EP0491075B1 - Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung - Google Patents

Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung Download PDF

Info

Publication number
EP0491075B1
EP0491075B1 EP90124757A EP90124757A EP0491075B1 EP 0491075 B1 EP0491075 B1 EP 0491075B1 EP 90124757 A EP90124757 A EP 90124757A EP 90124757 A EP90124757 A EP 90124757A EP 0491075 B1 EP0491075 B1 EP 0491075B1
Authority
EP
European Patent Office
Prior art keywords
blade
protective layer
laser
titanium alloy
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124757A
Other languages
English (en)
French (fr)
Other versions
EP0491075A1 (de
Inventor
Claus Dr. Gerdes
Carlo Maggi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to ES90124757T priority Critical patent/ES2075874T3/es
Priority to EP90124757A priority patent/EP0491075B1/de
Priority to DE59009381T priority patent/DE59009381D1/de
Priority to US07/802,320 priority patent/US5366345A/en
Priority to CS913843A priority patent/CZ282365B6/cs
Priority to SU915010399A priority patent/RU2033526C1/ru
Priority to JP33711491A priority patent/JP3217414B2/ja
Priority to CN91111855.1A priority patent/CN1024703C/zh
Publication of EP0491075A1 publication Critical patent/EP0491075A1/de
Application granted granted Critical
Publication of EP0491075B1 publication Critical patent/EP0491075B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Definitions

