EP0356287A1 - Matériaux de revêtement pour alliages métalliques et métaux - Google Patents

Matériaux de revêtement pour alliages métalliques et métaux Download PDF

Info

Publication number
EP0356287A1
EP0356287A1 EP89402187A EP89402187A EP0356287A1 EP 0356287 A1 EP0356287 A1 EP 0356287A1 EP 89402187 A EP89402187 A EP 89402187A EP 89402187 A EP89402187 A EP 89402187A EP 0356287 A1 EP0356287 A1 EP 0356287A1
Authority
EP
European Patent Office
Prior art keywords
coating
materials
phase
substrate according
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89402187A
Other languages
German (de)
English (en)
Other versions
EP0356287B1 (fr
Inventor
Jean-Marie Dubois
Pierre Weinland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0356287A1 publication Critical patent/EP0356287A1/fr
Application granted granted Critical
Publication of EP0356287B1 publication Critical patent/EP0356287B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent

Definitions

  • the present invention relates to coating materials for metallic substrates, the substrates coated with these materials and the applications of these coated substrates.
  • Copper cooking utensils are also known, which traditionally have an internal coating of tin. This coating, although particularly suitable for food contact, has the disadvantage of being rapidly deteriorated due to its ductility.
  • European patent 100287 describes a family of amorphous or microcrystalline alloys having improved hardness, usable as reinforcing elements of other materials or for obtaining surface coatings improving the resistance to corrosion or wear.
  • a large number of the alloys described in this patent have a major drawback since, during their use, they are subjected to a temperature above 200 ° C. Indeed, they are not stable at temperature, and during a heat treatment, in particular the treatment to which they are subjected during deposition on a substrate, they change their structure: return to the microcrystalline state when it acts of essentially amorphous alloys, grain magnification for essentially microcrystalline alloys which initially have a grain size less than one micron. This change in crystalline or morphological structure induces a change in the physical characteristics of the material which essentially affects its density. This results in the appearance of micro-cracks, hence a brittleness, which adversely affects the mechanical stability deposits.
  • the object of the present invention is to provide a coating material which makes it possible to retain the good properties of certain metallic substrates commonly used while eliminating the disadvantages which they present on the surface.
  • the materials constituting these coatings have an improved hardness, a lower coefficient of friction, good stability at temperatures above 300 ° C. necessary in particular for cooking utensils.
  • quasi-crystalline phase is meant a phase or a metallic compound whose study by radiation diffraction reveals the existence of rotation symmetries normally incompatible with translation symmetry, that is to say the existence of axes of order 5, 8, 10 or 12.
  • phases or compounds mention may be made of the icosahedral quasicrystalline phases which are solid metal phases which diffract the electrons like a simple crystal, but which have a group of symmetry m35 with respect to a point which is incompatible with network translations. (Cf. D. Shechtman, I. Blech, D. Gratian, JW Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, Vol. 53, No.
  • decagonal quasi-crystalline phases which are solid metallic phases which diffract the electrons like a simple crystal, but which have a group of symmetry 10 / m or 10 / mmm with respect to a point, a long order distance and one-dimensional translational symmetry.
  • Cf. L. Bendersky Quasicrystal with One Dimensional Translational Symmetry and a Tenfold Rotation Axis, Physical Review Letters, Vol. 55, N ° 14, 1985 page 1461-1463).
  • the stable quasi-crystalline phases of the coating materials according to the invention grow in a similar fashion to the usual crystals. They therefore behave as defined compounds and have transformation points located at higher temperatures than those of the eutectics of common binary aluminum alloys, Al / Al2Cu (547 ° C), Al / Si (577 ° C) , Al / Al3Fe (655 ° C), for example. This results in a stability which exists beyond or up to the vicinity of these eutectic points.
  • the materials according to the invention are obtained by conventional methods.
  • Coating materials according to the invention are particularly useful for commercial aluminum alloys, and in particular for so-called “food” alloys or so-called “foundry” alloys and for copper.
  • the material according to the invention is deposited on the substrate by spraying droplets of the material.
  • a powder torch can be used, such as the "Thermospray gun type 5P" sold by Metco Inc.
  • the material according to the invention in mass form is ground and sieved to obtain a powder whose grains have a dimension between approximately 0.02 mm and 0.2 mm, preferably less than 0.074 mm.
  • the material according to the invention will be deposited by a product in the vapor phase, for example by sputtering, or by using a plasma torch supplied with powder as indicated above.
  • - shot blasting for example using steel microbeads having a diameter of 0.5 to 1 mm.
  • - polishing for example using metallography paper, provided that the closed porosity of the coating is negligible.
  • a supersonic jet torch can be used which accelerates the powder of material according to the invention at speeds between Mach 6 and Mach 14.
  • the coatings obtained were characterized by their thickness (E.), their open porosity rate (PO), their adhesion index (IE), their coefficient of friction (CF), their hardness (D.) and their rate of quasi-crystalline phase (QC).
  • the open porosity (P.O.) rate was estimated from scanning microscopy images obtained using a SEM 505 scanning microscope from Philips.
  • adhesion indexes were assigned after fracture during a resilience test as follows: - index A when there is no visible detachment at the substrate / deposition interface; grip is considered perfect. - index B when at most 3 cracks are visible at the substrate / deposition interface, in optical metallography, with a magnification of 50. - index E when a detachment is visible at the substrate / deposition interface.
  • the coefficient of friction C.F. was evaluated during a scratch resistance test by a Vickers diamond indenter.
  • the hardness (Hv30) was determined using the WOLPERT durometer V-Testor 2, under load of 30 grams.
  • the existence of quasi-crystalline phases is confirmed by X-ray diffraction.
  • the thermal stability of the materials according to the invention was studied by differential scanning calorimetry using a SETARAM calorimeter.
  • a raw casting material obtained in the previous example was ground in a carbide steel roller mill.
  • the resulting powder was sieved and the fraction having a diameter of less than 0.074 mm was retained.
  • the hydrogen flow rate was 47 l / min and the oxygen flow rate was 28 l / min.
  • the part was maintained under an atmosphere of N2 at 5% of H2.
  • the substrate temperature remained below 200 ° C for the duration of the projection.
  • the coatings were polished with 1200 grit metallography paper.
  • the characteristics of the coatings R1 to R7 obtained from the materials M1 to M5 are collated in Table 2 below. TABLE 2 Rev. Mast. E. ( ⁇ m) PO IA CF D. (Hv30) QC (% by mass) R1 M1 30 ⁇ 10 10% B 0.5 560 > 90% R2 M1 50 ⁇ 10 35% AT 0.5 410 > 90% R3 M1 50 ⁇ 10 40% AT 0.5 370 > 90% R4 M2 40 ⁇ 10 30 % AT 500 > 80% R5 M3 40 ⁇ 10 30 % AT 480 > 80% R6 M4 50 ⁇ 10 40% B 510 > 60% R7 M5 30 ⁇ 10 30 % AT 0.55 510 > 60%
  • the residual phases are too small in proportion to be identified.
  • the residual phase contains a mixture of Al2Cu, Al7Cu2Fe, Al6Fe, Al and Si.
  • the residual phase contains a mixture of Al2Cu and Al3V.
  • the quasicrystalline structure of the materials of the invention induces great thermal stability of the coatings obtained.
  • the temperature Tx determined is that of the substrate, taking into account the small relative thickness of the coating.
  • the coating has a stability at least equal to that of the support.
  • the quasi-crystalline phase of the material according to the invention does not undergo any transformation: neither grain enlargement, nor change in grain structure and the possible amorphous phase is transformed into phase crystalline.
  • the coating will therefore be thermally stable whatever the process for obtaining the material according to the invention.
  • the proportion of quasi-crystalline phase corresponds to the ratio of the area of the peaks attributed to the quasi-crystalline phase to the total area visible peaks.
  • the slope of the curve gives a coefficient of friction of 1.6 for the substrate alone and 0.5 for R3.
  • the slope is modified: the indentor having crossed the coating layer, penetrated into the substrate and the slope of the curve from this point is equivalent to that from the curve in fig. 7.
  • the total length of a stripe corresponds to the 60 N plotted on the abscissa on the curve in fig. 8.
  • the indentor crosses the coating only on the final third of the scratch. From the point where the indentor has passed through the coating, a white border characteristic of the substrate material displaced by the indentor is formed on the image. The coating is damaged, but not torn off by plates.
  • Fig. 11 represents the scanning microscopy image of the coating R1 (the white portion of the horizontal line at the bottom of the image represents 1 mm) and Fig. 12 that of the coating R2 (the white portion of the horizontal line at the bottom 0.1 mm).
  • the area A occupied by the deposited particles P.O. 1- (A / S) was measured on a reference surface of area S of such an image.
  • Example 3 The materials of Example 3, crude casting, were deposited on a substrate identical to that of Example 2, using the method of Example 2. The coated substrates obtained were characterized and the results are collated in Table 5.
  • Table 5 Rev. Mast. E. ( ⁇ m) PO IA CF D. (Hv30) QC (% in vol) R8 M6 45 ⁇ 10 40% E 380 0% R9 M7 40 ⁇ 10 E 0.95 400 0% R10 M8 40 ⁇ 10 E 370 ⁇ 20%
  • the coating R8 essentially consists of a mixture of Al2Cu (t-lines), cubic aluminum with centered faces (line A) and of indeterminate amorphous or poorly crystallized compound ( lines a).
  • the I lines of the icosahedral phase and the D lines of the decagonal phase do not exist.
  • the coating R9 comprises, in addition to the low proportion of quasi-crystalline phase, a mixture of Al2Cu and Al3V.
  • Example 2 Five substrates were prepared by brushing with a wire brush and / or by sandblasting. Then, a powder of the material M1, obtained according to the method of Example 2, was applied to each of the substrates with a supersonic jet. The powder was thus accelerated in a high pressure nitrogen jet, up to a speed of Mach 10; it melted by passing through a reducing flame and it was deposited on the substrates to give the coated substrates R11 to R15.
  • FIGS. 13a, 13b, 13c, 13d and 13 e represent the Hv30 microduretures obtained respectively with the coated substrates R11, R12, R13, R14 and R15.
  • the microhardness was measured on the edge of the coated substrates, along a straight line perpendicular to the surface of the substrate. It should be noted that certain coated substrates have a surface hardness which exceeds 500 kg / mm2.
  • the alloys M9 and M10 of Example 1 were prepared and reduced to powder according to the method of Example 2. These alloys were applied to a AU5GT substrate according to the procedure of Example 3.
  • the coated substrates obtained R16 and R17 were used to evaluate the resistance to oxidation of coatings and therefore their performance when used in the field of food cooking. To this end, the coated substrates were first mechanically polished to obtain an optical polish, then subjected to air in treatments isotherms at 300 ° C and 400 ° C with a duration of 30 hours and 144 hours. By comparison, an uncoated substrate plate and an 18/8 stainless steel plate were subjected to the same treatments.
  • the optical micrographs of the test pieces obtained, without polishing after the heat treatment, show that the quasicrystalline deposits M9 and M10 show no visible degradation of their surface, while the substrate AU5GT and the stainless steel show a very marked deterioration in their area. This deterioration is due to the formation of oxides as shown in FIGS. 14 and 15.
  • the surface condition of the quasicrystalline deposits M9 and M10 being practically unchanged, the properties which result directly from it, for example the anti -adherent, are kept.
  • FIG. 14 represents counts of the number of pulses, as a function of the duration of the heat treatment, received on the analyzer of a Castaing probe set on the oxygen emission line for the coated substrates R16 and R17 , and for the aforementioned comparative substrates, the temperature being fixed at 400 ° C.
  • FIG. 15 represents counts of the number of pulses, as a function of the heat treatment temperature, received on the analyzer of a Castaing probe calibrated on the oxygen emission line for the coated substrates R16 and R17 , and for the aforementioned comparative substrates, in 144 hours.
  • the quasicrystalline coatings of the present invention resist oxidation better than the comparative substrates of AU5GT alloy and stainless steel, and this more particularly at 400 ° C.
  • the thickness of the deposit after brushing using a wire brush almost completely disappeared the open porosity of the coating. Only a closed porosity of 15% remains.
  • a comparison of all the characteristics of the coatings according to the invention and of the coatings of the prior art, and in particular the adhesion index, the coefficient of friction and the proportion of quasi-crystal for the coatings shows that the choice of materials with a high proportion of quasi-crystalline phase makes it possible to obtain better quality coatings.
  • the coatings not only do not mask the good properties of the alloys of the prior art, but also they exhibit good adhesion to the substrate due to the temperature stability of their structure.
  • the coatings according to the invention are suitable for different uses.
  • the lubricating agent coated on the substrate coated with a material according to the invention permeates the pores of the coating.
  • a bleeding phenomenon occurs. This property is useful for cooking utensils that are not not subjected to washing with detergents.
  • the coating materials according to the invention are particularly suitable for grills, crepe makers. Their great hardness allows them to be cleaned by scraping, without the need to use detergents.
  • the materials according to the invention having a large porosity find another interesting application in the field of anti-friction bearings.
  • the coatings according to the invention are particularly suitable for the production of anti-wear surfaces (reinforcement frame airborne, jackets and pistons, soles of iron) or in the manufacture of reference surfaces (for example for machine tool tables, for precision devices). They are also suitable for various cooking utensils without fat: for these utensils, the smoother the cooking surface, that is to say, the lower the porosity, the less the food will tend to adhere during cooking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)
  • Cookers (AREA)
  • Sliding-Contact Bearings (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

