EP0521138B1 - Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications - Google Patents

Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications Download PDF

Info

Publication number
EP0521138B1
EP0521138B1 EP92904842A EP92904842A EP0521138B1 EP 0521138 B1 EP0521138 B1 EP 0521138B1 EP 92904842 A EP92904842 A EP 92904842A EP 92904842 A EP92904842 A EP 92904842A EP 0521138 B1 EP0521138 B1 EP 0521138B1
Authority
EP
European Patent Office
Prior art keywords
alloys
thermal
alloy
application
quasicrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92904842A
Other languages
German (de)
English (en)
Other versions
EP0521138A1 (fr
Inventor
Jean-Marie Dubois
Antoine Pianelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0521138A1 publication Critical patent/EP0521138A1/fr
Application granted granted Critical
Publication of EP0521138B1 publication Critical patent/EP0521138B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent

Definitions

  • the present invention relates to alloys, the essential constituent of which is aluminum, the substrates coated with these alloys and the applications of these alloys, for example for the constitution of thermal protection elements.
  • European patent 100287 describes a family of amorphous or microcrystalline alloys having improved hardness, usable as reinforcing elements of other materials or for obtaining surface coatings improving the resistance to corrosion or wear.
  • a large number of the alloys described in this patent are not stable at temperatures above 200 ° C., and during a heat treatment, in particular the treatment to which they are subjected when deposited on a substrate, they change their structure: return to the microcrystalline state in the case of essentially amorphous alloys, grain enlargement for the essentially microcrystalline alloys which initially have a grain size less than one micron.
  • This change in crystalline or morphological structure induces a change in the physical characteristics of the material which essentially affects its density. This results in the appearance of micro-cracks, hence a brittleness, which adversely affects the mechanical stability of the materials.
  • Thermal stability is an essential property for an alloy to be used as a thermal barrier.
  • Thermal barriers are assemblies of one or more materials intended to limit the heat transfer to or from parts and components of equipment in many domestic or industrial devices. Mention may be made, for example, of the use of thermal barriers in heating or cooking devices, irons at the level of the fixing of the hot part to the carcass and of the thermal insulation; in cars, at several points such as the turbocharger, the exhaust pipe, the insulation of the passenger compartment, etc .; in aeronautics, for example on the rear part of compressors and reactors.
  • Thermal barriers are sometimes used in isolation in the form of a screen, but very often they are directly associated with the heat source or the part to be protected for reasons of mechanical strength.
  • mica sheets, ceramic plates, etc. are used in household utensils, adapting them by screwing or gluing, or sheets of agglomerated glass wool supported by a metal sheet.
  • a particularly advantageous method for adding a thermal barrier to a part, in particular to a metallic part consists in depositing on a substrate the material constituting the barrier in the form of a layer of thickness determined by a thermal spraying technique such as plasma spraying. for example.
  • thermal barrier with other materials also deposited in layers by thermal spraying.
  • these other materials can be intended to ensure the protection of the barrier vis-à-vis external aggressions such as for example mechanical shocks, a corrosive medium, etc ... or can serve as a bonding sub-layer to the substrate.
  • zirconia The most frequently used material in aeronautics to form thermal barriers is yttria zirconia which withstands very high temperatures.
  • the deposition of zirconia is carried out by plasma spraying according to a conventional technique from powder of the material.
  • d specific mass
  • some of its mechanical properties, such as hardness, resistance to wear and abrasion are low.
  • thermal barrier Other materials are used as a thermal barrier.
  • alumina which has a specific mass lower than that of zirconia, a diffusivity and a specific heat higher than those of zirconia, but whose mechanical properties are not satisfactory.
  • the object of the present invention is to provide a family of alloys having high hardness and thermal stability, improved ductility and resistance to corrosion.
  • the present invention thus relates to a new family of alloys, the essential constituent of which is aluminum.
  • the invention also relates to the metallic coatings obtained from these alloys.
  • Another object of the invention consists of the substrates coated with said alloys.
  • This orthorhombic phase O 1 is said to be approximate to the decagonal phase. It is so close to it that it is not possible to distinguish its X-ray diffraction pattern from that of the decagonal phase.
  • This phase is an approximate phase of the icosahedral phase.
  • phase C of cubic structure, very often observed in coexistence with the approximate phases or true quasicrystallines.
  • a diffraction diagram of this cubic phase has been published (C. Dong, JM Dubois, M. de Boissieu, C. Janot; Neutron diffraction study of the peritectic growth of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal; J. Phys. Condensed Matter, 2 (1990), 6339-6360) for a sample of pure cubic phase and of composition Al 65 Cu 20 Fe 15 in number of atoms.
  • This phase is isotype of a hexagonal phase, noted ⁇ AlMn, discovered in Al-Mn alloys containing 40% by weight of Mn [MA, Taylor, Intermetallic phases in the Aluminum-Manganese Binary System, Acta Metallurgica 8 (1960) 256] .
  • the cubic phase, its substructures and the phases derived therefrom, constitute a class of approximate phases of the quasicrystalline phases of neighboring compositions.
  • alloys of the present invention there may be mentioned those, designated below by (II), which have the above atomic composition (I) in which 0 ⁇ b ⁇ 5, 0 ⁇ b ' ⁇ 22 and / or 0 ⁇ c ⁇ 5, and M represents Mn + Fe + Cr or Fe + Cr.
  • These alloys (II) are more particularly intended for the coating of cooking utensils.
  • Another particularly interesting family designated hereinafter by (III), presents the aforementioned atomic composition (I) in which 15 ⁇ d ⁇ 30 and M represents at least Fe + Cr, with an atomic ratio Fe / Cr ⁇ 2.
  • These alloys (III) have a particularly high resistance to oxidation.
  • Another family of alloys (V) which are interesting in that they offer improved resistance to grain growth up to 700 ° C. presents the composition of the alloys (I) with 0 ⁇ e ⁇ 1, N being chosen from W, Ti, Zr, Rh, Nb, Hf and Ta.
  • alloys (VII) having composition (I) and which exhibit improved ductility are those for which c> 0, preferably 0 ⁇ c ⁇ 1, and / or 7 ⁇ b ' ⁇ 14.
  • the alloys of the present invention are distinguished from the alloys of the prior art, and in particular those of EP 356 287 by their copper content which is lower, or even zero. Alloys are therefore less sensitive to corrosion in an acid medium. In addition, the low copper content is more favorable for obtaining improved ductility by adding other elements such as B or C. In the alloys of the present invention, the copper can be replaced in whole or in part by cobalt. These alloys are therefore particularly advantageous with regard to hardness, ductility and resistance to corrosion both in an alkaline medium and in an acidic medium in the range of intermediate pHs (5 ⁇ pH ⁇ 7). The combination of these different properties offers the alloys of the present invention a wide range of applications.
  • the alloys of the present invention can for example be used as an anti-wear or reference surface coating or for the production of metal-metal or metal-ceramic joints. They are also suitable for all uses involving food contact.
  • the alloys of the invention preferably those of group (VII), can also be used for anti-shock surfaces.
  • the alloys according to the invention of groups (III) and (V) are preferably used.
  • the alloys of group (III) will preferably be used, whereas those of groups (III) and (IV) are particularly suitable for surfaces resistant to corrosion.
  • the alloys of groups (III), (IV) and (VII) are particularly suitable for producing anti-cavitation or anti-erosion surfaces.
  • thermal protection elements for a substrate, in the form of a thermal barrier or in the form of a bonding underlayer for barriers.
  • thermal consist of conventional materials. They have good thermal insulation properties, good mechanical properties, a low specific mass, good resistance to corrosion, especially to oxidation, and great ease of use.
  • the quasicrystalline alloys of the present invention are therefore suitable substitutes for the replacement of many thermal barrier materials, and in particular of zirconia, with respect to which they have advantages of low specific mass, excellent mechanical properties with regard to hardness, improved resistance to wear, abrasion, scratch, as well as corrosion.
  • the diffusivity of the materials constituting the thermal protection elements of the present invention is reduced when the porosity of the materials increases.
  • the porosity of a quasi-crystalline alloy can be increased by an appropriate heat treatment.
  • the materials constituting the thermal protection elements of the present invention may contain a small proportion of heat conducting particles, for example crystals of metallic aluminum.
  • the thermal conduction of the material will be dominated by the conduction properties of the matrix as long as the particles do not coalesce, that is to say as long as their volume proportion remains below the percolation threshold. For approximately spherical particles with a weakly distributed radius, this threshold is around 20%.
  • This condition implies that the material constituting the thermal protection element contains at least 80% by volume of quasi-crystalline phases as defined above. Preferably, therefore, materials containing at least 80% of quasi-crystalline phase are used, for their application as thermal barrier.
  • the thermal protection elements can be used as thermal barriers. Such temperature conditions correspond to most domestic or automotive applications. In addition, they have a great ability to withstand the stresses due to the expansion of the support and their coefficient of expansion is intermediate between that of metal alloys and that of insulating oxides.
  • the quasicrystalline alloys constituting the thermal barriers can contain stabilizing elements chosen from W, Zr, Ti, Rh, Nb, Hf and Ta. The content of stabilizing element is less than or equal to 2% by number of atoms.
  • the thermal barriers of the present invention can be multi-layer barriers having an alternation of layers of materials which are good conductors of heat and layers of materials which are poor conductors which are alloys. almost crystalline.
  • Such structures constitute, for example, abradable thermal barriers.
  • the thermal protection elements of the present invention can be used as a bonding undercoat for a layer serving as a thermal barrier and consisting of a material of the prior art such as zirconia.
  • the materials constituting the thermal protection elements of the present invention become superplastic. They therefore correspond well to the conditions of use required for the production of a bonding sub-layer while being capable of participating themselves in the insulation of the substrate.
  • the thermal protection elements of the present invention can be used up to a few tens of degrees from the melting point of the material from which they are made. This limit is around 950 ° C to 1200 ° C depending on the composition.
  • the alloys according to the invention can be obtained by conventional metallurgical production processes, that is to say which comprise a slow cooling phase (ie ⁇ T / t less than a few hundred degrees).
  • ingots can be obtained by melting separate metallic elements or pre-alloys in a graphite crucible brazed under a covering of protective gas (argon, nitrogen), of covering flux used in conventional metallurgy, or in a crucible kept under vacuum. It is also possible to use refractory ceramic or copper crucibles cooled by high frequency current heating.
  • the preparation of the powders necessary for the metallization process can be carried out for example by mechanical grinding or by atomization of the liquid alloy in a jet of argon according to a conventional technique.
  • the alloying and atomization operations can be carried out in sequence without requiring the casting of intermediate ingots.
  • the alloys thus produced can be deposited in thin form, generally up to a few tens of micrometers, but also in thick form, up to several millimeters, by any metallization technique, including those which have already been mentioned.
  • the alloys of the present invention can be used in the form of a surface coating by deposition from a pre-prepared ingot, or of ingots of the separate elements, taken as targets in a sputtering reactor, or also by vapor phase deposition. produced by vacuum melting of the massive material. Other methods, for example those which use sintering of agglomerated powder, can also be used.
  • the coatings can also be obtained by thermal spraying, for example using an oxy-gas torch, a supersonic torch or a plasma torch. The thermal spraying technique is particularly interesting for the development of thermal protection elements.
  • Some alloys have been subjected to temperature maintenance under secondary vacuum or in air in order to assess their thermal stability and their ability to resist oxidation.
  • the morphology of the phases and the grain size obtained in the raw state of preparation were analyzed by optical micrography using an Olympus microscope.
  • the hardness of the alloys was determined using the WOLPERT V-Testor 2 durometer under loads of 30 and 400 grams.
  • An estimate of the ductility of certain alloys was obtained by measuring the length of the cracks formed from the angles of the cavity under load of 400 grams. An average value of this length, as well as the hardness, was evaluated from at least 10 different fingerprints distributed on the sample. Another estimate of the ductility is based on the amplitude of the deformation produced before rupture during a compression test applied to a cylindrical specimen of 4.8 mm in diameter and 10 mm in height machined with perfectly parallel faces perpendicular to the cylinder axis. An INSTROM brand traction / compression machine was used.
  • the electrical resistivity of the samples was measured at room temperature on cylindrical specimens 20 mm long and 4.8 mm in diameter.
  • the classic 4-point method was used, with a constant measurement current of 10 mA.
  • the voltage across the interior electrodes was measured with a high-precision nanovoltmeter. A measurement was made as a function of the temperature using a specifically adapted oven.
  • the melting temperatures of some alloys were determined on heating with a speed of 5 ° C / min by Differential Thermal Analysis on a SETARAM 2000C device.
  • the crystallographic structure of the alloys was defined by analysis of their X-ray diffraction diagram and their electron diffraction diagrams.
  • a series of alloys has been developed by melting pure elements in a high frequency field under an argon atmosphere in a cooled copper crucible.
  • the total mass thus produced was between 50 g and 100 g of alloy.
  • the melting temperature which depends on the composition of the alloy, has always been found in the temperature range between 950 and 1200 ° C.
  • a solid cylindrical test tube 10 mm + 0.5 mm in diameter and a few centimeters in height was formed by aspiration of the liquid metal in a quartz tube. The the cooling rate of this sample was close to 250 ° C per second. This sample was then cut with a diamond saw to shape the metallography and hardness specimens used in the examples below.
  • test piece Part of the test piece was fragmented for thermal stability tests and a crushed powder fraction for X-ray diffraction analysis of each alloy. A similar assembly was used to obtain the 4.8 mm diameter cylindrical samples intended for electrical resistivity. The cooling rate of the test piece was then close to 1000 ° C per second.
  • Table 1 below gives the content of the quasi-crystalline phase of the alloys according to the invention obtained, as well as the melting temperature of some of them.
  • alloys 2, 5, 7, 8, 9, 19, 22 predominantly have pnase O 1 and alloy 1 predominantly phase C.
  • Alloy 3 mainly contains phase H.
  • Alloy 6 consists essentially of phase H, as well as a small fraction of phase C.
  • the other alloys contain variable proportions of phases C, O 1 , O 3 , O 4 (and H for 23 ).
  • a bath of one hundred (100) kilograms of an alloy producing a mass fraction of more than 95% of quasicrystalline phase has been developed.
  • the nominal composition of the alloy was Al 67 Cu 9.5 Fe 12 Cr 11.5 in number of atoms (alloy 39).
  • This composition was made from industrial metallic components, namely aluminum A5, a Cu-Al-Fe alloy containing 19.5% Al by weight, 58.5% Cu by weight and 21.5% Fe by weight. These elements and alloys were introduced cold into a graphite crucible brazed with alumina. Their merger was carried out under a hedging flow which was maintained until the end of the operation. A 125 kW high frequency current generator was used.
  • the specific heat of the alloy was determined in the temperature range 20-80 ° C with a SETARAM scanning calorimeter.
  • the thermal diffusivity of a pellet of this alloy 15 mm thick and 32 mm in diameter was deduced from the temperature / time curve measured on one face of the pellet knowing that the opposite face, previously blackened, was irradiated with a laser lightning of calibrated power and shape.
  • the thermal conductivity is deduced from the two previous measurements, knowing the specific mass of the alloy which was measured by the Archimedes method by immersion in butyl phthalate maintained at 30 ° C ( ⁇ 0.1 ° C) and found equal to 4.02 g / cm 3 .
