EP0491846B1 - Production reversible ou irreversible d'une image - Google Patents

Production reversible ou irreversible d'une image Download PDF

Info

Publication number
EP0491846B1
EP0491846B1 EP90914705A EP90914705A EP0491846B1 EP 0491846 B1 EP0491846 B1 EP 0491846B1 EP 90914705 A EP90914705 A EP 90914705A EP 90914705 A EP90914705 A EP 90914705A EP 0491846 B1 EP0491846 B1 EP 0491846B1
Authority
EP
European Patent Office
Prior art keywords
recording layer
layer
crystalline
recording
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90914705A
Other languages
German (de)
English (en)
Other versions
EP0491846A1 (fr
Inventor
Gerhard Wagenblast
Volker Bach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0491846A1 publication Critical patent/EP0491846A1/fr
Application granted granted Critical
Publication of EP0491846B1 publication Critical patent/EP0491846B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/056Electrographic processes using a charge pattern using internal polarisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Definitions

  • the present invention relates to a new method for the reversible or irreversible formation of an image by the imagewise action of energy on a recording layer in the presence or absence of an electrical and / or magnetic field, whereby on the surface of the recording layer a pattern of surface charges corresponding to the imaginary action of energy results.
  • Methods of this type in which patterns can be generated from surface charges in a wide variety of ways using various physical mechanisms, are known.
  • An example is xerography or electrophotography, in which a photoconductive recording layer, for. B. is charged positively or negatively by means of a high-voltage corona discharge, after which the electrically charged recording layer is exposed imagewise with actinic light.
  • the photoconductive recording layer becomes electrically conductive in its exposed areas, so that the previously generated electrostatic charge can flow off in these areas via an electrically conductive support.
  • This creates a latent electrostatic image on the photoconductive recording layer which can be developed into a visible image with the aid of suitable liquid or solid toners.
  • This toner image can then be transferred from the recording layer to another surface in a conventional and known manner, resulting in a photocopy.
  • the toner image can also be fixed on the photoconductive recording layer, for example by heating, after which the exposed and therefore toner-free areas of the photoconductive recording layer can be washed away with the aid of suitable liquid developer solvents.
  • the resulting relief layer can then be used for printing purposes, for example.
  • the physical process on which this technique of image-based information recording is based is also known in the scientific literature under the name "Carlson process”. In summary, it can be said that in xerography the pattern is formed from surface charges by generating and imagewise removing free charge carriers.
  • the xerographic process has disadvantages. So need to generate the high voltage corona discharge to charge the surface DC voltages in the order of 6 kV to 10 kV are applied to the photoconductive recording layer, which raises safety-related and, because of the formation of ozone, also toxicological problems.
  • the pattern is formed from surface charges of free electrical charges, the success of the process is affected by the presence of water. This means that excessively high humidity causes premature dissipation of the surface charges even in the dark or prevents sufficient charging of the surface of the photoconductive recording layer.
  • xerography does not allow multiple copies to be made after a single exposure.
  • a modified xerographic method which overcomes these disadvantages to a certain extent is known from DE-A-15 22 688.
  • the pattern of surface charges is generated by irradiating a suitable photoconductive recording layer in the presence of an electric field with a field strength of 1,000 V / cm to 15,000 V / cm over the entire surface. This creates a uniform internal electrical polarization in the recording layer.
  • the surface charge pattern is then formed by local destruction or change in internal polarization.
  • the pattern of surface charges is a remanent electrical polarization image, which consists either of electrically positively or electrically negatively charged regions and uncharged regions or of electrically positively and electrically negatively charged regions.
  • This remanent electrical polarization image can be accentuated in the usual and known manner with liquid or solid toners, it being possible to accentuate the remanent electrical polarization image composed of electrically negative and electrically positively charged areas simultaneously with two toners of opposite electrical charge and different colors.
  • the photoconductive recording layer to be used here is a comparatively thick (15 to 55 »m) inhomogeneous layer made of a photoconductive pigment which is embedded in an electrically insulating carrier.
  • This carrier which is essential for the known method, prevents the thickness of the recording layer from being reduced.
  • a very high voltage must still be applied to the photoconductive recording layer so that the process success - the reversible generation of an image - is ensured.
  • Shielding polarized photoconductive recording layer against undesired exposure to light which generally increases the outlay in terms of apparatus in the known method.
  • the known method is still based on the generation of free charge carriers, the polarized photoconductive recording layer is still sensitive to atmospheric moisture, and the electrical charges can balance out again in the heat, which ultimately leads to an unstable image. Furthermore, charge images which are composed of regions of opposite polarization, ie regions which are electrically negatively and electrically positively charged, can only be produced with the aid of a further electrode which lies directly on the photoconductive recording layer and cannot be removed again. However, this additional electrode often reduces the adhesion of the toners to the correspondingly charged areas of the pattern, which drastically deteriorates the quality of the photocopies to be produced. Last but not least, the known method and the photoconductive recording layer used here are not suitable for the reversible generation of an image by imagewise heating of a recording layer with a thermal head or with laser light which is emitted by a semiconductor laser.
  • EP-A-0 246 500 relates to a layer element with a layer support with a hydrophobic surface and at least one fixed, thin ordered layer applied thereon with a defined uniform and regular structure with a uniform molecular orientation in one direction from a solvent which is soluble in an organic, water-immiscible solvent and / or fusible metallomacrocyclic polymers and their use in electrophotography.
  • the object of the present invention is to find a new method for the reversible or irreversible formation of an image, in which one of the imagewise effects by imagewise action of energy on a recording layer in the presence or absence of an electric and / or magnetic field on the surface of the recording layer the pattern corresponding to the energy results from surface charges and which no longer has the disadvantages of the prior art.