L'invention concerne des matériaux pour le revêtement d'alliages métalliques ou de métaux, destinés à améliorer les performances desdits alliages ou métaux. Ces matériaux ont une composition qui répond à la formule générale Al Cu Fe X I , dans laquelle X représente un ou plusieurs éléments choisis parmi V, Mo, Ti, Zr, Nb, Cr, Mn, Ru, Rh, Ni, Mg, W, Si et les terres rares, I représente les impuretés d'élaboration inévitables, e<=2, 14<=b<=30, 7<=c<=20, 0<=d<=10, avec c+d>= 10 et a+b+c+d+e=100% en nombre d'atomes et ils contiennent au moins 40% en masse d'une phase quasi-cristalline icosaédrique et/ou une phase quasi-cristalline décagonale. Ces matériaux sont utiles notamment pour le revêtement de cuivre, d'alliages d'alluminium ou d'alliages de cuivre dans la fabrication d'ustensiles de cuisson, de paliers antifriction, de surfaces anti-usure et de surfaces de référence.

Description

  • La présente invention concerne des matériaux de revêtement pour des substrats métalliques, les substrats revêtus de ces matériaux et les applications de ces substrats revêtus.
  • Divers métaux ou alliages métalliques, par exemple les alliages d'aluminium, ont trouvé jusqu'ici de nombreuses application en raison de leur propriétés intéressantes et notamment leurs propriétés mécaniques, leur bonne conductibilité thermique, leur légèreté, leur faible coût. Ainsi, on connaît par exemple les ustensiles et appareils de cuisson, les paliers anti-friction, les chassis ou supports d'appareillage, diverses pièces obtenues par moulage. Le cuivre, à cause de son excellente conductibilité thermique, est également très utilisé pour les appareils de cuisson.
  • Toutefois, ces métaux ou alliages métalliques présentent des inconvénients liés à leur faible dureté, leur faible résistance à l'usure, leur faible résistance à la corrosion.
  • Pour ce qui concerne les ustensiles de cuisson, deux problèmes essentiels se posent. D'une part, les aliments ont tendance à attacher sur les surfaces en alliage d'aluminium en cours de cuisson. D'autre part, le nettoyage des dispositifs de cuisson comportant des surfaces de dureté insuffisante (par exemple les grils en alliage d'aluminium) est difficile. Ce type de dispositif se nettoie de façon commode par grattage. Un tel procédé est toutefois difficilement utilisable pour les surfaces en alliage de faible dureté car il entraîne une dégradation rapide de l'état de surface.
  • On connaît également les ustensiles de cuisson en cuivre qui comportent traditionnellement un revêtement interne d'étain. Ce revêtement, bien que particulièrement adapté au contact alimentaire, présente cependant l'inconvénient d'être rapidement détérioré du fait de sa ductilité.
  • Différentes solutions ont été proposées pour tenter de résoudre ces problèmes. L'une des solutions consiste à remplacer les alliages d'aluminium par d'autres matériaux, par exemple des aciers éventuellement inoxydables ou munis de revêtements métalliques. Les avantages liés à la bonne conductibilité thermique sont alors perdus. En outre, pour éviter l'adhérence des aliments, on a proposé des revêtements, par exemple en téflon. Mais de tels revêtements résistent moins bien au grattage que le substrat en alliage d'aluminium lui-même et leur stabilité thermique est relativement faible.
  • Différentes tentatives ont été faites pour obtenir des alliages d'aluminium améliorés. Ainsi, le brevet européen 100287 décrit une famille d'alliages amorphes ou microcristallins présentant une dureté améliorée, utilisables comme éléments de renforcement d'autres matériaux ou pour l'obtention de revêtements superficiels améliorant la résistance à la corrosion ou à l'usure. Mais un grand nombre des alliages décrits dans ce brevet présentent un inconvénient majeur dès lors que, au cours de leur mise en oeuvre, ils sont soumis à une température supérieure à 200°C. En effet, ils ne sont pas stables à la température, et lors d'un traitement thermique, notamment le traitement auquel ils sont soumis lors du dépôt sur un substrat, ils changent de structure: retour à l'état microcristallin lorsqu'il s'agit d'alliages essentiellement amorphes, grossissement des grains pour les alliages essentiellement microcristallins qui ont initialement une dimension de grains inférieure au micron. Ce changement de structure cristalline ou morphologique induit un changement des caractéristiques physiques du matériau qui affecte essentiellement sa densité. Il en résulte l'apparition de micro-fissures, d'où une fragilité, qui nuisent à la stabilité mécanique des dépôts.
  • Les inventeurs ont maintenant découvert que, parmi l'ensemble des alliages du brevet européen 100287, certains présentent une structure particulière thermiquement stable.
  • La présente invention a pour objet de fournir un matériau de revêtement permettant de conserver les bonnes propriétés de certains substrats métalliques utilisés habituellement tout en supprimant les inconvénients qu'ils présentent en surface. Les matériaux constituant ces revêtements présentent une dureté améliorée, un coefficient de frottement plus faible, une bonne stabilité à des températures supérieures à 300°C nécessaire notamment pour les ustensiles du cuisson.
  • Les matériaux de revêtement selon l'invention sont caractérisés en ce qu'ils répondent à la formule AlaCubFecXdIe dans laquelle X représente un ou plusieurs éléments choisis parmi V, Mo, Ti, Zr, Nb, Cr, Mn, Ru, Rh, Ni, Mg, W, Si et les terres rares, I représente les impuretés d'élaboration inévitables, e≦2, 14≦b ≦30, 7≦c ≦20, 0≦d≦10, avec c+d≧10 et a+b+c+d+e=100% en nombre d'atomes et en ce qu'ils contiennent au moins 40 % en masse d'une phase quasi-cristalline.
  • Par phase quasi-cristalline, on entend une phase ou un composé métallique dont l'étude par diffraction du rayonnement révèle l'existence de symétries de rotation normalement incompatibles avec la symétrie de translation, c'est-à-dire l'existence d'axes d'ordre 5, 8, 10 ou 12. Comme exemple de telles phases ou composés, on peut citer les phases quasi-cristallines icosaédriques qui sont des phases métalliques solides qui diffractent les électrons comme un cristal simple, mais qui présentent un groupe de symétrie m35 par rapport à un point qui est incompatible avec les translations de réseau. (Cf. D. Shechtman, I.Blech, D. Gratian, J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, Vol. 53, N° 20, 1984 page 1951-1953). On peut également citer les phases quasi-cristallines décagonales, qui sont des phases métalliques solides qui diffractent les électrons comme un cristal simple, mais qui présentent un groupe de symétrie 10/m ou 10/mmm par rapport à un point, un ordre à longue distance et une symétrie de translation à une dimension. (Cf. L. Bendersky, Quasicrystal with One Dimensional Translational Symmetry and a Tenfold Rotation Axis, Physical Review Letters, Vol. 55, N° 14, 1985 page 1461-1463).
  • Les phases quasi-cristallines stables des matériaux de revêtement selon l'invention croissent de façon analogue aux cristaux habituels. Elles se comportant par conséquent comme des composés définis et présentent des points de transformation situés à des températures plus élevées que celles des eutectiques des alliages d'aluminium binaires courants, Al/Al₂Cu (547°C), Al/Si (577°C), Al/Al₃Fe (655°C), par exemple. Il en résulte une stabilité qui existe au-delà de ou jusqu'au voisinage de ces points eutectiques.
