-dire que l'on prépare l'âme du cordon, à partir des poudres des constituants pris séparément présentant les caractéristiques données dans le tableau 1 qui suit.
    Figure imgb0021
  • Pour ces préparations, on suit le même mode opératoire que dans l'exemple 1, sauf que l'on prépare la première pâte à partir d'un mélange de poudres des différents constituants en proportions telles qu'elles correspondent à la composition atomique donnée dans le tableau 2, les pourcentages en poids de poudre, de fibres et de liant étant les mêmes que dans l'exemple 1. La poudre d'aluminium finement divisée a été tout d'abord enrobée par de l'acide stéarique pour éviter son oxydation à la température ambiante.
  • Les cordons obtenus ont également un diamètre externe de 4,75mm et une épaisseur de gaine de 0,012mm.
  • Exemple 10.
  • Dans cet exemple, on prépare un cordon de projection correspondant à la variante de réalisation de l'invention. Dans ce cas, on utilise une gaine en acier à bas carbone de 18mm de large et 0,3mm d'épaisseur et on dispose sur cette bande d'acier un mélange de poudres d'aluminium, de cuivre, de fer et de chrome ayant les caractéristiques données dans le tableau 1 pour obtenir un mélange dans lequel l'ensemble poudre + gaine correspond à la composition :

            Al65,3Cu18,4Fe8,2Cr8,1.