  • Another object of the present invention is a new device, with the help of which the new method can be carried out in a particularly simple and efficient manner.
  • Energy-related pattern results from surface charges, for brevity referred to as the "inventive method”.
  • the new device which is used for the reversible or irreversible formation of an image by imagewise exposure to energy on a recording layer (a) in the presence or absence of an electric and / or magnetic field, thereby a on the surface of the recording layer (a)
  • the pattern corresponding to the imaginary effect of the energy results from surface charges, referred to as the "device according to the invention".
  • the process according to the invention is carried out with the aid of the recording layer (a).
  • all those recording layers (a) are suitable which contain an organic material having a glassy solidification, non-or only slightly photoconductive, permanent dipoles, or which consist thereof, those recording layers (a) which consist only of such an organic material being very suitable are and are therefore preferred according to the invention.
  • suitable organic materials to be used according to the invention can be low-molecular, oligomeric or high-molecular compounds, and in the case of the high-molecular compounds they can also be cross-linked in two or three dimensions. Of these compounds, the high-molecular ones are used with particular preference for the application according to the invention.
  • Examples of highly suitable organic materials to be used according to the invention are those with nematic liquid-crystalline, smectically liquid-crystalline or ferroelectric smectic liquid-crystalline behavior. Of these, those with nematic liquid-crystalline and ferroelectric smectic liquid-crystalline behavior are particularly preferred, and those with ferroelectric smectic liquid-crystalline behavior are particularly preferably used.
  • the compounds with nematic liquid-crystalline behavior which are particularly preferably used for the application according to the invention contain permanent dipoles which usually do not align in such a way that a macroscopic dipole moment results. However, at appropriate temperatures, their permanent dipoles can be oriented in the field direction by an electric field. After the organic material in question has cooled below its glass transition temperature T G , the orientation of the permanent dipoles is frozen like a glass, so that a macroscopic dipole moment results (cf. US Pat. No. 4,762,912).
  • Examples of highly suitable compounds with nematic liquid-crystalline behavior that are to be used particularly preferably for the purpose of the invention are from US Pat. No. 4,762,912, EP-A-0 007 574, EP-A-0 141 512 or EP-A -0 171 045 known.
  • These compounds or groups can form a smectically liquid-crystalline phase, in which the chiral mesogenic compounds or groups as a whole are aligned in parallel by the intermolecular interactions and are joined together to form micro-layers stacked one above the other at equal intervals.
  • These so-called S C * phases have an electrical spontaneous polarization even in the absence of an external electrical field, this remanent polarization being able to be reoriented by applying an external electrical field, which is why these phases are consequently referred to as "ferroelectric".
  • the microlayer structure that is typical for smectically liquid-crystalline phases is present, the molecular longitudinal axes of the chiral mesogenic compounds in the individual microlayers having a tilt angle Til of + ⁇ or - ⁇ with respect to the layer normal Z.
  • the direction of the inclination or tilt angle ⁇ of the longitudinal axes of the molecules in a microlayer in relation to the layer normal Z is generally determined by the so-called director featured.
  • the alignment of the individual lateral dipoles of the chiral mesogenic compounds or groups leads to a macroscopic dipole moment.
  • the director generally leads in the S C * phase, provided that this is not spatially limited, a precession movement around the normal Z, that is to say the so-called polarization vector, when passing through the individual microlayer levels , which indicates the direction of the total dipole moment of the phase, runs on a helix through the S C * phase, resulting in a total dipole moment of 0.
  • ferroelectric smectic liquid-crystalline S C * phase is limited in its thickness and either heated in an external electric field of the appropriate sign and the appropriate orientation or exposed to a very strong external electric field of the appropriate sign and the appropriate orientation, then at exceed a limit field strength dependent on the chiral mesogenic compound used in each case, the direction of the polarization in the S C * phase is reversed, so that its polarization vector matches the external electric field again.
  • This reversal of polarization is based on the "tipping over" of the molecular longitudinal axes of the chiral mesogenic compounds or groups from the tilt angle ⁇ of + ⁇ to the tilt angle ⁇ of - ⁇ or vice versa.
  • a new ferroelectric smectically liquid crystalline S C * order state is formed in the Phase out. If these two ferroelectric smectically liquid crystalline S C * order states are thermodynamically stable, one speaks of enantiotropic, ferroelectric, smectically liquid crystalline S C * behavior. Since the molecular longitudinal axes of the chiral mesogenic compounds or groups "tip over" on a bowling alley, the change between these two S C * order states takes place very quickly, which is why the switching times ⁇ for switching the S C * back and forth Phase between these two S C * order states are extremely low.
  • such chiral mesogenic compounds and groups to be used according to the invention are very particularly advantageous, in which, after local heating and cooling in the presence of an electric field, one of the two thermodynamically stable (enantiotropic), ferroelectric, smectically liquid-crystalline S C * order states locally at room temperature can be frozen in a glass-like manner, the chiral mesogenic compounds or groups in question in the other non-heated areas of the organic material either in the other thermodynamically stable ferroelectric smectic liquid-crystalline S C * order state, in another, not necessarily ferroelectric, liquid-crystalline phase, in disordered Microdomains (scattering centers) or in an isotropic I phase.
  • the chiral mesogenic compounds or groups are in the other thermodynamically stable, ferroelectric, smectically liquid-crystalline S C * order state.
  • the recording layer (a) to be used according to the invention if the chiral mesogenic compounds or groups contained therein have a phase transition S C * ⁇ S A *, which is also generally referred to as the Curie temperature T C , in the temperature range from 50 to 150, preferably 50 to 100, in particular 50 to 90 ° C.
  • the recording layer (a) to be used according to the invention if the organic materials containing permanent dipoles contained therein have a glass transition temperature Tg above 25 ° C.
