EP0490135B1 - Vorrichtung zur Lufteinleitung in Räume und Hallen sowie Verfahren zu deren Betrieb - Google Patents

Vorrichtung zur Lufteinleitung in Räume und Hallen sowie Verfahren zu deren Betrieb Download PDF

Info

Publication number
EP0490135B1
EP0490135B1 EP91119821A EP91119821A EP0490135B1 EP 0490135 B1 EP0490135 B1 EP 0490135B1 EP 91119821 A EP91119821 A EP 91119821A EP 91119821 A EP91119821 A EP 91119821A EP 0490135 B1 EP0490135 B1 EP 0490135B1
Authority
EP
European Patent Office
Prior art keywords
air
air passage
casing tube
overflow opening
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91119821A
Other languages
English (en)
French (fr)
Other versions
EP0490135A3 (en
EP0490135A2 (de
Inventor
Rüdiger Dr.-Ing. Detzer
Eberhard Jungbäck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KESSLER TECH GMBH
Original Assignee
HumanAir Patentverwertungsgesellschaft mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HumanAir Patentverwertungsgesellschaft mbH filed Critical HumanAir Patentverwertungsgesellschaft mbH
Publication of EP0490135A2 publication Critical patent/EP0490135A2/de
Publication of EP0490135A3 publication Critical patent/EP0490135A3/de
Application granted granted Critical
Publication of EP0490135B1 publication Critical patent/EP0490135B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/068Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as perforated walls, ceilings or floors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0608Perforated ducts