  • On roule ensuite la bande par formage mécanique pour obtenir un fil de 4,8mm de diamètre externe.
  • Exemples 11 à 29.
  • Dans ces exemples, on utilise les cordons de projection préparés dans les exemples 1 à 10 pour réaliser des revêtements d'alliages quasi cristallins en utilisant un chalumeau à fil tel que celui représenté sur la figure 1, et en opérant dans les conditions suivantes :
    • vitesse d'avancement du cordon de 300mm/min ou 1600mm/min, ce qui conduit à des taux d'alimentation massique en poudre du chalumeau proches de 600g/h et de 3,1kg/h, respectivement
    • gaz de combustion : hydrogène, acétylène ou propane, avec de l'oxygène ; et
    • débits gaz de combustion/O₂ qui varient selon les exemples ; et
    • distance de l'origine de la buse du pistolet au substrat : 80 ou 150mm.
  • Dans tous les cas, on utilise comme substrat des plaquettes carrées d'acier doux de 50mm de côté et 2mm d'épaisseur, qui ont été préalablement décapées au jet de corindon.
  • Les conditions de dépôt utilisées pour chaque exemple sont données dans le tableau 3.
  • Après ce dépôt, on contrôle les revêtements obtenus par diffraction aux rayons X à la longueur d'onde de 0,17889nm pour vérifier qu'ils correspondent bien à des alliages quasi cristallins.
  • Dans le tableau 3, on a reporté les phases quasi cristallines identifiées dans chaque exemple et leurs fractions en masse dans le revêtement sans tenir compte de l'alumine déposée à partir du cordon.
  • Au vu de ce tableau, on constate que les cordons de projection de l'invention permettent d'obtenir facilement le dépôt d'alliages quasi cristallins.
  • Les figures 5 à 12 sont les diagrammes de diffraction des rayons X obtenus avec les dépôts des exemples 11, 12, 14-18 et 20.
  • Sur la figure 5 qui se rapporte à l'exemple 11, on voit que le diagramme est caractéristique de la phase cubique C dont les raies de diffraction sont repérées par C-100, C-110, C-111, C-200, C-210 et C-220, les chiffres suivant la lettre C correspondant aux indices de Miller des raies.
  • Les autres raies qui sont marquées gamma correspondent à l'oxyde d'aluminium introduit dans le dépôt à partir des fibres d'alumine présentes dans l'âme du cordon.
  • Les figures 6 à 12 dont les échelles ne sont pas identiques à celles de la figure 5 représentent les diagrammes de diffraction des rayons X des dépôts obtenus dans les exemples suivants :
    • exemple 12 (figure 6),
    • exemple 14 (figure 7),
    • exemple 15 (figure 8),
    • exemple 16 (figure 9),
    • exemple 17 (figure 10),
    • exemple 18 (figure 11), et
    • exemple 20 (figure 12).
  • Au vu de ces figures, on constate que
    • les diagrammes des figures 6, 8, 9 et 11 sont également caractéristiques de la phase cristalline C,
    • la figure 7 est caractéristique des phases cristallines C+H+O₁, et
    • les figures 10 et 12 sont caractéristiques des phases cristallines C+H.
  • Si l'on compare les diagrammes de diffraction des rayons X des figures 2, 3 et 4 avec ceux des figures 5, 6 et 7, respectivement, on remarque que ces derniers diagrammes sont légèrement différents mais qu'ils correspondent à un alliage quasi cristallin peu différent de l'alliage de départ.
  • Au vu du tableau 3, on remarque également que le taux de phase quasi cristalline produite ainsi que dans une large mesure la nature de ces phases ne dépend pas des paramètres de dépôt, ce qui garantit la facilité de mise en oeuvre du procédé de la présente invention.
  • Exemple 30.
  • Dans cet exemple, on vérifie la stabilité thermique des dépôts obtenus avec les cordons de l'invention.
  • Dans ce but, on soumet ces dépôts à deux types de traitement thermique qui sont, soit le maintien isotherme sous vide secondaire, en ampoule de quartz scellée, soit le maintien isotherme à l'air. Ces traitements sont appliqués sur des échantillons se présentant sous la forme de plaquettes de 1x5cm qui ont été découpées à la scie diamantée à partir des substrats en acier doux revêtus d'alliage quasi cristatlin obtenus dans les exemples 11, 15 et 20.
  • A la fin de chaque traitement thermique, l'échantillon est refroidi à la température ambiante par convection naturelle dans l'air. On l'examine ensuite par diffraction des rayons X. Etant donné la longueur d'onde utilisée (0,17889nm), cette technique permet d'étudier les matériaux de revêtement sur une profondeur de quelques micromètres à partir de la surface exposée, ce qui permet de détecter des modifications qui seraient dues à une oxydation superficielle.
