EP0466647B1 - Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien - Google Patents

Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien Download PDF

Info

Publication number
EP0466647B1
EP0466647B1 EP91810519A EP91810519A EP0466647B1 EP 0466647 B1 EP0466647 B1 EP 0466647B1 EP 91810519 A EP91810519 A EP 91810519A EP 91810519 A EP91810519 A EP 91810519A EP 0466647 B1 EP0466647 B1 EP 0466647B1
Authority
EP
European Patent Office
Prior art keywords
formula
lower alkyl
radical
compound
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91810519A
Other languages
English (en)
French (fr)
Other versions
EP0466647A1 (de
Inventor
Francesco Dr. Fuso
Gerhard Dr. Reinert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0466647A1 publication Critical patent/EP0466647A1/de
Application granted granted Critical
Publication of EP0466647B1 publication Critical patent/EP0466647B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/487Aziridinylphosphines; Aziridinylphosphine-oxides or sulfides; Carbonylaziridinyl or carbonylbisaziridinyl compounds; Sulfonylaziridinyl or sulfonylbisaziridinyl compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/241Polyamides; Polyurethanes using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/62General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds with sulfate, sulfonate, sulfenic or sulfinic groups
    • D06P1/628Compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6426Heterocyclic compounds

Definitions

  • the present invention relates to a method for the photochemical and thermal stabilization of polyamide fiber materials.
  • the new process is characterized in that colored undyed polyamide fiber materials with water-soluble triazine derivatives of the general formula treated, wherein R1 is a radical of the formula where R3 is hydrogen, oxyl, hydroxy, lower alkyl, lower alkenyl, lower alkoxy, acyl or benzyl and Z -O- or - (NR4) -, wherein R4 is hydrogen or lower alkyl, R2 is hydrogen, halogen, lower alkyl, lower alkoxy, acylamino, carboxy, an unsubstituted or substituted by a halogen atom or lower alkyl phenylsulfo, phenoxy, phenylthio or styryl radical or -SO3M, Q - (NR4) -, R halogen, lower alkyl, lower alkoxy, phenyl-lower alkoxy, cycloalkoxy, lower alkylthio, phenyl-lower alkylthio, cycl
  • lower alkyl, lower alkoxy, lower alkylthio, mono-lower alkylamino and di-lower alkylamino represent such groups or group components which have 1 to 5, in particular 1 to 3, carbon atoms.
  • groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert.
  • Cycloalkyloxy and cycloalkylthio groups have 4 to 8, preferably 5 to 7, carbon atoms. Examples of such groups are cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, methylcyclohexyloxy, ethylcyclohexyloxy, cycloheptyloxy or cyclooctyloxy. Cyclohexyloxy is a preferred cycloalkyloxy group.
  • Lower alkenyl means, for example, vinyl, propenyl, butenyl or preferably allyl.
  • Phenyl-lower alkylamino means, for example, phenethyl-, phenylpropyl-, phenylbutyl- or preferably benzylamino.
  • Halogen in the radicals R and R2 is fluorine, bromine or preferably chlorine.
  • R3 acyl means especially formyl, lower alkanoyl, such as eg acetyl, propionyl or benzoyl.
  • Lithium, sodium or potassium may be mentioned as examples of alkali metals. Sodium is preferred. Examples of alkaline earth metals are calcium and magnesium.
  • Trimethylammonium or preferably triethylammonium is suitable as the organic ammonium radical.
  • Lower alkylamino, di-lower alkylamino and cyclo-lower alkylamino can be substituted with halogen, alkoxy, hydroxy, carboxy or carboxyalkyl.
  • Lower alkoxy and cycloalkoxy can be substituted with lower alkoxy.
  • Lower alkylthio and cycloalkylthio can be substituted by alkoxy or hydroxy.
  • Phenyl can be substituted by lower alkyl.
  • 1-Azacycloalkyl can be substituted by C1-C3-alkyl, phenyl, hydroxy, carboxy or acylamido. Phenyl can be substituted by lower alkyl and lower alkoxy or halogen.