Definitions

  • the invention relates to an air outlet connectable to a ventilation duct of an air conditioning system with an air-permeable jacket tube which is closed with at least one end plate which has at least one central overflow opening through which air can flow back into the center of the air outlet, which in connection with the connection means the ventilation duct has means for generating a swirl flow, and in which the casing tube of the air passage is formed by a perforated plate with a free area of at most 50%; it also relates to a method with which air can advantageously be introduced into the rooms or halls by means of such an air outlet.
  • the supply air is introduced into the room to be ventilated by means of suitable air passages to be connected to the supply lines of the air conditioning system, the aim being to ensure that the outflow is as uniform as possible with a homogeneous distribution of the outflow speed of the air.
  • tubular air outlets which can be connected to a ventilation line of an air conditioning system and are known with an air-permeable jacket tube with an air-permeable jacket surface are known, in which at least one end is closed by an end face plate and the end plate of which has a central opening through which air flows into the center of the air outlet can flow back.
  • Means for generating a swirl flow are also provided on these air passages in the area of the connection.
  • the swirl flow can be generated with a swirl vane apparatus as described in DE-OS 33 04 151.
  • the air passage described there also points to the air inlet opposite side on a central opening that allows the passage of room air into the interior of the body of the air outlet.
  • the swirl flow has a sufficient degree of turbulence to mix the transferred room air with the supply air.
  • special guide internals are provided which disrupt the swirl flow and thus question the desired mixing effect.
  • a dead zone forms, the negative pressure of which results in an undesirable backflow to the actual outflow area.
  • the invention comes in, which is based on the object of developing such an air passage in such a way that it can be operated both in cooling and in heating mode, is simple in construction and can be produced economically; Furthermore, a method is to be specified in which, at least in the cooling mode, the outflow of air takes place uniformly over the entire length and in which additional guidance devices can therefore be dispensed with.
  • a substantially round connecting piece with swirl vane apparatus opening into the casing tube is provided centrally and axially on the second end plate of the casing pipe as a means for generating the swirl flow, the swirl vane of which interact to adjust the twist strength with adjusting means for changing the angle of attack;
  • at least one, essentially rectangular, tangential to the circumference of the jacket pipe, which extends over almost the entire length of the jacket pipe and is provided as a means for generating the swirl flow is provided with a tongue for regulating the swirl strength with adjustment means for changing the inlet cross-section cooperates.
  • the end of the casing tube which is assigned to the central overflow opening is provided with an attached cap, in which there is a reduced, central overflow opening, or with an axially displaceable insert, in which an annular plate which reduces the diameter of the central overflow opening is inserted.
  • the first end plate provided with the central overflow opening for the return flow of the ambient air is expediently fastened to the tubular body, or a cap is provided which has the necessary central overflow opening and is interchangeable on the end plate with a maximum central overflow opening. In the latter case, an adaptation to the desired outflow conditions is possible in that the insert with the central overflow opening is axially displaceable.
  • the air supplied to and coming from the air conditioning system is introduced into the air passage in such a way that a swirl flow is formed which is stable in itself, also against an outflow of the portion of the air supplied as supply air to the air passage through the air-permeable jacket surface of the Casing tube of the air outlet.
  • This swirl flow corresponds to a vortex, the core of which forms a vertebral depression with a pronounced negative pressure, the size of the negative pressure depending on the strength of the vortex. Due to this negative pressure, room (or hall) air is drawn in through the central opening in one end plate and mixed into the supply air.
  • the diameter of this central overflow opening is in a range from approximately 85% to 40% of the inner diameter of the casing tube. It can be used to adjust the ratio of supply air to the sucked-back room air for a certain area of the vortex strength.
  • a change in the swirl is caused by a change in the angle of attack of the swirl vanes of the swirl vane apparatus in the central supply air connection he follows.
  • the entry speed of the supply air into the interior of the casing tube and thus the vortex strength is alternatively achieved by adjusting the width of the tangential gap at the mouth of the essentially rectangular connecting piece into the casing tube, due to the inflow reaching almost over the entire height a sufficiently uniform distribution of the air and thus the desired swirl flow with its stability is achieved.
  • the adjustable swirl sensor also allows the air outlet to be operated in both cooling and heating mode. If, in cooling operation, a uniform flow is required with air outlets arranged near the ceiling, the swirl is used. In the heating mode, under the same circumstances, the heated air would flow upward immediately after leaving the air passage, and the heating goal would be missed. If, on the other hand, the swirl is suppressed by appropriate adjustment of the swirl sensor during heating operation, the swirl essentially takes place through the open central opening at the front (which is directed downwards when the air outlet is installed near the ceiling), so that the heated air flows as a jet in the direction of the axis of the casing tube of the air outlet.
  • Lifting elements which can be moved in the axial direction and which are connected to each of the swirl vanes via articulated levers, which adjust them steeper or flatter during the stroke depending on the lifting direction, are considered as adjusting members.
  • it can also be a centrally acting adjusting element which is provided, for example, with bevel gears for each of the swirl vanes and corresponding bowling lanes, which preferably interact with one another via intermeshing toothing.
  • a swirl vane shaft which is guided outwards.
  • the outflow conditions can be influenced by the free area of the perforation of the perforated plate of the casing tube of the air outlet.
  • a stronger effect is achieved if the jacket tube is covered with a filter layer, the coefficient of resistance of which - the ratio of the pressure drop in the air flowing through the filter layer to its dynamic pressure - being kept greater than 10.
  • Such filters can be designed as surface filters, the typical representatives of which are membrane filters; smoothed fleece filters have a similar filter effect.
  • Such filters have only a low dust storage capacity, so they are preferably used where sufficient pre-cleaning of the air can be expected to result in a tolerable service life.
  • the depth filters are displayed, which, however, have a larger volume and thus enlarge the diameter of the air outlet.
  • these filters applied to the jacket pipe act solely through their flow resistance, which is reflected in the resistance coefficient ratio of the pressure difference of the supply air flowing through the air-permeable jacket pipe, possibly with the filter layer, to its dynamic pressure.
  • Such air passages are advantageously operated so that the ratio of the peripheral speed of the swirl flow to the outflow speed from the air-permeable jacket tube is kept greater than 4: 1, the ratio of the length of the jacket tube to its diameter not greater than 10: 1.
  • This flow state is based on a stable swirl flow, and the loss of flow energy due to the outflow of air from the wall area is compensated for by the replenishment of flow energy when the air flows in, thereby into the negative pressure area of the vortex core is sucked air back out of the room (or hall) through the central opening in one end plate, which also helps to stabilize the vortex.
  • the outflow of air through the air-permeable jacket pipe against a resistance coefficient of the outflow surface of the air-permeable jacket pipe based on the dynamic pressure of the outflowing air is greater than 10. This outflow resistance creates a "back pressure" which additionally stabilizes the swirl flow.
  • the air passage 1 shows a section through an air passage 1, which is connected via the axial connector 6 to a ventilation line L (FIGS. 4, 5) of an air conditioning system, via which the supply air is supplied to the air passage.
  • the air passage 1 is provided with an air-permeable casing tube 2, the casing tube 2 of the air passage 1 being shown broken.
  • the casing tube 2 consists of a perforated plate 5 which is arranged between the two end faces 3.1 and 3.2 and is formed into a tube and which is formed from strips of metal or from plastic strips. The perforation of the perforated plate 5 is chosen so that the free area is a maximum of 50%.
  • this perforation is chosen so that the desired drag coefficient is given directly by the perforation; If the coefficient of resistance is given by means of a layered filter 7 applied to the outside (or also to the inside) of the perforated plate 5 of the casing tube 2, the perforated plate merely forms the support for this filter layer, regardless of the perforation, which can then be selected from the point of view of stability. Naturally, however, the resistance coefficients can also overlap, so that a narrower perforation can compensate for a resistance coefficient of a filter layer that is too low.
  • both end plates 3.1 and 3.2 have protrusions 8 which fix the filter layer 7 in the axial direction as rings.
  • the filter layer 7 can also be fixed in the radial direction, for example with a grid basket (not shown in FIG. 1), which is placed around the filter layer 7 and holds it.
  • the first end plate 3.1 has a central overflow opening 4 with a diameter "d", through which room air can enter the casing tube 2 if there is negative pressure inside it, for example as a result of a vortex flow, and through which supply air can also exit if the Pressure conditions dictate this.
  • the second end plate 3.2 is provided with a nozzle 6, via which the air passage 1 is connected to a ventilation line L (Fig. 4, 5) of an air conditioning system.
  • this connecting piece 6 there is a swirl vane apparatus, which is designed as a rotary adjusting member 10.1, with the aid of which in the casing tube 2, the inside diameter of which is denoted by “D” is, a swirl flow, a vortex is forced, the vortex core of which creates the vacuum region necessary for the backflow of the room air.
  • This swirl vane apparatus 10 consists of a number of radially arranged swirl vanes 11, each of which is arranged on an axis 11.1.
  • the free ends of the axes 11.1 can be supported in abutments 6.1 arranged on the inner wall of the connecting piece 6.
  • the swirl vanes 11 are adjustable via these axes 11.1, a central adjustment by a central rotary hub 12 effecting a uniform adjustment of the swirl vanes 11.
  • the stub axles projecting into the rotating hub 12 are provided with toothed bevel gears, which run on a track toothed in the same way and are rotated when the adjusting part of the hub is rotated and thereby take the vanes with them.
  • Such an adjustment of the swirl blades is expediently carried out by motor, so that remote control is possible.
  • the rotatable part of the rotary hub 12 is connected via a shaft 13 to a drive motor 14 which is held in the connection piece 6 via brackets 15.
  • a connection 14.1 leading to the outside establishes the connection to the control, which can also be accommodated in the center of the air conditioning system.
  • the control is also conceivable for the control to be influenced by the temperature difference: if the supply air is fed in with considerable under-temperature (cooling operation), the swirl vanes 11 are set flat to increase the peripheral speed of the swirl flow and thus the vortex strength. This reinforces the negative pressure area in the vortex core, so that on the one hand direct blowing out of the cold supply air is suppressed and on the other hand that a considerable proportion of room air is sucked back and mixed in the air passage 1 with the cold supply air to reduce the temperature difference.
  • the smaller this temperature difference the less important the admixture of room air, the vortex strength can therefore be reduced in this case will.
  • the temperature difference is reversed: the supply air becomes warmer than the room air.
  • jet ventilation is preferable to the source ventilation. Therefore, at the positive temperature difference in the heating case, the swirl vanes 11 are set in such a way that no swirl is specified; a vortex cannot form.
  • the air passage 1 acts as a jet passage, the supply air jet emerging from the central overflow opening 4 in the one end plate 3.1, the radial outflow being largely suppressed because of the relatively high resistance coefficient of the casing tube 2.
  • Figures 2 show a functional diagram of an air outlet with axial inflow via a nozzle 6, which with a ventilation line L (Fig. 4), in Figure 2a, the outflow of air in the cooling case (large swirl strength) and in Figure 2b, the outflow of the Air in the case of heating (disappearing swirl strength) are indicated with flow arrows.
  • the supply air is supplied via the connector 6 and flows through the casing tube 2, which here has the same diameter as the connector 6, whereby an end plate provided at the connection end is superfluous.
  • This embodiment avoids different diameters and is always suitable when mounting from above, for example through a suspended ceiling, and a ceiling opening is unavoidable.
  • the swirl vanes 11 are set flat, the air passing into the jacket tube thereby gets a high peripheral speed; stimulated by this large circumferential speed, the desired vortex is formed.
  • the overflow opening 4 in the free end plate 3.1 room air is sucked into the negative pressure area of the vortex core, which mixes with the supply air in the swirl flow and raises its lower temperature, thus reducing the temperature difference between room air and supply air flowing into the room.
  • This supply air flows out radially in accordance with the arrows shown.
  • the swirl vanes 11 are fully open, no speed component is transmitted in the circumferential direction to the air flowing into the jacket tube, it flows in without pre-twist, and a purely axial flow is established.
  • the majority of the air leaves the air passage through the overflow opening 4 in the free end plate 3.1 approximately like a jet.
  • the free end plate 3.1 with the overflow opening 4 acts as an orifice, the outflowing air creates a pressure difference which increases the pressure inside the tubular body and thus causes a smaller portion of the supply air which has flowed into the passage to flow radially away.
  • FIG. 3 shows an alternative embodiment of the air passage 1 with a casing tube 2, which here is by means of a tangential socket 16 opening tangentially into the casing tube 2, which extends at most over the entire length, advantageously over about 2/3 to 3/4 of the length of the air passage 1 extends, preferably symmetrically to the two end plates 3.1, is connected to the ventilation line L.
  • the one from the air conditioner supplied air flows into the casing tube 2 at a speed lying essentially in the circumferential direction, which can be changed within certain limits by a hinged tongue 18.
  • a flow rectifier 17 is arranged in the tangential connection 16.
  • the inflow speed is changed with an adjustable tongue 18 which is articulated to the tangential connector 16 by means of a joint.
  • a protruding reset lever 18.1 ensures with a return spring 20 that the tongue 18 strives to go into a position corresponding to a low inflow speed. While the tongue 18 extends over the entire length of the tangential socket 16, one or two reset levers 16. These reset levers 16.1 are also used to adjust the tongue 18.
  • swivel levers 19 are provided which are articulated on the tangential socket 16 and are connected to a swivel drive 21. These pivot levers 19 rest under the action of the return spring 20 on the curved inside of the return lever 16.1 and change their position when pivoted, which is stabilized by the return springs 20.
  • the central overflow opening 4 is used to provided end of the casing tube 2 a cap 3.3, in which there is a central overflow opening 4 ', the diameter of which is smaller than that of the overflow opening 4 of the end plate 3.1.
  • This cap can be replaced, making the one you want Makes change. In other cases, there may be a need to adjust the outflow conditions to local conditions.
  • the embodiment according to FIG. 1 the embodiment according to FIG. 1
  • the 4b is provided with an axially displaceable insert 3.4, which replaces the end plate 3.1 and has the central overflow opening 4.
  • a plate 3.5 reducing the diameter of this central overflow opening 4 can be used, the central overflow opening 4 'of which has the diameter suitable for setting the mixing ratio of supply air to sucked-back room air.
  • the diameter of the central overflow opening 4 of the end plate 3.1 (FIG. 4a) or of the displaceable insert 3.4 which takes the place of this end plate (FIG. 4b) is the maximum diameter which ensures the function of the air passage.
  • the attached cap 3.3 or the inserted plate 3.5 can only reduce the diameter acting on the backflow with their diameters 4 '.
  • the attached cap 3.3 can only replace the end plate 3.1, which is exchanged when changes are required. This also applies analogously to the displaceable insert 3.4 of the embodiment according to FIG. 4b, which is then replaced instead of an insert 3.5 which reduces the effective backflow diameter.
  • FIG. 5 shows the arrangement of a plurality of air passages 1 on a ventilation line L guiding the supply air from the air conditioning system to the air passages
  • FIG. 5a relating to the arrangement with air passages with axial
  • FIG. 5b relating to the arrangement with air passages with tangential air entry.
  • the air outlets 1 - only two in each of the illustrations - are placed in the desired manner in the room and connected to the ventilation line L.
  • the air outlets 1 with an axial inflow are primarily oriented at right angles to the ventilation line L (which does not mean that other orientations would not be possible by means of a suitable routing of the line between the ventilation line L and the axial connection 6), the air outlets 1 with a tangential inflow are above the Tangential socket 16 primarily parallel to the ventilation line L.
  • the location of the latter can also be shifted by a pipe diameter to one or the other side or alternately to one and the other side, as indicated.
  • the directions of the rectangular connecting piece 16 coming from the ventilation line L can also be at an angle to one another (as indicated next to FIG. 5b), so that a ventilation line L supplies a wide strip of the room or hall in the Location is.
  • the air outlets with tangential inflow have end plates 3.1 with a central overflow opening 4 on each of their end faces, so that they can be held longer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Duct Arrangements (AREA)
  • Ventilation (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