  • Les résultats obtenus ont montré que les revêtements quasi cristallins obtenus à partir des cordons de l'invention étaient particulièrement stables.
  • Les conditions de traitement et les échantillons testés sont donnés dans le tableau 4 qui suit.
  • Les figures 13 à 16 sont des diagrammes de diffraction des rayons X obtenus sur les échantillons soumis au traitement thermique.
  • Si l'on compare les diagrammes de diffraction des figures 13, 14, 15 et 16 respectivement avec les diagrammes des figures 5, 8 et 12, on remarque que ces diagrammes ne sont pas modifiés.
  • Ainsi, les revêtements quasi cristallins obtenus à partir des cordons de projection de l'invention sont particulièrement stables. En effet, aucun changement de structure, qui serait révélé par des changements d'intensité relative des pics de diffraction ou bien par l'apparition de nouvelles raies, n'est décelable après traitement. De même, les maintiens en température sous air y compris à 750°C n'entrainent pas d'augmentation d'intensité des raies correspondant à l'alumine, ni ne font apparaître de raies caractéristiques d'un autre oxyde.
  • Les matériaux de revêtement élaborés à partir des cordons de l'invention résistent donc particulièrement bien à l'oxydation, propriété intéressante qui s'ajoute à leur grande stabilité thermique.
  • Exemple 36.
  • Dans cet exemple, on détermine la dureté des revêtements d'alliages quasi cristallins obtenus dans les exemples 12, 14 et 24 à 28.
  • Dans ce but, on découpe à la scie diamantée une partie des plaquettes substrats revêtues obtenues dans ces exemples pour prélever une éprouvette de 40x10mm². On enrobe ensuite cette éprouvette d'une résine pour usage métallographique, puis on la polit finement pour observation avec un microscope optique, l'éprouvette ayant été placée dans l'enrobage de telle façon que sa section polie fasse un angle de 40 à 50° par rapport à sa surface.
  • On mesure ensuite la dureté Vickers sur cette section polie de l'éprouvette à l'aide d'un microduromètre Volpert actionné par une charge de 400g. Les valeurs moyennes obtenues à partir d'une dizaine d'empreintes au moins par dépôt sont données dans le tableau 5 annexé.
  • A titre de comparaison, on a donné dans ce tableau les valeurs de dureté Vickers mesurées également sous charge de 400g pour des alliages quasi cristallins de même composition sous la forme de lingots. Cette comparaison confirme que les cordons de projection de l'invention conduisent à des revêtements de dureté élevée, équivalente à celle des alliages élaborés sous forme de lingots, et ceci quel que soit le cordon de projection utilisé, puisque les duretés sont aussi bonnes lorsqu'on utilise un cordon dont l'âme est constituée d'un mélange de poudres des éléments de l'alliage quasi cristallin.
  • Exemple 37.
  • Dans cet exemple, on caractérise les propriétés tribologiques des revêtements obtenus à partir des cordons de l'invention en déterminant leur coefficient de frottement µ qui est égal à Ft(N)/Fn(N), c'est-à-dire au rapport entre la force de résistance Ft à l'avance d'un indenteur auquel est appliquée une force normale Fn, toutes deux étant exprimées en Newton.
  • Pour mesurer ce coefficient, on utilise un testeur CSEM (du type pion/disque) équipé soit d'un indenteur diamant Vickers, soit d'une bille Brinell en acier à outil 100C6 de 1,58mm de diamètre. On place horizontalement sur le testeur un échantillon des substrats d'acier revêtus d'alliage quasi cristallin obtenus dans les exemples 12, 14 et 24 à 28, et on les met en rotation à une vitesse uniforme d'un tour par minute. On applique l'indenteur avec une force normale constante Fn de 5 Newton et on creuse dans le revêtement une rayure circulaire d'un diamètre de 18mm (dans le cas de l'indenteur au diamant) ou de 25mm (dans le cas de la bille Brinell en acier). Dans le cas du diamant, seule la première rayure a été retenue.
  • On détermine le coefficient de frottement à partir de la mesure de la force de résistance, mesurée tangentiellement à la trajectoire de l'indenteur, qui comprend donc les effets cumulés du labourage du revêtement et de la force de frottement vraie.