  • Les matériaux selon l'invention sont obtenus par des procédés classiques. On peut, par exemple, élaborer un matériau selon l'invention à partir d'éléments purs (99,5% ou mieux) en mélangeant les différents éléments dans les proportions correspondant à la stoechiométrie du matériau souhaité, puis en effectuant la fusion du mélange dans un creuset en graphite sous une pression d'argon de 2.10⁴ Pa dans un four HF. On peut, le cas échéant, effectuer un refroidissement ultrarapide du matériau après fusion (procédé dit "melt spinning"). Ce procédé permet d'obtenir une meilleure homogénéïté du matériau de revêtement
  • Comme substrat, on peut utiliser les alliages d'aluminium, les alliages de cuivre et le cuivre. Les matériaux de revêtement selon l'invention sont particulièrement utiles pour les alliages d'aluminium commerciaux, et notamment pour les alliages dits "alimentaires" ou les alliages dits "de fonderie" et pour le cuivre.
  • La mise en oeuvre des matériaux selon l'invention comme revêtement de divers substrats se fait par différents procédés selon le résultat souhaité.
  • Par exemple, si un revêtement présentant un taux élevé de porosité ouverte est souhaité, le matériau selon l'invention est déposé sur le substrat par projection de gouttelettes du matériau. A cet effet, on peut utiliser un chalumeau à poudres, tel que le "Pistolet Thermospray type 5P" commercialisé par Metco Inc. Avant projection, le matériau selon l'invention sous forme massique est broyé et tamisé pour obtenir une poudre dont les grains ont une dimension comprise entre environ 0,02 mm et 0,2 mm, de préférence inférieure à 0,074 mm. Si un faible taux de porosité ouverte est souhaité, on effectuera le dépôt du matériau selon l'invention par un prodédé en phase vapeur, par exemple par pulvérisation cathodique, ou en utilisant une torche à plasma alimentée en poudre comme indiqué ci-dessus.
  • Pour certaines applications, il peut être utile de supprimer ou de réduire le taux de porosité ouverte en surface. Un tel résultat s'obtient par:
    - grenaillage, par exemple à l'aide de microbilles en acier ayant un diamètre de 0,5 à 1 mm. On obtient ainsi une surface de porosité ouverte nulle, sans perte de dureté, ni augmentation du coefficient de frottement, ni décohésion à l'interface substrat-revêtement.
    - polissage, par exemple à l'aide de papier pour métallographie, à condition que la porosité fermée du revêtement soit négligeable.
    - refusion de surface.
  • Pour obtenir directement un taux de porosité ouverte voisin de zéro, on peut utiliser une torche à jet supersonique qui accélère la poudre de matériau selon l'invention à des vitesses comprises entre Mach 6 et Mach 14.
  • La présente invention sera expliquée plus en détail par référence aux exemples non limitatifs suivants.
  • Les revêtements obtenus ont été caractérisés par leur épaisseur (E.), leur taux de porosité ouverte (P.O.), leur index d'adhérence (I.E.), leur coefficient de frottement (C.F.), leur dureté (D.) et leur taux de phase quasi-cristalline (Q.C.).
  • Le taux de porosité ouverte (P.O.) a été estimé à partir des images de microscopie à balayage, obtenues à l'aide d'un microscope à balayage SEM 505, de Philips.
  • Les index d'adhérence (I.A.) ont été attribués après fracture au cours d'un essai de résilience de la manière suivante:
    - index A lorsqu'il n'y a pas de décollement visible à l'interface substrat/dépôt; l'adhérence est considérée comme parfaite.
    - index B lorsque 3 fissures au plus sont visibles à l'interface substrat/dépôt, en métallographie optique, avec un grossissement de 50.
    - index E lorsqu'un décollement est visible à l'interface substrat/dépôt.
  • Le coefficient de frottement C.F. a été évalué au cours d'un essai de résistance à la rayure par un indenteur diamant Vickers. Le coefficient de frottement C.F. est égal à tangenteα, α étant la pente de la courbe Ft=f(Fn), Ft étant la force tangentielle de résistance à la rayure, Fn étant la force appliquée à l'indenteur, croissant linéairement en fonction du temps.
  • La dureté (Hv₃₀) a été déterminée à l'aide du duromètre WOLPERT V-Testor 2, sous charge de 30 grammes.
  • L'existence de phases quasi-cristallines est confirmée par diffraction des rayons X. Les diagrammes de diffraction des rayons X ont été effectués à l'aide d'un diffractomètre Siemens à acquisiton rapide, compteur linéaire à fil, avec le rayonnement Kα1du cobalt, λ=0,17889 nm.
  • La stabilité thermique des matériaux selon l'invention a été étudiée par calorimétrie différentielle à balayage à l'aide d'un calorimètre SETARAM.
  • Les revêtements obtenus ont été caractérisés et les figures 1 à 16 illustrent certaines caractérisations. Ainsi:
    • -les fig. 1 à 4 représentent les diagrammes de diffraction des rayons X de revêtements selon l'invention.
    • -les fig. 5 et 6 représentent les diagrammes de diffraction des rayons X de revêtements selon l'art antérieur:
  • Sur ces diagrammes, l'angle de diffraction 20 est porté en abscisse, le nombre d'impulsions comptées, correspondant à l'intensité, est porté en ordonnée.
    • -les fig. 7, 8 et 9 représentent la courbe Ft=f(Fn) respectivement pour un substrat, un revêtement selon l'invention et un revêtement de l'art antérieur, obtenue lors de l'essai de résistance à la rayure.
    • -la fig. 10 représente une image de microscopie à balayage pour un revêtement selon l'invention portant trois rayures telles qu'effectuées au cours de l'essai de résistance à la rayure.
    • -les fig. 11 et 12 représentent des images de microscopie à balayage respectivement pour deux revêtements selon l'invention.
    • -les fig. 13a à 13e représentent la variation de la dureté respectivement pour les substrats revêtus R11 à R15, le long d'une droite perpendiculaire à la surface des substrats.
    • -la fig. 14 représente la courbe donnant le nombre d'impulsions reçues sur l'analyseur d'une sonde de Castaing à température constante en fonction du temps, pour différents substrats.
    • -la fig. 15 représente la courbe donnant le nombre d'impulsions reçues sur l'analyseur d'une sonde de Castaing à un instant donné en fonction de la température.
    • -la fig. 16 représente la variation de la dureté du substrat revêtu R18 de l'exemple 7, le long d'une droite perpendiculaire à la surface du substrat, pour différents substrats.
    EXEMPLE 1 Préparation de matériaux de revêtement selon l'invention
  • Différents matériaux de revêtement ont été préparés par fusion des éléments constitutifs dans les proportions stoechimétriques correspondant à la composition souhaitée dans un creuset en graphite à l'aide d'un four HF sous une pression de 2.10⁴ Pa d'argon. Le tableau 1 ci-dessous donne la composition des matériaux M1-M5, M9 et M10 préparés. TABLEAU 1
    Matériau Composition
    M1 Al65Cu20Fe15
    M2 Al69Cu17Fe10Mo1Si3
    M3 Al72Cu16Fe8Mo1Si3
    M4 Al75Cu14Fe7Mo1Si3
    M5 Al68Cu17Fe10V5
    M9 Al65Cu22Fe13
    M10 Al65,5Cu18,5Fe8Cr8
  • EXEMPLE 2 Dépôt des matériaux M1 à M5 sur un substrat
  • Le substrat était un alliage d'aluminium AU4G, présentant une dureté Hv=95±5 et un coefficient de frottement C.F.=1,6.
  • Un matériau brut de coulée obtenu dans l'exemple précédent a été broyé dans un broyeur à galets d'acier carburé. La poudre résultante a été tamisée et la fraction ayant un diamètre inférieur à 0,074 mm a été retenue.
  • Cette fraction a été projectée à l'aide d'un chalumeau à poudre, le Pistolet Thermospray Metco.
