EP0486815A1 - Akustische Fokussiereinrichtung - Google Patents

Akustische Fokussiereinrichtung Download PDF

Info

Publication number
EP0486815A1
EP0486815A1 EP91117700A EP91117700A EP0486815A1 EP 0486815 A1 EP0486815 A1 EP 0486815A1 EP 91117700 A EP91117700 A EP 91117700A EP 91117700 A EP91117700 A EP 91117700A EP 0486815 A1 EP0486815 A1 EP 0486815A1
Authority
EP
European Patent Office
Prior art keywords
focusing device
interfaces
acoustic focusing
propagation
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91117700A
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas Dipl.-Ing. Viebach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medizintechnik GmbH
Original Assignee
Dornier Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medizintechnik GmbH filed Critical Dornier Medizintechnik GmbH
Publication of EP0486815A1 publication Critical patent/EP0486815A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses

Definitions

  • the invention relates to an acoustic focusing device, in particular for focusing ultrasound and shock waves for contactless crushing of a concrement located in the body of a living being.
  • shock wave fronts For focusing flat or slightly curved shock wave fronts, such as those generated with lithotripsy devices, e.g.
  • an acoustic lens system is required.
  • the focused shock wave is aimed in the body at the stone to be treated. Depending on the position of the stone, different penetration depths of the shock wave are required.
  • variable depth of penetration can be met by systems with a fixed focal length with an additional variable lead section (eg bellows-shaped water cushion) or by a system with a variable focal length.
  • Further requirements for a therapy unit for lithotripsy are, for example, the size, weight and as little technical effort as possible for the peripheral devices (eg position-independent, sensitive pressure / volume control).
  • DE 85 23 024 U1 specifies an ultrasound generator which is located between the coupling surface on the patient's body and a piezoelectric Transducer contains a flexible interface, the curvature of which can be changed by changing the pressure in the adjacent liquid. The focus shift can alternatively be achieved by moving an additional solid-state lens.
  • DE 37 39 393 A1 describes a lithotripter with adjustable focusing, in which the wall of a liquid lens is connected to part of an adjusting device. Moving the adjustment device in the direction of shock wave propagation changes the curvature of the wall.
  • DE 33 28 051 A1 describes a device for the contactless smashing of concrements, in which the change in the focus point is achieved by shifting one or more acoustic lenses.
  • a shock wave therapy device is known from DE 36 05 277 A1 , in which a lens is surrounded by the coupling medium, the liquid areas in front of and behind the lens being connected to one another.
  • the object of the present invention is to provide a focusing device of very small size, the focal length (focal length) of which can be varied over a wide range and furthermore reduces the technical outlay for the therapy devices.
  • the focus length F or focal length of a lens system is understood here and in the following to mean the distance between the focus and the closest point of the last refractive surface of the lens system, as seen from the shock wave source.
  • a sound source 7 for example a shock wave source based on the electromagnetic or piezomagnetic transducer principle, forms the base surface 1 of a cylindrical tube 6 , which is closed off by the coupling surface 4 on the patient's body.
  • the component 50 hereinafter referred to as a lens group, which comprises the interfaces 2, 3, 4 , the volume within the tube 6 is divided into two volume regions which are filled with two liquids 40, 41 of different speeds of sound. These two volume areas are in turn divided into the spaces 11, 12 and 13, 14 , the spaces 11, 12 being connected via the access 15 and the spaces 13, 14 being connected via the access 16 .
  • the first liquid 40 is located in the spaces 11, 12
  • the second liquid 41 is located in the spaces 13, 14 .
  • a wavefront generated in the sound source 7 passes through the liquids in the spaces 11, 13, 12, 14 one after the other until it is guided to the patient's body via the coupling surface 5 .
  • the lens group 50 can be moved within the tube 6 parallel to its walls. Through sliding seals at the contact points of lens group 50 and the tube wall is also during the shift the exchange between the two liquids 40, 41 in the spaces 11, 12 and 13, 14 is prevented.
  • the surfaces 2, 4 of the lens group 50 are dimensionally stable, while the surface 3 consists of elastic material and is therefore flexible in shape.
  • liquid 40 is displaced from the intermediate space 11 and flows through the access 15 into the intermediate space 12 .
  • the flexible interface 3 is bulged and displaces liquid 41 from the space 13 through the access 16 into the space 14 .
  • the quantities of each of the two liquids 40, 41 in the spaces 11, 12 and 13, 14 remain the same before, during and after the shift.
  • the liquid 40 in the spaces 11, 12 must be selected so that it has a lower sound velocity than the liquid 41 in the spaces 13, 14 .
  • An example of this is H2O in the spaces 11, 12 and glycerol in the spaces 13, 14 .
  • the coupling surface 5 is selected to be dimensionally stable. Their refractive effect is generally determined from the speed of sound in the adjacent liquid 41 in the space 14 in relation to that in the patient's body. If the liquid 41 in the intermediate space 14 is chosen so that these two speeds of sound are the same, the coupling surface 5 has no refractive effect. Under this condition, it is particularly advantageous to manufacture them from flexible materials, since this facilitates the coupling to the patient's body.
  • an ultrasound transducer 20 is integrated into the focusing device 10 .
  • FIG. 2 shows the cross section of a focusing device 10 , which corresponds to that shown in FIG. 1, but with an additional ultrasound transducer 20 , with three different settings of the focus length F (FIGS. 2a, 2b, 2c).
  • the ultrasonic transducer 20 is fastened to the lens group 5 via a holding arm 21 , so that it is also moved when it is displaced.
  • the ultrasound transducer 20 is preferably arranged on the main axis 17 (which in this case corresponds to the tube axis) of the focusing device 10 .
  • connection with the lens group 50 ensures that the shading of the shock wave by the transducer housing remains small at a short focus length F (FIG. 2c) and that the ultrasound transducer is very close to the patient's body at long focus lengths F (FIG. 2a) that its penetration depth can be used optimally.
  • the focus position relative to the transducer 20 changes less than the focus length F of the focusing device 10 , ie the position of the focus remains in the middle image area of the transducer 20 with good imaging quality.
EP91117700A 1990-11-22 1991-10-17 Akustische Fokussiereinrichtung Withdrawn EP0486815A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4037160A DE4037160A1 (de) 1990-11-22 1990-11-22 Akustische fokussiereinrichtung
DE4037160 1990-11-22