  • Die Erfindung betrifft einen an eine Lüftungsleitung einer Klimaanlage anschließbaren Luftdurchlaß mit einem luftdurchlässigen Mantelrohr, das mit mindestens einer endständigen Stirnplatte verschlossen ist, die zumindest eine zentrale Überströmöffnung aufweist, durch die Luft in das Zentrum des Luftdurchlasses zurückströmen kann, der in Verbindung mit den Anschlußmitteln an die Lüftungsleitung Mittel zur Erzeugung einer Drallströmung aufweist, und bei dem das Mantelrohr des Luftdurchlasses von einem Lochblech mit einer freien Fläche von maximal 50% gebildet ist; sie betrifft ferner ein Verfahren, mit dem mittels eines derartigen Luftdurchlasses vorteilhaft Luft in die Räume bzw. Hallen eingeleitet werden kann.
  • Zur Belüftung von Räumen und Hallen, in denen gewerblich oder industriell gearbeitet wird, wird häufig mit Schadstoffen umgegangen und es fallen dabei Luftverunreinigungen an, die mit einer Lüftung auszuspülen sind. Gleiches gilt, wenn in dem Raum oder der Halle Wärmequellen vorhanden sind, deren Wärme auf die Raumluft übertragen, deren Temperatur anhebt. Auch hier ist zum Halten einer gewünschten Temperatur die erwärmte Luft über eine Lüftung auszuspülen. Dabei verläßt die ausgespülte Luft mit den aufgenommenen Luftverunreinigungen und/oder der aufgenommenen Wärme den Raum bzw. die Halle als Abluft über entsprechende Leitungen. Das Luftdefizit infolge des Abführens der Abluft wird durch Einführen der Zuluft ausgeglichen, so daß das Luftgleichgewicht in dem belüfteten Raum (bzw. der Halle) gewahrt bleibt. Dieses Einführen erfolgt dabei gezielt so, daß zum einen eine schnelle Mischung mit der Raumluft erfolgt, daß aber zum anderen eine arbeitsphysiologisch, insbesondere im Kühlbetrieb, störende Strahlwirkung unterdrückt wird. Dazu wird die Zuluft mittels geeigneter, an die Versorgungsleitungen der Klimaanlage anzuschließende Luftdurchlässe in den zu belüftenden Raum eingebracht, wobei ein möglichst gleichförmiges Ausströmen mit homogener Verteilung der Ausströmgeschwindigkeit der Luft angestrebt wird.
  • Um ein derartiges Ausströmen zu erreichen, sind an eine Lüftungsleitung einer Klimaanlage anschließbare rohrförmige Luftdurchlässe mit einem luftdurchlässigen Mantelrohr mit luftdurchlässiger Mantelfläche bekannt, bei denen mindestens ein Ende mit einer endständigen Stirnplatte verschlossen ist, und deren Stirnplatte eine Zentralöffnung aufweist, durch die Luft in das Zentrum des Luftdurchlasses zurückströmen kann. An diesen Luftdurchlässen sind darüber hinaus im Bereich des Anschlusses Mittel zur Erzeugung einer Drallströmung vorgesehen. Die Drallströmung kann dabei mit einem Drallflügelapparat, wie in DE-OS 33 04 151 beschrieben, erzeugt werden. Der dort beschriebene Luftdurchlaß weist auch an der dem Lufteintritt gegenüberliegenden Seite eine Zentralöffnung auf, die den Übertritt von Raumluft in den Innenraum des Körpers des Luftdurchlasses erlaubt. Die Drallströmung hat einen hinreichenden Turbulenzgrad, um die übergetretene Raumluft mit der Zuluft zu vermischen. Zum Erreichen einer gleichförmigen Ausströmung sind besondere Leiteinbauten vorgesehen, die die Drallströmung stören und so den gewünschten Mischungseffekt in Frage stellen. Darüber hinaus bildet sich hinter jedem der ringförmigen Leiteinbauten ein strömungstotes Gebiet aus, dessen Unterdruck eine unerwünschte Rückströmung zu dem eigentlichen Ausströmungsbereich zur Folge hat.
  • Hier setzt die Erfindung ein, der die Aufgabe zugrundeliegt, einen derartigen Luftdurchlaß so weiterzubilden, daß er sowohl im Kühlals auch im Heizbetrieb betreibbar, einfach aufgebaut und wirtschaftlich herstellbar ist; desweiteren soll ein Verfahren angegeben werden, bei dem zumindest im Kühlbetrieb das Abströmen der Luft über die gesamte Länge gleichmäßig erfolgt und bei dem daher auf zusätzliche Leiteinrichtungen verzichtet werden kann.
  • Diese Aufgabe wird dadurch gelöst, daß zum einen zum Anschluß an die Zuluftleitung ein in das Mantelrohr mündender, an sich bekannter, im wesentlichen runder Anschlußstutzen mit Drallflügelapparat zentral und axial an der zweiten Stirnplatte des Mantelrohres als Mittel zur Erzeugung der Drallströmung vorgesehen ist, dessen Drallflügel zur Regelung der Drallstärke mit Verstellmitteln zur Änderung der Anstellwinkel zusammenwirken; alternativ ist zum Anschluß an die Zuluftleitung mindestens ein in das Mantelrohr mündender, im wesentlichen rechteckiger, sich über nahezu die gesamte Länge des Mantelrohres erstreckender, tangential am Umfang des Mantelrohres Anschlußstutzen mit Zunge als Mittel zur Erzeugung der Drallströmung vorgeshen, dessen Zunge zur Regelung der Drallstärke mit Verstellmitteln zur Änderung des Eintrittsquerschnittes zusammenwirkt. Bei beiden Ausführungsformen ist das der zentralen Überströmöffnung zugeordnete Ende des Mantelrohres mit einer aufgesetzten Kappe, in der sich eine verkleinerte, zentrale Überströmöffnung befindet, bzw. mit einem axial verschiebbaren Einsatz, in dem eine den Durchmesser der zentralen Überströmöffnung verkleinernde, ringförmigen Platte eingesetzt ist, versehen. Durch diese Ausbildung, bei der das Anpassen vereinfacht ist, wird zweckmäßigerweise die mit der zentralen Überströmöffnung für das Rückströmen der Raumluft versehene erste Stirnplatte auswechselbar an dem rohrförmigen Körper befestigt oder es wird eine mit der notwendigen zentralen Überströmöffnung versehene Kappe vorgesehen, die auswechselbar auf die Stirnplatte mit maximaler zentraler Überströmöffnung aufgesetzt wird. Bei letzterer ist eine Anpassung an die gewünschten Ausströmverhältnisse dadurch möglich, daß der Einsatz mit der zentralen Überströmöffnung axial verschiebar ist. Bei beiden Ausführungsformen wird die in der Klimaanlage aufbereitete und von dieser kommende Zuluft so in den Luftdurchlaß eingeleitet, daß sich eine Drallströmung ausbildet, die in sich stabil ist, auch gegenüber einem Abströmen des als Zuluft dem Luftdurchlaß zugeführten Anteils der Luft durch die luftdurchlässige Mantelfläche des Mantelrohres des Luftdurchlasses.
  • Diese Drallströmung entspricht einem Wirbel, dessen Kern eine Wirbelsenke mit ausgeprägtem Unterdruck bildet, wobei die Größe des Unterdruckes von der Wirbel stärke abhängt. Durch die zentrale Öffnung in der einen Stirnplatte wird infolge dieses Unterdruckes Raum- (bzw. Hallen-)luft angesaugt und in die Zuluft eingemischt. Der Durchmesser dieser zentralen Überströmöffnung liegt in einem Bereich von etwa 85% bis 40% des Innendurchmessers des Mantelrohres. Mit ihm kann für einen bestimmten Bereich der Wirbel stärke das Verhältnis von Zuluft zu rückgesaugter Raumluft eingestellt werden.