  • Le débit de l'hydrogène était de 47 l/mn et le débit de l'oxygène était de 28 l/mn.
  • La pièce a été maintenue sous une atmosphère de N₂ à 5% de H₂.
  • La température du substrat est restée inférieure à 200°C pendant la durée de la projection.
  • Les revêtements ont été polis au papier pour métallographie de grain 1200.
  • Les caractéristiques des revêtements R1 à R7 obtenus à partir des matériaux M1 à M5 sont rassemblées dans la tableau 2 ci-dessous. TABLEAU 2
    Rev. Mat. E. (µm) P.O. I.A. C.F. D.(Hv30) Q.C(% en masse)
    R1 M1 30±10 10 % B 0,5 560 > 90%
    R2 M1 50±10 35 % A 0,5 410 > 90%
    R3 M1 50±10 40 % A 0,5 370 > 90%
    R4 M2 40±10 30 % A 500 > 80%
    R5 M3 40±10 30 % A 480 > 80%
    R6 M4 50±10 40 % B 510 > 60%
    R7 M5 30±10 30 % A 0,55 510 > 60%
  • Pour les revêtements R1, R2 et R3, les phases résiduelles sont en proportion trop faible pour pourvoir être identifiées. Dans les revêtements R4, R5 et R6, la phase résiduelle contient un mélange de Al₂Cu, Al₇Cu₂Fe, Al₆Fe, Al et Si. Dans le revêtement R7, la phase résiduelle contient un mélange de Al₂Cu et Al₃V.
  • Le structure quasicristalline des matériaux de l'invention induit une grande stabilité thermique des revêtements obtenus.
  • La température de première transformation Tx des divers matériaux avant dépôt et des substrats munis des revêtements obtenus a été déterminée par calorimétrie à balayage avec α=10°C/mn.
  • La mesure a été effectuée sur les matériaux suivants:
    - les matériaux M1 à M4.
    - les matériaux M1′ à M4′, de même composition respectivement que M1 à M4, mais ayant subi une solidification rapide par projection sur un tambour tournant (melt spinning). M2′, M3′ et M4′ présentent une proportion non négligeable de phase amorphe, contrairement à M1′.
    - le substrat AU4G, revêtu respectivement par les 8 matériaux ci-dessus.
  • Pour les substrats revêtus, la température Tx déterminée est celle du substrat, compte-tenu de la faible épaisseur relative du revêtement.
  • Pour les matériaux M1 à M4 et M1′ à M4′, les résultats figurent au tableau 3 ci-dessous. TABLEAU 3
    Matériau % de phase amorphe (en masse) Tx
    M1 ≃0 >800°C
    M2 ≃0 >800°C
    M3 ≃0 >800°C
    M4 ≃0 >800°C
    M1′ ≃0 >800°C
    M2′ ≃10 540°C
    M3′ ≃20 420°C
    M4′ - 40 380°C
  • Il apparaît que, après dépôt sur un substrat, la phase amorphe des matériaux M2′ à M4′ a disparu. Le revêtement a une stabilité au moins égale à celle du support.
  • Lors du traitement thermique lié au procédé de dépôt du revêtement, la phase quasi-cristalline du matériau selon l'invention ne subit pas de transformation: ni grossissement des grains, ni changement de structure des grains et l'éventuelle phase amorphe est transformée en phase cristalline. Le revêtement sera par conséquent thermiquement stable quelque soit le procédé d'obtention du matériau selon l'invention.
  • Les phases quasi-cristallines ont été identifiées par les diagrammes de diffraction des rayons X. Sur tous ces diagrammes, les raies d'intensité négligeable n'ont pas été indexées.
    • La figure 1 représente le diagramme RX du revêtement R1. Sur cette figure, I désigne les raies de la phase icosaédrique, et D les raies de la phase décagonale.
    • La figure 2 représente le diagramme RX du revêtement R3. I et D ont la même signification que pour la fig. 1.
    • La figure 3 représente le diagramme RX du revêtement R4. Sur cette figure, I désigne les raies de la phase icosaédrique et t désigne le composé Al₂Cu quadratique. On n'observe plus de phase décagonale.
    • La figure 4 représente le diagramme RX du revêtement R5. Sur cette figure, I désigne les raies de la phase icosaédrique, t désigne les raies du composé Al₂Cu quadratique et A les raies de l'aluminium cubique à faces centrées.
  • La proportion de phase quasi-cristalline correspond au rapport de l'aire des pics attribués à la phase quasi-cristalline à l'aire totale des pics visibles.
  • Le coefficient de frottement a été déterminé à l'aide des courbes Ft=f(Fn) définies précédemment. Les figures 7 et 8 représentent cette courbe respectivement pour le substrat seul et pour le substrat revêtu R3.
  • La pente de la courbe donne un coefficient de frottement de 1,6 pour le substrat seul et de 0,5 pour R3. Pour celui-ci, à partir du point A de la courbe, la pente est modifiée: l'indenteur ayant traversé la couche de revêtement, a pénétré dans le substrat et la pente de la courbe à partir de ce point est équivalente à la celle de la courbe de la fig. 7.
  • En outre, des observations au microscope à balayage associées à des analyses à la microsonde de Castaing ont permis de préciser le mode de fissuration et la profondeur de pénétration de l'indenteur lors de l'essai de résistance à la rayure. L'examen du fond de la rayure révèle l'apparition de fissures intergranulaires dans le dépôt selon l'invention sans décohésion notable de celui-ci par rapport au substrat. Le dosage d'un élément présent dans le substrat et absent du revêtement (Mn) montre que le revêtement ne subit pas décohésion du substrat de part et d'autre de la rayure avant que la force normale Fn atteigne la valeur suffisante pour que l'indenteur traverse le revêtement. L'image de microscopie à balayage de la fig.10 représente trois rayures effectuées dans le revêtement R3. Sur cette figure, la longueur totale d'une rayure correspond aux 60 N portés en abscisse sur la courbe de la fig.8. On en déduit que l'indenteur ne traverse le revêtement que sur le tiers final de la rayure. A partir du point où l'indenteur a traversé le revêtement, il se forme sur l'image une bordure blanche caractéristique du matériau du substrat déplacé par l'indenteur. Le revêtement est abimé, mais non pas arraché par plaques. Ces observations confirment la bonne adhérence des revêtements sur le substrat.
  • Le taux de porosité ouverte a été évalué à partir d'images de microscope à balayage. La fig.11 représente l'image de microscopie à balayage du revêtement R1 (la portion blanche du trait horizontal au bas de l'image représente 1 mm) et la fig.12 celle du revêtement R2 (la portion blanche du trait horizontal au bas de l'image représente 0,1 mm).
  • Pour déterminer le taux de porosité ouverte, on a mesuré, sur une surface de référence d'aire S d'une telle image, l'aire A occupée par les particules déposées P.O.= 1-(A/S).
  • EXEMPLE 3 (COMPARATIF)
  • Trois matériaux de l'art antérieur ont été préparés en mettant en oeuvre le procédé de l'exemple 1. Les compositions de ces matériaux sont rassemblées au tableau 5. TABLEAU 4
    Mat. Composition
    M6 Al78Cu12Fe6Mo1Si3
    M7 Al60Cu10Fe30
    M8 Al65Cu18V12Mo2Si3
  • EXEMPLE 4 (COMPARATIF)
  • Les matériaux de l'exemple 3, bruts de coulée, ont été déposés sur un substrat identique à celui de l'exemple 2, en mettant en oeuvre le procédé de l'exemple 2. Les substrats revêtus obtenus ont été caractérisés et les résultats sont rassemblés au tableau 5. TABLEAU 5
    Rev. Mat. E.(µm) P.O. I.A. C.F. D.(Hv30) Q.C(% en vol)
    R8 M6 45±10 40 % E 380 0%
    R9 M7 40±10 E 0,95 400 0%
    R10 M8 40±10 E 370 < 20%
  • Conformément à la figure 5 qui représente le diagramme RX du revêtement R8, le revêtement R8 est essentiellement constitué par un mélange de Al₂Cu (raies t), d'aluminium cubique à faces centrées (raie A) et de composé amorphe ou mal cristallisé indéterminé (raies a). Les raies I de la phase icosaédrique et les raies D de la phase décagonale n'existent pas.
