EP0485878B1 - Verfahren zur Ermittlung der Konfiguration von Meldern einer Gefahrenmeldeanlage - Google Patents

Verfahren zur Ermittlung der Konfiguration von Meldern einer Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0485878B1
EP0485878B1 EP91118892A EP91118892A EP0485878B1 EP 0485878 B1 EP0485878 B1 EP 0485878B1 EP 91118892 A EP91118892 A EP 91118892A EP 91118892 A EP91118892 A EP 91118892A EP 0485878 B1 EP0485878 B1 EP 0485878B1
Authority
EP
European Patent Office
Prior art keywords
signalling
detector
detectors
line
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91118892A
Other languages
English (en)
French (fr)
Other versions
EP0485878A3 (en
EP0485878A2 (de
Inventor
Horst Dipl.-Ing. Berger
Heiner Dipl.-Ing. Politze
Peter Dipl.-Ing. Ungemach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Caradon Esser GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caradon Esser GmbH filed Critical Caradon Esser GmbH
Publication of EP0485878A2 publication Critical patent/EP0485878A2/de
Publication of EP0485878A3 publication Critical patent/EP0485878A3/de
Application granted granted Critical
Publication of EP0485878B1 publication Critical patent/EP0485878B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/003Address allocation methods and details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/001Alarm systems in which substations are interrogated in succession by a central station with individual interrogation of substations connected in parallel

Definitions

  • the invention relates to a method in the preamble of claim 1 specified type, and one for this suitable hazard alarm system.
  • EP-A1-0 191 239 is already a hazard detection system known with detectors that have certain design features which enable the head office to Installation order of the on a two-wire detection line Detect detectors connected in parallel, independently of whether the reporting line as a branch line, as Ring line or a combination of both is.
  • each detector contains at least one relay, over whose contacts the reporting line is led.
  • each detector contains an address memory and one Microprocessor that is able to exchange data with the head office.
  • the so-called initialization are the relay contacts open in all detectors.
  • the head office now points the first one, that is, the detector next to it an address and sends the command to this detector, save this address and activate its relay, so that its contacts close.
  • the control center made up of addressable, second detectors and all The control center follows the same procedure. After graduation During the initialization, the control center has all detectors individually recognized and can address them via their address, provided the detection line is a simple stub or ring line is. However, it is an installation with several, possibly branched branch and / or sub-ring lines, then the branch or unification points installed special detectors, which contain a second relay, which together with the first relay works as a so-called T switch.
  • the initialization is initially in the direction the branch ends (branch or sub-ring line) up to the associated last detector. The head office then drives from the branch point in the other branch direction continues after giving the command to the relevant detector to switch his T switch. Out the knowledge of the order of the detectors thus obtained and the location of the special one containing a T switch The topology of the system, i.e. the determine the exact configuration of their detectors.
  • a disadvantage of the known system is that every detector with an expensive one, namely because of the desired low power consumption bistable Relay must be equipped at the branch or union points even installed special detectors with two such relays. A replacement of the Relays through semiconductor circuits fail at the in Considering the series connection accumulating voltage drops and would have hardly any cost advantages.
  • the invention has for its object a method to create the genre specified in the introduction, with comparatively simple, namely at least the majority of relays without detectors and Configuration changes (changes to the existing Installation) a reinitialization normally only in scope of the changes made or required.
  • the invention is further based on the object a suitable alarm device for carrying out such a method create.
  • the first-mentioned task is characterized by that in Part of claim 1 specified method solved.
  • the sub-claims 2 to 6 contain advantageous refinements this procedure.
  • Block diagram represents a detector, which is a microprocessor 4 with connected sensor 7, one non-volatile memory 15, e.g. B. in the form of a PROM, a current measuring device 1, 2 and a current sink 13a or 13b before and after the current measuring device 1, 2 comprises.
  • the current measuring device consists of a series resistor 1 in the routed via the detector connections 10, 12, one core of the detection line, the other core the reference potential, usually mass, leads and with the Detector connections 9, 11 is connected.
  • the voltage drop over the series resistor 1 is from a voltage detector 2 measured, which is connected to the microprocessor 4 is.
  • microprocessor 4 controls the first current sink 13a and the second current sink 13b. Maintains its supply voltage the microprocessor 4 from which via the connections 10, 12 lead wire of the detection line via a line 4a.
  • the microprocessor 4 also includes one that is not specifically shown Shift register known per se, whose Task will be explained later.
  • Detector with built-in isolator e.g. in the form of a relay contact in the live wire of the reporting line, are in themselves known. The one described here and suggested here The detector is indicated by the dashed lines Components for a detector with isolating element. in the individual is one of the microprocessor 4 controlled relay 3, whose contact in the place of with the relayless detector e.g. from a short circuit bridge existing pipe section 8 between the connection points 8a and 8b occurs.
  • Fig. 3 shows such a system in a highly schematic form, consisting of the central Z, which either in the Feed in start A or end B of a loop can.
  • the central Z which either in the Feed in start A or end B of a loop can.
  • the ring line lie one behind the other detectors 11, 22, 21, 39, 81, 41 and 20.
  • a first branch line branches between the detectors 22 and 21 with three detectors 46, 40 and 44. Between Detectors 39 and 81 branch a second, only from a single one Deregister 87 existing branch line.
  • the detectors When the system is fully installed, the detectors are located quasi parallel (because of the series resistance 1 of the Current measuring device 1, 2 in each detector not a real parallel connection) at any Detection line comprising stub and / or ring lines, are distributed indiscriminately and initially from the head office indistinguishable. Also the number of installed The control center is initially not aware of any detectors.
  • Each detector receives in the course of the production process a unique serial number. This is in the form of a Imprint on the detector housing and as a binary number in a non-volatile memory in the detector filed. Every detector is therefore unique, unique both by its case print and by its stored binary number from any other detector differs.
  • the control center now sets all detectors with a collective command into an initialization routine. In this condition each detector then sends a current response the headquarters if he is in a broadcast from the headquarters Data telegram recognizes its serial number. The head office can therefore by querying all possible Serial numbers the detectors actually installed find out and determine their serial numbers. Takes one assumes that the serial number e.g. Is 24 bits long, 24 digits, this is the procedure very tedious. It is therefore recommended that others to use known algorithms that are faster lead to the goal.
  • the control center first sends the collective command "Reinitialization” to all detectors.
  • their microprocessors are brought into a mode based on this algorithm.
  • the control center now sets the most significant bit (MSB) to "1" in an internal memory area, the width of which corresponds to the number of digits of the serial number, and sends the collective query to all detectors: "Are there detectors that have a" 1 "as the most significant bit?"
  • control center changes the MSB to "0". The next lower bit remains at “1” and the control center then sends the collective request "Are there detectors that have the bit sequence" 01 "in the two most significant bits?"
  • This procedure logically corresponds to halving the possible range of values and a threshold query to the detectors, in which half the respective Serial number is. Once the corresponding half has been determined, is then halved again (corresponds to the setting of the next least significant bit), etc.
  • the number the query steps correspond exactly to the number of Serial number bits, i.e. with a 24-digit serial number exactly 24 steps are required to to recognize the given serial number.
  • the control panel sends the to this detector Command to behave passively from now until the entire detection algorithm has been run through. This means that this detector is on from the control panel sent queries no longer replies, and the control center thus switches the detector to the next lower one Can determine serial number.
  • S means the number of steps and n the number the total number of detectors in the system.
  • n the number the total number of detectors in the system.
  • the algorithm described above represents - as I said -
  • the one-off list is just one of several options to create as much time as possible.
  • An easy one Variant is the query with the least significant Bit (LSB) to start.
  • LSB least significant Bit
  • each detector is addressed with its serial number can be used (to shorten the data traffic).
  • the control center can also process any 24-bit serial number by an internal number with e.g. Replace 7 bits), the detectors are assigned a collective command to the so-called
  • the control center now queries all serial numbers one after the other. With each query, all detectors load the result of their current measurement into the shift register contained in their microprocessor 4 and increment it. If a detector detects a current increase, its microprocessor notes this in its shift register with a logical "1", in the other case with a logical "0". The detector notes its own transmitted current pulse in the shift register with a logical "0". Since the connection sequence of the connections 10, 12 of each detector is interchangeable on both sides of the current measuring device 1, 2, negative current values can also occur. Before the information from the current measurement is loaded into the shift register, an amount is therefore formed. If negative current values occur, this determination is also stored in the microprocessor.
  • Each detector has a bit sequence, which follows is referred to as a current vector with dimension n, where n is the number of detectors. Because every detector registers such a current vector there are n different current vectors. These are sequentially listed by the head office the individual serial numbers of the existing detectors queried and stored in the columns of a matrix. This matrix is hereinafter referred to as the "S matrix" in FIG. 2 for the case of that in FIG. 3 shown system configuration. In the Rows of the S matrix contain the individual current responses. Each line accordingly shows the current pulse pattern, that at the time of querying this line corresponding detector in the shift registers of all other detector is filed.
  • the configuration of the system can be calculated. For this are first made up of the rows and columns of the matrix Totals formed. The relevant values are in FIG. 2 denoted by ⁇ H and ⁇ v.
  • the sum ⁇ H of each row i (i from 1 to n) provides information about how many detectors between the control panel and the detector with the i-th Serial number.
  • a new matrix is formed from the row totals and the column totals of the S matrix together with the associated serial numbers, which has the following appearance in the selected example: ⁇ H ⁇ V Ser.No. 4th 0 87 4th 2nd 81 2nd 2nd 46 4th 0 44 5 1 41 3rd 1 40 3rd 4th 39 1 9 22 2nd 5 21 6 0 20th 0 10th 11
  • the control center determines the information that is still required to determine the spatial configuration.
  • the number of end indicators and their serial numbers are known from the A matrix.
  • the current vectors in the S matrix ("1" entry in the relevant lines) designate the further detectors belonging to the respective end detectors.
  • Detectors result from: M1 / (M2 ⁇ M3). For example there are no other such detectors.
  • Detectors result from: M3 / (M2 ⁇ M1). Here these are detectors 41 and 81.
  • the ring line is not yet recognizable as such, so that the result is still ambiguous, the detectors 21 and 39 either to set 1 or to set 3 could belong (M1 ⁇ M3).
  • the control center now switches to feed the line in the opposite direction, now feeds into line end B.
  • the repetition the query described above returns under other the result that now the detector 20 first and the detector 11 is the last detector, also the Sequence of the intervening on the ring line Detector.
  • the control center thus recognizes that the detectors 21 and 39 of the ring line and thus together with the Detectors 11 and 22 belong to set 3.
  • the assignment can be based on the larger number of detectors made or a decision by lottery be brought about.
  • the control center is now the basic configuration of the system known. So you know whether there is a loop, in the affirmative, which detectors to the loop include, how many stub lines exist and which detectors belong to which branch line.
  • control center now uses the ascending order of the values of the row total ⁇ H of the A-matrix the position of the branch points and the Sequence of the detectors in the respective branch lines, as described under c) above, however now including the more than once occurring digits or values.
  • the control center now assigns the detectors to the recognized configuration installation numbers to and gives the recognized configuration together with these Installation numbers on a screen and / or a printer.
  • the installer or operator of the The system can in turn now be assigned by the head office Installation numbers in his installation plan transmitted and vice versa to all or to selected Detectors on their respective installation location Enter the stored text into the control center.
  • Every installation number assigned by the control center (in addition to its possible function as a detector address) designated very specific installation location, it is for the function of the system, especially in the event of an alarm from crucial that this assignment also with all conceivable interventions in the detector configuration either preserved or clearly recognizable Reallocation is done.
  • the head office logs all of it changes detected according to the above scheme the system (as well as all other relevant events). A condition where an incoming message a location other than the real installation location of the person concerned Assigned to the detector cannot occur.