  • the invention is based on a method for producing a turbine blade made of a titanium base alloy, in which at least one blade portion located in the area of the blade tip and encompassing the blade leading edge by surface treatment of the titanium base alloy with a high-performance energy source with a protective layer made of an opposite one Titanium-based alloy is provided with a more erosion-resistant material.
  • a blade manufactured using such a method is preferably used in low-pressure stages of steam turbines, since, despite its size, it meets the requirements placed there on the mechanical strength at temperatures up to approximately 150 ° C.
  • the steam entering the turbine contains water droplets which hit the surfaces of the turbine blade exposed to the steam at high speed, such as, in particular, the blade leading edge and the parts of the blade surface which adjoin the blade leading edge on the suction side.
  • the water drops can cause erosion damage.
  • the blade section located in the area of the blade tip is particularly stressed, since the peripheral speed of the blade is greatest there.
  • JP-A-62 165 510 A method of the type mentioned is described in JP-A-62 165 510. This process is used to produce a protective layer of high erosion resistance on a turbine blade made of a titanium-based alloy in the area of the blade tip.
  • the protective layer is achieved by implanting carbon or nitrogen ions into the part of the blade surface to be coated using an ion accelerator.
  • a protective layer produced in this way generally has a comparatively small thickness of typically 10 to 20 ⁇ m and can therefore be removed relatively quickly by eroding water drops. The production of a thicker layer requires considerable equipment.
  • GB-A-1 479 855 and EP-B1-0 249 092 disclose further methods for producing an erosion-resistant turbine blade made of a titanium-based alloy.
  • a protective body made of titanium carbide is soldered on the blade tip by means of a silver or copper solder in the area of the blade tip.
  • Such a protective body is intended to protect particularly vulnerable areas of the turbine blade from erosion damage.
  • Manufacturing and applying the protective body to the turbine blade, which is free of protective bodies are comparatively complex.
  • difficulties with the adhesion of the protective body to the titanium-based alloy of the turbine body-free turbine blade cannot be ruled out.
  • the invention has for its object to provide a method of the type mentioned, with which an erosion-resistant turbine blade in an inexpensive and suitable for mass production can be produced, which is characterized by a long service life even under difficult operating conditions.
  • a sufficiently thick protective layer of the treated blade section and thus effective protection against drop erosion is achieved in a single method step, namely a surface treatment of the unprotected titanium base alloy by remelting by means of a laser.
  • This protection against erosion is particularly safe, since the surface treatment as a result of diffusion processes on the one hand forms a protective layer firmly connected to the titanium-based alloy.
  • this protective layer is also characterized by low crack resistance that is comparable to that of the titanium-based alloy.
  • the device shown in the figure contains a support table 1 which can be displaced in a horizontal plane with a support plate 3 which carries a turbine blade 2 and which can be displaced in the direction of a coordinate axis x, and with a support plate 4 which supports the support plate 3 and which is perpendicular to the axis y X-axis is movable.
  • 5 denotes a light of the wavelength ⁇ generating laser. The light generated by the laser is focused on the turbine blade in a treatment head 6. Of the Treatment head 6 can be displaced perpendicular to the support plate 3 in the direction of a coordinate axis z and, if necessary, can also be pivoted about the x and y axes.
  • the coordination of the movements of the treatment head 6, which is firmly connected to the high-performance energy source, and of the support table 1 can take place via a memory-programmed control unit, not shown, which acts on the servo motors which cause the pushing and swiveling movements.
  • Tubes 7 are attached to the treatment head 6, which contain a nitrogen-argon gas mixture, but possibly a mixture of nitrogen with one or more noble gases, from a storage container (not shown) to a point of irradiation 8 of the high-performance energy source on the suction-side surface 9 or the blade leading edge 10 of the turbine blade 2 leads.
  • the supplied gas is free of oxygen and flows around the radiation point 8 forming the tracks 11 in such a way that surrounding atmospheric oxygen cannot enter.
  • the tubes 7 are arranged such that the point of irradiation 8 is flushed with the gas from several sides, for example from the suction and pressure sides of the turbine blade 2. This ensures that the beam point 8 remains free of oxygen even in the area of the blade leading edge 10.
  • the increased gas supply ensures improved cooling of the irradiated area located at the blade leading edge 10.
  • the laser 5 used as a high-power energy source is moved cyclically with respect to the turbine blade 2.
  • a cyclic movement can - as can be seen from the figure - be a back and forth movement along the coordinate axis y, whereby at the Reversal points each have a slight feed in the direction of the coordinate axis x.
  • the part of the surface of the titanium base alloy located in the point of irradiation 8 is melted and alloy elements are introduced into the melt from the gas supplied through the tubes 7.
  • nitrogen is introduced as the alloying element, which forms extremely hard titanium nitride with the titanium of the melted base alloy.
  • titanium boride and / or titanium carbide can also be formed accordingly.
  • the protective layer formed by remelting alloys in this surface treatment has a much greater erosion resistance to water droplets than the unprotected surface of the titanium-based alloy.
  • the protective layer should be at least 0.1 mm thick, since otherwise unprotected surface areas may remain due to unevenness that cannot be ruled out during the re-alloying process.
  • the thickness of the protective layer should not exceed 1 mm, since only then is a particularly good crack resistance and thus particularly good erosion protection guaranteed.
  • the formation of undesirable cracks with layer thicknesses between 0.4 and 1 mm is avoided with great certainty if the laser parameters are set in such a way that the protective layer formed has a Vickers hardness of at most 900, preferably 500 to 700, HV.
  • the traces 11 formed in the titanium-base alloy when the protective layer is produced by the laser 5 should be placed in such a way that they overlap by 50 to 90%, preferably 75 to 85%, since then a particularly good alloying of the alloy elements, such as in particular the Nitrogen in the formation of titanium nitride is guaranteed.
  • the following operating parameters of the laser 5 are typical when producing an erosion-resistant protective layer of approx. 0.6 to 0.7 mm thickness and a Vickers hardness of 500 to 700 HV: Power: 1-10 kW Feed in track direction: 1-2 m / min Track overlap: 75-85% Spot diameter: approx. 2 mm Composition of the gas: Volume fractions N2: Ar approx. 3: 2 Amount of gas: approx. 50 l / min
  • a blade section of the turbine blade 2 contains the protective layer, which lies in the region of the blade tip and comprises the blade leading edge 11 and a surface located on the suction side.
  • This area is generally delimited by the blade leading edge 11 and the blade tip and in each case extends at most by a third of the width or length of the blade from the blade leading edge 11 or the blade tip to the blade leading edge or to the blade root.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