  • Conformément à la figure 6 qui représente le diagramme RX du revêtement R9, le revêtement R9 comprend, outre la faible proportion de phase quasi-cristalline, un mélange de Al₂Cu et de Al₃V. L'absence des raies élargies en 2ϑ=31,8° et 2ϑ=53,9° (positions marquées par des tirets verticaux) prouve la disparition de la phase icosaédrique.
  • La fig.9 représente la courbe Ft=f(Fn) pour le revêtement R9, obtenue de la même manière que ci-dessus. Elle fait apparaître que le coefficient de frottement du revêtement varie entre 0,95 et 1,15 entre le début et la fin de la rayure.
  • EXEMPLE 5 Dépôt de matériau M1 par jet supersonique
  • Cinq substrats ont été préparés par brossage à la brosse métallique et/ou par sablage. Ensuite, une poudre du matériau M1, obtenue selon le procédé de l'exemple 2, a été appliquée sur chacun des substrats au jet supersonique. La poudre a ainsi subi une accélération dans un jet d'azote à haute pression, jusqu'à une vitesse de Mach 10; elle a fondu par passage à travers une flamme réductrice et elle a été déposée sur les substrats pour donner les substrats revêtus R11 à R15.
  • La nature des substrats et les conditions du traitement de surface avant application de la poudre de M1 sont rassemblées dans le tableau 6 ci-dessous, pour chacun des substrats revêtus. TABLEAU 6
    Revêtement Substrat Etat de surface Taille des grains de sablage
    R11 AU4G sablage 0,12 mm
    R12 AU4G brossage + sablage 1,6 mm
    R13 AU4G sablage 1,6 mm
    R14 AU5GT brossage + sablage 1,6 mm
    R15 AU7GT sablage 0,12 mm
  • Les revêtements R11 à R15 ainsi obtenus adhèrent parfaitement aux substrats. Leur porosité ouverte est négligeable et leur porosité fermée inférieure à 15%. Ce procédé permet d'atteindre des épaisseurs importantes, voisines de ou supérieures à 100 µm. Les figures 13a, 13b, 13c, 13d et 13 e représentent les microduretés Hv₃₀ obtenues respectivement avec les substrats revêtus R11, R12, R13, R14 et R15. La microdureté a été mesurée sur la tranche des substrats revêtus, le long d'une droite perpendiculaire à la surface du substrat. Il est à noter que certains substrats revêtus ont une dureté superficielle qui dépasse 500 kg/mm².
  • EXEMPLE 6 Dépôt des matériaux M9 et M10 sur un substrat
  • Les alliages M9 et M10 de l'exemple 1 ont été élaborés et réduits en poudre selon le procédé de l'exemple 2. Ces alliages ont été appliqués sur un substrat AU5GT selon le mode opératoire de l'exemple 3. Les substrats revêtus obtenus R16 et R17 ont été utilisés pour évaluer la résistance à l'oxydation des revêtements et donc leurs performances lors de leur utilisation dans le domaine de la cuisson alimentaire. A cet effet, les substrats revêtus ont été d'abord polis mécaniquement pour obtenir un poli optique, puis soumis à l'air à des traitements isothermes à 300°C et 400°C de durée égale à 30 heures et 144 heures. Par comparaison, une plaque du substrat non revêtu et une plaque d'acier inoxydable 18/8 ont été soumises aux mêmes traitements.
  • Les micrographies optiques des éprouvettes obtenues, sans polissage postérieur au traitement thermique, font apparaître que les dépôts quasicristallins M9 et M10 ne présentent pas de dégradation visible de leur surface, alors que le substrat AU5GT et l'acier inoxydable montrent une altération très nette de leur surface. Cette altération est due à la formation d'oxydes comme l'attestent les figures 14 et 15. L'état de surface des dépôts quasicristallins M9 et M10 n'étant pratiquement pas modifié, les propriétés qui en découlent directement, par exemple les propriétés anti-adhérentes, sont conservées.
  • La figure 14 représente des comptages du nombre d'impulsions, en fonction de la durée du traitement thermique, reçues sur l'analyseur d'une sonde de Castaing calé sur la raie d'émission de l'oxygène pour les substrats revêtus R16 et R17, et pour les substrats comparatifs précités, la température étant fixée à 400°C.
  • La figure 15 représente des comptages du nombre d'impulsions, en fonction de la température de traitement thermique, reçues sur l'analyseur d'une sonde de Castaing calé sur la raie d'émission de l'oxygène pour les substrats revêtus R16 et R17, et pour les substrats comparatifs précités, en 144 heures.
  • Il apparaît clairement sur ces figures que les revêtements quasicristallins de la présente invention résistent mieux à l'oxydation que les substrats comparatifs en alliage AU5GT et en acier inoxydable, et ceci plus particulièrement à 400°C.
  • EXEMPLE 7
  • Dépôt du matériau M10 sur un substrat de cuivre
  • L'alliage M10, élaboré et réduit en poudre comme précédemment, a été déposé, à l'aide d'un chalumeau à plasma utilisé dans l'exemple 2, sur une plaque de cuivre métallique. Cette plaque avait une microdureté moyenne de Hv₃₀ = 50 ± 1 kg/mm². La figure 16 montre que la dureté du dépôt, mesurée sur la tranche du matériau revêtu R18 obtenu, est au moins de Hv₃₀ = 500 kg/mm², ce qui correspond à un gain de dureté d'un ordre de grandeur. L'épaisseur de dépôt après brossage à l'aide d'une brosse métallique a fait disparaître presque totalement la porosité ouverte du revêtement. Il ne reste qu'une porosité fermée de 15%.
  • La comparaison de l'ensemble des caractéristiques des revêtements selon l'invention et des revêtements de l'art antérieur, et notamment l'index d'adhérence, le coefficient de frottement et la proportion de quasi-cristal pour les revêtements fait apparaître que le choix de matériaux présentant une forte proportion de phase quasi-cristalline permet d'obtenir des revêtements de meilleure qualité. Non seulement les revêtements ne masquent pas les bonnes propriétés des alliages de l'art antérieur, mais en outre ils présentent une bonne adhérence au substrat du fait de la stabilité en température de leur structure.
  • Les revêtements selon l'invention sont appropriés à différents usages.
  • Lorsqu'ils sont obtenus avec une porosité ouverte importante, par exemple supérieure à 20% en volume, ils sont particulièrement utiles pour les applications nécessitant une lubrification. En effet, l'agent lubrifiant enduit sur le substrat revêtu d'un matériau selon l'invention imprègne les pores du revêtement. Lorsque la température du substrat s'élève en cours d'utilisation, il se produit un phénomène de ressuage. Cette propriété est utile pour les ustensiles de cuissson qui ne sont pas soumis au lavage à l'aide de détergents. Ainsi, les matériaux de revêtement selon l'invention sont particulièrement adaptés pour les grils, les crêpières. Leur grande dureté permet de les nettoyer par grattage, sans la nécessité de recourir à des détergents.
  • Les matériaux selon l'invention ayant une porosité importante trouvent une autre application intéressante dans le domaine des paliers anti-friction.
  • Lorsque leurs porosité ouverte est faible, soit en raison du procédé de dépôt du revêtement, soit à la suite d'un traitement de surface, les revêtements selon l'invention sont particulièrement adaptés à la réalisation de surfaces anti-usure (chassis d'armement aéroporté, chemises et pistons, semelles de fer à repasser) ou à la fabrication de surfaces de référence (par example pour les tables de machine-outil, pour des appareils de précision). Ils conviennent également pour divers ustensiles de cuisson sans matière grasse: pour ces ustensiles, plus la surface de cuisson est lisse, c'est-à-dire, plus la porosité est faible, moins les aliments auront tendance à adhérer en cours de cuisson.