  • the thermal stability of some alloys of the present invention has been evaluated.
  • the selected alloys were subjected to maintenance at different temperatures for periods ranging from a few hours to several tens of hours.
  • Fragments extracted by breaking the ingots prepared according to Example 1 were placed in quartz ampoules sealed under secondary vacuum. The volume of these fragments was of the order of 0.25 cm 3 .
  • the ampoules were placed in an oven previously heated to the treatment temperature. At the end of the treatment, they were cooled under vacuum to ambient temperature by natural convection in air or at a controlled speed. The fragments were then ground for X-ray diffraction examination. Electron diffraction examinations were also carried out.
  • the experimental conditions of the heat treatments are summarized in table 3 below.
  • the alloys of the present invention are thermally stable in the sense that their structure, as it is characterized by the appropriate diffraction figures, does not change essentially during isothermal heat treatments at temperatures which can reach the temperature of alloying of alloys. In other words, the mass fraction of quasicrystalline phase present in the raw state of production does not decrease during temperature maintenance.
  • the alloys of the present invention are polycrystalline materials whose morphology has been studied by optical microscopy according to a conventional metallography technique.
  • the 10 mm diameter pellets prepared according to the method of Example 1 were finely polished and then attacked with an appropriate metallographic reagent.
  • the metallographic images were photographed with an Olympus optical microscope, working in white light. The grain size observed is between a few micrometers and a few tens of micrometers.
  • the Vickers hardnesses of the alloys of the present invention and of certain alloys of the prior art were measured at ambient temperature on fragments of alloys produced according to the method of Example 1, coated in a resin for metallographic use, then finely polished. Two loads of the microdurometer, respectively 30g and 400g, were used. The results are given in Table 5 below.
  • the Vickers hardnesses observed for the alloys of the present invention are particularly high in comparison with the Vickers hardnesses under load of 400 grams noted for the alloys of the prior art prepared as in Example 3 (sample 41 to 46).
  • the ductility of alloys with high hardness is relatively low.
  • the alloys of the present invention containing cobalt have a higher ductility.
  • additions for example of boron or carbon.
  • compositions 41 to 46 and 40 are alloys of the prior art, the others are alloys according to the invention.
  • compositions of the prior art have an electrical resistivity at room temperature which is between a few ⁇ cm and a few tens of ⁇ cm.
  • alloy 42 of composition Al 85 Cr 15 in number of atoms which has a resistivity of 300 ⁇ cm.
  • This value is to be compared with the presence of a rate of quasicrystalline phase fairly close, although lower, of 30% by mass. This state is however metastable and has only been achieved thanks to the high cooling rate which characterizes the method of preparation of the present test pieces.
  • the characteristic values of the electrical resistivity of the alloys of the present invention are between 300 and 600 ⁇ cm.
  • Such high values mean the quasicrystalline alloys of the present invention for any application where this property must be taken advantage of, such as for example Joule heating, resistors with high heat dissipation, electromagnetic coupling, possibly high frequency.
  • an alloy representative of the family (III) has a low temperature coefficient of the electrical resistivity (1 / ⁇ d ⁇ / dT).
  • the relative variation of the electrical resistivity was measured with the temperature of a test piece of alloy 2.
  • This test piece was prepared from a strip 0.1 mm thick and 1.2 mm wide. produced by quenching the liquid alloy on a copper drum, the surface of which scrolled at a speed of 12 m / s (technique, known as melt spinning).
  • the ingot brought to the liquid state had been prepared according to the method of Example 1.
  • the test piece was heated at a constant speed of 5 ° C./minute and kept in contact with four platinum wires according to the so-called measurement method. in four points.
  • the difference between potential electrodes was 20 mm and the potential measurement carried out with a precision nanovoltmeter.
  • a constant current of 10 mA flowed through the test tube through the other two electrodes.
  • the measuring device was kept under a protective argon flow in a suitable oven. It was found that the variation in resistance is linear, which demonstrates that no transformation of the sample takes place during the measurement or during the following heating cycle, in confirmation of the great thermal stability of the alloys (example 4).
  • the temperature coefficient deduced from the curve (1 / ⁇ (20 ° C)) ( ⁇ (T) - ⁇ (20 ° C)) / ⁇ T is -3.10 -4 . This low value distinguishes the alloy for applications where it is preferable to keep the characteristics of the material within a narrow range depending on the temperature, such as, for example, electromagnetic induction heating.
  • test tube 10 mm in diameter and 3 mm thick prepared according to the procedure of Example 1, was immersed for 30 h in a corrosive solution, at different temperatures. The solution was stirred for the duration of the immersion and kept at temperature by a thermostatically controlled bath. After 30 hours, the weight loss of each test piece was determined.
  • the present invention provides alloys which have excellent corrosion resistance in an acid medium (No. 2, having a Cu content greater than 5 atomic%), or in a strongly alkaline medium (No. 3 and 6, having a cobalt content greater than 5 atomic%).
  • the quasicrystalline alloys of the present invention combine several properties which designate them very particularly for many applications in the form of surface coatings: high hardness, low but not negligible ductility, thermal stability, high corrosion resistance.
  • high hardness low but not negligible ductility
  • thermal stability high corrosion resistance
  • An ingot of two kilograms of the alloy produced according to Example 2 was reduced to powder by grinding using a mill with carbide steel concentric rollers.
  • the powder thus obtained was sieved so as to retain only the fraction of grains whose size was between 25 ⁇ m minimum and 80 ⁇ m maximum.
  • a deposit of 0.5 mm thick was then produced by spraying this powder onto a mild steel plate previously sandblasted. This projection was carried out by means of a Metco flame torch supplied with a mixture proportioned with 63% hydrogen and 27% oxygen. The operation was carried out under a protective atmosphere of 30% hydrogenated nitrogen so as to prevent any oxidation of the sample.
  • the thermal diffusivity ⁇ , the specific mass d and the specific heat Cp were determined near ambient temperature for several samples prepared according to example 1 and a sample prepared according to example 2.
  • the samples prepared according to the method of l Example 1 are pellets 10 mm in diameter and 3 mm thick.
  • the sample of Example 2 is a pellet 32 mm in diameter and 15 mm thick.
  • test pieces The opposite faces of each pellet have been mechanically polished under water, taking great care to guarantee their parallelism.
  • the structural state of the test pieces was determined by X-ray diffraction and by electron microscopy. All the selected samples contained at least 90% by volume of quasicrystalline phase as defined above.
  • the thermal diffusivity has been determined using a laboratory device combining the laser flash method with an Hg-Cd-Te semiconductor detector.
  • the laser was used to supply pulses of power between 20 J and 30 J with a duration of 5.10 -4 s, to heat the front face of the specimen and the semiconductor thermometer was used to detect the thermal response on the opposite side of the test piece.
  • Thermal diffusivity was deduced from the experiments according to the method described in "A. Degiovanni, High Temp. - High Pressure, 17 (1985) 683".
  • the specific heat of the alloy was determined in the temperature range 20-80 ° C with a SETARAM scanning calorimeter.
  • the thermal conductivity ⁇ is deduced from the two previous measurements, knowing the specific mass of the alloy which was measured by the Archimedes method by immersion in butyl phthalate maintained at 30 ° C ( ⁇ 0.1 ° C).
  • Table 9 contains, for comparison, the values relating to some materials of the prior art (samples 50 , 60, 70, 80, 90, 100, 110, 120 and 130 ), some of which are known as thermal barrier (samples 50, 60, 70, 80 ).
  • the thermal conductivity of the quasicrystalline alloys constituting the protective elements of the present invention is considerably lower than that of metallic materials (aluminum metal or Al 2 Cu quadratic), given by way of comparison. It is two orders of magnitude less than that of aluminum and an order of magnitude to that of stainless steel usually considered as a good thermal insulator. In addition, it is lower than that of alumina and quite comparable to that of zirconia doped with Y 2 O 3 , considered as the archetype of thermal insulators in industry.
  • the thermal diffusivity of the alloys 90, 100, 110, 120 and 130 was determined. These alloys, which form defined aluminum compounds, have compositions close to those of the quasi-crystalline alloys which can be used for the protective elements of the present invention. However, they do not have the quasi-crystalline structure defined above. In all cases, their thermal diffusivity is greater than 5.10 -6 m 2 / s, that is to say much greater than that of the alloys used for the present invention.
  • the measurement of the thermal diffusivity was carried out according to the method of Example 11. Each test tube was placed under a stream of purified argon in the center of an oven heated by the Joule effect; the temperature rise rate, programmed by computer, varied linearly at the rate of 5 ° C / min. All the samples in accordance with the present invention show an approximately linear increase in ⁇ with temperature. The value of ⁇ determined at 700 ° C is close to twice that measured at room temperature. Likewise, the specific heat increases with temperature and reaches from 800 to 900 J / kgK at 700 ° C. The specific mass decreases on the order of 1 to 2% as indicated by thermal expansion or neutron diffraction measurements. Consequently, the thermal conductivity remains below 12 W / mK, that is to say the thermal conductivity of stainless steels which are used for certain thermal insulation applications.
  • Figures 1, 2 and 3 respectively represent the evolution of ⁇ as a function of the temperature for alloys 28, 31 and 33.
  • the measurements recorded during heating are represented by black squares, those recorded during cooling by white squares .
  • the variation in the thermal expansion of alloy 2 was measured.
  • the thermal expansion curve shows that the expansion coefficient depends very little on the temperature and is worth 9.10 -6 / ° C, a value close to that of stainless steels.
  • a first series of test pieces has been produced.
  • the substrate was a massive copper cylinder having a diameter of 30 mm and a height of 80 mm and the coating was applied with a plasma torch according to a conventional technique.
  • the C0 test piece is the uncoated copper cylinder.
  • the test piece C1 was coated on its entire surface with a layer of 1 mm thick of the alloy 2 and the test piece C2 was coated with a layer of 2 mm thick of the alloy 2.
  • the C5 test piece comprises a layer of alloy 2 constituting the thermal protection element of the present invention serving as a bonding layer and a layer of yttria zirconia.
  • the C3 and C4 test pieces used for comparison respectively comprise a layer of yttria-containing zirconia and a layer of alumina.
  • test pieces A0 to A2 Another series of test pieces was produced with, as support, a stainless steel tube having a length of 50 cm, a diameter of 40 mm, a wall thickness of 1 mm (test pieces A0 to A2).
  • the support tube is coated at one of its ends over a length of 30 cm.
  • the deposits were made with an oxy-gas torch. Table 10 below gives the nature and thickness of the layers for the different test pieces. The precision on the final thicknesses of the deposits was ⁇ 0.3 mm. All the test pieces were fitted with very low inertia Chromel - Alumel thermocouples.
  • FIG. 4 represents a test piece of the copper cylinder type 1 comprising a coating 2 and provided with a central thermocouple 3 and a lateral thermocouple 4, the two being inserted up to half the length of the cylinder.
  • FIG. 5 represents a hollow tube 5 in which a flow of hot air 6 is passed and which is provided with three thermocouples designated respectively by T1, T2 and T3, the first two being inside the tube and placed respectively at the beginning of the coated area and at the end of the coated area, and the third being on the outer surface of the coating.
  • test pieces C0, C1, C2, C3, C4 and C5 were placed on their base on a refractory brick. Successive heat pulses lasting 10 s were applied to each specimen at 60 s intervals and the response of the thermocouples was recorded. These pulses were produced by the flame of a torch, placed at a constant distance from the test tube and oriented opposite the thermocouple close to the surface. The flow of combustion gases was carefully controlled and kept constant throughout the experiment. Two series of experiments were carried out: one with test tubes initially at 20 ° C and the other with test tubes initially at 650 ° C.
  • test pieces C0 to C5 make it possible to define three parameters which summarize the results of the experiment, namely the maximum difference P in temperature between the two thermocouples, ⁇ T / ⁇ t the rate of temperature rise of the lateral thermocouple 4 during the pulse and the temperature increment ⁇ T produced in the center of the test piece (thermocouple 3). These data are shown in Table 10. It was found that the zirconia layer of the specimen C3 did not resist more than three pulses and was cracked from the first pulse. The C2 sample did not start to crack until the sixth pulse and the C1 sample withstood more than 50 pulses. These results show that the protective elements of the present invention, used as a thermal barrier, have performances at least equivalent to those of zirconia.
  • the thermal protection element of the present invention constitutes an undercoat. It was found that the zirconia layer of the C3 specimen did not resist more than three heat pulses and was cracked from the first pulse. For the C5 test tube, also subjected to a series of thermal pulses, the surface temperature of the zirconia deposit, measured by a third thermocouple placed in contact with the deposit at the end of the tests, stabilized at 1200 ° C. . The experiment focused on 50 pulses and the C5 specimen resisted without apparent damage, although the coefficient of expansion of copper is close to double that of the quasi-crystalline alloy, which would imply significant shear stresses. at the substrate / deposition interface, if the underlay material did not become plastic.
  • the thermal protection elements of the present invention are therefore well suited to the production of bonding sub-layers, in particular for thermal barriers.
  • TABLE 10 20 - 100 ° C 650 - 550 ° C coating material ⁇ T ⁇ 0.5 ° C ° C ⁇ T / ⁇ t ° C / s P ⁇ 0.5 ° C ° C ⁇ T ⁇ 0.5 ° C ° C ⁇ T / ⁇ t ° C / s P ⁇ 0.5 ° C ° C C0 nil 27 2.85 5.4 22 2.3 ⁇ 1 C1 Al 70 Cu 9 Fe 10.5 Cr 10.5 1 mm 24 2.8 3.8 11 1.1 6 C2 Al 70 Cu 9 Fe 10.5 Cr 10.5 2mm 18 1.3 0 25 0.3 4.7 C5 Al 70 Cu 9 Fe 10.5 Cr 10.5mm ZrO 2 -Y 2 O 3 8% 1 mm 23 2.6 4.2 13 1.2 2.5 C3 1 mm yttria zirconia 24 2.75 4.7 14
  • thermal protection element of the present invention to the insulation of a reactor.
  • Test specimens A0, A1 and A2 were used to assess the ability of the alloys of the invention to thermally insulate a device.
  • the test pieces were each provided with 3 thermocouples T1, T2 and T3 as shown in FIG. 5.
  • a current of hot air at constant flow rate was sent through the stainless steel tube constituting the substrate of each test piece.
  • the inlet air temperature, measured using the T1 thermocouple was 300 ⁇ 2 ° C.
  • the surface temperature, measured using the T3 thermocouple was recorded as a function of time from the start of the hot air generator.
  • the T2 thermocouple made it possible to verify that the transient conditions for establishing the hot air flow were identical for all the measurements.
  • Figures 6 and 7 show the evolution of the surface temperature of each of the test pieces A0, A1 and A2 as a function of time.
  • the surface temperature of the test piece A0 (without coating) exceeds at equilibrium that of the test piece A2 by 35 ° C approximately and that of the A1 test tube of 27 ° C.
  • the thermal protection elements of the present invention give interesting results with regard to thermal insulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention concerne des alliages, dont le constituant essentiel est aluminium, les dépôts métalliques réalisés à partir de ces alliages, les substrats revêtus de ces alliages et les applications de ces alliages. Les alliages de la présente invention sont caractérisés en ce qu'ils présentent la composition atomique (I) suivante: AlaCubCob'(B, C)cMdNeIf, a + b + b' + c + d + e + f = 100 en nombre d'atomes, a » 50, 0 « b < 14, 0 « b' « 22, 0 < b + b' « 30, 0 « c « 5, 8 « d « 30, 0 « e « 4, f « 2, avec M représentant un ou plusieurs éléments choisis parmi Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Pd; N représentant un ou plusieurs éléments choisis parmi W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge, les terres rares; I représentant les impuretés d'élaboration inévitables; et qu'ils contiennent au moins 30 % en masse d'une ou plusieurs phases quasicristallines.