Description

Die Erfindung betrifft ein Verfahren der im Oberbegriff des Patentanspruches 1 angegebenen Art, sowie eine hierfür geeignete Gefahrenmeldeanlage.
Aus der EP-A1-0 191 239 ist bereits eine Gefahrenmeldeanlage mit Meldern bekannt, die bestimmte Konstruktionsmerkmale haben, welche es der Zentrale ermöglichen, die Installationsreihenfolge der an eine zweidrähtige Meldelinie parallel angeschlossenen Melder zu erkennen, unabhängig davon, ob die Meldelinie als Stichleitung, als Ringleitung oder als Kombination von beidem ausgeführt ist. Hierzu enthält jeder Melder mindestens ein Relais, über dessen Kontakte die Meldelinie geführt ist. Weiterhin beinhaltet jeder Melder einen Adreßspeicher und einen Mikroprozessor, der in der Lage ist, einen Datenaustausch mit der Zentrale durchzuführen. Beim ersten Einschalten der Anlage, der sog. Initialisierung, sind die Relaiskontakte in allen Meldern geöffnet. Die Zentrale weist nun dem ersten, das heißt dem ihr zunächstliegenden Melder eine Adresse zu und sendet an diesen Melder den Befehl, diese Adresse zu speichern und sein Relais zu aktivieren, so daß dessen Kontakte schließen. Mit dem nun von der Zentrale aus ansprechbaren, zweiten Melder und allen folgenden verfährt die Zentrale analog. Nach Abschluß der Initialisierung hat die Zentrale alle Melder einzeln erkannt und kann sie über ihre Adresse ansprechen, sofern die Meldelinie als einfache Stich- oder Ringleitung geführt ist. Handelt es sich hingegen um eine Installation mit mehreren, ggf. ihrerseits weiterverzweigten Stich- und/oder Unterringleitungen, so werden an den Abzweig- oder Vereinigungspunkten spezielle Melder installiert, die ein zweites Relais enthalten, das zusammen mit dem ersten Relais als sog. T-Schalter arbeitet. In diesem Fall erfolgt die Initialisierung zunächst in Richtung der Abzweigenden (Stich- oder Unterringleitung) bis zu dem zugehörigen letzten Melder. Die Zentrale fährt dann von der Abzweigstelle aus in der anderen Abzweigrichtung fort, nach dem sie an den betreffenden Melder den Befehl zum Umschalten seines T-Schalters übermittelt hat. Aus der so gewonnenen Kenntnis der Reihenfolge der Melder und der Lage der besonderen, einen T-Schalter enthaltenden Melder läßt sich die Topologie der Anlage, also die genaue Konfiguration deren Melder, bestimmen.
Ein Nachteil der bekannten Anlage besteht darin, daß jeder Melder mit einem teuren, nämlich wegen des anzustrebenden, geringen Leistungsverbrauchs bistabilen Relais ausgestattet sein muß, die an Abzweig- oder Vereinigungspunkten installierten besonderen Melder sogar mit zwei derartiger Relais. Ein Ersatz des bzw. der Relais durch Halbleiterschaltungen scheitert an den in Anbetracht der Reihenschaltung sich summierenden Spannungsabfällen und hätte auch kaum Kostenvorteile.
Da bei der bekannten Anlage die einem Melder zugewiesene Adresse gleichzeitig den Installationsort des Melders kennzeichnet, hätte ein von der Zentrale nicht erkanntes Vertauschen von zwei oder mehr Meldern zur Folge, daß von diesen Meldern abgegebene Alarmsignale als von dem jeweiligen ursprünglichen Installationsort ausgehend interpretiert würden, so daß z.B. Interventionskräfte fehlgeleitet würden. Um dies zu verhindern, ist bei der bekannten Anlage die Melderadresse in einem flüchtigen Speicher gespeichert, geht also bei Entfernen des Melders verloren. Außerdem wird die Entfernung von mehr als einem Melder in der Zentrale als Störung angezeigt, die nach Behebung eine neue Initialisierung erforderlich macht. Das geschilderte Problem ließe sich zwar bei einer Anlage vermeiden, bei der sich der Adreßspeicher jedes Melders in dessen üblicherweise fest installierten Sockel befindet. Die Notwendigkeit einer zweiten Leiterplatte in jedem dem Meldersockel sowie entsprechender Übergabekontakte zum Melder sprechen sowohl unter Kosten- als auch unter Zuverläßigkeitsgesichtspunkten gegen eine solche Lösung.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der einleitend angegebenen Gattung zu schaffen, das mit vergleichsweise einfach aufgebauten, nämlich zumindest in ihrer Mehrheit relaislosen Meldern auskommt und bei Konfigurationsänderungen (Änderungen an der bestehenden Installation) eine erneute Initialisierung normalerweise nur im Umfang der durchgeführten Änderungen erfordert bzw. durchführt.
Der Erfindung liegt des weiteren die Aufgabe zugrunde, einen zur Durchführung eines derartigen Verfahrens geeignete Melder Gefahrenmeldeanlage zu schaffen.
Die erstgenannte Aufgabe ist durch das im kennzeichnenden Teil des Patentanspruches 1 angegebene Verfahren gelöst. Die Unteransprüche 2 bis 6 beinhalten vorteilhafte Ausgestaltungen dieses Verfahrens.
Die an zweiter Stelle genannte Aufgabe ist durch eine Gefahrenmeldeanlage mit den im Patentanspruch 7 angegebenen Merkmalen gelöst.
Vorteilhafte Weiterbildungen dieses Melders sind in den weiteren Unteransprüchen angegeben.
Das Verfahren und der Melder nach der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. Es zeigt:
Fig. 1
ein Blockschaltbild eines Melders geeignet fur den vorliegenden Vorschlag
Fig. 2
ein vereinfachtes Beispiel einer für die Konfigurationserkennung nach dem vorgeschlagenen Verfahren benötigten Matrix und
Fig. 3
eine stark vereinfachte, beispielhafte Anlagenkonfiguration.
Das in Fig. 1 in ausgezogenen Linien wiedergegebene Blockschaltbild stellt einen Melder dar, der einen Mikroprozessor 4 mit angeschlossenem Sensor 7, einen nichtflüchtigen Speicher 15, z. B. in Form eines PROM, eine Strommeßeinrichtung 1, 2 und je eine Stromsenke 13a bzw. 13b vor und hinter der Strommeßeinrichtung 1, 2 umfaßt. Die Strommeßeinrichtung besteht aus einem Serienwiderstand 1 in der über die Melderanschlüsse 10, 12 geführten, einen Ader der Meldelinie, deren andere Ader das Bezugspotential, gewöhnlich Masse, führt und mit den Melderanschlüssen 9 , 11 verbunden ist. Der Spannungsabfall über dem Serienwiderstand 1 wird von einem Spannungsdetektor 2 gemessen, der mit dem Mikroprozessor 4 verbunden ist. An diesen sind auch der Sensor 7 und der nichtflüchtige Speicher 15 angeschlossen. Des weiteren steuert der Mikroprozessor 4 die erste Stromsenke 13a und die zweite Stromsenke 13b. Seine Speisespannung erhält der Mikroprozessor 4 von der über die Anschlüsse 10, 12 geführten Ader der Meldelinie über eine Leitung 4a. Zu dem Mikroprozessor 4 gehört auch ein nicht eigens dargestelltes Schieberegister an sich bekannter Art, dessen Aufgabe noch erläutert werden wird.
Grundsätzlich würde es genügen, in dem Melder eine einzige Stromsenke, z.B. 13a, vorzusehen. Der Mikroprozessor 4 erzeugt mittels der Stromsenke 13a eine Strompulsfolge, die in kodierter Form die an die Zentrale zu übermittelnde Nachricht enthält. Die zweite Stromsenke 13b ermöglicht folgende, vorteilhafte Zusatzfunktionen:
  • Mit Hilfe der Strommeßeinrichtung 1, 2 kann der Mikroprozessor 4 die Speisungsrichtung erkennen.
  • Der Mikroprozessor kann unabhängig von der Speisungsrichtung sowohl die Funktion der Strommeßeinrichtung 1, 2 als auch seine eigene Funktion überprüfen.
  • Die zweite Stromsenke erzeugt die an die Zentrale zu übermittelnde Strompulsfolge, wenn der Strompfad der ersten Stromsenke 13a zur Anzeige eines Alarms über eine z.B. rotleuchtende Leuchtdiode geführt ist und deren Aufleuchten bei normaler Kommunikation des Melders mit der Zentrale verhindert werden soll.
  • Umgekehrt kann der Strompfad der zweiten Stromsenke über eine zweite, ggf. andersfarbige Leuchtdiode geführt werden, die z.B. zu Diagnosezwecken benutzt wird.
  • Mittels der zwei Stromsenken 13a und 13b können unterschiedlich Stromwerte, z.B. für den Kommunikationsfall bzw. den Alarmfall, erzeugt werden.