Claims (13)

1. Matériau de revêtement en alliage d'aluminium, caractérisé en ce que: 1) il a une composition correspondant à la formule générale AlaCubFecXdIe, dans laquelle X représente un ou plusieurs éléments choisis parmi V, Mo, Ti, Zr, Nb, Cr, Mn, Ru, Rh, Ni, Mg, W, Si et les terres rares, I représente les impuretés d'élaboration inévitables, e≦2, 14≦b ≦30, 7≦c ≦20, 0 ≦d≦10, avec c+d≧ 10 et a+b+c+d+e=100% en nombre d'atomes.
2) il contient au moins 40% en masse d'une phase quasi-cristalline.
2. Matériau selon la revendication 1, caractérisé en ce que la phase quasi-cristalline est une phase icosaédrique.
3. Matériau selon la revendication 1, caractérisé en ce que la phase quasi-cristalline est une phase décagonale.
4. Substrat revêtu d'un matériau selon l'une quelconque des revendications 1 à 3.
5. Substrat selon la revendication 4, caractérisé en ce que le revêtement présente une porosité ouverte supérieure à 20%.
6. Substrat selon l'une des revendications 4 ou 5, caractérisé en ce que le matériau de revêtement a été déposé en phase vapeur.
7. Substrat selon la revendication 4, caractérisé en ce que la porosité ouverte est inférieure ou égale à 20%.
8. Substrat selon la revendication 7, caractérisé en ce qu'il a été obtenu par traitement de la surface d'un revêtement ayant une porosité ouverte supérieure à 20%.
9. Substrat selon la revendication 7, caractérisé en ce que le matériau de revêtement a été appliqué par jet supersonique.
10. Application d'un substrat revêtu selon l'une des revendications 4 à 9, à la fabrication d'ustensiles et de dispositifs de cuisson.
11. Application d'un substrat revêtu selon l'une des revendications 4 à 6 à la fabrication de paliers antifriction.
12. Application d'un substrat revêtu selon l'une des revendications 7 à 9 à la fabrication de surfaces anti-usure.
13. Application d'un substrat revêtu selon la revendication 7 à la fabrication de surfaces de référence.
EP89402187A 1988-08-04 1989-08-02 Matériaux de revêtement pour alliages métalliques et métaux Expired - Lifetime EP0356287B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8810559 1988-08-04
FR8810559A FR2635117B1 (fr) 1988-08-04 1988-08-04 Materiaux de revetement pour alliages d'aluminium