Publications (1)

Publication Number Publication Date
EP0486815A1 true EP0486815A1 (de) 1992-05-27

Family

ID=6418726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117700A Withdrawn EP0486815A1 (de) 1990-11-22 1991-10-17 Akustische Fokussiereinrichtung

Country Status (4)

Country Link
US (1) US5240005A (zh)
EP (1) EP0486815A1 (zh)
JP (1) JPH04266750A (zh)
DE (1) DE4037160A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023287A2 (en) * 2006-08-23 2008-02-28 Koninklijke Philips Electronics N.V. Device containing a fluid refracting ultrasound modality
WO2008051473A2 (en) * 2006-10-24 2008-05-02 Gore Enterprise Holdings, Inc. Improved ultrasonic transducer system
EP2405671A1 (en) * 2009-03-04 2012-01-11 Panasonic Corporation Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229630C2 (de) * 1992-09-04 1994-06-16 Siemens Ag Akustische Linse
US7189209B1 (en) 1996-03-29 2007-03-13 Sanuwave, Inc. Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
US6390995B1 (en) 1997-02-12 2002-05-21 Healthtronics Surgical Services, Inc. Method for using acoustic shock waves in the treatment of medical conditions
US6253619B1 (en) * 1999-08-20 2001-07-03 General Electric Company Adjustable acoustic mirror
US6552841B1 (en) 2000-01-07 2003-04-22 Imperium Advanced Ultrasonic Imaging Ultrasonic imager
WO2002005720A1 (en) * 2000-07-13 2002-01-24 Transurgical, Inc. Energy application with inflatable annular lens
US6635054B2 (en) 2000-07-13 2003-10-21 Transurgical, Inc. Thermal treatment methods and apparatus with focused energy application
US7211044B2 (en) 2001-05-29 2007-05-01 Ethicon Endo-Surgery, Inc. Method for mapping temperature rise using pulse-echo ultrasound
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US20030069502A1 (en) 2001-05-29 2003-04-10 Makin Inder Raj. S. Ultrasound feedback in medically-treated patients
US6763722B2 (en) 2001-07-13 2004-07-20 Transurgical, Inc. Ultrasonic transducers
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US7837676B2 (en) * 2003-02-20 2010-11-23 Recor Medical, Inc. Cardiac ablation devices
US20050240105A1 (en) * 2004-04-14 2005-10-27 Mast T D Method for reducing electronic artifacts in ultrasound imaging
US7494467B2 (en) 2004-04-16 2009-02-24 Ethicon Endo-Surgery, Inc. Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US7883468B2 (en) 2004-05-18 2011-02-08 Ethicon Endo-Surgery, Inc. Medical system having an ultrasound source and an acoustic coupling medium
US7951095B2 (en) * 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US7473250B2 (en) 2004-05-21 2009-01-06 Ethicon Endo-Surgery, Inc. Ultrasound medical system and method
US7806839B2 (en) * 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US7833221B2 (en) * 2004-10-22 2010-11-16 Ethicon Endo-Surgery, Inc. System and method for treatment of tissue using the tissue as a fiducial
US7452357B2 (en) 2004-10-22 2008-11-18 Ethicon Endo-Surgery, Inc. System and method for planning treatment of tissue
WO2007125500A2 (en) * 2006-05-02 2007-11-08 Koninklijke Philips Electronics, N.V. Method and apparatus for elevation focus control of acoustic waves
US10499937B2 (en) 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US8535250B2 (en) 2006-10-13 2013-09-17 University Of Washington Through Its Center For Commercialization Method and apparatus to detect the fragmentation of kidney stones by measuring acoustic scatter
US8702612B2 (en) * 2007-01-11 2014-04-22 Koninklijke Philips N.V. Catheter for three-dimensional intracardiac echocardiography and system including the same
US20100298688A1 (en) * 2008-10-15 2010-11-25 Dogra Vikram S Photoacoustic imaging using a versatile acoustic lens
EP2376011B1 (en) 2009-01-09 2019-07-03 ReCor Medical, Inc. Apparatus for treatment of mitral valve insufficiency
US7770689B1 (en) * 2009-04-24 2010-08-10 Bacoustics, Llc Lens for concentrating low frequency ultrasonic energy