  • Eine Veränderung des Dralles wird bei einer der Ausführungsformen des Luftdurchlasses durch eine Veränderung des Anstellwinkels der Drallflügel des Drallflügelapparates in dem zentralen Zuluftstutzen erfolgt. Bei der anderen Ausführungsform wird alternativ dazu die Eintrittsgeschwindigkeit der Zuluft in den Innenraum des Mantelrohres und damit die Wirbelstärke durch Verstellung der Weite des tangentialen Spaltes an der Mündung des im wesentlichen rechteckigen Anschlußstutzens in das Mantelrohr erreicht, wobei wegen der nahezu über die gesamte Höhe reichenden Einströmung eine hinreichend gleichmäßige Verteilung der Luft und somit die gewünschte Drallströmung mit ihrer Stabilität erreicht wird.
  • Der verstellbare Drallgeber gestattet auch einen Betrieb des Luftdurchlasses sowohl im Kühlbetrieb als auch im Heizbetrieb. Wird bei dem Kühlbetrieb bei in Deckennähe angeordneten Luftdurchlässen ein gleichmäßiges Ausströmen verlangt, wird mit dem Drall gearbeitet. Im Heizbetrieb würde unter den gleichen Umständen die erwärmte Luft unmittelbar nach Verlassen des Luftdurchlasses aufwärts strömen, und das Ziel des Heizens wäre verfehlt. Wird beim Heizbetrieb dagegen der Drall durch entsprechendes Verstellen der Drallgeber die Drallströmung unterdrückt, erfolgt das Abströmen im wesentlichen durch die (bei Montage des Luftdurchlasses in Deckennähe nach unten gerichtete) offene stirnseitige Zentralöffnung, so daß die erwärmte Luft als Strahl in Richtung der Achse des Mantelrohres des Luftdurchlasses austritt.
  • Als Verstellorgane kommen dabei in Achsrichtung bewegbare Hubelemente in Betracht, die über angelenkte Hebel mit jedem der Drallflügel verbunden, diese beim Hub je nach Hubrichtung steiler oder flacher anstellen. Es kann jedoch auch ein zentral angreifendes Verstellorgan sein, das z.B. mit Kegelrädern für jeden der Drallflügel und dazu korrespondierende Kegelbahnen versehen ist, die vorzugsweise über kämmende Verzahnungen miteinander zusammenwirken. Schließlich ist noch die Möglichkeit gegeben, jeden Drallflügel von außen, mittels einer nach außen durchgeführten Drallflügelwelle gesondert einzustellen.
  • Die Abströmverhältnisse lassen sich durch die freie Fläche der Lochung des Lochbleches des Mantelrohres des Luftdurchlasses beeinflussen. Eine stärkere Wirkung wird erreicht, wenn das Mantelrohr mit einer Filterschicht belegt wird, wobei deren Widerstandsbeiwert -das Verhältnis von Druckabfall der durch die Filterschicht strömenden Luft zu deren dynamischen Druck- größer 10 gehalten wird. Derartige Filter können als Oberflächenfilter ausgebildet sein, deren typische Vertreter die Membranfilter sind; geglättete Vliesfilter haben eine ähnliche Filterwirkung. Derartige Filter haben nur geringe Staubspeichervermögen, sie werden daher bevorzugt dort eingesetzt, wo eine hinreichende Vorreinigung der Luft eine tolerierbare Standzeit erwarten läßt. Im anderen Fall sind die Tiefenfilter angezeigt, die allerdings ein größeres Volumen aufweisen und so den Durchmesser des Luftdurchlasses vergrößern. Unabhängig vom Filtertyp wirken diese auf das Mantelrohr aufgebrachten Filter allein durch ihren Strömungswiderstand, der sich im Widerstandsbeiwert -Verhältnis von Druckdifferenz der durch das luftdurchlässige Mantelrohr, ggf. mit der Filterschicht, abströmenden Zuluft zu deren dynamischen Druck- wiederspiegelt.
  • Derartige Luftdurchlässe werden vorteilhaft so betrieben, daß das Verhältnis von Umfangsgeschwindigkeit der Drallströmung zur Abströmgeschwindigkeit aus dem luftdurchlässigen Mantelrohr größer als 4 : 1 gehalten wird, wobei das Verhältnis von Länge des Mantelrohres zu seinem Durchmesser nicht größer als 10 : 1 ist. Durch diese Parameter wird ein stabiler Strömungszustand erreicht, der über seine gesamte Länge ein Abströmen im Sinne einer Fadenquelle erlaubt, das so gleichmäßig ist, daß zusätzliche Leiteinrichtungen zum Ausleiten der abströmenden Luft überflüssig werden. Dieser Strömungszustand beruht auf einer stabilen Drallströmung, und der Verlust an Strömungsenergie durch das Abströmen von Luft aus dem Wandbereich wird durch den Nachschub an Strömungsenergie beim Einströmen der Luft kompensiert, dabei wird in das Unterdruckgebiet des Wirbelkernes durch die zentrale Öffnung in der einen Stirnplatte Luft aus dem Raum (bzw. der Halle) zurückgesaugt, was auch zur Stabilisierung des Wirbels beiträgt.
  • Diese überraschend einfache Lösung gestattet, auf zusätzliche, die Abströmung leitende Einbauten zu verzichten; da gerade derartige Einbauten zum einen nur schwierig herzustellen sind und zum anderen die Montage derartiger Luftdurchlässe schwieriger gestalten, liegt in dem Wegfall dieser Einbauten der die Wirtschaftlichkeit ihrer Herstellung entscheidend beeinflussende und begünstigende Vorteil.
  • Darüber hinaus ist es vorteilhaft, wenn das Abströmen der Luft durch das luftdurchlässige Mantelrohr gegen einen auf den dynamischen Druck der abströmenden Luft bezogenen Widerstandsbeiwert der Abströmfläche des luftdurchlässigen Mantelrohres größer 10 erfolgt. Durch diesen Abströmwiderstand wird ein "Rückstau" geschaffen, der die Drallströmung zusätzlich stabilisiert.
  • Als typisches Beispiel für einen derartigen Luftdurchlaß wurde ein solcher mit einem Mantelrohr mit einem Durchmesser von 400 mm untersucht. Die Länge des Mantelrohres wird in einfacher Weise dem Luftstrom angepaßt; im Versuchsaufbau wurde eine Abströmgeschwindigkeit von 0,55 m/s angesetzt. Dabei ergab sich für einen Luftstrom von 1000 m³/h eine Länge des luftdurchlässigen Mantelrohres von 600 mm; für einen Luftstrom von 2500 m³/h eine solche von 1.500 mm. Die Zuluft wurde über einen zentralen Stutzen in der einen Stirnplatte zugeführt, in dem sich auch der Drallflügelapparat als Drallgeber befand, dessen Drallflügel auf einen Anstellwinkel von 48° - 50° gebracht wurden. Die Messungen zeigten trotz erheblicher Unterschiede in der Luftgeschwindigkeit im Zuluftstutzen (2,2 m/s ./. 5,5 m/s) keine Unterschiede in der Abströmgeschwindigkeit, die sowohl bei dem einen als auch bei dem anderen Luftstrom mit Werten um 0,55 m/s bestimmt wurde. Dabei betrugen die Umfangsgeschwindigkeiten 4,6 m/s im ersten und 8,5 m/s im zweiten Fall.
  • Hier zeigt sich ein weiterer überraschender Vorteil derartiger Luftdurchlässe: Eine Änderung des Luftstromes kann über einen gewissen Bereich abgefangen werden. Scheidet dies wegen zu großer Veränderungen des Luftstromes aus, kann an den gleichen Stutzendurchmesser ein Luftdurchlaß mit größerer (oder kleinerer) Länge angesetzt werden, ohne daß aufwendige Montagearbeiten, die immer dann notwendig sind, wenn sich die Anschlüsse im Durchmesser verändern, anfallen.
  • Das Wesen der Erfindung wird an Hand der Figuren 1 und 5 beispielhaft dargestellt; dabei zeigen
  • Fig. 1:
    Luftdurchlaß mit axialem Lufteintritt und Drallflügelapparat (geschnitten, schematisch);
    Fig. 2:
    Funktionsschema des Luftdurchlasses, a: Kühlfall, b: Heizfall;
    Fig. 3:
    Luftdurchlaß mit tangentialem Lufteintritt und Dralleinstell-Zunge (geschnitten, schematisch);
    Fig. 4:
    Einzelheit Anordnung Stirnplatte mit zentraler Öffnung, a: Stirnplatte mit Kappe, b: Verschiebbare Stirnplatte;