Description

  • La présente invention concerne des alliages, dont le constituant essentiel est l'aluminium, les substrats revêtus de ces alliages et les applications de ces alliages, par exemple pour la constitution d'éléments de protection thermique.
  • Divers métaux ou alliages métalliques, par exemple les alliages d'aluminium, ont trouvé jusqu'ici de nombreuses applications en raison de leurs propriétés intéressantes et notamment leurs propriétés mécaniques, leur bonne conductibilité thermique, leur légèreté, leur faible coût. Ainsi, on connaît par exemple les ustensiles et appareils de cuisson, les paliers anti-friction, les châssis ou supports d'appareillage, diverses pièces obtenues par moulage.
  • Toutefois la plupart de ces métaux ou alliages métalliques présentent des inconvénients pour certaines applications, liés à leur dureté et leur résistance à l'usure insuffisantes, et à leur faible résistance à la corrosion, en particulier en milieu alcalin.
  • Différentes tentatives ont été faites pour obtenir des alliages d'aluminium améliorés. Ainsi, le brevet européen 100287 décrit une famille d'alliages amorphes ou microcristallins présentant une dureté améliorée, utilisables comme éléments de renforcement d'autres matériaux ou pour l'obtention de revêtements superficiels améliorant la résistance à la corrosion ou à l'usure. Mais un grand nombre des alliages décrits dans ce brevet ne sont pas stables à des températures supérieures à 200°C, et lors d'un traitement thermique, notamment le traitement auquel ils sont soumis lors du dépôt sur un substrat, ils changent de structure : retour à l'état microcristallin lorsqu'il s'agit d'alliages essentiellement amorphes, grossissement des grains pour les alliages essentiellement microcristallins qui ont initialement une dimension de grains inférieure au micron. Ce changement de structure cristalline ou morphologique induit un changement des caractéristiques physiques du matériau qui affecte essentiellement sa densité. Il en résulte l'apparition de micro-fissures, d'où une fragilité, qui nuisent à la stabilité mécanique des matériaux.
  • Une autre famille d'alliages a été décrite dans EP 356287. Ces alliages présentent des propriétés améliorées. Toutefois, leur teneur en cuivre est relativement élevée.
  • La stabilité thermique est une propriété indispensable pour qu'un alliage puisse être utilisé comme barrière thermique.
  • Les barrières thermiques sont des assemblages d'un ou plusieurs matériaux destinés à limiter le transfert thermique vers ou à partir de pièces et composants d'appareillages dans de nombreux dispositifs domestiques ou industriels. On peut citer par exemple l'utilisation de barrières thermiques dans les dispositifs de chauffage ou de cuisson, les fers à repasser au niveau de la fixation de la partie chaude sur la carcasse et de l'isolation thermique; dans les automobiles, en plusieurs points tels que le turbocompresseur, le pot d'échappement, l'isolation de l'habitacle, etc.; dans l'aéronautique, par exemple sur la partie arrière des compresseurs et des réacteurs.
  • Les barrières thermiques sont quelquefois employées isolément sous la forme d'écran, mais très souvent elles sont directement associées à la source de chaleur ou à la partie à protéger pour des raisons de tenue mécanique. Ainsi, on utilise des feuilles de mica, des plaques de céramique, etc..., dans les ustensiles électroménagers, en les adaptant par vissage ou collage, ou encore des feuilles de laine de verre agglomérée supportées par une tôle métallique. Un procédé particulièrement avantageux pour adjoindre une barrière thermique à une pièce, en particulier à une pièce métallique, consiste à déposer sur un substrat le matériau constituant la barrière sous forme de couche d'épaisseur déterminée par une technique de projection thermique telle que la projection plasma par exemple.
  • Très souvent, il est recommandé d'associer la barrière thermique à d'autres matériaux également déposés en couche par projection thermique. Ces autres matériaux peuvent être destinés à assurer la protection de la barrière vis-à-vis d'agressions extérieures comme par exemple des chocs mécaniques, un milieu corrosif, etc... ou peuvent servir de sous-couche d'accrochage au substrat.
  • Le matériau le plus fréquemment utilisé dans l'aéronautique pour constituer des barrières thermiques est la zircone yttriée qui résiste à des températures très élevées. Le dépôt de zircone est réalisé par projection plasma selon une technique classique à partir de poudre du matériau. La zircone présente une faible diffusivité thermique (α = 10-6 m2/s). Toutefois, elle présente une masse spécifique d relativement élevée, ce qui constitue un inconvénient pour certaines applications ; en outre, certaines de ses propriétés mécaniques, telles que la dureté, la résistance à l'usure et à l'abrasion sont faibles.
  • D'autres matériaux sont utilisés comme barrière thermique. On peut citer l'alumine qui présente une masse spécifique inférieure à celle de la zircone, une diffusivité et une chaleur spécifique supérieures à celles de la zircone, mais dont les propriétés mécaniques ne sont pas satisfaisantes. On peut également citer les aciers inoxydables et certains aciers réfractaires qui offrent des propriétés d'isolation thermique, mais qui présentent une masse spécifique élevée.
  • La présente invention a pour but de fournir une famille d'alliages ayant une dureté et une stabilité thermique élevées, une ductilité et une résistance à la corrosion améliorées.
  • La présente invention a ainsi pour objet une nouvelle famille d'alliages dont le constituant essentiel est l'aluminium.
  • L'invention a également pour objet les revêtements métalliques obtenus à partir de ces alliages.
  • Un autre objet de l'invention est constitué par les substrats revêtus par lesdits alliages.
  • Enfin, un autre objet est constitué par les applications desdits alliages.
  • Les alliages de la présente invention ont l'aluminium comme constituant principal, ils présentent la composition atomique (I) suivante :

            AlaCubCob'(B,C)cMdNeIf     (I)