  • Dans le cas de la bille Brinell, on mesure Ft pendant la première rayure, puis on poursuit l'essai pendant 5 tours supplémentaires de telle sorte que l'indenteur en acier achève de creuser son sillon dans le revêtement. Le coefficient de frottement est alors mesuré pendant le cinquième tour, ce qui exclut alors la contribution au frottement dû au tabourage du sillon. Le coefficient de frottement intègre aussi l'effet qui résulte éventuellement du transfert de matière du revêtement vers l'indenteur, car on utilise une bille neuve pour chaque essai.
  • On a pu noter que cet effet n'est pas observé de façon systématique lors d'un examen de la surface de la bille par microscopie optique après l'essai.
  • En revanche, une augmentation importante de la force de frottement est constatée lorsque la porosité du dépôt est importante. En effet, dans ce cas, le déplacement de l'indenteur entraine la compaction du matériau de revêtement sous-jacent et par conséquent accroît, lors des premiers passages, la surface de contact entre l'indenteur et le matériau et de ce fait la force de résistance au déplacement de l'indenteur.
  • Les résultats obtenus sont donnés dans le tableau 6.
  • Dans ce tableau, on a donné également les valeurs des coefficients de frottement obtenus dans le cas de deux dépôts de 1mm d'épaisseur réalisés sur des substrats en acier doux à l'aide d'une torche à plasma en utilisant les poudres d'alliages quasi cristallins de départ utilisées dans les exemples 2 et 3.
  • Au vu de ces résultats, on remarque que les coefficients de frottement obtenus en projetant les revêtements à partir des cordons de l'invention sont équivalents aux coefficients de frottement obtenus lorsqu'on réalise le revêtement par dépôt de l'alliage au moyen d'une torche à plasma.
  • Exemple 38.
  • Dans cet exemple, on détermine les propriétés thermiques et électriques du revêtement d'alliage quasi cristallin obtenu dans l'exemple 12, qui présente une épaisseur de 3mm.
  • On évalue tout d'abord la conductivité thermique en utilisant un montage de mesure de la diffusivité thermique.
  • Pour cet essai, on sépare tout d'abord le revêtement du substrat par usinage mécanique de ce dernier, puis on irradie un échantillon de forme cylindrique de 3mm d'épaisseur et de 10mm de diamètre prélevé dans le revêtement, à l'aide d'un faisceau laser d'énergie égale à 20J et de 5.10⁻⁶s de durée d'impulsion. On détecte l'élévation de température qui s'établit sur la face opposée de l'échantillon en fonction du temps, au moyen d'un capteur infrarouge. On déduit ensuite de cette mesure la diffusivité thermique α qui est reliée à la conductivité thermique K par la relation K=αCpd où Cp est la chaleur spécifique de l'alliage et d sa masse spécifique.
  • On a mesuré la chaleur spécifique à la température ambiante à l'aide d'un calorimètre à balayage SETARAM et on a obtenu la masse spécifique par pesée, rapportée au volume de l'échantillon.
  • On a obtenu les résultats suivants :
    • α = 1,3.10⁻⁶m²/s
    • Cp=600J/kgK
    • d=4300kg/m³
    • K=3,3W/mK.
  • Pour effectuer les mesures électriques, on a découpé dans l'échantillon de revêtement d'alliage quasi cristallin de l'exemple 12 séparé de son substrat, une éprouvette de dimension 1x1x10mm, à l'aide d'une scie électrolytique. On a mesuré ensuite la résistivité électrique de cette éprouvette à la température ambiante par la méthode dite à 4 points, en utilisant un courant de mesure constant de 10mA et en mesurant la tension aux bornes des électrodes intérieures avec un nanovoltmètre de grande précision.
  • On a ainsi obtenu une résistivité électrique 3ohms/mètre, soit une conductivité électrique de 0,33 ohm⁻¹m⁻¹.
  • Les valeurs de conductivité thermique, d'une part, et de conductivité électrique, d'autre part, sont particulièrement faibles pour un matériau qui présente par ailleurs des caractéristiques essentiellement métalliques.
  • Aussi, les dépôts d'alliages quasi cristallins de la présente invention sont particulièrement intéressants pour de nombreuses applications, par exemple pour la réalisation de barrières thermiques, d'isolation, de chauffage par effet Joule ou de chauffage par induction électromagnétique.
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027