    Fig. 5:
    Anordnung der Luftdurchlässe an der Lüftungsleitung, a: Axiale Einströmung, b: Tangentiale Einströmung.
  • In der Figur 1 ist ein Schnitt durch einen Luftdurchlaß 1 dargestellt, der über den Axialstutzen 6 an eine Lüftungsleitung L (Fig. 4, 5) einer Klimaanlage, über die die Zuluft dem Luftdurchlaß zugeführt wird, angeschlossen ist. Der Luftdurchlaß 1 ist mit einem luftdurchlässigen Mantelrohr 2 versehen, wobei das Mantelrohr 2 des Luftdurchlasses 1 gebrochen gezeichnet ist. Das Mantelrohr 2 besteht aus einem zwischen den beiden Stirnflächen 3.1 und 3.2 angeordneten, zu einem Rohr geformten Lochblech 5, das aus Streifen von Metall oder aus Kunststoff-Streifen gebildet ist. Die Lochung des Lochbleches 5 wird dabei so gewählt, daß die freie Fläche maximal 50 % beträgt. Im allgemeinen wird diese Lochung so gewählt, daß der gewünschte Widerstandsbeiwert direkt durch die Lochung gegeben ist; wird der Widerstandsbeiwert mittels eines auf die Außenseite (oder auch auf die Innenseite) des Lochbleches 5 des Mantelrohres 2 aufgebrachten schichtförmigen Filters 7 gegeben, bildet das Lochblech lediglich die Stütze für diese Filterschicht unabhängig von der Lochung, die dann unter Stabilitätsgesichtpunkten gewählt werden kann. Naturgemäß können sich jedoch auch die Widerstandsbeiwerte überlagern, so daß mit einer engeren Lochung ein zu geringer Widerstandsbeiwert einer Filterschicht kompensiert werden kann. Für das Aufbringen einer derartigen Filterschicht 7 -hier als Tiefenfilter mit Wirrfaserstruktur angedeutet- weisen beide Stirnplatten 3.1 und 3.2 Überstände 8 auf, die als Ringe die Filterschicht 7 in axialer Richtung fixieren. Die Filterschicht 7 kann auch in radialer Richtung festgelegt werden, z.B. mit einem (in Fig. 1 nicht näher dargestellten) Gitterkorb, der um die Filterschicht 7 gelegt, diese hält. Die erste Stirnplatte 3.1 weist eine zentrale Überströmöffnung 4 mit einem Durchmesser "d" auf, durch die Raumluft in das Mantelrohr 2 eintreten kann, wenn in seinem Inneren -etwa infolge einer Wirbelströmung- Unterdruck herrscht, und durch den auch Zuluft austreten kann, wenn die Druckverhältnisse dies vorgeben. Die zweite Stirnplatte 3.2 ist mit einem Stutzen 6 versehen, über den der Luftdurchlaß 1 an eine Lüftungsleitung L (Fig. 4, 5) einer Klimaanlage angeschlossen ist.
  • In diesem Anschlußstutzen 6 befindet sich ein Drallflügelapparat, der als Drehverstellglied 10.1 ausgebildet ist, mit dessen Hilfe in dem Mantelrohr 2, dessen Innendurchmesser mit "D" bezeichnet ist, eine Drallströmung, ein Wirbel erzwungen wird, dessen Wirbelkern das für die Rückströmung der Raumluft notwendige Unterdruckgebiet schafft. Dieser Drallflügelapparat 10 besteht aus einer Anzahl radial angeordneter Drallfügel 11, von denen jeder auf einer Achse 11.1 angeordnet ist. Die freien Enden der Achsen 11.1 können dabei in auf der inneren Wandung des Stutzens 6 angeordneten Widerlagern 6.1 abgestützt sein. Über diese Achsen 11.1 sind die Drallflügel 11 verstellbar, wobei eine zentrale Verstellung durch eine zentrale Drehnabe 12 eine gleichmäßige Verstellung der Drallflügel 11 bewirkt. Dazu sind die in die Drehnabe 12 ragenden Achsstummel mit verzahnten Kegelrädern versehen, die auf einer in gleicher Weise verzahnten Bahn laufen und beim Verdrehen des Verstellteils der Nabe verdreht werden und dabei die Flügel mitnehmen. Eine derartige Verstellung der Drallflügel wird zweckmäßigerweise motorisch vorgenommen, so daß eine Fernbedienung möglich ist. Dazu ist das verdrehbare Teil der Drehnabe 12 über eine Welle 13 mit einem Antriebsmotor 14 verbunden, der über Halterungen 15 in dem Stutzen 6 gehalten ist. Ein nach außen geführter Anschluß 14.1 stellt die Verbindung zur Ansteuerung her, die auch in der Zentrale der Klimaanlage untergebracht sein kann.
  • Eine Beeinflussung der Ansteuerung durch die Temperaturdifferenz ist gleichfalls denkbar: Wird die Zuluft mit erheblicher Untertemperatur (Kühlbetrieb) eingespeist, werden die Drallflügel 11 flach angestellt, um die Umfangsgeschwindigkeit der Drallströmung und damit die Wirbelstärke zu erhöhen. Damit wird das im Wirbelkern entstehende Unterdruckgebiet verstärkt, so daß zum einen ein direktes Ausblasen der kalten Zuluft unterdrückt wird, und daß zum anderen ein erheblicher Anteil von Raumluft zurückgesaugt und in dem Luftdurchlaß 1 mit der kalten Zuluft vermischt wird, zur Verringerung der Temperaturdifferenz. Je geringer diese Temperaturdifferenz ist, umso weniger bedeutsam ist das Beimischen von Raumluft, die Wirbelstärke kann daher in diesem Fall zurückgenommen werden. Im Übergang zum Heizfall kehrt sich die Temperaturdifferenz um: Die Zuluft wird wärmer als die Raumluft. In diesem Fall ist eine Strahllüftung der Quellüftung vorzuziehen. Daher werden bei der im Heizfall positiven Temperaturdifferenz die Drallflügel 11 so angestellt, daß kein Drall vorgegeben wird, ein Wirbel kann sich nicht ausbilden. In diesem Fall wirkt der Luftdurchlaß 1 als Strahldurchlaß, wobei der Zuluftstrahl aus der zentralen Überströmöffnung 4 in der einen Stirnplatte 3.1 austritt, wobei wegen des relativ hohen Widerstandsbeiwertes des Mantelrohres 2 das radiale Abströmen weitgehend unterdrückt ist.
  • Die Figuren 2 zeigen ein Funktionsschema eines Luftdurchlasses mit axialer Einströmung über einen Stutzen 6, der mit einer Lüftungsleitung L (Fig. 4), wobei in der Figur 2a das Ausströmen der Luft im Kühlfall (große Drallstärke) und in der Figur 2b das Ausströmen der Luft im Heizfall (verschwindende Drallstärke) mit Strömungspfeilen angedeutet sind. In beiden Fällen wird die Zuluft über den Stutzen 6 zugeführt und strömt durch das Mantelrohr 2, das hier den gleichen Durchmesser wie der Anschlußstutzen 6 aufweist, wodurch eine am Anschlußende vorgesehene Stirnplatte überflüssig wird, ab. Diese Ausführungsform vermeidet verschiedene Durchmesser und ist immer dort geeignet, wenn eine Montage von oben durch eine z.B. abgehängte Decke erfolgen muß und ein Deckendurchbruch unvermeidbar ist. Auf die Darstellung einer das Mantelrohr umgebenden Filterschicht wurde hier verzichtet, es versteht sich von selbst, daß auch hier eine außen aufgebrachte Filterschicht vorgesehen werden kann, wenn nicht die Lochung des Lochbleches 5 des Mantelrohres 2 bereits den notwendigen Widerstand bietet. Der Drall wird mit Hilfe des Drallflügelapparates, ausgebildet als Hubverstellglied 10.2 erzeugt, dessen Verstellglied 22 einen axialen Hub mittels angelenkter Hebel 23 auf die Drallflügel 11 überträgt (der besseren Übersichtlichkeit halber lediglich für einen der Drallflügel dargestellt).