    dans laquelle :
    • a + b + b' + c + d + e + f = 100 en nombre d'atomes
    • 50 ≤ a ≤ 75
    • 0 ≤ b < 12
    • 0 ≤ b' ≤ 22
    • 2,5 ≤ b + b' ≤ 30
    • 0 ≤ c ≤ 5
    • 8 ≤ d ≤ 30
    • 0 ≤ e ≤ 4
    • f ≤ 2
    • M représente un ou plusieurs éléments choisis parmi Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Pd ;
    • N représente un ou plusieurs éléments choisis parmi W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge, les terres rares ;
    • I représente les impuretés d'élaboration inévitables ;
    ils contiennent au moins 30% en masse d'une ou plusieurs phases quasicristallines
    et ils sont stables en température.
  • Dans le présent texte, l'expression "phase quasi-cristalline" englobe :
  • 1) les phases présentant des symétries de rotation norma-lement incompatibles avec la symétrie de translation, c'est-à-dire des symétries d'axe de rotation d'ordre 5, 8, 10 et 12, ces symétries étant révélées par la diffraction du rayonnement. A titre d'exemple, on peut citer la phase icosaédrique I de groupe ponctuel m 35 ¯
    Figure imgb0001
    (cf. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, Vol. 53, n° 20, 1984, pages 1951-1953) et la phase décagonale D de groupe ponctuel 10/mmm (cf. L. Bendersky, Quasicrystal with One Dimensional Translational Symmetry and a Tenfold Rotation Axis, Physical Review Letters, Vol. 55, n° 14, 1985, pages 1461-1463). Le diagramme de diffraction des rayons X d'une phase décagonale vraie a été publié dans "Diffraction approach to the structure of decagonal quasicrystals, J.M. Dubois, C. Janot, J. Pannetier, A. Pianelli, Physics Letters A 117-8 (1986) 421-427".
  • 2) les phases approximantes ou composés approximants qui sont des cristaux vrais dans la mesure où leur structure cristallographique reste compatible avec la symétrie de translation, mais qui présentent, dans le cliché de diffraction d'électrons, des figures de diffraction dont la symétrie est proche des axes de rotation 5, 8, 10 ou 12. Certaines d'entre ces phases approximantes avaient été identifiées dans des composés de l'art antérieur. D'autres ont été mises en évidence dans certains alliages de la présente invention.
  • Parmi ces phases, on peut citer à titre d'exemple la phase orthorhombique O1, caractéristique d'un alliage de l'art antérieur ayant la composition atomique Al65Cu20Fe10Cr5, dont les paramètres de maille sont : ao (1)= 2,366, bo (1) = 1,267, co (1) = 3,252 en nanomètres. Cette phase orthorhombique O1 est dite approximante de la phase décagonale. Elle en est d'ailleurs si proche qu'il n'est pas possible de distinguer son diagramme de diffraction des rayons X de celui de la phase décagonale.
  • On peut également citer la phase rhomboédrique de paramètres aR = 3,208 nm, α = 36°, présente dans les alliages de composition voisine de Al64Cu24Fe12 en nombre d'atomes (M. Audier et P. Guyot, Microcrystalline AlFeCu Phase of Pseudo Icosahedral Symmetry, in Quasicrystals, eds. M.V. Jaric et S. Lundqvist, World Scientific, Singapore, 1989).
  • Cette phase est une phase approximante de la phase icosaédrique.
  • On peut aussi citer des phases O2 et O3 orthorhombiques de paramètres respectifs ao (2) = 3,83 ; bo (2) = 0,41 ; co (2) = 5,26 et ao (3) = 3,25 ; bo (3) = 0,41 ; co (3) = 9,8 en nanomètres présentes dans un alliage de composition Al63Cu17,5Co17,5Si2 en nombre d'atomes ou encore la phase orthorhombique O4 de paramètres ao (4) = 1,46 ; bo (4) = 1,23 ; co (4) = 1,24 en nanomètres qui se forme dans l'alliage de composition Al68Cu8Fe12Cr12 en nombre d'atomes de la présente invention. Les approximants orthorhombiques sont décrits par exemple dans C. Dong, J.M. Dubois, J. Materials Science, 26 (1991), 1647.
  • On peut encore citer une phase C, de structure cubique, très souvent observée en coexistence avec les phases approximantes ou quasicristallines vraies. Cette phase qui se forme dans certains alliages Al-Cu-Fe et Al-Cu-Fe-Cr, consiste en une surstructure, par effet d'ordre chimique des éléments d'alliage par rapport aux sites d'aluminium, d'une phase de structure type Cs-Cl et de paramètre de réseau a1 = 0,297 nm.
    Un diagramme de diffraction de cette phase cubique a été publié (C. Dong, J.M. Dubois, M. de Boissieu, C. Janot ; Neutron diffraction study of the peritectic growth of the Al65Cu20Fe15 icosahedral quasicrystal; J. Phys. Condensed Matter, 2 (1990), 6339-6360) pour un échantillon de phase cubique pure et de composition Al65Cu20Fe15 en nombre d'atomes.
  • On peut aussi citer une phase H de structure hexagonale qui dérive directement de la phase C comme le démontrent les relations d'épitaxie observées par microscopie électronique entre cristaux des phases C et H et les relations simples qui relient les paramètres des réseaux cristallins, à savoir aH = 3 √2 a1/ √3(à 4,5% près) et CH = 3√3 a1/2 (à 2,5% près). Cette phase est isotype d'une phase hexagonale, notée ΦAlMn, découverte dans des alliages Al-Mn contenant 40% en poids de Mn [M.A, Taylor, Intermetallic phases in the Aluminium-Manganese Binary System, Acta Metallurgica 8 (1960) 256].
  • La phase cubique, ses surstructures et les phases qui en dérivent, constituent une classe de phases approximantes des phases quasicristallines de compositions voisines.
  • Parmi les alliages de la présente invention, on peut citer ceux, désignés ci-après par (II), qui présentent la composition atomique (I) précitée dans laquelle 0 ≤ b ≤ 5, 0 < b' ≤ 22 et /ou 0 < c ≤ 5, et M représente Mn + Fe + Cr ou Fe + Cr. Ces alliages (II) sont plus particulièrement destinés aux revêtements d'ustensiles de cuisson.
  • Une autre famille particulièrement intéressante, désignée ci-après par (III), présente la composition atomique (I) précitée dans laquelle 15 < d ≤ 30 et M représente au moins Fe + Cr, avec un rapport atomique Fe/Cr < 2.
    Ces alliages (III) présentent une résistance à l'oxydation particulièrement élevée.
  • En outre, parmi les alliages (III) on peut distinguer une famille d'alliages (IV) particulièrement résistant à la corrosion:
    • en milieu faiblement acide (5 ≤ pH < 7) si b > 6, b' < 7 et e ≥ 0 avec N choisi parmi Ti, Zr, Rh et Nb,
    • en milieu fortement alcalin (jusqu'à pH = 14) si b ≤ 2, b' > 7 et e ≥ 0.
  • Une autre famille d'alliages (V) intéressants par le fait qu'ils offrent une résistance améliorée à la croissance de grain jusqu'à 700°C présente la composition des alliages (I) avec 0 < e ≤ 1, N étant choisi parmi W, Ti, Zr, Rh, Nb, Hf et Ta.
  • Une autre famille d'alliages (VI) , ayant une dureté améliorée, présente la composition des alliages (I), avec b < 5 et b' ≥ 5, de préférence b < 2 et b' > 7.
  • Enfin, les alliages (VII) ayant la composition (I) et qui présentent une ductilité améliorée sont ceux pour lesquels c > 0, de préférence 0 < c ≤ 1, et/ou 7 ≤ b' ≤ 14.
  • Les alliages de la présente invention se distinguent des alliages de l'art antérieur, et notamment de ceux de EP 356 287 par leur teneur en cuivre plus faible, voire nulle. Les alliages sont, de ce fait, moins sensibles à la corrosion en milieu acide. En outre, la faible teneur en cuivre est plus favorable à l'obtention d'une ductilité améliorée par addition d'autres éléments tels que B ou C. Dans les alliages de la présente invention, le cuivre peut être remplacé en tout ou partie par le cobalt. Ces alliages sont alors particulièrement intéressants en ce qui concerne la dureté, la ductilité et la résistance à la corrosion tant en milieu alcalin qu'en milieu acide dans la gamme des pH intermédiaires (5 ≤ pH ≤ 7). La conjugaison de ces différentes propriétés offre aux alliages de la présente invention un large éventail d'applications.
  • Les alliages de la présente invention peuvent par exemple être utilisés comme revêtement de surface anti-usure ou de surface de référence ou pour la réalisation de joints métal-métal ou métal-céramique. Ils conviennent également pour toutes les utilisations impliquant un contact alimentaire.
  • Les alliages de l'invention, de préférence ceux du groupe (VII), peuvent aussi être utilisés pour les surfaces anti-choc.
  • Pour des applications électriques ou électrotechniques, ou pour le chauffage haute fréquence, on utilisera de préférence les alliages selon l'invention des groupes (III) et (V).
  • Pour réaliser des surfaces résistant à l'oxydation, on utilisera de préférence les alliages du groupe (III), alors que ceux des groupes (III) et (IV) conviennent particulièrement bien pour les surfaces résistant à la corrosion.
  • Les alliages des groupes (III), (IV) et (VII) sont particulièrement adaptés à la réalisation de surfaces anti-cavitation ou anti-érosion.
  • Les matériaux de la présente invention, et plus particulièrement ceux du groupe (V), peuvent être utilisés pour constituer des éléments de protection thermique d'un substrat, sous forme de barrière thermique ou sous forme de sous-couche d'accrochage pour des barrières thermiques constituées par des matériaux conventionnels. Ils présentent de bonnes propriétés d'isolation thermique, de bonnes propriétés mécaniques, une faible masse spécifique, une bonne résistance à la corrosion, surtout à l'oxydation, et une grande facilité de mise en oeuvre.
  • Les matériaux de la présente invention, utilisables pour la réalisation d'éléments de protection thermique selon la présente invention présentent des valeurs de diffusivité thermique α voisines de 10-6 m2/s qui sont très comparables à la diffusivité thermique de la zircone. Compte-tenu de la plus faible masse spécifique d de ces matériaux, la conductibilité thermique λ = αdCp au voisinage de la température ambiante ne présente pas de différence significative par rapport à celle de la zircone. Les alliages quasicristallins de la présente invention sont donc des substituts indiqués au remplacement de nombreux matériaux de barrière thermique, et en particulier de la zircone, par rapport à laquelle ils présentent des avantages de faible masse spécifique, d'excellentes propriétés mécaniques en ce qui concerne la dureté, la résistance améliorée à l'usure, à l'abrasion, à la rayure, ainsi qu'à la corrosion.
  • La diffusivité des matériaux constituant les éléments de protection thermique de la présente invention est réduite lorsque la porosité des matériaux augmente. La porosité d'un alliage quasi-cristallin peut être augmentée par un traitement thermique approprié.
  • Les matériaux constituant les éléments de protection thermique de la présente invention peuvent contenir une faible proportion de particules conductrices de la chaleur, par exemple des cristaux d'aluminium métallique. La conduction thermique du matériau sera dominée par les propriétés de conduction de la matrice tant que les particules ne coalescent pas, c'est-à-dire tant que leur proportion volumique reste en-dessous du seuil de percolation. Pour des particules approximativement sphériques et ayant un rayon faiblement distribué, ce seuil se situe aux environs de 20%. Cette condition implique que le matériau constituant l'élément de protection thermique contienne au moins 80% en volume de phases quasi-cristallines telles que définies ci-dessus. De préférence, on utilise donc des matériaux contenant au moins 80% de phase quasi-cristalline, pour leur application comme barriere thermique.
  • Aux températures inférieures à environ 700°C, les éléments de protection thermique peuvent être utilisés comme barrières thermiques. De telles conditions de température correspondent à la plupart des applications domestiques ou dans le domaine de l'automobile. En outre, ils ont une grande aptitude à résister aux contraintes dues à la dilatation du support et leur coefficient de dilatation est intermédiaire entre celui des alliages métalliques et celui des oxydes isolants. De préférence, pour les températures supérieures à environ 600°C, les alliages quasicristallins constituant les barrières thermiques peuvent contenir des éléments stabilisants choisis parmi W, Zr, Ti, Rh, Nb, Hf et Ta. La teneur en élément stabilisant est inférieure ou égale à 2% en nombre d'atomes.
  • Les barrières thermiques de la présente invention peuvent être des barrières multi-couches présentant une alternance de couches de matériaux bons conducteurs de la chaleur et de couches de matériaux mauvais conducteurs qui sont des alliages quasi-cristallins. De telles structures constituent par exemple des barrières thermiques abradables.
  • Pour les applications dans lesquelles les températures atteignent des valeurs supérieures à environ 600°C, les éléments de protection thermique de la présente invention peuvent être utilisés comme sous-couche d'accrochage pour une couche servant de barrière thermique et constituée par un matériau de l'art antérieur tel que la zircone. Dans ces domaines de température, les matériaux constituant les éléments de protection thermique de la présente invention deviennent superplastiques. Ils correspondent donc bien aux conditions d'emploi requises pour la réalisation d'une sous-couche d'accrochage tout en étant capables de participer eux-mêmes à l'isolation du substrat. Ainsi, les éléments de protection thermique de la présente invention peuvent être utilisés jusqu'à quelques dizaines de degrés du point de fusion du matériau qui les constitue. Cette limite se situe aux environs de 950°C à 1200°C selon la composition.