    Technisches Gebiet
  • Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung, bei dem zumindest ein im Bereich der Schaufelspitze befindlicher und die Schaufeleintrittskante umfassender Schaufelabschnitt durch Oberflächenbehandlung der Titan-Basislegierung mit einer Hochleistungs-Energiequelle mit einer Schutzschicht aus einem gegenüber der Titan-Basislegierung erosionsbeständigeren Werkstoff versehen wird. Eine nach einem solchen Verfahren hergestellte Schaufel wird bevorzugt in Niederdruckstufen von Dampfturbinen verwendet, da sie trotz ihrer Grösse den dort gestellten Anforderungen an die mechanische Belastbarkeit bei Temperaturen bis ca. 150oC entspricht. In diesem Temperaturbereich enthält der in die Turbine eintretende Wasserdampf Wassertropfen, welche mit grosser Geschwindigkeit auf die dem eintretenden Dampf ausgesetzten Flächen der Turbinenschaufel auftreffen, wie insbesondere die Schaufeleintrittskante und die an die Schaufeleintrittskante saugseitig anschliessenden Teile der Schaufeloberfläche. Hierbei können die Wassertropfen Erosionsschäden hervorrufen. Besonders beansprucht wird dabei der im Bereich der Schaufelspitze befindliche Schaufelabschnitt, da dort die Umfangsgeschwindigkeit der Schaufel am grössten ist.
  • Stand der Technik
  • Ein Verfahren der eingangs genannten Art ist in JP-A-62 165 510 beschrieben. Dieses Verfahren dient der Herstellung einer Schutzschicht hoher Erosionbeständigkeit auf einer Turbinenschaufel aus einer Titan-Basislegierung im Bereich der Schaufelspitze. Die Schutzschicht wird hierbei durch Implantation von Kohlenstoff- oder Stickstoffionen in den zu beschichtenden Teil der Schaufeloberfläche mit Hilfe eines Ionenbeschleunigers erreicht. Eine derart hergestellte Schutzschicht weist im allgemeinen eine vergleichsweise geringe Dicke von typischerweise 10 bis 20 »m auf und kann daher relativ rasch durch erodierende Wassertropfen abgetragen werden. Die Herstellung einer dickeren Schicht bedarf eines erheblichen apparativen Aufwands.
  • Aus GB-A-1 479 855 und EP-B1-0 249 092 sind weitere Verfahren zur Herstellung einer erosionsbeständigen Turbinenschaufel aus einer Titan-Basislegierung bekannt. Bei diesen Verfahren wird im Bereich der Schaufelspitze an der Schaufeleintrittskante ein Schutzkörper aus Titancarbid mittels eines Silber- oder Kupferlotes aufgelötet. Solch ein Schutzkörper soll besonders gefährdete Bereiche der Turbinenschaufel vor Erosionsschäden bewahren. Herstellen und Aufbringen des Schutzkörpers auf die schutzkörperfreie Turbinenschaufel sind vergleichsweise aufwendig. Zudem sind hierbei Schwierigkeiten bei der Haftung des Schutzkörpers auf der Titan-Basislegierung der schutzkörperfreien Turbinenschaufel nicht auszuschliessen.
  • Darstellung der Erfindung
  • Der Erfindung, wie sie in Patentanspruch 1 definiert ist, liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit dem in preisgünstiger und in für Massenfertigung geeigneter Weise eine erosionsbeständige Turbinenschaufel hergestellt werden kann, welche sich auch unter erschwerten Betriebsbedingungen durch eine grosse Lebensdauer auszeichnet.