  • Im Kühlfall sind die Drallflügel 11 flach angestellt, die in das Mantelrohr übertretende Luft bekommt dadurch eine große Umfangsgeschwindigkeit; es bildet sich, angeregt durch diese große Umfangsgeschwingigkeit der gewünschte Wirbel aus. Durch die Überströmöffnung 4 in der freien Stirnplatte 3.1 wird Raumluft in das Unterdruckgebiet des Wirbelkernes angesaugt, die sich in der Drallströmung mit der Zuluft mischt und deren Untertemperatur anhebt und somit die Temperaturdifferenz zwischen Raumluft und in den Raum ausströmender Zuluft verringert. Diese Zuluft strömt entsprechend der eingezeichneten Pfeile radial ab.
  • Im Heizfall sind die Drallflügel 11 voll geöffnet, auf die in das Mantelrohr einströmende Luft wird keine Geschwindigkeitskomponente in Umfangsrichtung übertragen, sie strömt ohne Vordrall ein, es stellt sich eine rein axiale Strömung ein. Der Hauptanteil der Luft verläßt den Luftdurchlaß durch die Überströmöffnung 4 in der freien Stirnplatte 3.1 etwa strahlartig. Die freie Stirnplatte 3.1 mit der Überströmöffnung 4 wirkt dabei als Blende, die ausströmende Luft erzeugt eine Druckdifferenz, die den Druck im Inneren des rohrförmigen Körpers erhöht und so ein radiales Abströmen eines geringeren Anteiles der in den Durchlaß eingeströmten Zuluft Sorge bewirkt. Es versteht sich von selbst, daß entsprechend den erforderlichen Temperaturverhältnissen Zwischenstellungen des den Drall erzeugenden Gliedes einen nahezu fließenden Übergang von dem beschriebenen "reinen" Kühlfall zu dem "reinen" Heizfall erlauben.
  • In der Figur 3 ist eine alternative Ausführungsform des Luftdurchlasses 1 mit einem Mantelrohr 2 dargestellt, der hier mittels eines tangential in das Mantelrohr 2 mündenden Tangentialstutzens 16, der sich höchstens über die gesamte Länge, vorteilhafterweise über etwa 2/3 bis 3/4 der Länge des Luftdurchlasses 1 erstreckt, und zwar vorzugsweise symmetrisch zu den beiden Stirnplatten 3.1, an die Lüftungsleitung L angeschlossen ist. Die von der Klimaanlage gelieferte Zuluft strömt mit einer im wesentlichen in Umfangsrichtung liegenden Geschwindigkeit in das Mantelrohr 2 ein, die in gewissen Grenzen von einer angelenkten Zunge 18 veränderbar ist. Um die durch den Tangentialstutzen 16 von der Lüftungsleitung L zum Luftdurchlaß 1 überströmende Zuluft "glatt" in das Mantelrohr 2 des Luftdurchlasses 1 einleiten zu können, ist in dem Tangentialstutzen 16 ein Strömungs-Gleichrichter 17 angeordnet. Die Einströmgeschwindigkeit wird mit einer verstellbaren Zunge 18 verändert, die mittels eines Gelenks an den Tangentialstutzen 16 angelenkt ist. Ein überstehender Rückstellhebel 18.1 sorgt mit einer Rückstellfeder 20 dafür, daß die Zunge 18 bestrebt ist, in eine einer geringen Einström-Geschwindigkeit entsprechende Lage zu gehen. Während die Zunge 18 über die gesamte Länge des Tangentialstutzens 16 reicht, genügen für die Rückstellung ein oder zwei, bei langen Luftdurchlässen u.U auch mehrere derartige Rückstellhebel 16.1. Diese Rückstellhebel 16.1 werden gleichzeitig auch zum Verstellen der Zunge 18 benutzt. Dazu sind Schwenkhebel 19 vorgesehen die an den Tangentialstutzen 16 angelenkt und mit einem Schwenkantrieb 21 verbunden sind. Diese Schwenkhebel 19 liegen unter Wirkung der Rückstellfeder 20 an der kurvenförmig ausgebildeten Innenseite des Rückstellhebels 16.1 an und verändern beim Verschwenken dessen Lage, wobei diese durch die Rückstellfedern 20 stabilisiert wird.
  • Die Figuren 4 zeigen die Anordnung der Stirnplatte 3.1 mit der zentralen Rückströmöffnung 4. Um im Kühlfall das Verhältnis von von der Klimaanlage stammenden Zuluft zu aus dem Raum stammender, durch die zentrale Überströmöffnung zurückgesaugter Luft verändern zu können, ist über das mit der zentralen Überströmöffnung 4 versehene Ende des Mantelrohres 2 eine Kappe 3.3 gestülpt, in der sich eine zentrale Überströmöffnung 4' befindet, deren Durchmesser kleiner ist, als der der Überströmöffnung 4 der Stirnplatte 3.1. Diese Kappe kann ausgetauscht werden, wodurch sich die gewünschte Veränderung erzielen läßt. In anderen Fällen kann sich die Notwendigkeit ergeben, daß die Ausströmverhältnisse den örtlichen Gegebenheiten anzupassen sind. Hierfür ist die Ausführungsform nach der Figur 4b mit einem axial verschiebaren Einsatz 3.4 versehen, der an Stelle der Stirnplatte 3.1 tritt und die zentrale Überströmöffnung 4 aufweist. Auch hier kann eine den Durchmesser dieser zentralen Überströmöffnung 4 verkleinernde Platte 3.5 eingesetzt werden, deren zentrale Überströmöffnung 4' den für die Einstellung des Mischungsverhältnisses von Zuluft zu rückgesaugter Raumluft geeigneten Durchmesser aufweist. Dabei ist in beiden Fällen der Durchmesser der zentralen Überströmöffnung 4 der Stirnplatte 3.1 (Fig. 4a) bzw. des an Stelle dieser Stirnplatte tretenden, verschiebbaren Einsatzes 3.4 (Fig. 4b) der maximale Durchmesser, der die Funktion des Luftdurchlasses sicherstellt. Die aufgesetzte Kappe 3.3 bzw. die eingelegte Platte 3.5 können mit ihren Durchmessern 4' den für die Rückströmung wirkenden Durchmesser lediglich verkleinern. Es versteht sich von selbst, das bei der Ausführungsform nach Fig. 4a die aufgesetzte Kappe 3.3 allein an die Stelle der Stirnplatte 3.1 treten kann, die bei Veränderungsbedarf ausgetauscht wird. Sinngemäß gilt dies auch für den verschiebbaren Einsatz 3.4 der Ausführungsform nach Fig. 4b, der dann an Stelle eines den wirkenden Rückström-Durchmesser verkleinernden Einsatzes 3.5 ausgetauscht wird.
  • Die Figuren 5 zeigen schließlich die Anordnung von mehreren Luftdurchlässen 1 an einer die Zuluft von der Klimaanlage zu den Luftdurchlässen leitenden Lüftungsleitung L, wobei die Figur 5a die Anordnung mit Luftdurchlässen mit axialem und die Figur 5b die Anordnung mit Luftdurchlässen mit tangentialem Lufteintritt betreffen. In beiden Fällen werden die Luftdurchlässe 1 -in den Darstellungen jeweils nur zwei dargestellt- in der gewünschten Weise im Raum plaziert und mit der Lüftungsleitung L verbunden. Bei einem axialen Einströmen sind dazu die Axialstutzen 6, bei einem tangentialen Einströmen die Tangentialstutzen 16 vorgesehen. Während die Luftdurchlässe 1 mit axialer Einströmung primär rechtwinklig zur Lüftungsleitung L ausgerichtet sind (was nicht bedeutet, daß nicht mittels geeigneter Führung der Leitung zwischen der Lüftungsleitung L und dem Axialstutzen 6 auch andere Ausrichtungen möglich wären), liegen die Luftdurchlässe 1 mit tangentialer Einströmung über die Tangentialstutzen 16 primär parallel zu der Lüftungsleitung L. Dabei kann die Lage letzterer jeweils auch etwa um einen Rohrdurchmesser nach der einen oder nach der anderen Seite oder aber abwechselnd nach der einen und der anderen Seite verlagert sein, wie angedeutet. Es versteht sich von selbst, daß die Richtungen der von der Lüftungsleitung L abgehenden rechteckigen Stutzen 16 auch im Winkel zueinander stehen können (wie neben Fig. 5b angedeutet), so daß eine Lüftungsleitung L einen breiten Streifen des Raumes oder der Halle zu versorgen in der Lage ist. Die Luftdurchlässe mit tangentialer Einströmung haben an jeder ihrer Stirnseiten Stirnplatten 3.1 mit zentralen Überströmöffnung 4, so daß sie länger gehalten werden können.