  • Les alliages selon l'invention peuvent être obtenus par les procédés d'élaboration métallurgique classiques, c'est-à-dire qui comportent une phase de refroidissement lent (soit ΔT/t inférieur à quelques centaines de degrés). Par exemple, des lingots peuvent être obtenus par fusion des éléments métalliques séparés ou de préalliages dans un creuset en graphite brasqué sous une couverture de gaz protecteur (argon, azote), de flux de couverture d'usage classique en métallurgie d'élaboration, ou dans un creuset maintenu sous vide. Il est possible aussi d'utiliser des creusets en céramique réfractaire ou en cuivre refroidi avec un chauffage par courant haute fréquence.
  • La préparation des poudres nécessaires au procédé de métallisation peut s'effectuer par exemple par broyage mécanique ou par atomisation de l'alliage liquide dans un jet d'argon selon une technique classique. Les opérations d'élaboration de l'alliage et d'atomisation peuvent s'effectuer en séquence sans requérir la coulée de lingots intermédiaires. Les alliages ainsi élaborés peuvent être déposés sous forme mince, généralement jusqu'à quelques dizaines de micromètres, mais également sous forme épaisse, pouvant atteindre plusieurs millimètres, par toute technique de métallisation, dont celles qui ont déjà été citées.
  • Les alliages de la présente invention peuvent être utilisés sous forme de revêtement superficiel par dépôt à partir d'un lingot pré-élaboré, ou de lingots des éléments séparés, pris comme cibles dans un réacteur de pulvérisation cathodique, ou encore par dépôt de phase vapeur produite par la fusion sous vide du matériau massif. D'autres méthodes, par exemple celles qui mettent en oeuvre le frittage de poudre agglomérée, peuvent également être utilisées. Les revêtements peuvent également être obtenus par projection thermique, par exemple à l'aide d'un chalumeau oxy-gaz, d'un chalumeau supersonique ou d'une torche à plasma. La technique de projection thermique est particulièrement intéressante pour l'élaboration d'éléments de protection thermique.
  • La présente invention sera expliquée plus en détail par référence aux exemples non limitatifs suivants.
  • Les alliages obtenus ont été caractérisés à l'état brut d'elaboration par leur diagramme de diffraction des rayons X avec une longueur d'onde λ = 0,17889 nm (anticathode de cobalt), complété lorsqu'il y a lieu par des diagrammes de diffraction d'électron enregistrés sur un microscope électronique Jeol 200 CX.
  • Certains alliages ont été soumis à des maintiens en température sous vide secondaire ou à l'air afin d'évaluer leur stabilité thermique et leur aptitude à résister à l'oxydation. La morphologie des phases et la taille de grain obtenues à l'état brut d'élaboration ont été analysées par micrographie optique à l'aide d'un microscope Olympus.
  • La dureté des alliages a été déterminée à l'aide du duromètre WOLPERT V-Testor 2 sous charges de 30 et 400 grammes.
  • Une estimation de la ductilité de certains alliages a été obtenue en mesurant la longueur des fissures formées à partir des angles de l'empreinte sous charge de 400 grammes. Une valeur moyenne de cette longueur, ainsi que de la dureté, a été évaluée à partir d'au moins 10 empreintes différentes réparties sur l'échantillon. Une autre estimation de la ductilité repose sur l'amplitude de la déformation réalisée avant rupture lors d'un essai de compression appliqué à une éprouvette cylindrique de 4,8 mm de diamètre et 10 mm de hauteur usinée avec des faces parfaitement parallèles perpendiculairement à l'axe du cylindre. Une machine de traction/compression de marque INSTROM a été employée.
  • Enfin, le coefficient de frottement d'une bille en acier 100C6 sur un substrat revêtu d'un alliage de la présente invention a été mesuré à l'aide d'un testeur tribologique de type pion/disque et de marque CSEM.
  • La résistivité électrique des échantillons a été mesurée à la température ambiante sur des éprouvettes cylindriques de 20 mm de longueur et de 4,8 mm de diamètre. La méthode classique dite en 4 points a été utilisée, avec un courant de mesure constant de 10 mA. La tension aux bornes des électrodes intérieures a été mesurée avec un nanovoltmètre de grande précision. Une mesure a été effectuée en fonction de la température à l'aide d'un four spécifiquement adapté.
  • Les températures de fusion de quelques alliages ont été déterminées au chauffage avec une vitesse de 5°C/mn par Analyse Thermique Différentielle sur un appareil SETARAM 2000C.
  • La structure cristallographique des alliages a été définie par analyse de leur diagramme de diffraction des rayons X et de leurs diagrammes de diffraction des électrons.
  • Exemple 1 Elaboration des alliages quasicristallins
  • Une série d'alliages a été élaborée par fusion des éléments purs dans un champ haute fréquence sous atmosphère d'argon dans un creuset en cuivre refroidi. La masse totale ainsi élaborée était comprise entre 50 g et 100 g d'alliage. La température de fusion, qui dépend de la composition de l'alliage, a toujours été trouvée dans l'intervalle de température situé entre 950 et 1200°C. Pendant le maintien en fusion de l'alliage, une éprouvette cylindrique pleine de 10 mm +0,5 mm de diamètre et de quelques centimètres de hauteur a été formée par aspiration du métal liquide dans un tube de quartz. La vitesse de refroidissement de cet échantillon était voisine de 250°C par seconde. Cet échantillon a été ensuite découpé avec une scie diamantée pour façonner les éprouvettes de métallographie et de dureté utilisées dans les exemples ci-après. Une partie de l'éprouvette a été fragmentée pour les essais de stabilité thermique et une fraction broyée en poudre pour l'analyse par diffraction des rayons X de chaque alliage. Un montage analogue a été utilisé pour obtenir les échantillons cylindriques de 4,8 mm de diamètre destinés à la résistivité électrique. La vitesse de refroidissement de l'éprouvette était alors proche de 1000°C par seconde.
  • Le tableau 1 ci-dessous donne la teneur en phase quasi-cristalline des alliages selon l'invention obtenus, ainsi que la température de fusion de certains d'entre eux.
  • Les diagrammes de diffraction des rayons X et les diagrammes de diffraction électronique ont été enregistrés pour les alliages quasicristallins cités dans le tableau 1. Leur étude a permis de déterminer la nature cristallographique des phases présentes. C'est ainsi que, par exemple, les alliages n° 2, 5, 7, 8, 9, 19, 22 presentent majoritairement la pnase O1 et l'alliage 1 majoritairement la phase C. L'alliage 3 contient majoritairement de la phase H. L'alliage 6 est constitué essentiellement par la phase H, ainsi que d'une faible fraction de phase C. Les autres alliages contiennent des proportions variables de phases C, O1, O3, O4 (et H pour 23).
    Figure imgb0002
    Figure imgb0003
  • Exemple 2 Elaboration d'un alliage quasicristallin en grande quantité
  • Un bain de cent (100) kilogrammes d'un alliage produisant une fraction en masse de plus de 95% de phase quasicristalline a été élaboré. La composition nominale de l'alliage était Al67Cu9,5Fe12Cr11,5 en nombre d'atomes (alliage 39). Cette composition a été réalisée à partir de composants métalliques industriels, à savoir de l'aluminium A5, un alliage Cu-Al-Fe contenant 19,5% Al en poids, 58,5% Cu en poids et 21,5% Fe en poids. Ces éléments et alliages ont été introduits à froid dans un creuset en graphite brasqué à l'alumine. Leur fusion a été réalisée sous un flux de couverture qui a été maintenu jusqu'à la fin de l'opération. Un générateur de courant haute fréquence de 125 kW a été utilisé. Après fusion de cette charge et homogénéisation de sa température à 1140°C, du fer pur en barreaux de 8 mm de diamètre puis des briquettes Al-Cr contenant 74% en poids de Chrome et 14% en poids de fondant ont été ajoutés pour atteindre la composition nominale de l'alliage. Après homogénéisation, il a été procédé à la coulée en lingotières de 2 kg de la totalité de la fusion. Deux prélèvements, respectivement au milieu de la coulée et à la fin ont été analysés par voie humide et ont donné deux compositions très voisines de Al66,8Cu9,4Fe12,2Cr11,5Mn0,1 en nombre d'atomes. Le taux d'impuretés, carbone et soufre, a été trouvé inférieur à 0,1% at. L'examen par diffraction des rayons X de plusieurs prélèvements de lingots, réduits en poudre, montre des diagrammes de diffraction correspondant à une phase O1, approximante de la phase décagonale vraie.
  • La chaleur spécifique de l'alliage a été déterminée dans la plage de températures 20-80°C avec un calorimètre à balayage SETARAM. La diffusivité thermique d'une pastille de cet alliage de 15 mm d'épaisseur et 32 mm de diamètre a été déduite de la courbe température/temps mesurée sur une face de la pastille sachant que la face opposée, préalablement noircie, a été irradiée par un éclair laser de puissance et de forme calibrées. La conductivité thermique est déduite des deux précédentes mesures, connaissant la masse spécifique de l'alliage qui a été mesurée par la méthode d'Archimède par immersion dans du phtalate de butyle maintenu à 30°C (± 0,1°C) et trouvée égale à 4,02 g/cm3.
  • Exemple 3 Comparatif Elaboration d'alliages de l'art antérieur
  • A titre de comparaison, une série d'alliages connus de l'art antérieur a été élaborée selon le procédé de l'exemple 1. Ces compositions sont rassemblées dans le tableau 2 ci-dessous. Les alliages contenaient au plus 30% en masse de phase quasi-cristalline, à l'exception de celui dont la teneur atomique en cuivre était supérieure à 18 %. TABLEAU 2
    N° alliage Composition % en masse de phase quasicristalline
    40 Al65,5Cu18,5Fe8Cr8 >95
    41 Al85Fe15 <10
    42 Al85Cr15 ≤30
    43 Al85Cu15 0
    44 Al85Mo15 0
    45 Al95Cu3Fe2 0
    46 Al90Cu5Fe5 0
  • Exemple 4 Stabilité thermique
  • La stabilité thermique de quelques alliages de la présente invention a été évaluée. Les alliages sélectionnés ont été soumis à des maintiens à différentes températures pendant des durées allant de quelques heures à plusieurs dizaines d'heures. Des fragments extraits par cassure des lingots élaborés selon l'exemple 1 ont été placés dans des ampoules de quartz scellées sous vide secondaire. Le volume de ces fragments était de l'ordre de 0,25 cm3. Les ampoules ont été placées dans un four préalablement chauffé à la température du traitement. A la fin du traitement, elles ont été refroidies sous vide jusqu'à la température ambiante par convection naturelle dans l'air ou à une vitesse contrôlée. Les fragments ont ensuite été broyés pour examen par diffraction des rayons X. Des examens par diffraction des électrons ont également été effectués. Les conditions expérimentales des traitements thermiques sont résumées dans le tableau 3 ci-dessous. TABLEAU 3
    N° traitement N° alliage Température de maintien Durée du maintien en heures Refroidissement dans l'air ou vitesse de refroidissement
    T2 2 950°C 5 air
    T3 5 800°C 6 0,5°C/mn
    T4 5 950°C 5 5°C/mn
    T5 7 800°C 30 0,5°C/mn
    T6 8 950°C 5 5°C/mn
    T7 9 800°C 6 0,5°C/mn
  • L'évolution structurale des alliages en cours de traitement isotherme du présent exemple a été appréciée par comparaison avec les diagrammes de diffraction des rayons X enregistrés respectivement avant et après le traitement thermique. Il est remarquable de constater que ces diagrammes ne présentent pas de modification majeure ni dans le nombre de raies de diffraction ni dans leurs intensités relatives. On remarque toutefois un affinement des raies de diffraction qui est dû au phénomène bien connu du grossissement de grain à haute température.
  • Les alliages de la présente invention sont stables thermiquement en ce sens que leur structure, telle qu'elle est caractérisée par les figures de diffraction appropriées, n'évolue pas de façon essentielle au cours de traitements thermiques isothermes à des températures pouvant atteindre la température de fusion des alliages. En d'autres termes, la fraction massique de phase quasicristalline présente à l'état brut d'élaboration ne diminue pas au cours de maintiens en température.
  • Exemple 5 Résistance à l'oxydation
  • Des échantillons en fragments identiques à ceux décrits dans l'exemple 4 ont été soumis à des traitements thermiques dans un four ouvert à l'air, dans des conditions résumées dans le tableau 4 ci-dessous. TABLEAU 4
    N° traitement N° alliage Température de maintien Durée du maintien
    T9 2 400°C 75 heures
    T10 23 500°C 24 heures
    T11 28 500°C 24 heures
    T12 29 500°C 24 heures
    T13 30 500°C 24 heures
    T14 31 500°C 24 heures
    T15 32 500°C 24 heures
    T16 33 500°C 24 heures
    La comparaison entre les diagrammes de diffraction des échantillons avant traitement et ceux enregistrés à la fin des traitements thermiques à l'air montre que les échantillons n'ont subi aucune altération. Plus précisément, aucune trace de grossissement de grain n'est décelable à partir des largeurs de raies de diffraction qui sont restées identiques à celles des diagrammes caractéristiques de l'état brut d'élaboration.
  • Exemple 6 Morphologie et taille de grain
  • Les alliages de la présente invention, élaborés selon la méthode de l'exemple 1, sont des matériaux polycristallins dont la morphologie a été étudiée par microscopie optique selon une technique de métallographie classique. Pour cela, les pastilles de 10 mm de diamètre (élaborées selon la méthode de l'exemple 1) ont été finement polies puis attaquées par un réactif métallographique approprié. Les images métallographiques ont été photographiées avec un microscope optique Olympus, travaillant en lumière blanche. La taille de grain observée est comprise entre quelques micromètres et quelques dizaines de micromètres.