  • Mit dem erfindungsgemässen Verfahren wird in einem einzigen Verfahrensschritt, nämlich einer Oberflächenbehandlung der ungeschützten Titan-Basislegierung durch Umschmelzlegieren mittels eines Lasers, eine ausreichend dicke Schutzschicht des behandelten Schaufelabschnitts und damit ein wirksamer Schutz gegen Tropfenerosion erreicht. Dieser Erosionsschutz ist besonders sicher, da durch die Oberflächenbehandlung infolge von Diffusionsvorgängen einerseits eine fest mit der Titan-Basislegierung verbundene Schutzschicht gebildet wird. Andererseits zeichnet sich diese Schutzschicht bei geeigneter Schichtdicke auch durch geringe und der Titan-Basislegierung vergleichbare Rissbeständigkeit aus.
  • Kurze Beschreibung der Zeichnung
  • Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Hierbei zeigt die einzige Figur in schematischer Darstellung eine Vorrichtung zur Herstellung einer Turbinenschaufel nach der Erfindung.
  • Weg zur Ausführung der Erfindung
  • Die in der Figur dargestellte Vorrichtung enthält einen in einer horizontalen Ebene verschiebbaren Auflagetisch 1 mit einer eine Turbinenschaufel 2 tragenden Auflageplatte 3, welche in Richtung einer Koordinatenachse x verschiebbar ist, und mit einer die Auflageplatte 3 stützenden Unterlageplatte 4, welche längs einer Koordinatenachse y senkrecht zur x-Achse bewegbar ist. 5 bezeichnet einen Licht der Wellenlänge lambda erzeugenden Laser. Das vom Laser erzeugte Licht wird in einem Behandlungskopf 6 auf die Turbinenschaufel fokussiert. Der Behandlungskopf 6 kann senkrecht zur Auflageplatte 3 in Richtung einer Koordinatenachse z verschoben und gleichzeitig bei Bedarf auch um die x- und um die y-Achse geschwenkt werden. Die Koordination der Bewegungen des mit der Hochleistungs-Energiequelle fest verbundenen Behandlungskopfes 6 und des Auflagetisches 1 kann über eine nicht dargestellte speicherprogrammierte Steuerungseinheit erfolgen, welche auf die Schub- und Schwenkbewegungen hervorrufende Stellmotoren wirkt.
  • Am Behandlungskopf 6 sind Rohre 7 befestigt, welche ein Stickstoff-Argon-Gasgemisch, gegebenenfalls aber ein Gemisch von Stickstoff mit einem oder mehreren beliebigen Edelgasen, von einem nicht dargestellten Vorratsbehälter an einen Aufstrahlpunkt 8 der Hochleistungs-Energiequelle auf der saugseitigen Oberfläche 9 oder der Schaufeleintrittskante 10 der Turbinenschaufel 2 führt. Das zugeführte Gas ist frei von Sauerstoff und umspült den Spuren 11 bildenden Aufstrahlpunkt 8 derart, dass umgebender Luftsauerstoff nicht zutreten kann. Insbesondere im Bereich der Schaufeleintrittskante 10 sind die Rohre 7 so angeordnet, dass der Aufstrahlpunkt 8 von mehreren Seiten, etwa von der Saug- und von der Druckseite der Turbinenschaufel 2 mit dem Gas bespült wird. Dadurch ist sichergestellt, dass der Aufstrahlpunkt 8 auch im Bereich der Schaufeleintrittskante 10 frei von Sauerstoff bleibt. Zugleich ist durch die erhöhte Gaszufuhr eine verbesserte Kühlung des an der Schaufeleintrittskante 10 gelegenen, bestrahlten Bereichs gewährleistet.