Claims (12)

  1. An eine Lüftungsleitung einer Klimaanlage anschließbarer Luftdurchlaß (1) mit einem luftdurchlässigen Mantelrohr (2), das mit mindestens einer endständigen Stirnplatte (3.1) verschlossen ist, die zumindest eine zentrale Überströmöffnung (4) aufweist, durch die Luft in das Zentrum des Luftdurchlasses zurückströmen kann, der in Verbindung mit den Anschlußmitteln (6) an die Lüftungsleitung Mittel zur Erzeugung einer Drallströmung aufweist, und bei dem das Mantelrohr (2) des Luftdurchlasses (1) von einem Lochblech (5) mit einer freien Fläche von maximal 50% gebildet ist, dadurch gekennzeichnet, daß zum Anschluß an die Zuluftleitung ein in das Mantelrohr (2) mündender, an sich bekannter, im wesentlichen runder Anschlußstutzen (6) mit Drallflügelapparat (10) zentral und axial an der zweiten Stirnplatte (3.2) des Mantelrohres (2) als Mittel zur Erzeugung der Drallströmung vorgesehen ist, dessen Drallflügel (11) zur Regelung der Drallstärke mit Verstellmitteln zur Änderung der Anstellwinkel zusammenwirken, wobei das der zentralen Überströmöffnung (4) zugeordnete Ende des Mantelrohres (2) mit einer aufgesetzten Kappe, in der sich eine verkleinerte, zentrale Überströmöffnung (4') befindet, bzw. mit einem axial verschiebbaren Einsatz (3.4), in dem eine den Durchmesser der zentralen Überströmöffnung (4) verkleinernde, ringförmigen Platte (3.5) eingesetzt ist, versehen ist.
  2. An eine Lüftungsleitung einer Klimaanlage anschließbarer Luftdurchlaß (1) mit einem luftdurchlässigen Mantelrohr (2), das mit mindestens einer endständigen Stirnplatte (3.1) verschlossen ist, die zumindest eine zentrale Überströmöffnung (4) aufweist, durch die Luft in das Zentrum des Luftdurchlasses (1) zurückströmen kann, der in Verbindung mit den Anschlußmitteln (6) an die Lüftungsleitung Mittel zur Erzeugung einer Drallströmung aufweist, und bei dem das Mantelrohr (2) des Luftdurchlasses (1) von einem Lochblech (5) mit einer freien Fläche von maximal 50% gebildet ist, dadurch gekennzeichnet, daß zum Anschluß an die Zuluftleitung mindestens ein in das Mantelrohr (2) mündender, im wesentlichen rechteckiger, sich über nahezu die gesamte Länge des Mantelrohres (2) erstreckender Anschlußstutzen (6) mit Zunge (19), tangential an dem Umfang des Mantelrohres (2) vorgesehen ist, als Mittel zur Erzeugung der Drallströmung, dessen Zunge (19) zur Regelung der Drallstärke mit Verstellmitteln zur Änderung des Eintrittsquerschnittes zusammenwirkt, wobei das der zentralen Überströmöffnung (4) zugeordnete Ende des Mantelrohres (2) mit einer aufgesetzten Kappe, in der sich eine verkleinerte, zentrale Überströmöffnung (4') befindet, bzw. mit einem axial verschiebbaren Einsatz (3.4), in dem eine den Durchmesser der zentralen Überströmöffnung (4) verkleinernde, ringförmige Platte (3.5) eingesetzt ist, versehen ist.
  3. Luftdurchlaß nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das das luftdurchlässige Mantelrohr (2) bildende Lochblech (5) vorzugsweise außenseitig mit einem schichtförmigen Partikelfilter (7) belegt ist.
  4. Luftdurchlaß nach Anspruch 3, dadurch gekennzeichnet, daß das Partikelfilter (7) als Oberflächenfilter, vorzugsweise als Membranfilter ausgebildet ist.
  5. Luftdurchlaß nach Anspruch 3, dadurch gekennzeichnet, daß das Partikelfilter (7) als Tiefenfilter vorzugsweise als Wirrfaservlies ausgebildet ist.
  6. Luftdurchlaß nach Anspruch 1 sowie einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Drallflügelapparat (10) zum Verstellen der Drallflügel (11) als ein zentrales Hubelement (10.2) ausgebildet ist, dessen Hub als Anstellwinkelverstellung mit an die Drallflügel (11) angelenkten Hebeln übertragbar ist.
  7. Luftdurchlaß nach Anspruch 1 sowie einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Drallflügelapparat (10) zum Verstellen der Drallflügel (11) als eine Zentralverstellung (10.1) mit einer Drehnabe (12) ausgebildet ist, deren Verdrehung mit einer kegligen Bahn und dazu korrespondierenden, mit den Stummeln der Achsen (11.1) der Drallflügel (11) verbundenen Kegelräder, die vorzugsweise miteinander verzahnt sind, als Anstellwinkelverstellung übertragbar ist.
  8. Luftdurchlaß nach Anspruch 1 sowie einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß zum Verstellen der Drallflügel (11) des Drallflügelapparates deren Achsen (11.1) nach außen durchgeführt und mit Angriffsmitteln (z.B. Sechskant o.dgl.) zum Verdrehen versehen sind.
  9. Luftdurchlaß nach Anspruch 2 sowie einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die schwenkbare Zunge (17) mit einem Schwenkantrieb (18) versehen ist.
  10. Luftdurchlaß nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der die Drallströmungsintensität bestimmende Drallströmungserzeuger (18, 21;) mittels eines ferngesteuerten Stellantriebes von der Zentrale der Klimaanlage aus verstellbar ist.
  11. Verfahren zur Einleitung von in einer Klimaanlage aufbereiteter Luft in Räume oder Hallen, insbesondere mit Schadstoff- und/oder Wärmequellen, mittels eines Luftdurchlasses nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zumindest im Kühlbetrieb ein Verhältnis von Umfangsgeschwindigkeit der Drallströmung in dem Mantelrohr zur Abströmgeschwindigkeit aus seinem luftdurchlässigen Mantel größer als 4 : 1 eingestellt wird, bei einem Verhältnis von Länge des luftdurchlässigen Mantelrohres zu seinem Durchmesser nicht größer als 10 : 1, wobei im Heizbetrieb vorzugsweise die Drallströmung unterdrückt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Abströmen der Luft durch das luftdurchlässige Mantelrohr gegen einen Widerstand erfolgt, dessen auf den dynamischen Druck der durch das Mantelrohr abströmenden Luft bezogener Widerstandsbeiwert größer als 10 ist.
EP91119821A 1990-12-11 1991-11-21 Vorrichtung zur Lufteinleitung in Räume und Hallen sowie Verfahren zu deren Betrieb Expired - Lifetime EP0490135B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4039542 1990-12-11
DE4039542A DE4039542A1 (de) 1990-12-11 1990-12-11 Vorrichtung zur lufteinleitung in raeume und hallen sowie verfahren zu deren betrieb