  • La même méthode de caractérisation a été appliquée aux échantillons traités à l'air dans le domaine de température 400°C à 500°C comme décrit dans le tableau 4 de l'exemple précèdent. Sur les images métallographiques ainsi obtenues, on a constaté que les alliages n'ont pas subi de grossissement de grain à la fin de ces traitements thermiques. Il en résulte que la morphologie polycristalline de ces matériaux, qui détermine de nombreuses propriétés thermomécaniques, notamment la dureté macroscopique (HV 400), les coefficients de frottement, la limite élastique, la résilience, n'est pas sensible à des maintiens en température pouvant atteindre au moins 500°C pendant au moins plusieurs dizaines d'heures, y compris en présence d'air.
  • Exemple 7 Dureté et ductilité à la température ambiante
  • Les duretés Vickers des alliages de la présente invention et de certains alliages de l'art antérieur ont été mesurées à la température ambiante sur des fragments d'alliages élaborés selon le procédé de l'exemple 1, enrobés dans une résine pour usage métallographique, puis finement polis. Deux charges du microduromètre, respectivement de 30g et 400g, ont été employées. Les résultats sont donnés dans le tableau 5 ci-dessous.
  • Les duretés Vickers observées pour les alliages de la présente invention sont particulièrement élevées par comparaison avec les duretés Vickers sous charge de 400 grammes relevées pour les alliages de l'art antérieur élaborés comme dans l'exemple 3 (échantillon 41 à 46).
  • La présence de cobalt dans les alliages de la présente invention accroît singulièrement les duretés observées puisque certaines valeurs dépassent Hv 400 = 800.
  • En général, la ductilité des alliages présentant une dureté élevée est relativement faible. Toutefois, on constate de façon surprenante que les alliages de la présente invention contenant du cobalt présente une ductilité plus élevée. Pour les alliages de la présente invention ne contenant pas de cobalt, il est possible d'améliorer la ductilité grâce à des additions, par exemple de bore ou de carbone. Pour évaluer simplement l'effet de telles additions sur la ductilité de certains alliages, la longueur moyenne des fissures qui se forment à partir des angles des empreintes Vickers sous charge de 400 grammes a été mesurée. Cette longueur est d'autant plus faible que l'alliage est plus ductile. Quelques résultats sont reportés dans le tableau 5. TABLEAU 5
    N° alliage Hv 30g Hv 400g Longueur moyenne de fissure (µm)
    2 530 650 54
    3 655 840 20
    4 670 700
    5 540 540
    6 845 46
    7 700 770 46
    8 430 620
    9 450 660
    16 610 775 90
    17 570 620
    18 520 660 33
    19 460 690
    20 560 680
    22 540 730
    23 650 795
    24 610 715
    25 550 775
    26 825 39
    28 510 700 37
    29 410 710 43
    30 510 690 40
    31 580 830 40
    32 520 830 55
    33 530 820 41
    41 210
    42 340
    43 170
    44 310
    45 110
    46 170
  • En outre, un essai de compression a été réalisé avec l'alliage 2 de l'exemple 1, qui ne contient pas de bore, et l'alliage 19, modifié par addition de 3,3% atomique de bore. L'essai a été conduit à la température ambiante, sous charge croissante, sur des éprouvettes cylindriques de diamètre 4,8 mm et de 10 mm de hauteur. Les faces du cylindre, sur lesquelles s'applique la charge ont été très soigneusement usinées de sorte à être parfaitement parallèles entre elles et perpendiculaires à l'axe du cylindre. D'après les courbes déformation - contrainte de compression qui ont été enregistrées en cours de déformation d'éprouvettes des alliages 2 et 19 (tels qu'élaborés selon la méthode de l'exemple 1), on a constaté que l'addition du bore double la déformation obtenue à la rupture, qui atteint 2% environ, et la limite à la rupture, qui dépasse 1000 MPa.
  • Exemple 8 Résistivité électrique à la température ambiante
  • Des mesures de résistivité ont été effectuées pour des alliages selon l'invention, et, à titre comparatif, pour des compositions de l'art antérieur. Dans tous les cas, des éprouvettes cylindriques préparées selon le mode opératoire de l'exemple 1 ont été utilisées.
  • Les résultats obtenus sont rassemblés dans le tableau 6 ci-dessous.
  • Les compositions 41 à 46 et 40 sont des alliages de l'art antérieur, les autres sont des alliages selon l'invention.
  • Les compositions àe l'art antérieur presentent une résistivité électrique à la température ambiante qui est comprise entre quelques µΩcm et quelques dizaines de µΩ cm. On note toutefois une exception avec l'alliage 42 de composition Al85Cr15 en nombre d'atomes qui possède une résistivité de 300 µΩ cm. Cette valeur est à rapprocher de la présence d'un taux de phase quasicristalline assez proche, quoique inférieur, de 30% en masse. Cet état est cependant métastable et n'a été réalisé que grâce à la vitesse de refroidissement élevée qui caractérise le mode d'élaboration des présentes éprouvettes. TABLEAU 6
    N° alliage Fraction massique de phase quasicristalline Résistivité électrique à la température ambiante en µΩcm
    41 <10 22
    42 ≤30 300
    43 0 4
    44 0 32
    45 0 6
    46 0 11
    40 >95 230
    2 >95 575
    3 >95 520
    4 ≥50 590
    7 ≥60 395
    8 ≥80 380
    16 ≥70 370
    17 >90 530
    23 ≥60 330
    24 ≥40 420
    25 ≥40 460
  • Les valeurs caractéristiques de la résistivité électrique des alliages de la présente invention sont comprises entre 300 et 600 µΩ cm. Des valeurs aussi élevées destinent les alliages quasicristallins de la présente invention à toute application où cette propriété doit être mise à profit, comme par exemple le chauffage par effet Joule, les résistances à forte dissipé tion calorique, le couplage électromagnétique, éventuellement haute fréquence.
  • De plus, un alliage représentatif de la famille (III) possède un faible coefficient de température de la résistivil électrique (1/ρ dρ/dT). On a mesuré la variation relative de la résistivité électrique avec la température d'une éprouvette de l'alliage 2. Cette éprouvette a été préparée à partir d'un ruban de 0,1 mm d'épaisseur et de 1,2 mm de largeur élaboré par trempe de l'alliage liquide sur un tambour de cuivre dont la surface défilait à une vitesse de 12 m/s (technique, dite du melt spinning). Le lingot porté à l'état liquide avait été élaboré selon la méthode de l'exemple 1. L'éprouvette a été chauffée à vitesse constante de 5°C/mn et maintenue en contact avec quatre fils de platine selon la méthode de mesure dite en quatre points. L'écart entre électrodes de potentiel était de 20 mm et la mesure de potentiel effectuée avec un nanovoltmètre de précision. Un courant constant de 10 mA circulait dans l'éprouvette au travers des deux autres électrodes. Le dispositif de mesure a été maintenu sous flux d'argon protecteur dans un four approprié. On a constaté que la variation de résistance est linéaire, ce qui démontre qu'aucune transformation de l'échantillon n'intervient durant la mesure ni durant le cycle de chauffage suivant, en confirmation de la grande stabilité thermique des alliages (exemple 4). Le coefficient de température déduit de la courbe (1/ρ(20°C))(ρ(T)-ρ(20°C)) / ΔT est de -3.10-4. Cette valeur faible distingue l'alliage pour les applications où il est préférable de conserver les caractéristiques du matériau à l'intérieur d'une fourchette étroite en fonction de la température, comme par exemple le chauffage par induction électromagnétique.
  • Exemple 9 Résistance à la corrosion
  • La dissolution de certains alliages de la présente invention dans différents milieux a été mesuree ainsi que celle d'un alliage de l'art antérieur.
  • Les échantillons testés sont :
    • alliage n° 40 de l'art antérieur   à 18,5 % de Cu
    • alliage n° 2 de l'invention   à 9 % de Cu
    • alliage n° 3 de l'invention   à 10 % de Co, 0 % de Cu
    • alliage n° 6 de l'invention   à 18 % de Co, 0 % de Cu.
  • Pour mesurer le taux de dissolution, une éprouvette de 10 mm de diamètre et 3 mm d'épaisseur, élaborée selon le mode opératoire de l'exemple 1, a été immergée pendant 30 h dans une solution corrosive, à différentes températures. La solution a été agitée pendant toute la durée de l'immersion et maintenue à température par un bain thermostaté. Après 30 heures, on a déterminé la perte de poids de chaque éprouvette.
  • Les résultats sont rassemblés dans le tableau 7 ci-dessous. Les grandeurs données représentent la perte de poids de l'échantillon en gm-2h-1. N.D. signifie "non détecté".
    Figure imgb0004
  • Il est bien connu que l'addition de cuivre diminue la résistance à la corrosion des alliages d'aluminium (chap.7 de Aluminium, Vol.I, ed. K.R. Van Horn, American Society for Metals). En milieu acide dilué, par exemple, les alliages d'aluminium présentent un taux de dissolution élevé qui diminue habituellement avec l'augmentation de la teneur en acide. A proximité de la concentration 100% d'acide, ce taux de dissolution augmente à nouveau très fortement. A l'inverse, du côté alcalin, la tenue des alliages d'aluminium est satisfaisante jusqu'à ce que le pH s'élève au-dessus de pH=12. Le film passivant d'alumine qui les protège peut alors passer en solution et les alliages d'aluminium sont habituellement très peu résistants à la corrosion en milieu fortement alcalin.
  • Les essais ci-dessus montrent que la présente invention fournit des alliages qui présentent une excellente résistance à la corrosion en milieu acide (n° 2, ayant une teneur en Cu supérieure à 5% atomique), ou en milieu fortement alcalin (n° 3 et 6, ayant une teneur en cobalt supérieure à 5% atomique).
  • Ainsi, les alliages quasicristallins de la présente invention réunissent plusieurs propriétés qui les désignent tout particulièrement pour de nombreuses applications à l'état de revêtements superficiels : grande dureté, ductilité faible mais non négligeable, stabilité thermique, forte résistance à la corrosion. L'exemple suivant montrera que ces alliages conservent ces propriétés après leur mise en oeuvre comme revêtement superficiel. Ils présentent alors un coefficient de frottement remarquablement faible qui enrichit la palette des propriétés intéressantes déjà mentionnées.
  • Exemple 10 Mise en oeuvre d'un alliage de la présente invention pour la réalisation d'un dépôt superficiel
  • Un lingot de deux kilogrammes de l'alliage élaboré selon l'exemple 2 a été réduit en poudre par broyage à l'aide d'un broyeur à galets concentriques en acier carburé. La poudre ainsi obtenue a été tamisée de sorte à ne retenir que la fraction de grains dont la taille était comprise entre 25 µm au minimum et 80 µm au maximum. Un dépôt de 0,5 mm d'épaisseur a alors été réalisé par projection de cette poudre sur une plaque en acier doux préalablement sablée. Cette projection s'est effectuée par l'intermédiaire d'un chalumeau à flamme Metco alimenté par un mélange dosé à 63% d'hydrogène et 27% d'oxygène. L'opération s'est déroulée sous atmosphère protectrice d'azote hydrogéné à 30% de façon à prévenir toute oxydation de l'échantillon. Après élimination de la rugosité superficielle par polissage mécanique, un examen par diffraction des rayons X à révélé que l'alliage àéposé était constitue d'au moins 95% de phase icosaédrique. L'éprouvette, constituée du substrat en acier muni de son revêtement quasicristallin, a été ensuite divisée en deux parties par tronçonnage et l'une de ces parties a été soumise à un traitement thermique à 500°C sous air comme indiqué dans l'exemple 4. Une étude du diagramme de diffraction des rayons X effectué sur l'échantillon traité ne révèle aucune modification majeure de la structure après 28 heures de maintien et confirme la très forte stabilité thermique de l'alliage, y compris à la suite de l'opération de métallisation de surface. Le tableau 8 ci-après résume les résultats des mesures de dureté effectuées, comme dans l'exemple 7, avant et après traitement thermique. La valeur mesurée sur le lingot avant réduction en poudre est également donnée. TABLEAU 8
    Lingot brut d'élaboration (exemple 2) Dépôt avant traitement Dépôt après traitement 28h 500°C air
    Dureté Vickers
    Hv 30 640 525
    Hv 400 550 510 610
    Coefficient frottement bille Brinell 100C6 µ=Ft(N)/Fn(=5N) - 0,26 - 0,30 0,23 - 0,25
  • En outre, le coefficient de frottement d'une bille Brinell, en acier à outils 100C6, sur le dépôt du présent exemple, a été mesuré à l'aide d'un testeur tribologique du type pion-disque de marque CSEM. Une force normale Fn = 5N a été appliquée sur le frotteur normalement au plan du dépôt. La force de résistance au déplacement du frotteur Ft (N), mesurée (en newtons) tangentiellement au déplacement, donne le coefficient de frottement µ = Ft (N) / Fn, sous force normale constante, qui est reporté dans le tableau 8. Il est à noter que les valeurs du tableau 8 sont comparables, voire sensiblement meilleures que les valeurs retenues pour d'autres matériaux employés dans les applications tribologiques.
  • Exemple 11 Diffusivité thermique à température ambiante.
  • La diffusivité thermique α, la masse spécifique d et la chaleur spécifique Cp ont été déterminées au voisinage de la température ambiante pour plusieurs échantillons préparés selon l'exemple 1 et un échantillon préparé selon l'exemple 2. Les échantillons élaborés selon la méthode de l'exemple 1 sont des pastilles de 10 mm de diamètre et de 3 mm d'épaisseur. L'échantillon de l'exemple 2 est une pastille de 32 mm de diamètre et de 15 mm d'épaisseur.