Aufgrund bestehender Vorschriften muß innerhalb einer Gefahrenmeldeanlage nach maximal 32 Meldern ein Trennglied vorgesehen sein, damit ein Linien- oder Melderkurzschluß nicht zu einem Totalausfall der Anlage führt. Melder mit eingebautem Trennglied,z.B. in Form eines Relaiskontaktes in der spannungsführenden Ader der Meldelinie, sind an sich bekannt. Der bis hierher beschriebene, hier vorgeschlagene Melder wird durch Ergänzung mit den gestrichelt eingezeichneten Bauteilen zu einem Melder mit Trennglied. Im einzelnen handelt es sich um ein von dem Mikroprozessor 4 gesteuertes Relais 3, dessen Kontakt an die Stelle des bei dem relaislosen Melder z.B. aus einer Kurzschlußbrücke bestehenden Leitungsstückes 8 zwischen den Anschlußpunkten 8a und 8b tritt. Ist der Melder mit einem Relais 3 ausgestattet, so entfällt die Speiseleitung 4a für den Mikroprozessor 4. Dieser erhält seine Speisespannung dann über die Leitung 4d, sowie die Diode 6a oder die Diode 6b, je nachdem, ob der Melder insgesamt von der Zentrale über den Anschluß 10 oder über den Anschluß 12 gespeist wird. Die jeweils andere Diode dient dann der Entkopplung. Der von der Leitung 4b gegen das Bezugspotential liegende Kondensator 5 hat die Aufgabe, den Mikroprozessor 4 bei Ausfall der Versorgungsspannung (z.B. infolge eines Kurzschlusses) noch so lange mit seiner Betriebsspannung zu speisen, daß der Mikroprozessor 4 das Relais 3 betätigen und damit dessen Kontakt öffnen kann. Das Relais 3 und/oder dessen Kontakt können statt in den melder in dessen Sockel eingebaut sein.
Eine Anordnung von Meldern von einem durch das Relais 3 bzw. dessen Kontakt verkörperten Trennglied einschließlich des nächsten kann als "Segment" bezeichnet werden.
Nachfolgend wird nun das Verfahren zur Erkennung der Konfiguration einer Gefahrenmeldeanlage beschrieben, die mit Meldern des Aufbaus nach Fig. 1 arbeitet. Fig. 3 zeigt in stark schematisierter Form eine derartige Anlage, bestehend aus der Zentrale Z, die entweder in den Anfang A oder das Ende B einer Ringleitung einspeisen kann. In der Ringleitung liegen hintereinander die Melder 11, 22, 21, 39, 81, 41 und 20.
Zwischen den Meldern 22 und 21 zweigt eine erste Stichleitung mit drei Meldern 46, 40 und 44 ab. Zwischen den Meldern 39 und 81 zweigt eine zweite, nur aus einem einzigen Melder 87 bestehende Stichleitung ab.
Wenn die Anlage fertig installiert ist, liegen die Melder quasi parallel (wegen des Serienwiderstandes 1 der Strommeßeinrichtung 1, 2 in jedem Melder handelt es sich nicht um eine echte Parallelschaltung) an der beliebige Stich- und/oder Ringleitungen umfassenden Meldelinie, sind wahllos verteilt und zunächst von der Zentrale aus nicht unterscheidbar. Auch die Zahl der installierten Melder ist der Zentrale zunächst nicht bekannt.
Zum Erkennen der Konfiguration der Anlage sind die folgenden drei Schritte notwendig:
  • a. Erstellen einer Unikatliste Ziel dieses Schrittes ist es, jeden Melder von der Zentrale aus einzeln ansprechbar zu machen, sowie die Gesamtzahl der Melder zu ermitteln.
  • b. Erkennen eines sog. Stromvektors Ziel dieses Schrittes ist die Ermittlung der Konfiguration der Melder und damit der Anlage insgesamt.
  • c. Zuteilen einer Adresse Ziel dieses Schrittes ist die Zuteilung und Speicherung von Einzeladressen in den Meldern und in der Zentrale.
  • Die vorgenannten Schritte werden wie folgt erläutert:
    a. Unikatliste
    Jeder Melder erhält im Laufe des Produktionsprozesses eine einmalige Seriennummer. Diese wird in Form eines Aufdrucks auf dem Gehäuse des Melders sowie als Binärzahl in einem nichtflüchtigen Speicher in dem Melder abgelegt. Jeder Melder ist daher ein Unikat, das sich sowohl durch seinen Gehäuseaufdruck als auch durch seine gespeicherte Binärzahl von jedem anderen Melder unterscheidet.
    Die Zentrale setzt nun alle Melder durch einen Sammelbefehl in eine Initialisierungsroutine. In diesem Zustand sendet jeder Melder dann eine Stromantwort an die Zentrale, wenn er in einem von der Zentrale gesendeten Datentelegramm seine Seriennummer wiedererkennt. Die Zentrale kann daher durch Abfrage aller möglichen Seriennummern die tatsächlich installierten Melder herausfinden und deren Seriennummern ermitteln. Nimmt man an, daß die Seriennummer z.B. 24 Bit lang ist, also 24 Stellen umfaßt, so ist dieses Verfahren allerdings sehr langwierig. Es empfiehlt sich daher andere, an sich bekannte Algorithmen einzusetzen, die rascher zum Ziel führen.
    Beispielsweise kann nach der Methode der sukzessiven Approximation verfahren werden. Hierzu sendet die Zentrale als erstes den Sammelbefehl "Neuinitialisierung" an alle Melder. Deren Mikroprozessoren werden dadurch in einen auf diesen Algorithmus abgestellten Modus gebracht. Die Zentrale setzt nun in einem internen Speicherbereich, dessen Breite der Stellenzahl der Seriennummer entspricht, das höchstwertigste Bit (MSB) auf "1" und sendet an alle Melder die Sammelabfrage:
    "Sind Melder vorhanden, die als höchstwertigstes Bit eine "1" haben?"
    Daraufhin geben alle Melder, auf die dies zutrifft (d.h. die als MSB eine "1" haben), eine Stromantwort an die Zentrale. Dies kann bei keinem Melder oder bei einem oder bei mehreren Meldern der Fall sein. Die Zentrale stellt fest, ob mindestens ein Melder auf die Frage mit "ja" geantwortet hat (es wird nicht überprüft, wieviele Melder geantwortet haben).
    Ist dies der Fall, so wird in der Zentrale zusätzlich das nächstniederwertigere Bit auf "1" gesetzt und folgende Sammelabfrage gesendet:
       "Sind Melder vorhanden, deren beide höchstwertige Bits gleich "1" sind?"
    Hat jedoch kein Melder auf die Frage nach der "1" im MSB mit "ja" geantwortet, so ändert die Zentrale das MSB auf "0". Das nächstniederwertigere Bit bleibt auf "1" anschließend sendet die Zentrale die Sammelabfrage
       "Sind Melder vorhanden, die in den beiden höchstwertigen Bits die Bitfolge "01" vorliegen haben?"
    Dieses Verfahren wird nun so lange durchgeführt, bis alle Bits der Seriennummer abgefragt und somit letztendlich die höchste auf der Meldelinie bzw. innerhalb der Gesamtinstallation vorhandene Seriennummer gefunden worden ist. Die in der Zentrale aufgrund der Stromantworten abgelegte Bitfolge kennzeichnet dann den Melder mit dieser höchsten Seriennummer.
    Dieses Verfahren entspricht logisch jeweils einer Halbierung des möglichen Wertebereiches und einer Schwellenabfrage an die Melder, in welcher Hälfte die jeweilige Seriennummer liegt. Ist die entsprechende Hälfte ermittelt, wird diese nun wiederum halbiert (entspricht dem Setzen des nächstniederwertigen Bits), usw. Die Anzahl der Abfrageschritte entspricht genau der Anzahl der Bits der Seriennummer, d.h. bei einer 24-stelligen Seriennummer sind genau 24 Schritte erforderlich, um eine bestimmte, gegebene Seriennummer zu erkennen.
    Sobald nun die Seriennummer eines Melders auf diese Weise ermittelt ist, sendet die Zentrale an diesen Melder den Befehl, sich ab nun so lange passiv zu verhalten, bis der gesamte Erkennungsalgorithmus durchgefahren ist. Dies bedeutet, daß dieser Melder auf die von der Zentrale gesendeten Abfragen ab sofort nicht mehr antwortet, und die Zentrale somit den Melder mit der nächstniedrigeren Seriennummer ermitteln kann.
    Das beschriebene Verfahren wird von der Zentrale so oft wiederholt, bis die sich aus dem Algorithmus ergebende, letzte Seriennummer in allen Bits identisch "0" ist, was einer nichtexistierenden Seriennummer von Null entspräche.
    Die Zentrale kennt nun:
    • die Anzahl der Melder
    • die Seriennummern der Melder
    • die Meldertypen (z.B. Glasbruchmelder, Wärmemelder, Rauchmelder usw.), da die Seriennummer in kodierter Form gleichzeitig eine Information über den Meldertyp enthält