Claims (12)

  1. Cordon pour revêtement par projection au chalumeau, caractérisé en ce qu'il comprend une âme comprenant un liant organique et une poudre ou un mélange de poudres apte à former un alliage quasi cristallin, cette âme étant entourée par une gaine en matériau organique.
  2. Cordon selon la revendication 1, caractérisé en ce que l'âme contient de plus un liant minéral.
  3. Cordon selon la revendication 2, caractérisé en ce que le liant minéral est constitué par des fibres d'alumine.
  4. Cordon selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la poudre apte à former un alliage quasi cristallin est une poudre d'alliage de composition :

            AlaXb(B,C)cMdNeIf

    dans laquelle
    - X représente au moins un élément choisi parmi Cu et Co,
    - M représente un ou plusieurs éléments du groupe comprenant Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga et Pd,
    - N représente un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares,
    - I représente une ou plusieurs impuretés d'alliage, et
    - a, b, c, d, e et f représentent des pourcentages atomiques tels qu'ils satisfont les relations suivantes :
    48≦a<92
    Figure imgb0028
    0<b≦30
    Figure imgb0029
    0≦c≦5
    Figure imgb0030
    8≦d≦30
    Figure imgb0031
    0≦e≦4
    Figure imgb0032
    0≦f≦2
    Figure imgb0033
    a+b+c+d+e+f=100
    Figure imgb0034
    b+d+e≦45.
    Figure imgb0035
  5. Cordon selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le mélange de poudres apte à former un alliage quasi cristallin est un mélange de poudres des éléments Al, X, B, C, M, N, et I avec X représentant au moins un élément choisi parmi Cu et Co, M représentant un ou plusieurs éléments du groupe comprenant Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga et Pd, N représentant un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares, et I représentant une ou plusieurs impuretés d'alliage,
    dans des proportions telles que le mélange de poudres corresponde à la composition de formule :

            AlaXb(B,C)cMdNeIf

    dans laquelle X, M, N et I ont la signification donnée ci-dessus, et a, b, c, d, e et f représentent des pourcentages atomiques tels qu'ils satisfont les relations suivantes : 48≦a<92
    Figure imgb0036
    0<b≦30
    Figure imgb0037
    0≦c≦5
    Figure imgb0038
    8≦d≦30
    Figure imgb0039
    0≦e≦4
    Figure imgb0040
    0≦f≦2
    Figure imgb0041
    a+b+c+d+e+f=100
    Figure imgb0042
    b+d+e≦45
    Figure imgb0043
  6. Cordon selon la revendication 5, caractérisé en ce qu'au moins deux éléments de la composition sont présents dans le mélange de poudres sous la forme d'une combinaison de ces éléments.
  7. Cordon selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la gaine et le liant organique sont constitués d'un dérivé de cellulose choisi parmi la méthylcellulose, l'hydroxyméthylcellulose, l'hydroxyéthylméthylcellulose et la carboxyméthylcellulose.
  8. Cordon selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'âme comprend en outre de l'eau et/ou un plastifiant organique.
  9. Cordon pour revêtement par projection au chalumeau, caractérisé en ce qu'il comprend une âme constituée d'un mélange de poudres inorganiques et une gaine en matériau inorganique, les poudres du mélange et la gaine étant constituées d'un ou plusieurs éléments choisis parmi Al, X, B, C, M, N et I avec X représentant au moins un élément choisi parmi Cu et Co, M représentant un ou plusieurs éléments du groupe comprenant Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Ga et Pd, N représentant un ou plusieurs éléments du groupe comprenant W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge et les terres rares, et I représentant une ou plusieurs impuretés d'alliage, en proportions telles que l'ensemble (gaine + mélange de poudres) corresponde à une composition d'alliage quasi cristallin.
  10. Cordon selon la revendication 9, caractérisé en ce que la composition d'alliage quasi cristallin répond à la formule :

            AlaXb(B,C)cMdNeIf

    dans laquelle X, M, N et I ont la signification donnée ci-dessus et a, b, c, d, e et f représentent des pourcentages atomiques tels qu'ils satisfont les relations suivantes : 48≦a<92
    Figure imgb0044
    0<b≦30
    Figure imgb0045
    0≦c≦5
    Figure imgb0046
    8≦d≦30
    Figure imgb0047
    0≦e≦4
    Figure imgb0048
    0≦f≦2
    Figure imgb0049
    a+b+c+d+e+f=100
    Figure imgb0050
    b+d+e<45.
    Figure imgb0051
  11. Cordon selon la revendication 10, caractérisé en ce que la gaine est en acier, en aluminium, en cuivre ou en nickel.
  12. Procédé de dépôt sur un substrat d'un revêtement d'alliage quasi cristallin, caractérisé en ce qu'il consiste à utiliser un pistolet de projection à flamme oxy-gaz et/ou arc électrique ou plasma et à alimenter ce pistolet au moyen d'un cordon selon l'une quelconque des revendications 1 à 12, de façon à projeter sur le substrat l'alliage quasi cristallin obtenu par réaction dans la flamme des constituants du cordon.
EP92400637A 1991-03-13 1992-03-11 Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline Expired - Lifetime EP0504048B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9103021 1991-03-13
FR9103021A FR2673871B1 (fr) 1991-03-13 1991-03-13 Cordon pour revetement par projection au chalumeau et son utilisation pour deposer sur un substrat une phase quasi cristalline.