  • Les faces opposées de chaque pastille ont été polies mécaniquement sous eau en prenant un grand soin à garantir leur parallélisme. L'état structural des éprouvettes a été déterminé par diffraction des rayons X et par microscopie électronique. Tous les échantillons sélectionnés contenaient au moins 90% en volume de phase quasicristalline selon la définition donnée ci-dessus.
  • La conductivité thermique est donnée par le produit λ=αdCp.
  • La diffusivité thermique aa été déterminée à l'aide d'un dispositif de laboratoire associant la méthode du flash laser à un détecteur semi-conducteur Hg-Cd-Te. Le laser a été utilisé pour fournir des impulsions de puissance entre 20 J et 30 J d'une durée de 5.10-4 s, pour chauffer la face frontale de l'éprouvette et le thermomètre semi-conducteur servait à détecter la réponse thermique sur la face opposée de l'éprouvette. La diffusivité thermique a été déduite des expériences selon la méthode décrite dans "A. Degiovanni, High Temp. - High Pressure, 17 (1985) 683".
  • La chaleur spécifique de l'alliage a été déterminée dans la plage de températures 20-80°C avec un calorimètre à balayage SETARAM.
  • La conductivité thermique λ est déduite des deux précédentes mesures, connaissant la masse spécifique de l'alliage qui a été mesurée par la méthode d'Archimède par immersion dans du phtalate de butyle maintenu à 30°C (± 0,1°C).
  • Les valeurs obtenues sont reportées dans le tableau 9. Ce tableau contient, à titre de comparaison, les valeurs concer-nant quelques matériaux de l'art antérieur (échantillons 50, 60, 70, 80, 90, 100, 110, 120 et 130), dont certains sont connus comme barrière thermique (échantillons 50, 60, 70, 80).
  • Dans le tableau 9, les sigles de la dernière colonne ont la signification donnée précédemment. TABLEAU 9
    N° al. Composition α m2s-1.106 d kg m-3 Cp Jkg-1 K-1 λ=d Cp Wkg-1K-1 % en masse de phase quasicr.
    2 Al70Cu9Fe10,5Cr10,5 0,75 3940 620 1,8 >95 O/D
    3 Al70Co10Fe13Cr7 1,55 400 625 3,9 >95 C/H
    4 Al69Cu4Fe10Cr7Mn10 0,75 ≥50 O/D
    6 Al65Co18Cr8Fe8 1,5 >95 C/H
    7 Al72Cu4Co4Fe10Cr10 1,10 3950 675 2,9 >90 O/D
    8 Al75Cu5Fe10Cr10 1,65 3800 670 4,2 >90 O/D
    9 Al71,4Cu4,5Fe12Cr12B0,1 0,85 >95 O/D
    28 Al69,5Cu9Fe10,5Cr10,5Hf0,5 1,35 >90 O/D
    30 Al69,5Cu9Fe10,5Cr10,5W0,5 0,93 3980 >95 O/D
    31 Al69,5Co10Fe13Cr7Hf0,5 1,0 >95 C/H
    33 Al69,5Co10Fe13Cr7W0,5 1,25 >90 C/H
    34 Al67Cu9Fe10,5Cr10,5Si3 0,80 4000 630 2,0 >95 O/D
    35 Al63,5Cu8,5Fe10Cr10Si2,5B5,5 1,10 4100 670 3,0 >90 O/D
    36 Al62Co16Fe8Cr8Mn1Ni1Hf4 1,35 4870 >90 C/H
    37 Al62Co16Fe8Cr8Mn1Ni1Nb4 2,0 4690 >70 C/H
    38 Al66Co14Ni14Mn2Hf4 2,3 4830 >60 D
    39 Al67Cu9,5Fe12Cr11,5 1,015 4020 600 2,45 >95 O
    47 Al70Co15Ni15 1,55 4100 600 >95 D
    50 Al fcc 90-100 2700 900 230
    60 Al2O3 8,5 3800 1050 34
    70 acier inoxydable 4 7850 480 15
    80 ZrO2-Y2O3 8% 0,8 5700 400 2
    90 Al6Mn 5,4
    100 Al13Si4Cr14 7,4
    110 Al5Ti2Cu 7,0
    120 Al7Cu2Fe 6,2
    130 Al2Cu 14-17
  • Ces résultats font apparaître que, à température ambiante, la conductivité thermique des alliages quasicristallins constituant les éléments de protection de la présente invention est considérablement inférieure à celle des matériaux métalliques (aluminium métal ou Al2Cu quadratique), donnés à titre de comparaison. Elle est inférieure de deux ordres de grandeur à celle de l'aluminium et d'un ordre de grandeur à celle de l'acier inoxydable considéré habituellement comme un bon isolant thermique. En outre, elle est inférieure à celle de l'alumine et tout-à-fait comparable à celle de la zircone dopée par Y2O3, considéré comme l'archétype des isolants thermiques dans l'industrie.
  • A titre de comparaison, la diffusivité thermique des alliages 90, 100, 110, 120 et 130 a été déterminée. Ces alliages, qui forment des composés définis de l'aluminium, présentent des compositions voisines de celles des alliages quasi-cristallins utilisables pour les éléments de protection de la présente invention. Toutefois, ils ne présentent pas la structure quasi-cristalline définie ci-dessus. Dans tous les cas, leur diffusivité thermique est supérieure à 5.10-6 m2/s, c'est-à-dire bien supérieure à celle des alliages retenus pour la présente invention.
  • Exemple 12 Diffusivité thermique en fonction de la température
  • Les valeurs de α ont été relevées en fonction de la température jusqu'à 900°C.
  • La mesure de la diffusivité thermique a été effectuée selon la méthode de l'exemple 11. Chaque éprouvette a été placée sous flux d'argon purifié au centre d'un four chauffé par effet Joule ; la vitesse de montée en température, programmée par ordinateur, variait linéairement à raison de 5°C/mn. Tous les échantillons conformes à la présente invention présentent une augmentation approximativement linéaire de α avec la température. La valeur de α déterminée à 700°C est proche du double de celle qui est mesurée à la température ambiante. De même, la chaleur spécifique augmente avec la température et atteint de 800 à 900 J/kgK à 700°C. La masse spécifique diminue de l'ordre de 1 à 2% comme l'indiquent des mesures de dilatation thermique ou de diffraction des neutrons. Par conséquent, la conductivité thermique reste inférieure à 12 W/mK, c'est-à-dire à la conductivité thermique des aciers inoxydables qui sont utilisés pour certaines applications d'isolation thermique.
  • Les figures 1, 2 et 3 représentent respectivement l'évolution de α en fonction de la température pour les alliages 28, 31 et 33. Les mesures enregistrées lors du chauffage sont représentées par des carrés noirs, celles enregistrées lors du refroidissement par des carrés blancs.
  • Exemple 13
  • La variation de la dilatation thermique de l'alliage 2 a été mesurée. La courbe de dilatation thermique fait apparaître que le coefficient de dilatation dépend très peu de la température et vaut 9.10-6/°C, valeur proche de celles des aciers inoxydables.
  • Exemple 14
  • Le comportement superplastique de certains alliages susceptibles de constituer les éléments de protection thermique de la présente invention a été étudié. Des éprouvettes cylindriques de 4 mm de diamètre et de 10 mm de longueur, à faces rigoureusement parallèles, ont été réalisés selon la même méthode que celles de l'exemple 1 avec les alliages 34 et 35. Ces éprouvettes ont été soumises à des essais mécaniques en compression sur une machine INSTROM. Des essais ont été effectués jusqu'à une charge de 250 MPa, à une vitesse de déplacement de la poutre de 50 µm/min, la température étant maintenue constante entre 600 et 850°C. Les deux alliages manifestent un comportement superplastique dès 600°C.
  • Exemple 15
  • Elaboration d'éléments de protection thermique selon l'invention et selon l'art antérieur.
  • Une première série d'éprouvettes a été réalisée. Le substrat était un cylindre massif de cuivre ayant un diamètre de 30 mm et une hauteur de 80 mm et le revêtement a été appliqué à la torche à plasma selon une technique classique. L'éprouvette C0 est le cylindre de cuivre non revêtu. L'éprouvette C1 a été revêtue sur toute sa surface d'une couche de 1 mm d'épaisseur de l'alliage 2 et l'éprouvette C2 a été revêtue d'une couche de 2 mm d'épaisseur de l'alliage 2. L'éprouvette C5 comporte une couche de l'alliage 2 constituant l'élément de protection thermique de la présente invention servant de couche d'accrochage et une couche de zircone yttriée. Les éprouvettes C3 et C4 servant de comparaison comportent respectivement une couche de zircone yttriée et une couche d'alumine. Une autre série d'éprouvettes a été réalisée avec, comme support, un tube d'acier inoxydable ayant une longueur de 50 cm, un diamètre de 40 mm, une épaisseur de paroi de 1 mm (éprouvettes A0 à A2). Dans chaque cas, le tube support est revêtu à l'une de ses extrémités sur une longueur de 30 cm. Dans ce dernier cas, les dépôts ont été effectués au chalumeau oxy-gaz. Le tableau 10 ci-dessous donne la nature et l'épaisseur des couches pour les différentes éprouvettes. La précision sur les épaisseurs finales des dépôts était de ± 0,3 mm.
    Toutes les éprouvettes ont été munies de thermocouples Chromel - Alumel à très faible inertie. La figure 4 représente une éprouvette du type cylindre de cuivre 1 comportant un revêtement 2 et munie d'un thermocouple central 3 et d'un thermocouple latéral 4, les deux étant insérés jusqu'à la moitié de la longueur du cylindre. La figure 5 représente un tube creux 5 dans lequel on fait passer un flux d'air chaud 6 et qui est muni de trois thermocouples désignés respectivement par T1, T2 et T3, les deux premiers étant à l'intérieur du tube et placés respectivement au début de la zone revêtue et à la fin de la zone revêtue, et le troisième étant sur la surface externe du revêtement.
  • Exemple 16 Utilisation des éléments de protection comme protection par rapport à une flamme.
  • Les éprouvettes C0, C1, C2, C3, C4 et C5 ont été placées sur leur base sur une brique réfractaire. Des impulsions de chaleur successives d'une durée de 10 s ont été appliquées à chaque éprouvette à intervalle de 60 s et la réponse des thermocouples a été enregistrée. Ces impulsions ont été produites par la flamme d'un chalumeau, placé à distance constante de l'éprouvette et orientée face au thermocouple proche de la surface. Le débit des gaz de combustion a été soigneusement contrôlé et maintenu constant durant toute l'expérience. Deux séries d'expériences ont été menées : l'une avec des éprouvettes initialement à 20°C et l'autre avec des éprouvettes initialement à 650°C.
  • Les éprouvettes C0 à C5 permettent de définir trois paramètres qui résument les résultats de l'expérience, à savoir la différence maximale P de température entre les deux thermocouples, ΔT/Δt la vitesse de montée en température du thermocouple latéral 4 durant l'impulsion et l'incrément de température ΔT réalisé au centre de l'éprouvette (thermocouple 3). Ces données figurent dans le tableau 10. On a constaté que la couche de zircone de l'éprouvette C3 ne résistait pas à plus de trois impulsions et était fissurée dès la première impulsion. L'échantillon C2 n'a commencé à se fissurer qu'à la sixième impulsion et l'échantillon C1 a résisté à plus de 50 impulsions. Ces résultats font apparaître que les éléments de protection de la présente invention, utilisés comme barrière thermique, présentent des performances au moins équivalentes à celles de la zircone.
  • Exemple 17 Utilisation des éléments de protection selon l'invention comme sous-couche de barrière thermique.
  • Dans l'éprouvette C5, l'élément de protection thermique de la présente invention constitue une sous-couche. On a constaté que la couche de zircone de l'éprouvette C3 ne résistait pas à plus de trois impulsions de chaleur et était fissurée dès la première impulsion. Pour l'éprouvette C5, soumise également à une série d'impulsions thermiques, la température de surface du dépôt de zircone, mesurée par un troisième thermocouple placé en contact avec le dépôt à la fin des essais, s'est stabilisée à 1200°C. L'expérience a porté sur 50 impulsions et l'éprouvette C5 a résisté sans dommage apparent, bien que le coefficient de dilatation du cuivre soit proche du double de celui de l'alliage quasi-cristallin, ce qui impliquerait d'importantes contraintes de cisaillement à l'interface substrat/dépôt, si le matériau de sous-couche ne devenait pas plastique. Les éléments de protection thermique de la présente invention sont donc bien adaptés à la réalisation de sous-couches d'accrochage, en particulier pour des barrières thermiques. TABLEAU 10
    20 - 100°C 650 - 550°C
    matériau de revêtement ΔT ±0,5°C °C ΔT/Δt °C/s P ±0,5°C °C ΔT ±0,5°C °C ΔT/Δt °C/s P ±0,5°C °C
    C0 néant 27 2,85 5,4 22 2,3 < 1
    C1 Al70Cu9Fe10,5Cr10,5 1 mm 24 2,8 3,8 11 1,1 6
    C2 Al70Cu9Fe10,5Cr10,5 2mm 18 1,3 0 25 0,3 4,7
    C5 Al70Cu9Fe10,5Cr10,5 0,5mm
    ZrO2-Y2O3 8% 1 mm
    23 2,6 4,2 13 1,2 2,5
    C3 zircone yttriée 1 mm 24 2,75 4,7 14 1,5 2,3
    C4 alumine 1 mm 27 2,7 6,5 25 3,0 8,2
    A0 néant - - - - - -
    A1 Al65Co18Cr8Fe8 1,5 mm - - - - - -
    A2 Al70Cu9Fe10,5Cr10,5
    1,5 mm
    - - - - - -
  • EXEMPLE 18
  • Application d'un élément de protection thermique de la présente invention à l'isolation d'un réacteur.
  • Les éprouvettes A0, A1 et A2 ont été utilisées pour évaluer l'aptitude des alliages de l'invention à isoler thermiquement un dispositif. Les éprouvettes étaient munies chacune de 3 thermocouples T1, T2 et T3 tels que représentés sur la figure 5. Un courant d'air chaud à débit constant a été envoyé à travers le tube en acier inoxydable constituant le substrat de chaque éprouvette. La température de l'air à l'entrée, mesurée à l'aide du thermocouple T1, était de 300±2°C. La température de surface, mesurée à l'aide du thermocouple T3, a été enregistrée en fonction du temps à partir de la mise en route du générateur d'air chaud. Le thermocouple T2 a permis de vérifier que les conditions transitoires d'établissement du flux d'air chaud étaient identiques pour toutes les mesures.
  • Les figures 6 et 7 représentent l'évolution de la température du surface de chacun des éprouvettes A0, A1 et A2 en fonction du temps. La température de surface de l'éprouvette A0 (sans revêtement) dépasse à l'équilibre celle de l'éprouvette A2 de 35°C environ et celle de l'éprouvette A1 de 27°C. Les éléments de protection thermique de la présente invention donnent des résultats intéressants en ce qui concerne l'isolation thermique.