    • welche Melder ein Relais zur Leitungstrennung (Trennglied) enthalten (diese Information kann ebenfalls inder Seriennummer verschlüsselt enthalten oder als Zusatzinformation von dem Mikroprozessor des Melders an die Zentrale übertragen werden)
    Das beschriebene Verfahren benötigt somit folgende Anzahl von Schritten zur Erkennung von n-Meldern mit unterschiedlichen Seriennummern zu je beispielshalber 24 Bit: S = 24 * (n + 1)
    Hierin bedeutet S die Anzahl der Schritte und n die Anzahl der in der Anlage insgesamt vorhandenen Melder. "(n + 1)" drückt aus, daß zum Erkennen des Endes der Abfrage ein eigener zusätzlicher Schritt durchgeführt wird: "Sind noch Melder vorhanden, die sich nicht passiv verhalten?"
    Nachfolgend wird ein numerisches Beispiel für die Gewinnung einer Unikatliste nach dem beschriebenen Verfahren gegeben. Die Linie umfaßt (lediglich) drei Melder (was der Zentrale zunächst noch nicht bekannt ist). Jeder Melder hat eine 4 Bit breite, unterschiedliche Seriennummer.
    Seriennummer Melder 1:
    1001
    Seriennummer Melder 2:
    1100
    Seriennummer Melder 3:
    0010
    Figure 00120001
    Der vorstehend bechriebene Algorithmus stellt - wie gesagt - nur eine von mehreren Möglichkeiten dar, die Unikatliste möglichst zeitsparend zu erstellen. Eine einfache Variante besteht darin, die Abfrage mit dem niederwertigsten Bit (LSB) zu beginnen.
    Noch zeitsparender ist es, den Algorithmus nicht wie beschrieben linear zu durchfahren sondern den Algorithmus durch Auswertung der bereits erhaltenen Antworten jeweils abzukürzen, also bestimmte Abfragen nicht mehr durchzuführen. Zum Beispiel muß bei dem beschriebenen Verfahren jede als letztes ermittelte Seriennummer eines Melders die zur Zeit höchste Seriennummer sein. Die Abfrage der verbliebenen Melder kann also um diejenigen Schritte verkürzt werden, die nur zur Erkennung von Seriennummern notwendig sind, die gleich oder höher als die zuletzt ermittelte Seriennummer sind.
    Bei einer neuinstallierten Anlage stammen alle vorhandenen Melder mit großer Wahrscheinlichkeit aus einem relativ engen Fertigungszeitraum und unterscheiden sich somit lediglich in den niederwertigeren Bits. Nach der Ermittlung der (mit großer Wahrscheinlichkeit gleichen) höherwertigen Bits kann man also den Algorithmus auf die niederwertigen Bits beschränken und damit die Anzahl der erforderlichen Schritte zur Ermittlung aller Seriennummern drastisch reduzieren. Bei Verwendung eines derart abgekürzten Algorithmus muß sichergestellt sein, daß auch evt. vorhandene Melder mit stark abweichenden Seriennummern erkannt werden. Dies kann jedoch dazu führen, daß dann, wenn solche Melder mit stark abweichenden Seriennummern vorhanden sind, der "abgekürzte" Algorithums deutlich langsamer ist als der oben beschriebene, vollständige Algorithmus.
    b. Stromvektorerkennung
    Nachdem nun jeder Melder mit seiner Seriennummer angesprochen werden kann (zur Verkürzung des Datenverkehrs kann die Zentrale aber auch jede Seriennummer zu 24 Bit durch eine interne Nummer mit z.B. 7 Bit ersetzen), werden die Melder über einen Sammelbefehl auf die sog.
    Stromvektorerkennung vorbereitet. Jeder Melder erkennt dann mittels seiner Strommeßeinrichtung solche Strompulse, die von Meldern stammen, die, von der Zentrale aus gesehen, hinter dem erkennenden Melder liegen. Beim Empfang seiner eigenen Seriennummer erzeugt der Melder einen Strompuls für eine bestimmte Zeit, die zumindest so lang ist, daß es den anderen Meldern möglich ist, diesen Strompuls zu registrieren. Der den Strompuls erzeugende Melder mißt jedoch diesen eigenen Strompuls nicht.
    Die Zentrale fragt nun nacheinander alle Seriennummern ab. Mit jeder Abfrage laden alle Melder das Ergebnis ihrer Strommessung in das in ihrem Mikroprozessor 4 enthaltene Schieberegister und inkrementieren dieses. Erkennt ein Melder eine Stromerhöhung, so vermerkt sein Mikroprozessor dies in seinem Schieberegister mit einer logischen "1", im anderen Fall mit einer logischen "0". Seinen eigenen gesendeten Strompuls vermerkt der Melder im Schieberegister mit einer logischen "0".
    Da die Anschlußfolge der Anschlüsse 10, 12 jedes Melders beidseits der Strommeßeinrichtung 1, 2 vertauschbar ist, können auch negative Stromwerte auftreten. Bevor die Informationen der Strommessung in das Schieberegister geladen werden, erfolgt deshalb eine Betragsbildung. Treten negative Stromwerte auf, so wird diese Feststellung ebenfalls in dem Mikroprozessor gespeichert.
    Nachdem jeder Melder seine Stromantwort abgegeben und die der anderen gemessen hat, liegt im Schieberegister jedes Melders eine Bitfolge, die im folgenden als Stromvektor mit der Dimension n bezeichnet wird, wobei n wiederum die Zahl der vorhandenen Melder ist. Da jeder Melder einen solchen Stromvektor registriert hat, existieren n voneinander verschiedene Stromvektoren. Diese werden von der Zentrale nacheinander unter den einzelnen Seriennummern der vorhandenen Melder abgefragt und in den Spalten einer Matrix abgespeichert. Diese Matrix wird nachfolgend als "S-Matrix" bezeichnet und ist in Fig. 2 für den Fall der in Fig. 3 dargestellten Anlagenkonfiguration dargestellt. In den Zeilen der S-Matrix liegen die einzelnen Stromantworten. Jede Zeile zeigt dementsprechend das Strompulsmuster, das im Zeitpunkt der Abfrage des dieser Zeile entsprechenden Melders in den Schieberegistern aller anderen Melder abgelegt wird. Anhand der S-Matrix läßt sich die Konfiguration der Anlage errechnen. Hierzu werden zunächst aus den Zeilen und Spalten der Matrix Summen gebildet. Die betreffenden Werte sind in Fig. 2 mit ΣH und Σv bezeichnet. Die Summe ΣH jeder Zeile i (i von 1 bis n) gibt Auskunft darüber, wieviele Melder zwischen der Zentrale und dem Melder mit der i-ten Seriennummer liegen.
    Die Summe ΣV jeder Spaltegibt Auskunft darüber, wieviele Melder zwischen dem Melder mit der i-ten Seriennummer und dem Ende einer Stichleitung oder der Ringleitung liegen. Aus den Zeilensummen und den Spaltensummen der S-Matrix wird zusammen mit den zugehörigen Seriennummern eine neue Matrix, die sog. A-Matrix, gebildet, die im gewählten Beispiel folgendes Aussehen hat:
    ΣH ΣV Ser.Nr.
    4 0 87
    4 2 81
    2 2 46
    4 0 44
    5 1 41
    3 1 40
    3 4 39
    1 9 22
    2 5 21
    6 0 20
    0 10 11
    Aus der A-Matrix läßt sich folgendes ableiten:
  • a) Die Anzahl der Stichleitungen; sie ist gleich der Anzahl der Nullen in ΣV (das Ende der Ringleitung zählt mit)
    und damit:
  • b) Die Seriennummer des jeweils letzten Melders in der betreffenden Stichleitung oder Ringleitung. Im Beispiel sind dies die Melder 87, 44 und 20. An welcher Stelle sich diese Melder befinden, ist jedoch noch nicht bekannt.
  • c) Die Seriennummern der Melder sowie deren Reihenfoge zwischen der Zentrale und der ersten Stichleitung. Diese Informationen ergeben sich aus der Spaltensumme ΣH, nämlich den dort nur einmal vorkommenden Ziffern, geordnet in steigender Reihenfolge bis zu der ersten, mindestens zweimal in unterschiedlichen Zeilen vorhandenen Ziffer. Im Beispiel sind dies die Melder 11 und 22.
  • Als nächstes ermittelt die Zentrale die zur Bestimmung der räumlichen Konfiguration noch notwendigen Informationen. Aus der A-Matrix sind die Anzahl der Endmelder und deren Seriennummern bekannt. Die Stromvektoren in der S-Matrix ("1"-Eintrag in den betreffenden Zeilen) bezeichnen die zu den jeweiligen Endmeldern gehörenden weiteren Melder. Im gewählten Beispiel ergeben sich auf diese Weise die folgenden drei Mengen:
    d) Menge 1 von Endmelder 87 => 39 22 21 11
    e) Menge 2 von Endmelder 44 => 46 40 22 11
    f) Menge 3 von Endmelder 20 => 81 41 39 22 21 11
    Die Zentrale bildet nun die Schnittmengen dieser drei Mengen, was sich graphisch wie folgt veranschaulichen läßt:
    Figure 00170001