Publications (2)

Publication Number Publication Date
EP0504048A1 true EP0504048A1 (fr) 1992-09-16
EP0504048B1 EP0504048B1 (fr) 1998-06-03

Family

ID=9410680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400637A Expired - Lifetime EP0504048B1 (fr) 1991-03-13 1992-03-11 Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline

Country Status (10)

Country Link
US (1) US5424127A (fr)
EP (1) EP0504048B1 (fr)
JP (1) JP3182623B2 (fr)
AT (1) ATE166928T1 (fr)
AU (1) AU649109B2 (fr)
CA (1) CA2062547C (fr)
DE (1) DE69225734T2 (fr)
ES (1) ES2119802T3 (fr)
FR (1) FR2673871B1 (fr)
PL (1) PL168060B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699554A1 (fr) * 1992-12-23 1994-06-24 Metallisation Ind Ste Nle Barrières thermiques, matériau et procédé pour leur élaboration.
WO1999000458A1 (fr) * 1995-04-04 1999-01-07 Centre National De La Recherche Scientifique Dispositifs pour l'absorption du rayonnement infrarouge comprenant un element en alliage quasi-cristallin
ES2131451A1 (es) * 1996-10-04 1999-07-16 Inst Nacional De Tecnica Aeroe Recubrimientos cuasicristalinos tipo barrera termica para la proteccion de componentes de las zonas calientes de turbinas.
WO2008050099A1 (fr) * 2006-10-24 2008-05-02 Isis Innovation Limited Matériau composite à matrice métallique

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671808B1 (fr) * 1991-01-18 1994-06-17 Centre Nat Rech Scient Alliages d'aluminium a proprietes specifiques.
FR2685349B1 (fr) * 1991-12-20 1994-03-25 Centre Nal Recherc Scientifique Element de protection thermique constitue par un alliage d'aluminium quasi-cristallin.
AU663936B2 (en) * 1992-08-05 1995-10-26 Denso Corporation Aluminum alloy fin material for heat-exchanger
US6017403A (en) * 1993-03-02 2000-01-25 Yamaha Corporation High strength and high rigidity aluminum-based alloy
US20060121302A1 (en) * 2004-12-07 2006-06-08 Erickson Gary C Wire-arc spraying of a zinc-nickel coating
US20080093350A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Superfine/nanostructured cored wires for thermal spray applications and methods of making
CN103934589B (zh) * 2014-05-05 2016-02-10 滁州中星光电科技有限公司 用于陶瓷或玻璃的铝基准晶合金复合钎焊料
JP6393105B2 (ja) * 2014-07-23 2018-09-19 テイ・エス テック株式会社 車両用シート
ITUB20155076A1 (it) * 2015-10-27 2017-04-27 E Wenco S R L Pellicola metallica e metodo per riscaldarla
CN114098413B (zh) * 2018-07-27 2023-02-17 佛山市顺德区美的电热电器制造有限公司 炒锅及其制备方法
CN110754953B (zh) * 2018-07-27 2022-03-22 佛山市顺德区美的电热电器制造有限公司 准晶涂层及其制备方法、锅具和烹饪器具应用
CN110754954B (zh) * 2018-07-27 2023-09-01 佛山市顺德区美的电热电器制造有限公司 不粘涂层和具有该不粘涂层的不粘锅
FR3135214B1 (fr) * 2022-05-04 2024-07-12 Saint Gobain Ct Recherches Cordon pour projection thermique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1443142A (fr) * 1965-03-11 1966-06-24 Commissariat Energie Atomique Cordon pour revêtement par projection au chalumeau
DE2042797A1 (de) * 1969-08-28 1971-03-11 Commissariat Energie Atomique Verwendung eines zur Beschickung einer Flammspritzpistole geeigneten flexiblen Stranges
FR2177134A5 (en) * 1972-03-20 1973-11-02 British Insulated Callenders Composite electrode wires - for arc spraying
EP0100287A1 (fr) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Alliages amorphes ou microcristallins à base d'aluminium
EP0356287A1 (fr) * 1988-08-04 1990-02-28 Centre National De La Recherche Scientifique (Cnrs) Matériaux de revêtement pour alliages métalliques et métaux