Publications (2)

Publication Number Publication Date
EP0356287A1 true EP0356287A1 (fr) 1990-02-28
EP0356287B1 EP0356287B1 (fr) 1994-07-06

Family

ID=9369123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402187A Expired - Lifetime EP0356287B1 (fr) 1988-08-04 1989-08-02 Matériaux de revêtement pour alliages métalliques et métaux

Country Status (9)

Country Link
EP (1) EP0356287B1 (fr)
JP (1) JP2792701B2 (fr)
AT (1) ATE108219T1 (fr)
CA (1) CA1336549C (fr)
DE (1) DE68916597T2 (fr)
ES (1) ES2058574T3 (fr)
FR (1) FR2635117B1 (fr)
MY (1) MY106241A (fr)
WO (1) WO1990001567A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671808A1 (fr) * 1991-01-18 1992-07-24 Centre Nat Rech Scient Alliages d'aluminium a proprietes specifiques.
EP0504048A1 (fr) * 1991-03-13 1992-09-16 Centre National De La Recherche Scientifique (Cnrs) Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline
FR2685349A1 (fr) * 1991-12-20 1993-06-25 Centre Nat Rech Scient Element de protection thermique constitue par un alliage d'aluminium quasi-cristallin.
EP0645464A2 (fr) * 1993-09-29 1995-03-29 Tsuyoshi Masumoto Particule ultrafine d'un alliage d'aluminium quasi-cristallin et procédé de production d'un agrégat avec cette dernière
US5432011A (en) * 1991-01-18 1995-07-11 Centre National De La Recherche Scientifique Aluminum alloys, substrates coated with these alloys and their applications
EP0757114A1 (fr) * 1995-07-31 1997-02-05 Gaz De France Revêtement en matériau quasi-cristallin et son procédé de dépÔt
FR2745300A1 (fr) * 1996-02-23 1997-08-29 Peugeot Revetements anti-usure et/ou de protection thermique pour des pieces telles que des pieces de moteur de vehicule automobile
FR2766239A1 (fr) * 1997-07-16 1999-01-22 Sagem Injecteur de carburant dans une chambre de combustion de moteur
FR2840177A1 (fr) 2002-05-30 2003-12-05 Seb Sa Surface de cuisson facile a nettoyer et article electromenager comportant une telle surface
WO2005083139A1 (fr) * 2004-02-16 2005-09-09 Saint Gobain Centre De Recherches Et D'etudes Europeen Revetement metallique pour ustensile de cuisson
WO2008014531A1 (fr) * 2006-08-02 2008-02-07 Miba Gleitlager Gmbh Vernis-laque antifriction
CN109403771A (zh) * 2017-08-17 2019-03-01 大同金属工业株式会社 车辆用滑动门的导向辊

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693185B1 (fr) * 1992-07-03 1994-08-26 France Grignotage Revêtement composite à base de quasi-cristaux et son procédé de fabrication.
DE69312287D1 (de) * 1993-08-09 1997-08-21 Glyco Metall Werke In einer Maschine angeordnetes Gleitlager und Verfahren zur Aushärtung
KR100727415B1 (ko) 2005-11-18 2007-06-13 한국생산기술연구원 준결정 및 유사 구조상을 갖는 코팅층
DE102010049840B4 (de) 2009-11-27 2023-01-26 Mercedes-Benz Group AG Bauteil mit einer Verschleißschutzschicht
CN115161582A (zh) * 2021-09-08 2022-10-11 武汉苏泊尔炊具有限公司 锅具的处理方法以及锅具

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100287A1 (fr) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Alliages amorphes ou microcristallins à base d'aluminium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100287A1 (fr) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Alliages amorphes ou microcristallins à base d'aluminium