    Neben der schon bekannten Information, daß die Melder entsprechend vorstehend c) die ersten Melder auf der Ringleitung sind (entsprechend M1 ∩ M2 ∩ M3) führt diese Betrachtung zu folgenden weiteren Ergebnissen:
    Die nur der Menge 1 (Endmelder 87) angehörenden Melder ergeben sich aus: M1 / (M2 ∩ M3). Im Beispiel gibt es keine weiteren solchen Melder.
    Die nur der Menge 2 (Endmelder 44) angehörenden weiteren Melder ergeben sich aus: M2 / (M1 ∩ M3). Dies sind hier die Melder 46 und 44.
    Die nur der Menge 3 (Endmelder 20) angehörenden Melder ergeben sich aus: M3 / (M2 ∩ M1). Hier sind dies die Melder 41 und 81.
    Die Ringleitung ist als solche noch nicht erkennbar, so daß das Ergebnis noch mehrdeutig ist, die Melder 21 und 39 also entweder zur Menge 1 oder zur Menge 3 gehören könnten (M1 ∩ M3). Die Zentrale schaltet nun auf Speisung der Linie in umgekehrter Richtung um, speist also nunmehr in das Linienende B ein. Die Wiederholung der zuvor beschriebenen Abfrage liefert unter anderem das Ergebnis, daß jetzt der Melder 20 erster und der Melder 11 letzter Melder ist, außerdem die Reihenfolge der dazwischen auf der Ringleitung liegenden Melder. Mithin erkennt die Zentrale, daß die Melder 21 und 39 der Ringleitung und damit zusammen mit den Meldern 11 und 22 der Menge 3 angehören.
    Falls die Meldelinie nicht ringförmig geschlossen ist, kann die Zuordnung anhand der größeren Anzahl von Meldern getroffen oder eine Entscheidung im Losverfahren herbeigeführt werden.
    Der Zentrale ist nun die Grundkonfiguration der Anlage bekannt. Sie weiß also, ob eine Ringleitung vorliegt, bejahendenfalls, welche Melder zu der Ringleitung gehören, ferner, wieviele Stichleitungen vorhanden sind und welche Melder zu welcher Stichleitung gehören.
    Im letzten Schritt ermittelt die Zentrale nun anhand der aufsteigenden Reihenfolge der Werte der Zeilensumme ΣH der A-Matrix die Lage der Abzweigpunkte und die Reihenfolge der Melder in den jeweiligen Stichleitungen, und zwar wie vorstehend unter c) beschrieben, jedoch nun unter Einbeziehung auch der mehr als einmal auftretenden Ziffern oder Werte.
    Damit ist die Konfiguration der Anlage ermittelt, nämlich für das angegebene Beispiel folgendes bekannt:
    • Die Ringleitung beginnt mit den Meldern 11 und 21,
    • hat dann eine abgehende Stichleitung mit den Meldern 46, 40 und 44 (dieser als letzter oder Endmelder),
    • setzt sich über die Melder 21 und 39 fort,
    • hat eine weitere Abzweigung, die lediglich den Melder 87 umfaßt, der daher gleichzeitig Endmelder ist,
    • und ist über die Melder 81, 41 und 20, der ebenfalls als Endmelder interpretiert wird, geschlossen.
    Die Zentrale ordnet nun den Meldern entsprechend der erkannten Konfiguration Installationsnummern zu und gibt die erkannte Konfiguration zusammen mit diesen Installationsnummern über einen Bildschirm und/oder einen Drucker aus. Der Errichter oder Betreiber der Anlage kann nun seinerseits die von der Zentrale vergebenen Installationsnummern in seinen Installationsplan übertragen und umgekehrt zu allen oder zu ausgewählten Meldern auf deren jeweiligen Installationsort abgestellte Texte in die Zentrale eingeben.
    Da jede von der Zentrale vergebene Installationsnummer (neben ihrer etwaigen Funktion als Melderadresse) einen ganz bestimmten Installationsort bezeichnet, ist es für die Funktion der Anlage vor allem im Alarmfall von ausschlaggebender Bedeutung, daß diese Zuordnung auch bei allen denkbaren Eingriffen in die Melderkonfiguration entweder erhalten bleibt oder eine klar erkennbare Neuzuordnung erfolgt.
    Unter Eingriffen in die Melderkonfiguration werden hierbei folgende Fälle verstanden:
  • 1. Austausch/Wartung
  • 1.1 Ein Melder wird der Linie entnommen und wieder eingesetzt.
  • 1.2 Ein Melder wird der Linie entnommen und durch einen anderen Melder ersetzt.
  • 1.3 Beliebig viele Melder werden der Linie entnommen und in diese wahllos wieder eingesetzt.
  • 1.4 Beliebig viele Melder werden der Linie entnommen und durch andere Melder ersetzt.
  • 2. Erweiterung/Verkleinerung
  • 2.1 Ein Melder wird an beliebiger Stelle entfernt und die Ring- oder Stichleitung wieder geschlossen.
  • 2.2 Ein Melder wird an beliebiger Stelle in die Ring- oder Stichleitung eingefügt.
  • 2.3 Mehrere Melder werden entnommen oder eingefügt.
  • 2.4 Ein Melder wird an beliebiger Stelle entfernt, die Ring- oder Stichleitung an dieser Stelle wieder geschlossen und dieser Melder an einer beliebigen anderen Stelle in die Ring- oder Stichleitung wieder eingefügt.
  • Im Fall der Ziff. 1 kann die Zentrale lediglich eine Leitungsunterbrechung feststellen, nicht aber, ob diese durch die Entnahme eines Melders oder dessen Austausch hervorgerufen worden war. Die Zentrale führt daher die Konfigurationserkennung neu durch und vergleicht deren Ergebnis mit dem in ihrer Datei abgelegten Ergebnis der vorhergehenden Konfigurationserkennung. Der Vergleich ergibt
    im Fall 1.1:
    Es ist keine Änderung eingetreten.
    im Fall 1.2:
    Eine der bisherigen Seriennummern fehlt, eine neue Seriennummer ist hinzugetreten. Die neue Seriennummer nimmt in der Konfiguration den Platz der fehlenden Seriennummer ein.
    im Fall 1.3:
    Die Seriennummern und die Konfiguration sind gleich geblieben, jedoch hat sich die Zuordnung der Seriennummern bzw. die Reihenfolge der Melder innerhalb der Konfiguration teilweise geändert. Die Zentrale vollzieht diese Änderungen nach. Damit bleibt die Anzeige von Meldungen auf den wahren Installationsort des jeweiligen Melders bezogen.
    im Fall 1.4:
    Die Zentrale erkennt andere Serien" nummern bei gleicher Anlagenkonfiguration und verfährt daher wie im Fall 1.3.
    im Fall 2.1:
    Die Zentrale erkennt das Fehlen einer Seriennummer und eine Änderung in der Konfiguration, letzteres daran, daß die Einträge des fehlenden Melders in der S-Matrix fehlen. Damit erkennt die Zentrale auch, daß die Konfiguration ansonsten erhalten geblieben ist. Die Zentrale gibt daher eine Meldung "Änderung der Verdrahtung" aus.
    im Fall 2.2:
    Die Zentrale stellt eine neue Seriennummer auf der Leitung und eine Änderung der Konfiguration, nämlich die Stelle der Einfügung des neuen Melders, fest. Durch nochmalige Auswertung der S-Matrix, jedoch ohne den Stromvektor des neuen Melders, und durch Vergleich mit der S-Matrix der vorhergehenden Konfiguration stellt die Zentrale weiter fest, daß ansonsten die vorhergehende Konfiguration erhaltengeblieben ist. Die Zentrale gibt daher wiederum eine Meldung "Änderung der Verdrahtung" aus und fordert zusätzlich zur Eingabe eines dem neuen Melderinstallationsort entsprechenden Textes auf.
    im Fall 2.3:
    Die Zentrale stellt die geänderten Seriennummern fest, außerdem die Vergrößerung oder Verkleinerung der S-Matrix. Durch deren Auswertung erkennt die Zentrale die ursprüngliche Konfiguration, soweit sie erhalten geblieben ist, außerdem die vorgenommenen Änderungen. Die Zentrale gibt eine Meldung "Verdrahtungsänderung" aus, sowie bei Ergänzung von Meldern eine Aufforderung zur Eingabe entsprechender, ortsbezogener Meldetexte.
    im Fall 2.4:
    Diese Änderung, bei der sowohl ein Melder an beliebiger Stelle entfernt als auch ein anderer Melder an einer anderen beliebigen Stelle eingefügt wird, kann die Zentrale nicht auf dem Wege des Vergleichs mit den bisherigen Seriennummern und der bisherigen Konfiguration erkennen. Die Zentrale führt daher eine vollständige Neuinitialisierung durch.
    Im übrigen protokolliert die Zentrale alle von ihr nach dem obigen Schema festgestellten Veränderungen an der Anlage (wie auch alle übrigen relevanten Ereignisse). Ein Zustand, bei dem eine einlaufende Meldung einem anderen als dem wahren Installationsort des betreffenden Melders zugeordnet wird, kann nicht eintreten.