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987003A (en) * 1988-03-04 1991-01-22 Alcan International Limited Production of aluminum matrix composite coatings on metal structures
US5204191A (en) * 1988-08-04 1993-04-20 Centre National De La Recherche Scientifique Coating materials for metal alloys and metals and method
GB8914996D0 (en) * 1989-06-29 1989-08-23 Sprayforming Dev Ltd An improved process for the spray forming of metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1443142A (fr) * 1965-03-11 1966-06-24 Commissariat Energie Atomique Cordon pour revêtement par projection au chalumeau
DE2042797A1 (de) * 1969-08-28 1971-03-11 Commissariat Energie Atomique Verwendung eines zur Beschickung einer Flammspritzpistole geeigneten flexiblen Stranges
FR2177134A5 (en) * 1972-03-20 1973-11-02 British Insulated Callenders Composite electrode wires - for arc spraying
EP0100287A1 (fr) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Alliages amorphes ou microcristallins à base d'aluminium
EP0356287A1 (fr) * 1988-08-04 1990-02-28 Centre National De La Recherche Scientifique (Cnrs) Matériaux de revêtement pour alliages métalliques et métaux

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699554A1 (fr) * 1992-12-23 1994-06-24 Metallisation Ind Ste Nle Barrières thermiques, matériau et procédé pour leur élaboration.
EP0605273A1 (fr) * 1992-12-23 1994-07-06 SOCIETE NOUVELLE DE METALLISATION INDUSTRIES (Société Anonyme) Barrières thermiques, materiau et procédé pour leur élaboration
US5472920A (en) * 1992-12-23 1995-12-05 Societe Nouvelle De Metallisation Industries Thermal barriers, material and process for their production
WO1999000458A1 (fr) * 1995-04-04 1999-01-07 Centre National De La Recherche Scientifique Dispositifs pour l'absorption du rayonnement infrarouge comprenant un element en alliage quasi-cristallin
US6589370B1 (en) * 1995-04-04 2003-07-08 Centre National De La Recherche Scientifique Devices for absorbing infrared radiation comprising a quasi-crystalline element
ES2131451A1 (es) * 1996-10-04 1999-07-16 Inst Nacional De Tecnica Aeroe Recubrimientos cuasicristalinos tipo barrera termica para la proteccion de componentes de las zonas calientes de turbinas.
WO2008050099A1 (fr) * 2006-10-24 2008-05-02 Isis Innovation Limited Matériau composite à matrice métallique