  • EP-A-0 184 482 EP-A-0 228 703, EP A-0 258 898, EP-A-0 231 858, EP-A-0 231 857, EP-A-0 271 900 or EP-A-0 274 128 or they are described in German patent application P 39 17 196.5.
  • the recording layers (a) which consist of chiral mesogenic compounds of the type mentioned above or which contain chiral mesogenic groups of the type mentioned above have very particular advantages when used according to the invention and are therefore very particularly suitable for the process according to the invention.
  • the microlayer planes of the S C * phase which is formed by the chiral mesogenic compounds or groups, are oriented perpendicular to the plane of the recording layer (a).
  • the excellently suitable recording layers (a) to be used according to the invention have a ferroelectric spontaneous polarization P S or a dipole density or a sum of the aligned dipole moments per unit volume of the recording layer (a) used in each case from 1 to 300, advantageously 10 to 300 and in particular 20 to 300 nC / cm2.
  • the recording layer (a) to be used according to the invention which is very excellently suitable, has a thickness d of 0.1 to 20 ⁇ m. If it is more than 20 »m thick, there may be a loss of bistability under certain circumstances, whereas a thickness d of> 0.1» m may cause it to deform, for example due to capillary effects.
  • the thickness range from 0.1 to 20 »m thus represents an optimum within which the thickness d of the recording layer (a) can be varied widely and can be adapted to the respective requirements, which arise from the desired application-related property profile on the one hand and the physical chemical properties the organic materials used on the other hand result.
  • EP-A-0 184 482, EP-A-0 228 703, EP-A-0 258 898, EP-A-0 231 858, EP-A-0 231 857, the EP-A-0 271 900 and EP-A-0 274 128 disclose the techniques for producing thin layers of crosslinked or uncrosslinked polymers with chiral mesogenic side groups of the type mentioned, and the polymers themselves, or they are described, for. B. in German patent application P 39 17 196.5 described in detail.
  • the techniques mentioned herein for the production of thin layers and the polymers used here are particularly preferably used for the production of the recording layers (a) to be used according to the invention.
  • the recording layer (a) to be used according to the invention is applied to the orientation layer (e) in the desired suitable thickness in a customary and known manner electrically conductive support (b), which contains at least one dimensionally stable support layer (c), an electrode layer (d) and the orientation layer (e) one above the other in the order given, resulting in a recording element (A, D, E), which at least contains said layers (c), (d), (e) and (a) one above the other in the order given.
  • dimensionally stable carrier layers (c), electrode layers (d) and orientation layers (e), which are suitable for the construction of the recording element (A, D, E) to be used in the method according to the invention, can be found in the patents WO-A-86 / 02937, WO-A-87/07890, US-A-4 752 820, GB-A-2 181 263, US-A-4 752 820, EP-A-0 184 482, EP-A-0 205 187, EP-A-0 226 218, EP-A-0 228 703, EP-A-0 231 857, EP-A-0 231 858, EP-A-0 258 898, EP-A-0 271 900 or EP- A-0 274 128 or they are described in German patent application P 39 17 196.5.
  • an imagewise action of energy on the recording layer (a) in the surface thereof in the presence or absence of an electrical and / or magnetic field results in a pattern of surface charges corresponding to the imaginary action of the energy, i. i.e., a retentive electrical polarization image is generated.
  • This remanent electrical polarization image is composed either of electrically positive and electrically negatively charged areas or of electrically positively or electrically negatively charged areas and uncharged areas, or it contains these areas.
  • this pattern is generated from surface charges or the remanent electrical polarization image with no or almost no formation of free charge carriers by the reversible imagewise alignment of all or part of the permanent dipoles present in the recording layer (a).
  • the imagewise effect of thermal energy is advantageous, the use of laser light, in particular that emitted by semiconductor lasers, or a conventional and known thermal head being particularly advantageous.
  • the recording layer (a) When using laser light, it is recommended that the recording layer (a) contain customary and known components, which may be chemically bonded to the organic material in question, which strongly absorb the laser light, and / or that the recording layer (a) be a conventional and known one Layer rests, which strongly absorbs the laser light.
  • the pattern of surface charges or the remanent electrical polarization image resulting here in the procedure according to the invention can, after its intended use, either through the full-surface exposure to energy in the presence or absence of an electrical and / or magnetic field without the formation of free charge carriers with full alignment of all in the recording layer (a ) existing permanent dipoles or with complete destruction of the orientation of the permanent dipoles present in the individual areas of the pattern or image.
  • thermal energy is advantageous according to the invention.
  • a new pattern of surface charges or a retentive electrical polarization image can be generated in the recording layer (a) after the deletion, which is why the method according to the invention is reversible.
  • An example of a preferred use according to the invention of the pattern of surface charges or the remanent electrical polarization image is its accentuation with liquid or solid toners, after which the resulting toner image can be transferred to another surface, thereby photocopying the pattern or image on the other surface arises.
  • the emphasis can then be repeated, ie it can be from a pattern of surface charges or from a remanent one electrical polarization image several photocopies can be obtained, which is a very special advantage of the inventive method.
  • the pattern or image present in the recording layer (a) can be erased again in the manner mentioned above, after which a new pattern or image can be produced in the manner according to the invention and, after being re-emphasized, used for copying purposes.
  • the remanent electrical polarization image generated in the manner according to the invention which is composed of regions containing electrically positive and negatively charged electrons or contains these regions, can be simultaneously or successively accentuated with at least two liquid or solid toners of opposite electrical charge, as a result of which a two-colored or multicolored A toner image is formed which, after being transferred from the recording layer (a) to another surface, provides a two-color or multi-color photocopy. Further advantages are obtained if at least two toners are used which have a strong optical contrast.
  • several photocopies can be obtained from one and the same retentive electrical polarization image.
  • the method according to the invention can be carried out with a wide variety of devices.
  • the device according to the invention is used to carry out the method according to the invention.