  • Beim Bestrahlen wird der als Hochleistungs-Energiequelle verwendete Laser 5 gegenüber der Turbinenschaufel 2 zyklisch bewegt. Eine zyklische Bewegung kann - wie aus der Figur hervorgeht - eine längs der Koordinatenachse y erfolgende Hin- und Herbewegung sein, wobei an den Umkehrstellen jeweils ein geringfügiger Vorschub in Richtung der Koordinatenachse x erfolgt. Durch eine Schwenkbewegung des Bestrahlungskopfes 6 um die Koordinatenachse x bei gleichzeitiger Bewegung des Bestrahlungskopfes 6 längs der Koordinatenachse z kann hierbei während einer Hin- oder Herbewegung zugleich die Schaufeleintrittskante 10 auf der Saug- und auf der Druckseite bestrahlt werden. Hierbei wird der im Aufstrahlpunkt 8 gelegene Teil der Oberfläche der Titan-Basislegierung aufgeschmolzen und werden in die Schmelze Legierungselemente aus dem durch die Rohre 7 zugeführten Gas eingebracht. Bei dem in der Figur angegebenen Gasgemisch wird als Legierungselement Stickstoff eingebracht, welcher mit dem Titan der aufgeschmolzenen Basislegierung extrem hartes Titannitrid bildet. Bei geeigneter Zusammensetzung des zugeführten Gases können entsprechend aber auch Titanborid und/oder Titancarbid gebildet werden.
  • Die bei dieser Oberflächenbehandlung durch Umschmelzlegieren gebildete Schutzschicht weist eine vielfach grössere Erosionsbeständigkeit gegen Wassertropfeneinfall auf als die ungeschützte Oberfläche der Titan-Basislegierung. Die Schutzschicht sollte mindestens 0.1 mm dick sein, da andernfalls durch nicht auszuschliessende Ungleichmässigkeiten beim Umlegierungsvorgang noch ungeschützte Oberflächenbereiche verbleiben können. Andererseits sollte die Dicke der Schutzschicht 1 mm nicht überschreiten, da nur dann eine besonders gute Rissbeständigkeit und damit ein besonders guter Erosionsschutz gewährleistet ist. Die Ausbildung unerwünschter Risse wird bei Schichtdicken zwischen 0.4 und 1 mm mit grosser Sicherheit vermieden, wenn beim Umlegieren die Laserparameter derart eingestellt werden, dass die gebildete Schutzschicht eine Vickershärte von höchstens 900, vorzugsweise 500 bis 700, HV aufweist.
  • Die beim Herstellen der Schutzschicht vom Laser 5 in der Titan-Basislegierung gebildeten Spuren 11 sollten so gelegt sein, dass sie sich um 50 bis 90%, vorzugsweise 75 bis 85%, überlappen, da dann ein besonders gutes Einlegieren der Legierungselemente, wie insbesondere des Stickstoffs bei der Bildung von Titannitrid,gewährleistet ist.
  • Bei der Verwendung einer Titan-Basislegierung mit 6 Gewichtsprozent Aluminium und 4 Gewichtsprozent Vanadium sind bei der Herstellung einer erosionsbeständigen Schutzschicht von ca. 0,6 bis 0,7 mm Dicke und einer Vickershärte von 500 bis 700 HV folgende Betriebsparameter des Lasers 5 typisch:
    Leistung: 1-10 kW
    Vorschub in Spurrichtung: 1-2 m/min
    Spurüberlappung: 75-85%
    Durchmesser des Aufstrahlpunktes: ca. 2 mm
    Zusammensetzung des Gases: Volumenanteile N₂:Ar ca. 3:2
    Gasmenge: ca. 50 l/min
  • Im allgemeinen reicht es aus, wenn ein Schaufelabschnitt der Turbinenschaufel 2 die Schutzschicht enthält, welcher im Bereich der Schaufelspitze liegt und die Schaufeleintrittskante 11 und eine auf der Saugseite befindliche Fläche umfasst. Diese Fläche ist im allgemeinen von der Schaufeleintrittskante 11 und der Schaufelspitze begrenzt und erstreckt sich jeweils höchstens um ein Drittel der Breite bzw. der Länge der Schaufel von der Schaufeleintrittskante 11 bzw. der Schaufelspitze zur Schaufelaustrittskante bzw. zum Schaufelfuss.