    Claims (11)

    1. Verfahren zur Ermittlung der Konfiguration der Melder einer Gefahrenmeldeanlage, an deren Zentrale die Melder über eine als Ring- und/oder Stichleitungen geführte, zweidrähtige Meldelinie parallel angeschlossen sind, wobei jeder Melder u.a. einen Mikroprozessor sowie eine von diesem steuerbare Stromsenke zum Datenaustausch mit der Zentrale mittels Strompulsen und einen Adressenspeicher enthält, dadurch gekennzeichnet, daß in jedem Melder herstellerseitig eine binäre Seriennummer gespeichert wird, und daß nach der Installation der Anlage deren Zentrale folgende Schritte durchführt:
      1. in einem Initialisiermodus die in der Anlage vorhandenen Seriennummern ermittelt und speichert
      2. alle Melder durch einen Sammelbefehl in in einen Einzeladressier- und Antwortmodus schaltet, in welchem jeder Melder nach Adressierung mit seiner eigenen binären Seriennummer mit einem Strompuls antwortet, hingegen nach Adressierung mit der binären Seriennummer eines anderen Melders das Auftreten oder Fehlen eines Strompulses prüft und das Prüfergebnis als binäres Muster speichert
      3. in einem ersten Zyklus jeden Melder unter seiner binären Seriennummer einzeln adressiert
      4. in einem zweiten Zyklus von jedem Melder das gespeicherte, binäre Muster abfragt und unter der der binären Seriennummer entsprechenden Adresse des jeweiligen Melders in die zugehörige Spalte einer ersten, quadratischen Matrix schreibt, deren Spalten und deren Zeilen gleichlaufend zu den in der Anlage vorhandenen binären Seriennummern numeriert sind,
      5. die Summe jeder Spalte und die Summe jeder Zeile der ersten Matrix ermittelt sowie in die gleichlaufend zu den Zeilen der ersten Matrix numerierten Zeilen einer zweiten Matrix überträgt
      6. anhand der Werte der Spaltensummen der ersten Matrix die Anzahl der Stichleitungen erkennt und deren jeweiligen letzten Melder identifiziert
      7. anhand der Werte der Spalte "Zeilensummen" der zweiten Matrix die Melder der ersten Stichleitung identifiziert und deren Reihenfolge erkennt
      8. die zu jedem der letzten Melder gehörenden, vorgeschalteten Melder identifiziert und zu jeweils einer Meldermenge zusammenfaßt
      9. aus den Mengen der vorgeschalteten Melder durch Bildung von Schnittmengen für jede Menge diejenigen Melder ermittelt, die nur dieser Menge angehören
      10. im Fall einer Ringleitung in das andere Ringende einspeist und analog dem 7. Schritt die Melder der bei dieser Speisung ersten Stichleitung identifiziert und hierdurch die Meldermenge erkennt, die die Ringleitung bildet
      11. im Fall von Stichleitungen durch Vergleich der Werte der Spaltensummen der ersten Matrix die Lage der Abzweigpunkte der Stichleitungen ermittelt und die Reihenfolge deren Melder feststellt
      12. und den Meldern entsprechend der erkannten Konfiguration Installationsnummern zuordnet und die Melderkonfiguration der Anlage einschließlich der Installationsnummern ausgibt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zentrale die binären Seriennummern der Melder nach dem Verfahren der sukzessiven Approximation ermittelt und an jeden Melder, dessen Seriennummer sie auf diese Weise ermittelt und gespeichert hat, den Befehl sendet, sich passiv zu verhalten, bis alle in der Anlage vorhandenen Seriennummern ermittelt worden sind.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Einzeladressier- und Antwortmodus jeder Melder das Ergebnis seiner Prüfung auf einen nach Adressierung mit einer von seiner eigenen, binären Seriennummer verschiedenen binären Seriennummer auftretenden oder ausbleibenden Strompuls eines anderen Melders seriell in ein Schieberegister eingibt, das mit jeder neuen Adressierung einen Schiebeimpuls erhält.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei fehlender Ringleitung und mehr als einer Stichleitung die Zentrale die Zuordnung von Ordnungsnummern zu den Stichleitungen entweder nach dem Kriterium der größeren Anzahl der Melder in einer der Stichleitungen oder wahlfrei vornimmt.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Zentrale die Reihenfolge der Melder innerhalb jeder Stichleitung durch Ordnen der Werte der Zeilensumme der ersten Matrix in aufsteigender Reihenfolge ermittelt.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Zentrale nach dem Erkennen der binären Seriennummern der Melder jedem Melder eine Kurzadresse zuordnet und an den Melder zusammen mit einem Speicherbefehl sendet.
    7. Gefahrenmeldeanlage mit einer programmgesteuerten Zentrale, an die über eine als Ring- und/oder Stichleitungen geführte, zweidrähtige Meldelinie mehrere Melder parallel angeschlossen sind, von denen jeder u.a. einen Mikroprozessor, eine von diesem steuerbare Stromsenke zum Datenaustausch mit der Zentrale mittels Stromimpulsen, einen Adressenspeicher und einen nichtflüchtigen Speicher enthält, dadurch gekennzeichnet, daß jeder der Melder in seinem nichtflüchtigen Speicher (15) eine herstellerseitig vergebene, individuelle, unveränderbare, binäre Seriennummer enthält und daß die Zentrale Mittel umfaßt, die nach der Installation der Anlage und zur Ermittlung der Konfiguration der Melder anhand deren unveränderbaren Seriennummern die im Anspruch 1 angegebenen Schritte 1 bis 12 durchführen.
    8. Gefahrenmeldeanlage nach Anspruch 7, dadurch gekennzeichnet, daß jeder Melder eine Strommeßeinrichtung (1, 2) für einen ihn durchfließenden, von seiner eigenen Stromsenke (13a) oder derjenigen eines anderen Melders erzeugten Strom umfaßt, und daß der Ausgang der Strommeßeinrichtung (1, 2) mit einem Eingang des Mikroprozessors (4) des Melders verbunden ist.
    9. Gefahrenmeldeanlage nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß jeder Melder ein Schieberegister umfaßt, dessen Zahl an Speicherplätzen mindestens gleich der Höchstzahl von Meldern ist, die an eine Meldelinie anschließbar sind, und daß der Mikroprozessor (4) den Schiebetakt liefert und jeden detektierten, von einem anderen Melder verursachten Strompuls als binäre "1" in das Schieberregister seriell einschreibt.
    10. Gefahrenmeldeanlage nach Anspruch 7 bis 9, dadurch gekennzeichnet, daß jeder Melder eine weitere, ebenfalls von dem Mikroprozessor (4) gesteuerte Stromsenke (13b) umfaßt und das Strommeßglied (1) der Strommeßeinrichtung (1, 2) in einer der durch den Melder hindurchgeschleiften Adern der Meldelinie zwischen den zwei Stromsenken (13a, 13b) angeordnet ist.
    11. Gefahrenmeldeanlage nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß jeder Melder ein von seinem Mikroprozessor (4) gesteuertes Relais (3) mit einem Kontakt umfaßt, über den eine der hindurchgeschleiften Adern der Meldelinie geführt ist, daß der Relaiskontakt durch zwei gegensinnig gepolt in Serie liegende Dioden (6a, 6b) überbrückt ist, über deren gemeinsamen Verbindungspunkt der Mikroprozessor (4) seine Speisespannung erhält, und daß an dem gemeinsamen Verbindungspunkt ein Speicherkondensator (5) liegt, der den Mikroprozessor (4) nach Ausfall der Linienspannung noch so lange speist, daß der Mikroprozessor (4) das Relais (3) zur Öffnung seines Kontaktes ansteuern kann.
    EP91118892A 1990-11-16 1991-11-05 Verfahren zur Ermittlung der Konfiguration von Meldern einer Gefahrenmeldeanlage Expired - Lifetime EP0485878B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4036639 1990-11-16
    DE4036639A DE4036639A1 (de) 1990-11-16 1990-11-16 Verfahren zur ermittlung der konfiguration der melder einer gefahrenmeldeanlage und fuer die anlagenkonfigurationsbestimmung geeigneter melder
    US07/909,572 US5402101A (en) 1990-11-16 1992-07-06 Method for determining the configuration of detectors of a danger alarm system and for determining the system configuration of suitable detectors