Publications (3)

Publication Number Publication Date
EP0490135A2 EP0490135A2 (de) 1992-06-17
EP0490135A3 EP0490135A3 (en) 1993-06-09
EP0490135B1 true EP0490135B1 (de) 1996-04-24

Family

ID=6420074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91119821A Expired - Lifetime EP0490135B1 (de) 1990-12-11 1991-11-21 Vorrichtung zur Lufteinleitung in Räume und Hallen sowie Verfahren zu deren Betrieb

Country Status (5)

Country Link
EP (1) EP0490135B1 (de)
AT (1) ATE137324T1 (de)
DE (2) DE4039542A1 (de)
DK (1) DK0490135T3 (de)
ES (1) ES2087951T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269006B (en) * 1992-07-16 1996-06-05 Gilberts Ventilation apparatus
DE4300226A1 (de) * 1992-10-24 1994-04-28 Schako Metallwarenfabrik Drallauslaß
DE9310724U1 (de) * 1993-07-17 1993-11-25 Schako Metallwarenfabrik Quellauslaß
CN103574864B (zh) * 2013-11-04 2016-04-13 西安建筑科技大学 一种柔性个性化送风风口
CN110260448B (zh) * 2019-06-26 2024-05-10 重庆海润节能技术股份有限公司 一种管道内壁自清洁分风器及自清洁方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3017397C2 (de) * 1980-05-07 1982-09-02 Turbon-Tunzini Klimatechnik GmbH, 5060 Bergisch Gladbach Luftauslaß
DE3304151C2 (de) * 1983-02-08 1986-04-30 Kessler & Luch Gmbh, 6300 Giessen Luftauslaß
DE8626929U1 (de) * 1986-10-10 1987-11-05 Kessler & Luch Gmbh, 6300 Giessen, De
DE3736448A1 (de) * 1987-10-28 1989-05-11 Ltg Lufttechnische Gmbh Luftdrallauslass und verfahren zu seinem betreiben
DE3928621C2 (de) * 1989-08-30 1995-03-30 Krantz Tkt Gmbh Bodenquellauslaß

Also Published As

Publication number Publication date
DE4039542A1 (de) 1992-06-17
EP0490135A3 (en) 1993-06-09
DE59107722D1 (de) 1996-05-30
ES2087951T3 (es) 1996-08-01
DK0490135T3 (da) 1996-08-12
ATE137324T1 (de) 1996-05-15
EP0490135A2 (de) 1992-06-17

Similar Documents

Publication Publication Date Title
EP0921357B1 (de) Bodenauslass
DE3741729A1 (de) Verfahren und geraet zur konzentrationsverminderung von gasen, insbesondere sauerstoff
DE4139099C2 (de) Luftauslaß
DE102017115012B3 (de) Belüftungskanal für eine Lüftungsvorrichtung eines Kraftfahrzeugs
EP1166861A1 (de) Mischer für die Mischung mindestens zweier Gasströme oder anderer Newtonscher Flüssigkeiten
WO2004029427A2 (de) Lufteinströmer, insbesondere für ein kraftfahrzeug
DE102004011352A1 (de) Luftausströmer, insbesondere für ein Kraftfahrzeug und ein zugehöriges Luftausströmverfahren
DE4416898A1 (de) Stoffauflauf für eine Papiermaschine mit lokaler Zumischung von Fluid
EP0490135B1 (de) Vorrichtung zur Lufteinleitung in Räume und Hallen sowie Verfahren zu deren Betrieb
WO2018011427A1 (de) Drallkörper sowie kegeldüse mit einem solchen drallkörper
WO1995010009A1 (de) Mischvorrichtung
DE4222064C2 (de) Luftauslaß
DE2847017C2 (de) Zuluftauslaß für die Decke von zu belüftenden und zu klimatisierenden Räumen
EP0513414B1 (de) Düsenvorrichtung zur Steuerung eines Gasstromes
EP1397617B1 (de) Luftbefeuchtungsvorrichtung
DE4210807C2 (de) Luftdurchlaß
EP0606078A2 (de) Quelluftdurchlass für raumlufttechnische Anlagen
EP2141429B1 (de) Hybridkühlturm
DE102006014683A1 (de) Luftausströmer
CH648923A5 (en) Swirl outlet from an outer pipe and a core pipe arranged concentrically therein
EP3569745B1 (de) Offenendspinnvorrichtung für eine offenendspinnmaschine
EP0957321B1 (de) Luftbefeuchtungsanlage
DE102004015829A1 (de) Ansaugstutzen
EP1496318B1 (de) Deckenluftauslass
EP2749439B1 (de) Luftausströmdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: F24F 13/06

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930604

17Q First examination report despatched

Effective date: 19940624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HUMANAIR PATENTVERWERTUNGSGESELLSCHAFT MBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960424

REF Corresponds to:

Ref document number: 137324

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59107722

Country of ref document: DE

Date of ref document: 19960530

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2087951

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960531

ITF It: translation for a ep patent filed

Owner name: LENZI & C.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2087951

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991025

Year of fee payment: 9

Ref country code: DK

Payment date: 19991025

Year of fee payment: 9

Ref country code: LU

Payment date: 19991025

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001121

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 11

NLS Nl: assignments of ep-patents

Owner name: NORDKLIMA LUFT-UND WAERMETECHNIK GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011105

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011106

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011114

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011119

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

BECN Be: change of holder's name

Effective date: 20010730

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: KESSLER TECH GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021121

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021122

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

BERE Be: lapsed

Owner name: *KESSLERTECH G.M.B.H.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59107722

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59107722

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111122