EP2525727A4 (en) * 2010-01-19 2017-05-03 The Board of Regents of The University of Texas System Apparatuses and systems for generating high-frequency shockwaves, and methods of use
EP2560553B1 (en) 2010-04-22 2019-10-30 University of Washington through its Center for Commercialization Apparatus for stone clearance with ultrasound
AR087170A1 (es) * 2011-07-15 2014-02-26 Univ Texas Aparato para generar ondas de choque terapeuticas y sus aplicaciones
US10136835B1 (en) 2012-05-02 2018-11-27 University Of Washington Through Its Center For Commercialization Determining a presence of an object
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
US10251657B1 (en) 2013-05-02 2019-04-09 University Of Washington Through Its Center For Commercialization Noninvasive fragmentation of urinary tract stones with focused ultrasound
US9743909B1 (en) 2013-05-15 2017-08-29 University Of Washington Through Its Center For Commercialization Imaging bubbles in a medium
CA2985811A1 (en) 2015-05-12 2016-11-17 Soliton, Inc. Methods of treating cellulite and subcutaneous adipose tissue
US10656298B2 (en) 2016-07-11 2020-05-19 Baker Hughes, A Ge Company, Llc Ultrasonic beam focus adjustment for single-transducer ultrasonic assembly tools
TWI742110B (zh) 2016-07-21 2021-10-11 美商席利通公司 具備改良電極壽命之快速脈波電動液壓脈衝產生裝置及使用該裝置生成壓縮聲波之方法
EP3582686A4 (en) 2017-02-19 2020-12-02 Soliton, Inc. LASER-INDUCED SELECTIVE OPTICAL RUPTURE IN A BIOLOGICAL ENVIRONMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168659A (en) * 1960-01-11 1965-02-02 Gen Motors Corp Variable focus transducer
EP0133665A2 (de) * 1983-08-03 1985-03-06 Siemens Aktiengesellschaft Einrichtung zum berührungslosen Zertrümmern von Konkrementen
DE8523024U1 (zh) * 1985-08-09 1987-02-12 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE3739393A1 (de) * 1987-11-20 1989-06-01 Siemens Ag Lithotripter mit verstellbarer fokussierung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131654A1 (en) * 1983-07-19 1985-01-23 N.V. Optische Industrie "De Oude Delft" Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves
DE3665949D1 (en) * 1985-08-09 1989-11-02 Siemens Ag Ultrasonic generator
DE3605277A1 (de) * 1986-02-19 1987-08-20 Siemens Ag Ankoppelkoerper fuer eine stosswellen-therapieeinrichtung
DE3610818A1 (de) * 1986-04-01 1987-10-08 Siemens Ag Stosswellenquelle mit piezokeramischer druckquelle
EP0240797B1 (de) * 1986-04-01 1990-07-11 Siemens Aktiengesellschaft Stosswellenquelle mit erhöhtem Wirkungsgrad
DE3735993A1 (de) * 1987-10-23 1989-05-03 Siemens Ag Stosswellenkopf zum beruehrungslosen zertruemmern von konkrementen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168659A (en) * 1960-01-11 1965-02-02 Gen Motors Corp Variable focus transducer
EP0133665A2 (de) * 1983-08-03 1985-03-06 Siemens Aktiengesellschaft Einrichtung zum berührungslosen Zertrümmern von Konkrementen
DE8523024U1 (zh) * 1985-08-09 1987-02-12 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE3739393A1 (de) * 1987-11-20 1989-06-01 Siemens Ag Lithotripter mit verstellbarer fokussierung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023287A2 (en) * 2006-08-23 2008-02-28 Koninklijke Philips Electronics N.V. Device containing a fluid refracting ultrasound modality
WO2008023287A3 (en) * 2006-08-23 2009-03-12 Koninkl Philips Electronics Nv Device containing a fluid refracting ultrasound modality
WO2008051473A2 (en) * 2006-10-24 2008-05-02 Gore Enterprise Holdings, Inc. Improved ultrasonic transducer system
WO2008051473A3 (en) * 2006-10-24 2009-07-16 Gore Enterprise Holdings Inc Improved ultrasonic transducer system
US7888847B2 (en) 2006-10-24 2011-02-15 Dennis Raymond Dietz Apodizing ultrasonic lens
EP2405671A1 (en) * 2009-03-04 2012-01-11 Panasonic Corporation Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
EP2405671A4 (en) * 2009-03-04 2014-04-02 Panasonic Corp ULTRASONIC TRANSMITTER, ULTRASONIC SOUND AND ULTRASONIC DIAGNOSTICS