    Publications (3)

    Publication Number Publication Date
    EP0485878A2 EP0485878A2 (de) 1992-05-20
    EP0485878A3 EP0485878A3 (en) 1993-07-14
    EP0485878B1 true EP0485878B1 (de) 1998-02-04

    Family

    ID=25898573

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP91118892A Expired - Lifetime EP0485878B1 (de) 1990-11-16 1991-11-05 Verfahren zur Ermittlung der Konfiguration von Meldern einer Gefahrenmeldeanlage

    Country Status (6)

    Country Link
    US (1) US5402101A (de)
    EP (1) EP0485878B1 (de)
    AT (1) ATE163103T1 (de)
    DE (2) DE4036639A1 (de)
    ES (1) ES2114872T3 (de)
    HK (1) HK1004925A1 (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19940700C2 (de) * 1999-08-27 2003-05-08 Job Lizenz Gmbh & Co Kg Verfahren und Vorrichtung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage
    EP2439885A1 (de) 2010-10-08 2012-04-11 Honeywell International Inc. Verfahren zur digitalen Kommunikation zwischen mehreren, über einen seriellen Feldbus verbundenen Knoten und entsprechendes System, insbesondere ein Feldsteuerungssystem oder ein Feldüberwachungssystem
    DE202016104114U1 (de) 2015-08-14 2016-08-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Netzwerkkonfiguration zur Vergabe von Netzwerkadressen an Ventilatoren in einem Netzwerk

    Families Citing this family (37)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2931734B2 (ja) * 1993-03-17 1999-08-09 ホーチキ株式会社 防災監視装置
    DE4433116B4 (de) * 1994-09-16 2004-07-15 Siemens Ag Verfahren zum selektiven Aufrufen von Netzelementen
    IT1277178B1 (it) * 1995-03-24 1997-11-05 Bticino Spa Sistema di ricezione e di gestione di segnali digitali provenienti da dispositivi elettronici atto all'apprendimento delle informazioni
    US5864286A (en) * 1995-05-16 1999-01-26 General Signal Corporation Distributed intelligence alarm system having a two- tier monitoring process for detecting alarm conditions
    US5670937A (en) * 1995-05-16 1997-09-23 General Signal Corporation Line monitor for two wire data transmission
    US5721530A (en) * 1995-05-16 1998-02-24 General Signal Corporation Stand alone mode for alarm-type module
    US5786757A (en) * 1995-05-16 1998-07-28 General Signal Corporation Load shed scheme for two wire data transmission
    US5701115A (en) * 1995-05-16 1997-12-23 General Signal Corporation Field programmable module personalities
    EP0940061B1 (de) * 1996-05-13 2006-07-26 Electric Inc. Kumho Verteilte netzsteuerung in einer dimmbaren leuchtstofflampenbeleuchtungsanordnung
    DE19707241C2 (de) * 1997-02-25 2000-05-31 Pilz Gmbh & Co Modulares Sicherheitsschaltgerät
    US6014084A (en) * 1997-05-19 2000-01-11 Pittway Corporation Electronic self-locating system and method
    DE19800448C2 (de) * 1998-01-08 2000-04-27 Caradon Esser Gmbh Überwachungsanlage
    GB2334359A (en) * 1998-02-11 1999-08-18 Scantronic Ltd Identifying devices in an electronic system
    ITMI981529A1 (it) * 1998-07-03 2000-01-03 Deltron Ltd Modulo attuatore di allarme perimetrale particolarmente per un impianto di dispositivi avvolgibili
    US6473706B1 (en) 2000-07-06 2002-10-29 International Business Machines Corporation Self-configuring and self-calibrating automated system
    US6693529B2 (en) * 2000-08-16 2004-02-17 Nittan Company Limited Fire alarm system
    US6446160B1 (en) 2000-09-28 2002-09-03 International Business Machines Corporation Multi-drive data storage system with analysis and selected demounting of idle data storage media
    US6604160B1 (en) 2000-09-28 2003-08-05 International Business Machines Corporation Computing system arbitrating and selectively providing resource-seeking tasks with takeaway of non-shareable resources
    US6434682B1 (en) 2000-09-28 2002-08-13 International Business Machines Corporation Data management system with shortcut migration via efficient automatic reconnection to previously migrated copy
    DE10138229B4 (de) * 2001-08-03 2009-10-01 Siemens Gebäudesicherheit GmbH & Co. oHG Verfahren zur Funkübertragung in einem Gefahrenmeldesystem
    EP1282095B1 (de) * 2001-08-03 2010-09-01 Siemens Aktiengesellschaft Verfahren zur Funkübertragung in einem Gefahrenmeldesystem
    US6987448B2 (en) * 2001-08-20 2006-01-17 Hill-Rom Services, Inc. Medical gas alarm system
    DE10240650B3 (de) * 2002-09-03 2004-02-26 Siemens Gebäudesicherheit GmbH & Co. oHG Verfahren zum Adressieren von Meldern in einer Gefahrenmeldeanlage
    DE10240832A1 (de) * 2002-09-04 2004-03-18 Robert Bosch Gmbh Bus
    AU2003270617A1 (en) * 2002-09-12 2004-04-23 Hill-Rom Services, Inc. Gas alert for medical gas system
    US6777951B2 (en) * 2002-10-11 2004-08-17 Honeywell International, Inc. Method and apparatus for detecting and isolating shorts and other troubles on a polling loop
    US7091902B2 (en) * 2003-12-17 2006-08-15 Xerox Corporation Systems and methods for characterizing the coverage of ad hoc sensor networks
    ES2297551T3 (es) * 2005-03-15 2008-05-01 Siemens Schweiz Ag Procedimiento para la determinacion de la configuracion de una instalacion de alarma e instalacion de alarma.
    US10354516B2 (en) * 2006-09-15 2019-07-16 Tyco Safety Products Canada, Ltd. Method and apparatus for automated activation of a security system
    GB2456743A (en) 2007-07-16 2009-07-29 Thorn Security Searching identity space for devices connected to a bus using masks and increasing mask length when replies collide
    US8760280B2 (en) * 2011-07-28 2014-06-24 Tyco Fire & Security Gmbh Method and apparatus for communicating with non-addressable notification appliances
    DE102012203960A1 (de) * 2012-03-14 2013-09-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Netzwerks
    DE102012203958A1 (de) * 2012-03-14 2013-09-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Netzwerks
    ITRM20120208A1 (it) * 2012-05-10 2013-11-11 Dea Security S R L Schiera di sensori, sistema di sicurezza e procedimento di rilevamento dell'ordine di posizionamento dei sensori all'interno di detta schiera
    CN106327773A (zh) * 2015-07-01 2017-01-11 西门子瑞士有限公司 火灾报警控制器的配置装置及其配置方法
    ES2956038T3 (es) 2018-05-29 2023-12-12 Autronica Fire & Security As Prueba de una red de dispositivos de advertencia de peligro
    US20230326327A1 (en) * 2020-07-03 2023-10-12 Siemens Schweiz Ag Method for Automatic Identification of Fire Detectors