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671808A1 (fr) * 1991-01-18 1992-07-24 Centre Nat Rech Scient Alliages d'aluminium a proprietes specifiques.
WO1992013111A1 (fr) * 1991-01-18 1992-08-06 Centre National De La Recherche Scientifique Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications
US5652877A (en) * 1991-01-18 1997-07-29 Centre National De La Recherche Aluminum alloys, substrates coated with these alloys and their applications
US5432011A (en) * 1991-01-18 1995-07-11 Centre National De La Recherche Scientifique Aluminum alloys, substrates coated with these alloys and their applications
US5424127A (en) * 1991-03-13 1995-06-13 Dubois; Jean-Marie Ribbon for coating by torch spraying and its use for depositing a quasi-crystalline phase on a substrate
FR2673871A1 (fr) * 1991-03-13 1992-09-18 Centre Nat Rech Scient Cordon pour revetement par projection au chalumeau et son utilisation pour deposer sur un substrat une phase quasi cristalline.
EP0504048A1 (fr) * 1991-03-13 1992-09-16 Centre National De La Recherche Scientifique (Cnrs) Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline
US5571344A (en) * 1991-12-10 1996-11-05 Centre National De La Recherche Scientifique Heat protection element consisting of a quasicrystalline aluminum alloy
US5888661A (en) * 1991-12-20 1999-03-30 Centre National De La Recherche Scientifique Quasicrystalline aluminum heat protection element and thermal spray method to form elements
FR2685349A1 (fr) * 1991-12-20 1993-06-25 Centre Nat Rech Scient Element de protection thermique constitue par un alliage d'aluminium quasi-cristallin.
US5649282A (en) * 1991-12-20 1997-07-15 Centre National De La Recherche Scientifique Heat protection element consisting of a quasicrystalline aluminum alloy
WO1993013237A1 (fr) * 1991-12-20 1993-07-08 Centre National De La Recherche Scientifique Element de protection thermique constitue par un alliage d'aluminium quasi-cristallin
US6183887B1 (en) 1991-12-20 2001-02-06 Centre National De La Recherche Scientifique Heat protection element consisting of a quasicrystalline aluminum alloy
EP0645464A2 (fr) * 1993-09-29 1995-03-29 Tsuyoshi Masumoto Particule ultrafine d'un alliage d'aluminium quasi-cristallin et procédé de production d'un agrégat avec cette dernière
EP0645464A3 (fr) * 1993-09-29 1995-11-02 Tsuyoshi Masumoto Particule ultrafine d'un alliage d'aluminium quasi-cristallin et procédé de production d'un agrégat avec cette dernière.
EP0757114A1 (fr) * 1995-07-31 1997-02-05 Gaz De France Revêtement en matériau quasi-cristallin et son procédé de dépÔt
FR2737505A1 (fr) * 1995-07-31 1997-02-07 Gaz De France Revetement en materiau quasi-cristallin et son procede de depot
FR2745300A1 (fr) * 1996-02-23 1997-08-29 Peugeot Revetements anti-usure et/ou de protection thermique pour des pieces telles que des pieces de moteur de vehicule automobile
FR2766239A1 (fr) * 1997-07-16 1999-01-22 Sagem Injecteur de carburant dans une chambre de combustion de moteur
FR2840177A1 (fr) 2002-05-30 2003-12-05 Seb Sa Surface de cuisson facile a nettoyer et article electromenager comportant une telle surface
WO2003102259A1 (fr) 2002-05-30 2003-12-11 Seb S.A. Surface de cuisson facile a nettoyer et article electromenager comportant une telle surface
EP2316982A3 (fr) * 2002-05-30 2016-04-27 Seb Sa Surface de cuisson facile à nettoyer et article électroménager comportant une telle surface
WO2005083139A1 (fr) * 2004-02-16 2005-09-09 Saint Gobain Centre De Recherches Et D'etudes Europeen Revetement metallique pour ustensile de cuisson
US7563517B2 (en) 2004-02-16 2009-07-21 Saint Gobain Centre de Recherches et d-Etudes European “Les Miroirs” Metal coating for a kitchen utensil
WO2008014531A1 (fr) * 2006-08-02 2008-02-07 Miba Gleitlager Gmbh Vernis-laque antifriction
US8324138B2 (en) 2006-08-02 2012-12-04 Miba Gleitlager Gmbh Anti-friction lacquer
CN109403771A (zh) * 2017-08-17 2019-03-01 大同金属工业株式会社 车辆用滑动门的导向辊
CN109403771B (zh) * 2017-08-17 2020-09-25 大同金属工业株式会社 车辆用滑动门的导向辊

Also Published As

Publication number Publication date
FR2635117B1 (fr) 1993-04-23
CA1336549C (fr) 1995-08-08
ES2058574T3 (es) 1994-11-01
ATE108219T1 (de) 1994-07-15
DE68916597D1 (de) 1994-08-11
JPH03501392A (ja) 1991-03-28
WO1990001567A1 (fr) 1990-02-22
EP0356287B1 (fr) 1994-07-06
FR2635117A1 (fr) 1990-02-09
MY106241A (en) 1995-04-29
JP2792701B2 (ja) 1998-09-03
DE68916597T2 (de) 1995-01-19

Similar Documents

Publication Publication Date Title
EP0356287B1 (fr) Matériaux de revêtement pour alliages métalliques et métaux
US5204191A (en) Coating materials for metal alloys and metals and method
CA2196589C (fr) Nitrure de titane dope par du bore, revetement de substrat a base de ce nouveau compose, possedant une durete elevee et permettant une tres bonne resistance a l&#39;usure, et pieces comportant un tel revetement
EP0368753B1 (fr) Dépôt électrophorétique anti-usure du type métallo-céramique consolidé par nickelage électrolytique
EP0572646B1 (fr) Utilisation d&#39;un alliage d&#39;aluminium quasi-cristallin pour l&#39;élaboration d&#39;un élément de protection thermique
FR2513270A1 (fr) Composition de revetement anti-usure et son utilisation sur des outils
EP0521138B1 (fr) Alliages d&#39;aluminium, les substrats revetus de ces alliages et leurs applications
Panjan et al. Oxidation behaviour of TiAlN coatings sputtered at low temperature
Castaldi et al. High temperature phase changes and oxidation behavior of Cr–Si–N coatings
FR2900417A1 (fr) Film multicouche dur a base de carbone amorphe et element a surface dure ayant le film sur une surface
EP0576366A1 (fr) Revêtements métalliques à base d&#39;alliages amorphes résistant à l&#39;usure et à la corrosion, procédé d&#39;obtention et applications aux revêtements anti-usure pour matériel hydraulique
Chang et al. Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings
FR2601175A1 (fr) Cible de pulverisation cathodique et support d&#39;enregistrement utilisant une telle cible.
FR2620734A1 (fr) Alliage metallique refractaire multiphase, oxycarbure ou oxycarbonitrure, a variation progressive de durete a partir de la surface
EP0504048A1 (fr) Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline
WO2003102259A1 (fr) Surface de cuisson facile a nettoyer et article electromenager comportant une telle surface
Zambrano et al. Hardness and morphological characterization of tungsten carbide thin films
Hsieh et al. Deposition and characterization of TaN–Cu nanocomposite thin films
US6712915B2 (en) Formation and applications of AlCuFe quasicrystalline thin films
Teodorescu et al. Influence of the substrate temperature on BCN films deposited by sequential pulsed laser deposition
KR20230020509A (ko) 알루미늄-스칸듐 복합체, 알루미늄-스칸듐 복합체 스퍼터링 표적 및 제조 방법
US6294030B1 (en) Formation and applications of AlCuFe quasicrystalline thin films
Wei et al. Effects of processing variables on tantalum nitride by reactive-ion-assisted magnetron sputtering deposition
Jagannadham et al. Laser physical vapor deposition of boron carbide films to enhance cutting tool performance
EP0112206A1 (fr) Procédé de revêtement en carbures de surfaces métalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900816

17Q First examination report despatched

Effective date: 19921210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 108219

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68916597

Country of ref document: DE

Date of ref document: 19940811

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.R.L.

EPTA Lu: last paid annual fee
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940927

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2058574

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 89402187.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080728

Year of fee payment: 20

Ref country code: LU

Payment date: 20080731

Year of fee payment: 20

Ref country code: DE

Payment date: 20080901

Year of fee payment: 20

Ref country code: ES

Payment date: 20080818

Year of fee payment: 20

Ref country code: NL

Payment date: 20080728

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080725

Year of fee payment: 20

Ref country code: IT

Payment date: 20080812

Year of fee payment: 20

Ref country code: FR

Payment date: 20080828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080729

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080728

Year of fee payment: 20

Ref country code: BE

Payment date: 20080730

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090801

BE20 Be: patent expired

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE *CNRS

Effective date: 20090802

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090802

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090802

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090803