  • the device according to the invention comprises at least one of the recording elements (A, D, E) described in detail above, at least one counterelectrode (C, F), and at least one energy source or device (B) which is used for the imagewise action of energy on the recording layer (a ) serves.
  • the device (B) for imagewise exposure to energy contains a laser light source (G), in particular a semiconductor laser, or a conventional and known thermal head (G).
  • G laser light source
  • G semiconductor laser
  • G thermal head
  • the counter electrode (C, F) is arranged so that it can be removed from the recording element (A, D, E) again.
  • the counter electrode (C, F) is advantageously in direct contact with the recording layer (a, D). It can be in the form of a flat or curved plate or in the form of a roller which is moved in relative movement over the recording element (A, D, E) at a suitable speed.
  • the counter electrode (C, F) is connected in the opposite direction to the electrode layer (d) of the electrically conductive carrier (b).
  • the surface of the counter electrode (C, F) can be covered by a conventional and known polysiloxane layer or Teflon layer (h).
  • the surface of the counterelectrode (C, F) is either structured in such a way that it acts as an orientation layer (g), or is covered by an orientation layer (g) which either has the composition and structure of the Orientation layer (s) of the recording element (A, D, E) corresponds to or differs therefrom.
  • the counter electrode (C, F) can be heated and / or have a relief-like surface.
  • the device according to the invention can contain a flat or a roller-shaped recording element (A, D, E).
  • the device according to the invention contains a flat recording element (A, D, E)
  • either the flat or the curved plate-shaped counterelectrode can be pressed onto the recording layer (a) of the recording element (A, D, E), the full area of the recording layer ( a) or only a part of it is covered by the counter electrode (C, F).
  • the roller-shaped electrode (C, F) can also be used, which is then, preferably in the full width of the recording element (A, D, E), moved in relative motion at a suitable speed over its recording layer (a).
  • the device according to the invention contains a roller-shaped recording element (A, D, E)
  • either the flat or the curved plate-shaped counterelectrode (C, F) can be used, via which the roller-shaped recording element (A, D, E) moves in relative motion moving at an appropriate speed.
  • the roller-shaped counter electrode (C, F) are used, which is rotated against the roller-shaped recording element (A, D, E) in the manner of a calender at a suitable speed, which is particularly advantageous according to the invention.
  • the device according to the invention can have at least one device (H) for emphasizing the pattern of surface charges with solid or liquid toners generated in the recording layer (a), at least one device (I) for transferring the toner image from the recording layer (a) to another Surface or alternatively at least one device (J) for fixing the toner image, at least one device (K) for the full-surface action of energy, in particular thermal energy, on the recording element (A, D, E), which is also in the counter electrode (C, F ) can be included, and contain at least one device (L) for generating electrical and / or magnetic fields which can penetrate the entire area of the recording element (A, D, E).
  • the device according to the invention contains conventional and known electrical and / or mechanical devices which are useful for controlling the device according to the invention, such as electrical and / or mechanical control systems and servomotors.
  • the device according to the invention can be connected to and controlled by a process computer.
  • the method according to the invention has numerous special advantages: it can be carried out without the use of very high voltages, which means that numerous safety-related problems are eliminated. Because no or very few free charge carriers are generated when it is carried out, it is insensitive to air humidity and heat. No light shields are necessary for its implementation. In addition, it can be carried out with the aid of homogeneous, thin recording layers which are outstandingly suitable for imagewise heating with laser light, in particular with that emitted by semiconductor lasers, or with a thermal head. In addition, both the method according to the invention and the device according to the invention are extremely variable, so that they can be used with advantage in a wide variety of embodiments.
  • a recording element was first produced which had a glass plate as a dimensionally stable support layer, a 0.7 »m thick, conductive, transparent electrode layer made of indium tin oxide (ITO), a rubbed polyimide layer, which is more commonly known Were prepared by spinning a 3% solution of a polyimide precursor (Liquicoat® ZLI 2650 from Merck AG), drying the resulting nap layer, baking the polyimide precursor layer at 300 ° C.
  • a polyimide precursor Liquicoat® ZLI 2650 from Merck AG
  • This polymer was applied by knife coating its 10% strength solution in tetrachloroethane onto the polyimide layer in such a way that after drying the recording layer remained with the thickness indicated above.
  • the recording layer was briefly heated to above 160 ° C., after which the recording layer was present as an isotropic melt.
  • the recording layer After cooling to room temperature, the recording layer had a polydomain structure with a homogeneous planar orientation over the entire surface.
  • the homogeneous planar orientation means that the microlayer planes of the smectic layers in the material of the recording layer were all perpendicular to the plane of the recording element.
  • the homogeneously planar-oriented recording layer was now brought into direct contact with an ITO electrode layer (image electrode) which had been etched image-wise and which was coated in a customary and known manner by image-wise etching of a full-area ITO electrode on a glass plate and by coating of the resulting electrode image relief with a thin layer of Teflon with non-stick properties. Thereafter, a DC voltage of 50 volts was applied between the image electrode and the electrode layer of the recording element, while the recording layer was briefly heated to a temperature of 120 ° C. The simultaneous exposure to heat and an electric field polarized the recording layer where it was in contact with the image electrode. After that, the recording layer was rapidly cooled to room temperature and the image electrode was removed from the recording layer.
  • Example 1 The recording element of Example 1 was now brought into full contact with a flat Teflon-coated metal electrode (counter electrode). Here too, care was taken to ensure that the direct contact did not cause the recording layer of the recording element was deformed. After a direct voltage of 50 volts was applied between the counter electrode and the electrode layer of the recording element, the recording layer was heated to 120 ° C. and thereby polarized over the entire surface. After the recording layer had cooled to room temperature, the counter electrode was removed again.
  • the recording element was available for further imaging cycles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Claims (34)