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4360912A (en) * 1979-11-23 1982-11-23 Sperry Corporation Distributed status reporting system
    CH651688A5 (de) * 1980-06-23 1985-09-30 Cerberus Ag Verfahren zur uebertragung von messwerten in einer brandmeldeanlage und einrichtung zur durchfuehrung des verfahrens.
    CA1178678A (en) * 1981-03-13 1984-11-27 John M. Wynne Bidirectional, interactive fire detection system
    DE3347357A1 (de) * 1983-12-28 1985-07-11 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum vergeben von adressen an steckbare baugruppen
    GB8431883D0 (en) * 1984-12-18 1985-01-30 Gent Ltd Transmission system
    JPH0740319B2 (ja) * 1988-02-17 1995-05-01 ニッタン株式会社 端末器
    ATE101777T1 (de) * 1988-06-30 1994-03-15 Siemens Ag Verfahren zur adressierung von prozessoreinheiten und schaltungsanordnung zur durchfuehrung des verfahrens.
    US4885568A (en) * 1988-11-21 1989-12-05 Interactive Technologies, Inc. Integrated alarm transponder

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19940700C2 (de) * 1999-08-27 2003-05-08 Job Lizenz Gmbh & Co Kg Verfahren und Vorrichtung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage
    US6838999B1 (en) 1999-08-27 2005-01-04 Job Lizenz Gmbh & Co. Kg Method and device for automatically allocating detector addresses in an alarm system
    EP2439885A1 (de) 2010-10-08 2012-04-11 Honeywell International Inc. Verfahren zur digitalen Kommunikation zwischen mehreren, über einen seriellen Feldbus verbundenen Knoten und entsprechendes System, insbesondere ein Feldsteuerungssystem oder ein Feldüberwachungssystem
    WO2012045875A1 (en) 2010-10-08 2012-04-12 Honeywell International Inc. Method for digital communication between a plurality of nodes connected by a serial field bus and corresponding system, in particular a field control system or field surveyance system
    DE202016104114U1 (de) 2015-08-14 2016-08-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Netzwerkkonfiguration zur Vergabe von Netzwerkadressen an Ventilatoren in einem Netzwerk
    EP3131270A1 (de) 2015-08-14 2017-02-15 ebm-papst Mulfingen GmbH & Co. KG Netzwerkkonfiguration und verfahren zur vergabe von netzwerkadressen an ventilatoren in einem netzwerk
    DE102015113489A1 (de) 2015-08-14 2017-02-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Netzwerkkonfiguration und Verfahren zur Vergabe von Netzwerkadressen an Ventilatoren in einem Netzwerk

    Also Published As

    Publication number Publication date
    ES2114872T3 (es) 1998-06-16
    US5402101A (en) 1995-03-28
    EP0485878A3 (en) 1993-07-14
    HK1004925A1 (en) 1998-12-11
    DE4036639C2 (de) 1993-07-15
    DE59108931D1 (de) 1998-03-12
    ATE163103T1 (de) 1998-02-15
    DE4036639A1 (de) 1992-05-21
    EP0485878A2 (de) 1992-05-20

    Similar Documents

    Publication Publication Date Title
    EP0485878B1 (de) Verfahren zur Ermittlung der Konfiguration von Meldern einer Gefahrenmeldeanlage
    EP1206765B1 (de) Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage
    EP0177018A2 (de) Verfahren zur Übermittlung von Daten
    DE2817089A1 (de) Gefahrenmeldeanlage
    EP1109143B1 (de) Verfahren und Vorrichtung zur Bestimmung von als Stromsenken wirkenden gestörten Meldern in einer Gefahrenmeldeanlage
    EP0177019A2 (de) Datenübermittlungseinrichtung, die ein Datennetz mit Baumstruktur aufweist
    EP0067339A2 (de) Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
    EP0004909B1 (de) Gefahrenmeldeanlage
    EP0004912B1 (de) Gefahrenmeldeanlage
    DE3614692C2 (de)
    EP0254125B1 (de) Gefahrenmeldeanlage
    DE3032619C2 (de) Fernwirkeinrichtung mit wenigstens einer Zentralstation und mit weiteren Stationen
    DE4426466C2 (de) Anordnung und Verfahren zum Betreiben von Gefahrenmeldern
    DE2946169A1 (de) Verfahren zur zustandsermittlung von alarmgebern einer ueberwachungsanlage
    DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
    EP0450119B1 (de) Einrichtung zum Anschliessen weiterer Elemente an eine bereits bestehende Meldeprimärleitung
    EP0193835A1 (de) Anordnung zum Sammeln von Überwachungsinformationen in Übertragunseinrichtungen
    DE2823918C3 (de) Schaltungsanordnung zur zentralen Störungssignalisierung in Betriebsstellen
    DE2525438A1 (de) Ueberwachungsanordnung zur ueberwachung zentraler einrichtungen
    DE2823919C3 (de) Anordnung zur Abfrage mehrerer Gruppen von Meldequellen mittels einer Signalisierungseinheit
    EP0056099B1 (de) Überwachungseinrichtung für Fernwirkeinrichtungen
    DE4223679A1 (de) Meldesignal-Übertragungssystem für Überwachungs- und Alarmanlagen
    DE2823836A1 (de) Anordnung zur zentralen erfassung und verarbeitung von stoerungsmeldungen in betriebsstellen
    DE2705190A1 (de) Detektorvorrichtung zum feststellen von kriterien von elektrischen stromkreisen
    DE3800523A1 (de) Datenverarbeitungssystem

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT CH DE ES FR GB IT LI NL

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT CH DE ES FR GB IT LI NL

    17P Request for examination filed

    Effective date: 19930819

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CARADON ESSER GMBH

    17Q First examination report despatched

    Effective date: 19961104

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI NL

    REF Corresponds to:

    Ref document number: 163103

    Country of ref document: AT

    Date of ref document: 19980215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: LUCHS & PARTNER PATENTANWAELTE

    REF Corresponds to:

    Ref document number: 59108931

    Country of ref document: DE

    Date of ref document: 19980312

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980304

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2114872

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Free format text: CARADON ESSER GMBH TRANSFER- ESSER SECURITY SYSTEMS GMBH

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: ESSER SECURITY SYSTEMS GMBH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: PC2A

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: NOVAR GMBH

    Free format text: ESSER SECURITY SYSTEMS GMBH#DIESELSTRASSE 2#41469 NEUSS (DE) -TRANSFER TO- NOVAR GMBH#DIESELSTRASSE 2#41469 NEUSS (DE)

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    NLS Nl: assignments of ep-patents

    Owner name: ESSER-EFFEFF ALARM GMBH

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: NOVAR GMBH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20101109

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20101022

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20101025

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20101130

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20101026

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101118

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20101022

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20101119

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59108931

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59108931

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V4

    Effective date: 20111105

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20111104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20111105

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 163103

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20111105

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120220

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20111104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20111106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20111106