Claims (26)

  1. Alliages dont le constituant essentiel est l'aluminium
    - qui présentent la composition atomique suivante :

            AlaCubCob'(B,C)cMdNeIf     (I)

    a + b + b' + c + d + e + f = 100 en nombre d'atomes
    50 ≤ a ≤ 75
    0 ≤ b ≤ 12
    0 ≤ b' ≤ 22
    2,5 ≤ b + b' ≤ 30
    0 ≤ c ≤ 5
    8 ≤ d ≤ 30
    0 ≤ e ≤ 4
    f ≤ 2
    M représente un ou plusieurs éléments choisis parmi Fe, Cr, Mn, Ni, Ru, Os, Mo, V, Mg, Zn, Pd ;
    N représente un ou plusieurs éléments choisis parmi W, Ti, Zr, Hf, Rh, Nb, Ta, Y, Si, Ge, les terres rares ;
    I représente les impuretés d'élaboration inévitables ;
    - qui contiennent au moins 30% en masse d'une ou plusieurs phases quasicristallines ;
    - et qui sont stables en température.
  2. Alliages selon la revendication 1, caractérisés en ce qu'ils présentent la composition atomique (I) avec 0 ≤ b < 5, 0 ≤ b' ≤ 22 et/ou 0 < c ≤ 5, M représentant Mn + Fe + Cr ou Fe + Cr.
  3. Alliages selon la revendication 1, caractérisés en ce qu'ils présentent la composition atomique (I) avec 15 < d ≤ 30, M représentant au moins Fe + Cr, avec un rapport atomique Fe/Cr < 2.
  4. Alliages selon la revendication 3, caractérisés en ce que b > 6, b' < 7 et e > 0 et N est choisi parmi Ti, Zr, Rh et Nb.
  5. Alliages selon la revendication 3, caractérisés en ce que b ≤ 2, b' > 7 et e ≥ 0.
  6. Alliages selon la revendication 1, caractérisés en ce que 0 < e ≤ 1, N étant choisi parmi W, Ti, Zr, Rh, Nb, Hf et Ta.
  7. Alliages selon la revendication 1, caractérisés en ce que b < 5 et b' ≥ 5.
  8. Alliages selon la revendication 7, caractérisés en ce que b < 2 et b' > 7.
  9. Alliages selon la revendication 1, caractérisés en ce que 0 < c ≤ 1 et/ou 7 ≤ b ' ≤ 14.
  10. Alliages selon l'une quelconque des revendications 1 à 9, caractérisés en ce qu'ils sont obtenus sous forme de pièce massive.
  11. Alliages selon l'une quelconque des revendications 1 à 9, caractérisés en ce qu'ils sont obtenus sous forme de dépôt sur un substrat.
  12. Substrats revêtus par un alliage selon l'une quelconque des revendications 1 à 9.
  13. Application d'un alliage selon l'une quelconque des revendications 1 à 9, à l'élaboration de surfaces anti-usure et/ou anti-frottement, de surfaces anti-choc, de surfaces de référence, de surfaces anti-cavitation ou anti-érosion, de surface résistant à l'oxydation ou à la corrosion.
  14. Application d'un alliage selon l'une quelconque des revendications 1 à 9, à l'élaboration de joints métal-métal ou de joints métal-céramique.
  15. Application d'un alliage selon l'une quelconque des revendications 1 à 9, au revêtement d'ustensiles pour contact alimentaire.
  16. Applications électrotechniques des alliages selon l'une quelconque des revendications 1 à 9.
  17. Application selon la revendication 16 à la réalisation d'éléments de chauffage par induction électromagnétique.
  18. Application d'un alliage selon l'une quelconque des revendications 1 à 9, à la réalisation d'éléments de protection thermique d'un substrat.
  19. Application selon la revendication 18, caractérisée en ce que l'élément de protection thermique est constitué par un matériau quasicristallin constitué essentiellement par ledit alliage, déposé sur le substrat.
  20. Application selon la revendication 19, caractérisée en ce que ledit matériau quasicristallin est déposé sur le substrat par projection thermique.
  21. Application selon la revendication 18, caractérisée en ce que ledit matériau quasicristallin comporte au moins 80% en volume d'au moins une phase quasi-cristalline.
  22. Application selon la revendication 18, caractérisée en ce que ledit matériau quasicristallin présente une porosité supérieure à 10%.
  23. Application selon la revendication 18, caractérisée en ce que l'élément de protection thermique constitue une barrière thermique à des températures inférieures à 800°C.
  24. Application selon la revendication 23, caractérisée en ce que ledit matériau quasicristallin contient en outre des éléments stabilisants à une teneur inférieure à 2 % en nombre d'atomes, choisis parmi W, Zr, Ti, Rh, Nb, Hf et Ta.
  25. Application selon la revendication 18, caractérisée en ce que l'élément de protection thermique est utilisé sous forme d'une couche intermédiaire d'accrochage entre un support et une barrière thermique, la température de surface de ladite barrière pouvant éventuellement dépasser 800°C.
  26. Application selon la revendication 25, caractérisée en ce que l'élément de protection thermique est constitué par une alternance de couches de matériau quasi-cristallin et de couches de matériaux bons conducteurs de la chaleur.
EP92904842A 1991-01-18 1992-01-15 Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications Expired - Lifetime EP0521138B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9100549A FR2671808B1 (fr) 1991-01-18 1991-01-18 Alliages d'aluminium a proprietes specifiques.
FR9100549 1991-01-18
PCT/FR1992/000030 WO1992013111A1 (fr) 1991-01-18 1992-01-15 Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications

Publications (2)

Publication Number Publication Date
EP0521138A1 EP0521138A1 (fr) 1993-01-07
EP0521138B1 true EP0521138B1 (fr) 1997-11-19

Family

ID=9408814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92904842A Expired - Lifetime EP0521138B1 (fr) 1991-01-18 1992-01-15 Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications

Country Status (7)

Country Link
EP (1) EP0521138B1 (fr)
JP (1) JP3244178B2 (fr)
AU (1) AU648876B2 (fr)
DE (1) DE69223180T2 (fr)
ES (1) ES2110492T3 (fr)
FR (1) FR2671808B1 (fr)
WO (1) WO1992013111A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332420A1 (de) * 2003-07-16 2005-02-10 Alstom Technology Ltd Aluminiumbasierte multinäre Legierungen und deren Verwendung als wärme- und korrosionsschützende Beschichtungen
FR2939126A1 (fr) * 2008-12-01 2010-06-04 Saint Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre
WO2010063930A1 (fr) * 2008-12-01 2010-06-10 Saint-Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699554B1 (fr) * 1992-12-23 1995-02-24 Metallisation Ind Ste Nle Barrières thermiques, matériau et procédé pour leur élaboration.
DE4425140C1 (de) * 1994-07-15 1995-07-13 Thomas Dipl Phys Eisenhammer Strahlungswandler zur Umsetzung von elektromagnetischer Strahlung in Wärme und von Wärme in elektromagnetische Strahlung
FR2744839B1 (fr) * 1995-04-04 1999-04-30 Centre Nat Rech Scient Dispositifs pour l'absorption du rayonnement infrarouge comprenant un element en alliage quasi-cristallin
FR2737505B1 (fr) * 1995-07-31 1997-10-24 Gaz De France Revetement en materiau quasi-cristallin et son procede de depot
FR2745304B1 (fr) * 1996-02-23 1998-05-22 Centre Nat Rech Scient Procede de preparation d'alliages quasicristallins al cu fe mb, les alliages obtenus et leurs applications
FR2745300B1 (fr) * 1996-02-23 1998-04-30 Peugeot Revetements anti-usure et/ou de protection thermique pour des pieces telles que des pieces de moteur de vehicule automobile
ES2131451B1 (es) * 1996-10-04 2000-02-16 Inst Nacional De Tecnica Aeroe Recubrimientos cuasicristalinos tipo barrera termica para la proteccion de componentes de las zonas calientes de turbinas.
DE19859477B4 (de) 1998-12-22 2005-06-23 Mtu Aero Engines Gmbh Verschleißschutzschicht
FR2833020B1 (fr) * 2001-11-30 2004-10-22 Inst Francais Du Petrole Utilisation d'alliages d'aluminium quasi-cristallins dans des applications du raffinage et de la petrochimie
US20040022662A1 (en) * 2002-07-31 2004-02-05 General Electric Company Method for protecting articles, and related compositions
DE10358813A1 (de) * 2003-12-16 2005-07-21 Alstom Technology Ltd Quasikristalline Legierungen und deren Verwendung als Beschichtung
FR2866350B1 (fr) 2004-02-16 2007-06-22 Centre Nat Rech Scient Revetement en alliage d'aluminium, pour ustensile de cuisson
JP2016156055A (ja) * 2015-02-24 2016-09-01 トヨタ自動車株式会社 断熱材料
CN105821261B (zh) * 2016-05-30 2017-10-27 广州晶品智能压塑科技股份有限公司 一种高耐腐蚀性的制盖机模具材料
CN106498247A (zh) * 2016-12-05 2017-03-15 郑州丽福爱生物技术有限公司 一种耐冲击耐磨复合合金材料及其制备方法
EP3428628A1 (fr) * 2017-07-11 2019-01-16 Centre National De La Recherche Scientifique Procédé d'authentification d'un objet par diffraction de rayons x

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635117B1 (fr) * 1988-08-04 1993-04-23 Centre Nat Rech Scient Materiaux de revetement pour alliages d'aluminium
EP0489427A1 (fr) * 1990-12-05 1992-06-10 Sumitomo Metal Industries, Ltd. Matériau en aluminium revêtu
FR2673871B1 (fr) * 1991-03-13 1995-03-10 Centre Nat Rech Scient Cordon pour revetement par projection au chalumeau et son utilisation pour deposer sur un substrat une phase quasi cristalline.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US pages 6525 - 6528; C. BERGER ET AL: 'EXPERIMENTAL EVIDENCE FOR THE EXISTENCE OF ENHANCED DENSITY OF STATES AND CANONICAL SPIN-GLASS BEHAVIOR IN AL-MN(-SI) QUASICRYSTALS' *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332420A1 (de) * 2003-07-16 2005-02-10 Alstom Technology Ltd Aluminiumbasierte multinäre Legierungen und deren Verwendung als wärme- und korrosionsschützende Beschichtungen
US7169478B2 (en) 2003-07-16 2007-01-30 Alstom Technology Ltd. Aluminum-based multinary alloys and their use as heat- and corrosion-resistant coatings
FR2939126A1 (fr) * 2008-12-01 2010-06-04 Saint Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre
FR2939125A1 (fr) * 2008-12-01 2010-06-04 Saint Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre
WO2010063930A1 (fr) * 2008-12-01 2010-06-10 Saint-Gobain Coating Solution Revetement de dispositif de mise en forme de produits en verre
EA022538B1 (ru) * 2008-12-01 2016-01-29 Сэн-Гобэн Коутинг Солюшн Покрытие для устройства, предназначенного для формования стеклянных изделий

Also Published As

Publication number Publication date
JPH05505649A (ja) 1993-08-19
FR2671808B1 (fr) 1994-06-17
EP0521138A1 (fr) 1993-01-07
ES2110492T3 (es) 1998-02-16
DE69223180T2 (de) 1998-04-23
DE69223180D1 (de) 1998-01-02
JP3244178B2 (ja) 2002-01-07
AU648876B2 (en) 1994-05-05
WO1992013111A1 (fr) 1992-08-06
FR2671808A1 (fr) 1992-07-24
AU1271792A (en) 1992-08-27

Similar Documents

Publication Publication Date Title
EP0521138B1 (fr) Alliages d&#39;aluminium, les substrats revetus de ces alliages et leurs applications
EP0572646B1 (fr) Utilisation d&#39;un alliage d&#39;aluminium quasi-cristallin pour l&#39;élaboration d&#39;un élément de protection thermique
US5652877A (en) Aluminum alloys, substrates coated with these alloys and their applications
Sabard et al. Microstructural evolution in solution heat treatment of gas-atomized Al alloy (7075) powder for cold spray
EP0605273B1 (fr) Barrières thermiques, materiau et procédé pour leur élaboration
Hidouci et al. Microstructural and mechanical characteristics of laser coatings
US5204191A (en) Coating materials for metal alloys and metals and method
Yeh et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements
Koike et al. In situ observation of partial melting in superplastic aluminum alloy composites at high temperatures
Anandkumar et al. Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding
Wolf et al. Recent developments on fabrication of Al‐matrix composites reinforced with quasicrystals: from metastable to conventional processing
Stella et al. Cavitation erosion of plasma-sprayed NiTi coatings
Ji et al. Spray forming thick nanostructured and microstructured FeAl deposits
Sichani et al. The effect of APS parameter on the microstructural, mechanical and corrosion properties of plasma sprayed Ni-Ti-Al intermetallic coatings
CN101144159A (zh) 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
Tseng et al. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating
EP0356287B1 (fr) Matériaux de revêtement pour alliages métalliques et métaux
FR3096989A1 (fr) Procédé de fabrication additive d’une pièce en un alliage CCA nitruré
EP0504048A1 (fr) Cordon pour revêtement par projection au chalumeau et son utilisation pour déposer sur un substrat une phase quasi cristalline
CN111663070B (zh) 一种耐高温氧化的AlCoCrFeNiSiY高熵合金及其制备方法
Matsuda et al. Rapid solidification processing of a Mg-Li-Si-Ag alloy
Montealegre et al. Influence of the yttria content on the oxidation behaviour of the intermetallic Fe40Al Alloy
Sabard et al. Bonding mechanisms in cold spray deposition of gas atomised and solution heat-treated Al 6061 powder by EBSD
Zhang et al. Microstructure and elevated temperature flexure testing of tungsten produced by electron beam additive manufacturing
Yazdani et al. EBSD Evaluation of Al-TiAl 3 Composites Manufactured Through CRB-Annealing-ARB and CRB-ARB-Annealing Methods

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19930122

17Q First examination report despatched

Effective date: 19941129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69223180

Country of ref document: DE

Date of ref document: 19980102

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2110492

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110202

Year of fee payment: 20

Ref country code: CH

Payment date: 20110124

Year of fee payment: 20

Ref country code: DE

Payment date: 20110121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110125

Year of fee payment: 20

Ref country code: GB

Payment date: 20110120

Year of fee payment: 20

Ref country code: IT

Payment date: 20110125

Year of fee payment: 20

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69223180

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69223180

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120116

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120114