  1. Procédé de production réversible ou irréversible d'une représentation par action d'énergie en format d'image sur une couche d'enregistrement (a) en présence ou en l'absence d'un champ électrique et/ou magnétique, par lequel un dessin correspondant à l'action de l'énergie en format d'image est engendré sur la surface de la couche d'enregistrement (a) à partir de charges superficielles, caractérisé en ce que
    (1) la couche d'enregistrement (a) contient une matière organique se solidifiant de manière vitreuse, pas ou seulement peu photoconductrice, présentant des dipôles permanents et qui présente un comportement de cristaux liquides nématiques, de cristaux liquides smectiques ou smectiques ferroélectriques ou qui est constitué de ceci et en ce que
    (2) l'on produit le dessin à partir de charges superficielles sans ou pratiquement sans formation de porteurs de charges libres par un alignement en format d'image réversible de tous ou d'une partie des dipôles permanents présents dans la couche d'enregistrement (a) , où on laisse agir de l'énergie thermique en format d'image.
  2. Appareil qui sert à la production réversible ou irréversible d'une représentation par l'action d'énergie en format d'image sur une couche d'enregistrement (a) en présence ou en l'absence d'un champ électrique et/ou magnétique, par lequel un dessin correspondant à l'action de l'énergie en format d'image est engendré à partir de charges superficielles sur la surface de la couche d'enregistrement (a), et lequel comprend :
    (A) au moins un élément d'enregistrement comportant
    (a) une couche d'enregistrement appropriée pour le procédé et
    (b) un support conducteur d'électricité,
    (B) au moins un dispositif pour l'action d'énergie en format d'image sur l'élément d'enregistrement (A) et
    (C) au moins une électrode montée en sens inverse par rapport au support conducteur d'électricité (b) (contre-électrode),
    caractérisé en ce que
    (D) la couche d'enregistrement (a) contient une matière organique se solidifiant de manière vitreuse, pas ou seulement peu photoconductrice, présentant des dipôles permanents et qui présente un comportement de cristaux liquides nématiques, de cristaux libres smectiques ou smectiques ferroélectriques, dans lequel le dessin est produit à partir de charges superficielles sans ou pratiquement sans formation de porteurs de charges libres par un alignement en format d'image réversible de tous ou d'une partie des dipôles permanents présents dans la couche d'enregistrement (a),
    (E) le support conducteur d'électricité (b) comporte au moins
    (c) une couche de support stable quant à ses dimensions
    (d) une couche d'électrode et
    (e) une couche d'orientation
    mutuellement superposées dans l'ordre indiqué, la couche d'enregistrement (a) reposant directement sur la couche d'orientation (e),
    (F) la contre-électrode (C) est en contact direct avec la couche d'enregistrement (a) et est agencée de façon telle qu'elle peut de nouveau être éloignée de l'élément d'enregistrement (A, D, E), et en ce qu'elle possède soit la forme d'une plaque plane ou courbée, soit la forme d'un rouleau, qui peut être transporté en mouvement relatif sur l'élément d'enregistrement (A, D, E), et en ce que
    (G) le dispositif (B) destiné à l'action d'énergie en format d'image contient au moins une source lumineuse laser ou une tête thermique.
  3. Procédé de production réversible ou irréversible d'une représentation par action d'énergie en format d'image sur une couche d'enregistrement (a) en présence ou en l'absence d'un champ électrique et/ou magnétique, par lequel un dessin correspondant à l'action de l'énergie en format d'image est engendré sur la surface de la couche d'enregistrement (a) à partir de charges superficielles, caractérisé par les étapes de procédé suivantes:
    (1) application d'une couche d'enregistrement (a) se solidifiant d'une façon vitreuse, et pas ou que faiblement photoconductrice et possédant un comportement cristallin liquide nématique ou cristallin liquide (SC*) énantiotrope, smectique ferroélectrique, d'une épaisseur comprise entre 0,1 et 20 »m, laquelle lors d'une action thermique suffisante par l'application d'un champ électrique extérieur, soit passe à un état ordonné cristallin liquide nématique polarisé et peut être congelé de manière vitreuse dans cet état après refroidissement, soit elle peut être commutée entre deux états ordonnés SC* cristallins liquides smectiques ferroélectriques thermodynamiquement stables, sur la couche d'orientation (e) d'un support conducteur électriquement (b), lequel contient une couche de support stable quant aux dimensions (c), une couche d'électrode (d) et une coucne d'orientation (e) mutuellement superposées, engendrant ainsi un élément d'enregistrement (A, D, E),