Also Published As

Publication number Publication date
FR2673871B1 (fr) 1995-03-10
EP0504048B1 (fr) 1998-06-03
DE69225734T2 (de) 1999-01-14
CA2062547A1 (fr) 1992-09-14
AU1148492A (en) 1992-09-17
CA2062547C (fr) 2002-01-15
AU649109B2 (en) 1994-05-12
US5424127A (en) 1995-06-13
FR2673871A1 (fr) 1992-09-18
JPH0688200A (ja) 1994-03-29
JP3182623B2 (ja) 2001-07-03
DE69225734D1 (de) 1998-07-09
PL293821A1 (en) 1992-09-21
ATE166928T1 (de) 1998-06-15
PL168060B1 (pl) 1995-12-30
ES2119802T3 (es) 1998-10-16

Similar Documents

Publication Publication Date Title
EP0504048B1 (fr) Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline
CA2196589C (fr) Nitrure de titane dope par du bore, revetement de substrat a base de ce nouveau compose, possedant une durete elevee et permettant une tres bonne resistance a l&#39;usure, et pieces comportant un tel revetement
EP0521138B1 (fr) Alliages d&#39;aluminium, les substrats revetus de ces alliages et leurs applications
EP0347727B1 (fr) Procédé de dépôt d&#39;un revêtement de couleur noire sur un substrat et revêtement de couleur noire obtenu par ce procédé
CA2596622C (fr) Procede d&#39;elaboration par projection thermique d&#39;une cible a base de silicium et de zirconium
EP2747916B1 (fr) Procédés de fabrication d&#39;une pièce comprenant de l&#39;aluminium
WO2018197821A1 (fr) Vitrage colore et son procede d&#39;obtention
FR2463752A1 (fr) Poudre pour la formation d&#39;un enduit a proprietes thermiques
EP0356287B1 (fr) Matériaux de revêtement pour alliages métalliques et métaux
CA2839251C (fr) Poudre d&#39;un alliage a base d&#39;uranium et de molybdene en phase .gamma.-metastable, composition de poudres comprenant cette poudre, et utilisations desdites poudre et composition
EP3615703B1 (fr) Cible pour l&#39;obtention d&#39;un vitrage colore
Lackner et al. Pulsed laser deposition: a new technique for deposition of amorphous SiOx thin films
Liu et al. Electrochemical characterization of Ti5Si3/TiC nanocomposite coating in HCl solution
JP6722073B2 (ja) シリコン溶射膜及びその製造方法
Vysikaylo et al. Cooper-carbon nanostructured composite coatings with controlled structure
Costa et al. Boron film laser deposition by ultrashort pulses for use as neutron converter material
CA2295711C (fr) Dispositifs pour l&#39;absorption du rayonnement infrarouge comprenant un element en alliage quasi-cristallin
Chua et al. Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc
Ning et al. Corrosion resistance of TaSiCN coatings in NaCl-KCl molten salt
WO2016151228A1 (fr) Alliage monophasique d&#39;or et de tungstene
Toru et al. Optical properties of Al2O3/Al cermets obtained by plasma spraying: role of composition and microstructure
Meneses et al. D. Toru1, K. Wittmann-Teneze1, A. Quet1, D. Damiani1, H. Piombini1
Vasquez et al. STUDY OF THE STRUCTURE AND FORMATION OF CHROMATE CONVERSION COATINGS ON THIN FILMS OF COPPER-CONTAINING INTERMETALLIC CONSTITUENTS IN AA2024-T3
FR2808808A1 (fr) Projection de titane sur prothese medicale avec refroidissement par co2 ou argon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930217

17Q First examination report despatched

Effective date: 19950215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980603

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980603

REF Corresponds to:

Ref document number: 166928

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69225734

Country of ref document: DE

Date of ref document: 19980709

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980903

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980903

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980903

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2119802

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20090316

Year of fee payment: 18

Ref country code: ES

Payment date: 20090324

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 18

Ref country code: CH

Payment date: 20090316

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090320

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090430

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090312

Year of fee payment: 18

BERE Be: lapsed

Owner name: SOC. NOUVELLE DE METALLISATION INDUSTRIES *SNMI

Effective date: 20100331

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE *CNRS

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100311

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100311

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090325

Year of fee payment: 18

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100311

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616