Also Published As

Publication number Publication date
DE4037160A1 (de) 1992-05-27
DE4037160C2 (zh) 1992-09-10
JPH04266750A (ja) 1992-09-22
US5240005A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
EP0486815A1 (de) Akustische Fokussiereinrichtung
DE4119524C2 (de) Vorrichtung zur Behandlung von Knochenleiden mittels akustischer Wellen
EP0327917B1 (de) Stosswellenquelle zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE4229630A1 (de) Akustische Linse
DE19507478C1 (de) Therapiegerät zur Behandlung mit fokussiertem Ultraschall
EP0254104B1 (de) Stosswellengenerator zur Erzeugung eines akustischen Stosswellenimpulses
EP0133946B1 (de) Einrichtung zum berührungslosen Zertrümmern von Konkrementen
DE3608877C2 (zh)
DE3543867A1 (de) Vorrichtung zur raeumlichen ortung und zur zerstoerung von konkrementen in koerperhoehlen
DE3443295A1 (de) Einrichtung zur beruehrungsfreien zertruemmerung von konkrementen im koerper von lebewesen
DE3932967A1 (de) Ultraschall-stosswellenwandler
DE4110102C2 (zh)
DE3328039C2 (de) Einrichtung zum beruehrungslosen zertruemmern eines im koerper eines lebewesens befindlichen konkrements
EP0273256A1 (de) Vorrichtung zum berührungslosen Zertrümmern von Konkrementen
EP0396860A1 (de) Ortungskinematik für einen Lithotripter
EP0355176B1 (de) Vorrichtung zum berührungslosen Zertrümmern eines Konkrementes
DE1514982C3 (de) Ultraschallzelle zur Ablenkung eines Lichtstrahles
DE19622919C1 (de) Vorrichtung zur Ortung und Zertrümmerung von Konkrementen
DE3727692C2 (de) Stoßwellenquelle mit kurzer Fokussierung
DE4236255A1 (de) Akustische Linse
DE3739393C2 (de) Lithotripter mit verstellbarer Fokussierung
EP0312848A1 (de) Stosswellenquelle mit zentralem Ortungssystem
EP0243650B1 (de) Stosswellenquelle mit verbesserter Fokuszone
DE3739390A1 (de) Lithotripter mit veraenderbarem fokus
DE19927481C1 (de) Akustische Fokussiereinrichtung mit veränderbarem Fokusabstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19920619

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940503