    (2) alignement sur toute la surface de la couche d'enregistrement (a) dans l'état ordonné cristallin liquide nématique polarisé ou dans l'un de ses états ordonnés SC* cristallins liquides smectiques ferroélectriques et thermodynamiquement stables par échauffement complet de la couche d'enregistrement (a) dans le champ électrique entre la couche d'électrodes (d) et une contre-électrode (C, F), laquelle est agencée de façon telle qu'elle peut de nouveau être éloignée de l'élément d'enregistrement (A, D, E), que la couche d'électrode (d) est montée en sens inverse, est en contact direct avec la couche d'enregistrement (a) et est recouverte d'une couche d'orientation (g) ou d'une couche de polysiloxane (h),la contre-électrode (C, F) possédant soit la forme d'une plaque plane ou ployée, soit la forme d'un rouleau, qui peut être transporté en mouvement relatif avec une vitesse appropriée sur l'élément d'enregistrement (A, D, E),
    (3) échauffement en format d'image de la couche d'enregistrement (a) complètement alignée en présence ou en l'absence d'un champ électrique au moyen d'un rayon laser ou d'une tête thermique avec formation d'un dessin, lequel est constitué de zones stables à température ambiante, dans lesquelles il y a soit un état ordonné cristallin liquide nématique non polarisé, l'autre état ordonné SC* cristallin liquide smectique ferroélectrique et thermodynamiquement stable, un état ordonné cristallin liquide annexe, des micro-domaines non ordonnés (des centres de diffusion), soit une phase I isotrope, et
    (4) passer au toner le dessin en l'absence d'un champ électrique au moyen de toners solides ou liquides.
  4. Procédé suivant la revendication 3, caractérisé par au moins l'une des étapes de procédé suivantes:
    (5) reporter l'image passée au toner résultant de l'étape de procédé (4) depuis la couche d'enregistrement (a) sur une autre surface,
    (6) effacement du dessin après l'étape de procédé (5) par la répétition de l'étape de procédé (2) et
    (7) la fixation de l'image toner résultant de l'étape de procédé (4) sur la couche d'enregistrement.
  5. Procédé de production réversible ou irréversible d'une représentation positive par action d'énergie en format d'image sur une couche d'enregistrement (a) en présence ou en l'absence d'un champ électrique et/ou magnétique, par lequel un dessin correspondant à l'action de l'énergie en format d'image est engendré sur la surface de la couche d'enregistrement (a) à partir de charges superficielles, caractérisé par les étapes de procédé suivantes:
    (1) application d'une couche d'enregistrement (a) d'une épaisseur comprise entre 0,1 et 20 »m, pas ou que faiblement photoconductrice, se solidifiant d'une façon vitreuse, nématique non polarisée ou pas alignée complètement et possédant un comportement cristallin liquide nématique ou cristallin liquide (SC*) énantiotrope, smectique ferroélectrique, laquelle lors d'une action thermique suffisante par l'application d'un champ électrique extérieur, soit passe à un état ordonné cristallin liquide nématique polarisé et peut être congelé de manière vitreuse dans cet état après refroidissement, soit elle peut être commutée alternativement entre deux états ordonnés SC* cristallins liquides smectiques ferroélectriques thermodynamiquement stables, sur la couche d'orientation (e) d'un support conducteur électriquement (b), lequel contient une couche de support stable quant aux dimensions (c), une couche d'électrode (d) et une couche d'orientation (e) mutuellement superposées, engendrant un élément d'enregistrement (A, D, E),
    (2) échauffement en format d'image de la couche d'enregistrement (a) nématique non polarisée ou non alignée complètement uniformément en présence ou en l'absence d'un champ électrique au moyen d'un rayon laser ou d'une tête thermique avec formation d'un dessin, lequel est constitué de zones stables à température ambiante, dans lesquelles il y a soit un état ordonné cristallin liquide nématique polarisé, soit l'un des deux états ordonnés SC* cristallins liquides smectiques ferroélectriques et thermodynamiquement stables, de la couche d'enregistrement (a), et
    (3) passer au toner le dessin en l'absence d'un champ électrique au moyen de toners solides ou liquides.
  6. Procédé suivant la revendication 5, caractérisé par l'une des étapes de procédé suivantes:
    (4) reporter l'image toner résultant de l'étape de procédé (3) depuis la couche d'enregistrement (a) sur une autre surface,
    (5) effacement du dessin après l'étape de procédé (4) par échauffement complet de la couche d'enregistrement (a) en l'absence d'un champ électrique ou
    (6) fixation de l'image passée au toner résultant de l'étape de procédé (3) sur la couche d'enregistrement (a).
  7. Procédé de réalisation de photocopies bi- ou multicolores par la production d'une image de polarisation électrique rémanente, laquelle est composée de zones chargées électriquement positives et négatives, sur la surface d'une couche d'enregistrement (a), caractérisé par les étapes de procédés suivantes:
    (1) application d'une couche d'enregistrement (a) d'une épaisseur comprise entre 0,1 et 20 »m, se solidifiant d'une façon vitreuse, et pas ou que faiblement photoconductrice et possédant un comportement cristallin liquide (SC*) énantiotrope, smectique ferroélectrique, laquelle lors d'une action thermique suffisante par l'application d'un champ électrique extérieur, peut être commutée alternativement entre deux états ordonnés SC* cristallins liquides smectique ferroélectriques thermodynamiquement stables, sur la couche d'orientation (e) d'un support conducteur électriquement (b), lequel contient une couche de support stable quant aux dimensions (c), une couche d'électrode (d) et une couche d'orientation (e) mutuellement superposées, engendrant un élément d'enregistrement (A, D, E),