Claims (7)

  1. Verfahren zur Herstellung einer Turbinenschaufel (2) aus einer Titan-Basislegierung, bei dem zumindest ein im Bereich der Schaufelspitze befindlicher und die Schaufeleintrittskante (10) umfassender Schaufelabschnitt durch Oberflächenbehandlung der Titan-Basislegierung mit einer Hochleistungs-Energiequelle mit einer Schutzschicht aus einem gegenüber der Titan-Basislegierung erosionsbeständigeren Werkstoff versehen wird, dadurch gekennzeichnet, dass die Schutzschicht durch Umschmelzlegieren gebildet wird, und dass hierbei als Hochleistungs-Energiequelle ein Laser (5) eingesetzt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Umschmelzlegieren in einem mit der Titan-Basislegierung ein Borid, Carbid und/oder Nitrid bildenden Gas ausgeführt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Gas ein Stickstoff-Edelgas-Gemisch verwendet wird.
  4. Verfahren nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass die Schutzschicht mindestens 0,1 mm und höchstens 1 mm dick ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Betriebsparameter des Lasers (5) so bestimmt werden, dass die Schutzschicht eine Dicke zwischen 0,4 und 1 mm und eine Vickershärte von höchstens 900 HV, vorzugsweise 500 bis 700 HV, aufweist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Laser (5) zyklisch bewegt wird, und dass vom Laser (5) in der Titan-Basislegierung erzeugte und die Schutzschicht bildende Spuren (11) so gelegt werden, dass sich benachbarte Spuren (11) um 50 bis 90%, vorzugsweise 75 bis 85%, überlappen.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die im Bereich der Schaufeleintrittskante (10) gelegten Spuren (11) von mehreren Seiten mit dem Gas bespült werden.
EP90124757A 1990-12-19 1990-12-19 Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung Expired - Lifetime EP0491075B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES90124757T ES2075874T3 (es) 1990-12-19 1990-12-19 Procedimiento para la fabricacion de un alabe de turbina a partir de una aleacion base de titanio.
EP90124757A EP0491075B1 (de) 1990-12-19 1990-12-19 Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung
DE59009381T DE59009381D1 (de) 1990-12-19 1990-12-19 Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung.
US07/802,320 US5366345A (en) 1990-12-19 1991-12-04 Turbine blade of a basic titanium alloy and method of manufacturing it
CS913843A CZ282365B6 (cs) 1990-12-19 1991-12-17 Turbínová lopatka ze slitiny na bázi titanu a způsob její výroby
SU915010399A RU2033526C1 (ru) 1990-12-19 1991-12-18 Способ изготовления лопатки турбины из сплава на основе титана
JP33711491A JP3217414B2 (ja) 1990-12-19 1991-12-19 チタン基合金から成るタービン羽根の製造方法
CN91111855.1A CN1024703C (zh) 1990-12-19 1991-12-19 一种制造钛基合金涡轮叶片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90124757A EP0491075B1 (de) 1990-12-19 1990-12-19 Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung

Publications (2)

Publication Number Publication Date
EP0491075A1 EP0491075A1 (de) 1992-06-24
EP0491075B1 true EP0491075B1 (de) 1995-07-05

Family

ID=8204862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124757A Expired - Lifetime EP0491075B1 (de) 1990-12-19 1990-12-19 Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung

Country Status (8)

Country Link
US (1) US5366345A (de)
EP (1) EP0491075B1 (de)
JP (1) JP3217414B2 (de)
CN (1) CN1024703C (de)
CZ (1) CZ282365B6 (de)
DE (1) DE59009381D1 (de)
ES (1) ES2075874T3 (de)
RU (1) RU2033526C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005527A1 (de) 2004-07-09 2006-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung von verschleissbeständigen und ermüdungsresistenten randschichten in titan-legierungen und damit hergestellte bauteile

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696759B1 (fr) * 1992-10-09 1994-11-04 Alsthom Gec Procédé de nitruration d'une pièce en alliage de titane et dispositif de projection d'azote et de gaz neutre.
GB9320003D0 (en) * 1993-09-28 1993-11-17 Secr Defence Improved method for the surface treatment of metals
DE59406283D1 (de) * 1994-08-17 1998-07-23 Asea Brown Boveri Verfahren zur Herstellung einer Turbinenschaufel aus einer (alpha-Beta)-Titan-Basislegierung
EP0852164B1 (de) * 1995-09-13 2002-12-11 Kabushiki Kaisha Toshiba Verfahren zum herstellen einer turbinenschaufel aus titanlegierung und titanlegierungsturbinenschaufel
US5889254A (en) * 1995-11-22 1999-03-30 General Electric Company Method and apparatus for Nd: YAG hardsurfacing
DE19637450C1 (de) 1996-09-13 1998-01-15 Fraunhofer Ges Forschung Verschleißbeständiger, mechanisch hochbelastbarer und reibungsarmer Randschichtaufbau für Titan und dessen Legierungen sowie Verfahren zu seiner Herstellung
GB2328221A (en) * 1997-08-15 1999-02-17 Univ Brunel Surface treatment of titanium alloys
DE19751337A1 (de) 1997-11-19 1999-05-27 Fraunhofer Ges Forschung Verschleißbeständiger, mechanisch hochbelastbarer und reibungsarmer Randschichtaufbau für Titan oder seine Legierungen sowie Verfahren zu seiner Herstellung
JPH11182204A (ja) * 1997-12-15 1999-07-06 Toshiba Corp タービン動翼
DE19920567C2 (de) * 1999-05-03 2001-10-04 Fraunhofer Ges Forschung Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
GB0504576D0 (en) * 2005-03-05 2005-04-13 Alstom Technology Ltd Turbine blades and methods for depositing an erosion resistant coating on the same
US8203095B2 (en) 2006-04-20 2012-06-19 Materials & Electrochemical Research Corp. Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
DE102006050799A1 (de) * 2006-10-27 2008-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Randschichthärten formkomplizierter Bauteile
US20080181808A1 (en) 2007-01-31 2008-07-31 Samuel Vinod Thamboo Methods and articles relating to high strength erosion resistant titanium alloy
JP5411120B2 (ja) * 2010-12-27 2014-02-12 株式会社日立製作所 チタン合金製タービン翼
MY168560A (en) * 2012-02-09 2018-11-13 Kinetic Elements Pty Ltd Surface
CN104508246A (zh) * 2012-07-30 2015-04-08 通用电气公司 金属前缘保护带、对应的翼型件及制造方法
JP5936530B2 (ja) 2012-12-19 2016-06-22 三菱日立パワーシステムズ株式会社 タービンの動翼の製造方法
US10078136B2 (en) * 2014-03-25 2018-09-18 Amazon Technologies, Inc. Sense and avoid for automated mobile vehicles
CN113529008B (zh) * 2021-07-15 2022-08-19 西北有色金属研究院 一种在钛或钛合金表面制备梯度复合耐磨涂层的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637320A (en) * 1968-12-31 1972-01-25 Texas Instruments Inc Coating for assembly of parts
US3784402A (en) * 1969-05-02 1974-01-08 Texas Instruments Inc Chemical vapor deposition coatings on titanium
GB1479855A (en) * 1976-04-23 1977-07-13 Statni Vyzkumny Ustav Material Protective coating for titanium alloy blades for turbine and turbo-compressor rotors
JPS54123600A (en) * 1978-03-17 1979-09-25 Toyo Soda Mfg Co Ltd Production of titanium carbonitride
US4364969A (en) * 1979-12-13 1982-12-21 United Kingdom Atomic Energy Authority Method of coating titanium and its alloys
US4299860A (en) * 1980-09-08 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Surface hardening by particle injection into laser melted surface
JPS62113802A (ja) * 1985-11-13 1987-05-25 Toshiba Corp タ−ビン翼
FR2599425B1 (fr) * 1986-05-28 1988-08-05 Alsthom Plaquette de protection pour aube en titane et procede de brasage d'une telle plaquette.
JPH0833998B2 (ja) * 1986-09-12 1996-03-29 ブラザー工業株式会社 磁気記録媒体の製造方法
JPH0672521B2 (ja) * 1987-02-04 1994-09-14 三菱電機株式会社 スクロ−ル流体機械
FR2612106B1 (fr) * 1987-03-09 1989-05-19 Alsthom Procede de pose d'un revetement protecteur sur une aube en alliage de titane et aube ainsi revetue
US4745033A (en) * 1987-03-24 1988-05-17 Amax Inc. Oxidation resistant coatings for molybdenum
DD276210A3 (de) * 1987-05-11 1990-02-21 Bergmann Borsig Veb Verfahren zur herstellung eines erosionsschutzes fuer turbinenschaufeln
CH672450A5 (de) * 1987-05-13 1989-11-30 Bbc Brown Boveri & Cie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005527A1 (de) 2004-07-09 2006-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung von verschleissbeständigen und ermüdungsresistenten randschichten in titan-legierungen und damit hergestellte bauteile