    (2) alignement complet de la couche d'enregistrement (a) dans l'un de ses états ordonnés SC* cristallins liquides smectiques ferroélectriques et thermodynamiquement stables par échauffement complet de la couche d'enregistrement (a) dans le champ électrique entre la couche d'électrode (d) et une contre-électrode (C, F) laquelle est agencée de façon telle qu'elle peut de nouveau être éloignée de l'élément d'enregistrement (A, D, E), qu'elle est montée en sens inverse par rapport à la couche d'électrode (d), qu'elle est en contact direct avec la couche d'enregistrement (a), et laquelle soit est recouverte d'une couche d'orientation ou d'une couche de polysiloxane (h), soit sert d'une couche d'orientation (g), la contre-électrode (C, F) possédant soit la forme d'une plaque plane ou ployée, soit la forme d'un rouleau, qui peut être transporté en mouvement relatif avec une vitesse appropriée sur l'élément d'enregistrement (A, D, E),
    (3) échauffement en format d'image de la couche d'enregistrement (a) complètement alignée en présence d'un champ électrique au moyen d'un rayon laser ou d'une tête thermique avec formation d'une image de polarisation électrique rémanente laquelle est constituée de zones stables à température ambiance, dans lesquelles il y a respectivement l'un des deux états ordonnés SC* cristallins liquides smectiques ferroélectriques de la couche d'enregistrement (a) et
    (4) passer au toner l'image de polarisation électrique rémanente au moyen de deux toners solides ou liquides de charge opposée.
  8. Procédé de réalisation de photocopies bi- ou multicolores par la production d'une image de polarisation électrique rémanente, laquelle est composée de zones chargées électriquement positives et négatives, sur la surface d'une couche d'enregistrement (a), caractérisé par les étapes de procédés suivantes:
    (1) application d'une couche d'enregistrement (a) d'une épaisseur comprise entre 0,1 et 20 »m, se solidifiant d'une façon vitreuse, et pas ou que faiblement photoconductrice et possédant un comportement cristallin liquide SC* énantiotrope, smectique ferroélectrique, laquelle lors d'une action thermique suffisante par l'application d'un champ électrique extérieur, peut être commutée alternativement entre deux états ordonnés SC* cristallins liquides smectiques ferroélectriques thermodynamiquement stables, sur la couche d'orientation (e) d'un support conducteur électriquement (b), lequel contient une couche de support stable quant aux dimensions (c), une couche d'électrode (d) et une couche d'orientation (e) mutuellement superposées, engendrant un élément d'enregistrement (A, D, E),
    (2) échauffement en format d'image de la couche d'enregistrement (a) en présence du champ électronique entre la couche d'électrodes (d) et une contre-électrode (C, F), laquelle est agencée de façon telle qu'elle peut de nouveau être éloignée de l'élément d'enregistrement (A, D, E), qu'elle est montée en opposition par rapport à la contre-électrode (d), qu'elle est en contact direct avec la couche d'enregistrement (a), laquelle soit est recouverte d'une couche d'orientation (g) ou d'une couche de polysiloxane (h), soit dont la surface sert d'une couche d'orientation (g), la contre-électrode (C, F) possédant soit la forme d'une plaque plane ou ployée, soit la forme d'un rouleau, qui peut être transporté en mouvement relatif avec une vitesse appropriée sur l'élément d'enregistrement (A, D, E), au moyen d'un rayon laser ou d'une tête thermique avec formation d'une image de polarisation électrique rémanente, qui contient des zones stables à température ambiante, dans lesquelles on rencontre chaque fois l'un des deux états ordonnés thermodynamiquement stables et cristallins liquides smectiques ferroélectriques SC* de la couche d'enregistrement (a),
    (3) répétition de l'étape de procédé (3) en présence du champ électrique inversé avec formation d'une deuxième image de polarisation, qui est différente de la première image de polarisation électrique rémanente et qui possède des charges superficielles électriques opposées et,
    (4) passer au toner l'image de polarisation électrique rémanente au moyen d'au moins deux toners solides ou liquides.
  9. Procédé suivant l'une des revendications 7 ou 8, caractérisé en ce que l'on utilise ici au moins deux toners, lesquels sont optiquement fortement contrastants.
  10. Procédé suivant l'une quelconque des revendications 1 ou 3 à 9, aractérisé en ce qu'il est mis en oeuvre à l'aide de l'appareil suivant la revendication 2.
EP90914705A 1989-09-14 1990-09-12 Production reversible ou irreversible d'une image Expired - Lifetime EP0491846B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3930667 1989-09-14
DE3930667A DE3930667A1 (de) 1989-09-14 1989-09-14 Reversible oder irreversible erzeugung einer abbildung
PCT/EP1990/001539 WO1991004514A1 (fr) 1989-09-14 1990-09-12 Production reversible ou irreversible d'une image

Publications (2)

Publication Number Publication Date
EP0491846A1 EP0491846A1 (fr) 1992-07-01
EP0491846B1 true EP0491846B1 (fr) 1995-12-27

Family

ID=6389384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90914705A Expired - Lifetime EP0491846B1 (fr) 1989-09-14 1990-09-12 Production reversible ou irreversible d'une image

Country Status (6)

Country Link
US (1) US5312703A (fr)
EP (1) EP0491846B1 (fr)
JP (1) JPH05502113A (fr)
AT (1) ATE132280T1 (fr)
DE (2) DE3930667A1 (fr)
WO (1) WO1991004514A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106353A1 (de) * 1991-02-28 1992-09-03 Basf Ag Reversible oder irreversible erzeugung einer abbildung
DE4115415A1 (de) * 1991-05-10 1992-11-12 Basf Ag Fluessigkristalline polymere mit nahezu einheitlichem molekulargewicht
DE4126996A1 (de) * 1991-08-16 1993-03-25 Basf Ag Optisch aktive phenoxi-propionsaeureester
DE4408804A1 (de) * 1994-03-15 1995-09-21 Basf Ag Chirale Verbindungen
US6869751B1 (en) * 1999-10-19 2005-03-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing metal electrode

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575500A (en) * 1965-04-06 1971-04-20 Rahn Corp Pip machine
GB1235553A (en) * 1967-06-16 1971-06-16 Rank Xerox Ltd Deformation imaging process
US3804618A (en) * 1967-06-16 1974-04-16 Xerox Corp Liquid crystal imaging system
US3671231A (en) * 1970-06-30 1972-06-20 Xerox Corp Imaging system
US3972588A (en) * 1974-08-19 1976-08-03 Xerox Corporation Imaging method
GB8324642D0 (en) * 1983-09-14 1983-10-19 Univ Manchester Liquid crystal storage device
DE3570144D1 (en) * 1984-02-27 1989-06-15 Tdk Corp Optical recording medium
FR2573082B1 (fr) * 1984-11-13 1987-02-20 Thomson Csf Polymeres thermotropes a chaines laterales ayant une structure chirale et leur procede de fabrication
EP0201554B2 (fr) * 1984-11-13 1993-01-27 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Composes pour dispositifs ferroelectriques a cristaux liquides
DE3650079T2 (de) * 1985-06-14 1995-01-26 Semiconductor Energy Lab Verfahren zum Schreiben und Lesen mit einem einen Flüssigkristall enthaltenden optischen Plattenspeicher.
GB2181263B (en) * 1985-10-02 1989-09-27 Stc Plc Optical storage medium
DE3688700T2 (de) * 1985-12-18 1993-11-11 Canon Kk Flüssigkristallvorrichtung.
US4844835A (en) * 1985-12-26 1989-07-04 Idenitsu Kosan Co., Ltd. Ferroelectric liquid crystal polymer
DE3603267A1 (de) * 1986-02-04 1987-08-06 Roehm Gmbh Vorrichtung zur reversiblen, optischen datenspeicherung (i)
DE3603268A1 (de) * 1986-02-04 1987-09-24 Roehm Gmbh Verfahren zur reversiblen, optischen datenspeicherung (iii)
DE3615832A1 (de) * 1986-05-10 1987-11-12 Basf Ag Schichtelemente, verfahren zu ihrer herstellung sowie ihre verwendung
GB8615316D0 (en) * 1986-06-23 1986-07-30 Secr Defence Chiral liquid crystal compounds
EP0258898B1 (fr) * 1986-09-04 1992-04-22 Idemitsu Kosan Company Limited Polymères liquides cristallins
US4762912A (en) * 1986-10-03 1988-08-09 Hoechst Celanese Corporation Process for producing polymeric media exhibiting third order nonlinear optical response
DE3788634T4 (de) * 1986-12-17 1994-09-08 Canon Kk Verfahren und Gerät zur optischen Aufnahme.
EP0274128B1 (fr) * 1986-12-29 1999-03-31 Idemitsu Kosan Company Limited Polymère de cristal liquide
EP0322903B1 (fr) * 1987-12-29 1994-06-15 Canon Kabushiki Kaisha Appareil d'enregistrement d'une image optique
DE3906527A1 (de) * 1989-03-02 1990-09-06 Basf Ag Polymere diskotisch fluessigkristalline ladungsuebertragungs(charge transfer)-komplexe, ihre herstellung und ihre verwendung
JPH03191376A (ja) * 1989-12-21 1991-08-21 Alps Electric Co Ltd 電子写真装置

Also Published As

Publication number Publication date
US5312703A (en) 1994-05-17
DE3930667A1 (de) 1991-03-28
EP0491846A1 (fr) 1992-07-01
DE59010014D1 (de) 1996-02-08
ATE132280T1 (de) 1996-01-15
WO1991004514A1 (fr) 1991-04-04
JPH05502113A (ja) 1993-04-15

Similar Documents

Publication Publication Date Title
DE2419595C2 (de) Elektrographisches Aufzeichnungsverfahren
DE3502160C2 (fr)
DE3443011A1 (de) Verfahren zur steuerung der ausrichtung von fluessigkristallen, vorrichtung zur durchfuehrung des verfahrens und die damit hergestellte fluessigkristall-einrichtung
DE2554162A1 (de) Abbildungsverfahren
DE3508169A1 (de) Optische modulationsvorrichtung
DE2236467B2 (de) Bildanzeigevorrichtung
DE2653221A1 (de) Mit gleichstrom arbeitende fluessige kristalle enthaltende anzeigegeraete
DE3408110C2 (fr)
EP0491846B1 (fr) Production reversible ou irreversible d'une image
DE2261576A1 (de) Optisches verbundelement
DE2110553A1 (de) Elektrofotografisches Abbildungsverfahren und Vorrichtung zur Durchfuehrung des Verfahrens
DE1936338A1 (de) Vorrichtung und Verfahren zum Elektrophotographieren
DE1597891A1 (de) Verfahren zur Bilderzeugung
EP0501325B1 (fr) Production réversible ou irréversible d'une image
EP0639451B1 (fr) Procédé d'impression utilisant des moyens ferroélectriques
DE2312516A1 (de) Verfahren zum erhoehen des beugungsvermoegens eines deformationsbildes
DE2427626A1 (de) Abbildungsverfahren
DE19525786C2 (de) Verfahren und Einrichtung zur Bilderzeugung
DE2652252C2 (de) Elektrophotographisches Verfahren zur Herstellung einer flexiblen Flachdruckform
DE2909354C2 (de) Verfahren zur Herstellung einer flexiblen Flachdruckform auf elektrophotographischem Wege
DE2431772C3 (de) Elektrophotografisches Aufzeichnungsmaterial
DE3615387A1 (de) Elektrofotografisches verfahren
DE1817222C3 (de) Abbildungsverfahren mit einem erweichbaren Material
DE2148913C3 (de) Aufzeichnungsträger mit einer Trägerschicht sowie mindestens einer erweichbaren, Wanderungsteilchen enthaltenden Teilchenwanderungsschicht und Abbildungsverfahren unter Verwendung des Aufzeichnungsträgers sowie Verfahren zu seiner Herstellung
DE4140996C2 (de) Elektrofotografisches Druckverfahren, Druckform sowie Verfahren zur Herstellung dieser Druckform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19950424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951227

Ref country code: DK

Effective date: 19951227

REF Corresponds to:

Ref document number: 132280

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59010014

Country of ref document: DE

Date of ref document: 19960208

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960122

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960327

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960912

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040905

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040908

Year of fee payment: 15

Ref country code: FR

Payment date: 20040908

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040909

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041122

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050912

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20051109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20050930