Also Published As

Publication number Publication date
CN1024703C (zh) 1994-05-25
CN1062577A (zh) 1992-07-08
CZ282365B6 (cs) 1997-07-16
JPH05186861A (ja) 1993-07-27
RU2033526C1 (ru) 1995-04-20
ES2075874T3 (es) 1995-10-16
US5366345A (en) 1994-11-22
CS384391A3 (en) 1992-08-12
JP3217414B2 (ja) 2001-10-09
DE59009381D1 (de) 1995-08-10
EP0491075A1 (de) 1992-06-24

Similar Documents

Publication Publication Date Title
EP0491075B1 (de) Verfahren zur Herstellung einer Turbinenschaufel aus einer Titan-Basislegierung
EP0498286B1 (de) Verfahren zur Erzeugung einer verschleissmindernden Schicht
DE2740569B2 (de) Verfahren zum Legieren von ausgewählten Teilbereichen der Oberflächen von Gegenständen aus nicht-allotropen metallischen Werkstoffen
DE4143189A1 (de) Verfahren zur erhoehung des widerstandes von werkstuecken gegen die ausbreitung von ermuedungsbruchanrissen
EP0697503A1 (de) Verfahren zur Herstellung einer Turbinenschaufel aus einer (alpha-Beta)-Titan-Basislegierung
DE2919084C2 (de) Nicht abschmelzende Elektrode zum Plasmaschweißen und Verfahren zur Herstellung dieser Elektrode
DE2814044A1 (de) Verfahren zum herstellen eines loches in einem werkstueck mit hilfe von laserstrahlung
EP3683332B1 (de) Schneidwerkzeug mit räumlich strukturierter beschichtung
DE112016006580T5 (de) INTEGRIERTES VORBOHREN UND LASERPUNKTSCHWEIßEN VON BESCHICHTETEN STÄHLEN
DE3801068A1 (de) Verfahren und vorrichtung zum abtragen mittels gebuendelter energiestrahlen
EP2520394B1 (de) Vorrichtung und Verfahren zum Randentschichten und Kerben beschichteter Substrate mit zwei von der gleichen Seite auf das beschichtete transparente Substrat einwirkenden Laserquellen
EP2853616A1 (de) Verfahren zur Herstellung von verschleiß- und/oder korrosionsschützenden Oxidschichten
EP1658921A1 (de) Laserschweissvorrichtung für Hochleistungslaser mit hoher Strahlqualität und Fokussieroptiken mit langer Brennweite
DE102019200681B4 (de) Schneidwerkzeug mit amorphem Kohlenstoff und Multilagenbeschichtung und Verfahren zu dessen Herstellung
EP1365883B1 (de) Laserschwei en von nichteisenmetallen mittels laserdioden unter prozessgas
EP0417248B1 (de) Elektrode für gepulste gas-laser und verfahren zu ihrer herstellung
EP0184839B1 (de) Verfahren und Vorrichtung zur spanlosen Herstellung schmaler, länglicher Werkstücke aus Metall mittels Laserstrahls
DE3541584C2 (de)
DE19501442A1 (de) Verfahren zur Herstellung von Schneidwerkzeugen für Werkzeugmaschinen
DE19616844A1 (de) Verfahren zum Laserbeschichten sowie zum Laserschweißen von metallischen Werkstücken
DE4039877C1 (de)
DE19858681A1 (de) Vehrfahren und Vorrichtug zur Lasermaterialbearbeitung mit einem Gasstrom geringer Strömungsgeschwindigkeit
EP0960956A1 (de) Keramische Verdampferschiffchen
EP1161571B1 (de) Verfahren zum bearbeiten einer oberfläche eines bauteils
DE102007058568B4 (de) Verfahren zum defektfreien Schweißen metallischer Bauteile mit Elektronen- oder Laserstrahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19921205

17Q First examination report despatched

Effective date: 19940415

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 59009381

Country of ref document: DE

Date of ref document: 19950810

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075874

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961230

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19971220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001115

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011219

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081219