  • Morpholino can be substituted by one or more C1 to C3 alkyl radicals.
  • R and R1 correspond to a radical of formula (4).
  • water-soluble triazine derivatives according to formula (1) are of importance in which the radical R is lower alkoxy, cycloalkoxy, phenoxy, lower alkylthio, cycloalkylthio or phenylthio and R1 is a radical of the formula (4).
  • R is a radical of the formula wherein R6 and R7, independently of one another, denote hydrogen, lower alkyl, cycloalkyl or unsubstituted or phenyl which is substituted by lower alkyl, where if one of the radicals R6 and R7 is hydrogen, the other must not be hydrogen or R 1-azacycloalkyl or morpholino and R1 is a radical of formula (4) and R2 has the meaning given in formula (1).
  • the water-soluble triazine derivatives used for the process according to the invention are known in some cases, for example from Zhurnal Prikladnoi Khimii, 59 (5), 1144ff (1986). However, they also represent new compounds.
  • the new water-soluble triazine derivatives form a further subject of the invention in the present application and correspond to the formula wherein R'1 is a radical of the formula wherein R'3 is hydrogen, hydroxy, lower alkyl, lower alkenyl, lower alkoxy, acyl or benzyl and Z '-O- or - (NR'4) -, wherein R'4 is hydrogen or lower alkyl, R'2 is hydrogen, halogen, lower alkyl, lower alkoxy, acylamino, carboxy, an unsubstituted or substituted by a halogen atom or lower alkyl phenylsulfo, phenoxy, phenylthio or styryl radical or -SO3M, Q
  • water-soluble triazine derivatives corresponding to formula (5), in which R 'is a radical of formula (7) and R'1 is a radical of formula (9).
  • R ' is a radical of the formula means what R'6 and R'7, independently of one another, are hydrogen, C1-C4-alkyl, cycloalkyl or phenyl which is unsubstituted or substituted by lower alkyl, where if one of the radicals R'6 or R'7 is hydrogen, the other is not hydrogen may, or R 'signifies 1-azacycloalkyl or morpholino.
  • the preparation of the water-soluble triazine derivatives according to the formula (5) can different ways.
  • the starting compound is generally a 2,4,6-trihalo-s-triazine compound. In cases where R 'is lower alkyl or phenyl, the starting point is always 2,4-dihalo-6-lower alkyl or 6-phenyl-s-triazine.
  • the water-soluble triazine derivatives of the formula (5) according to the invention are prepared, for example, by adding 1 mol of a 2,4,6-trihalogen-s-triazine compound or a 2,4-dihalogen-6-lower alkyl or -phenyl-s- triazine compound successively with one mole of the compound of formula wherein M 'is hydrogen or alkali metal, and Q' and R'2 have the meaning given in formula (5), with one or 2 moles of the piperidine compound of the formula wherein R'3 and Z 'have the meaning given in formula (6), and, if 1 mol of the piperidine compound of the formula (11) is used, with one mol of a lower alkanolate, cycloalkanolate, phenolate, lower alkylthiolate, cycloalkylthiolate or a phenylthiolate compound, a mono-lower alkylamine, di-lower alkylamine, cycloalkylamine
  • the reaction temperature is between 0 and 50, preferably 20 and 40 ° C, the reaction time between 1 and 20, preferably 1 and 4 hours.
  • the corresponding dipiperidyl-substituted triazine compounds according to the formula wherein R'2, R'3, M ', Q' and Z 'have the meaning given in the formulas (5) and (6) are prepared by combining the compound of formula (12) with one mole of the piperidine compound Implements formula (11).
  • Water-soluble triazine derivatives corresponding to formula (13) can also be prepared by reacting 1 mole of a 2,4,6-trihalo-s-triazine compound in succession with one mole of the compound of formula (10) and 2 moles of the piperidine compound of formula (11) .
  • the reaction temperature is between 20 and 100, preferably 30 and 80 ° C.
  • the procedure is such that during a reaction time of 1 to 6, preferably 2 to 4 hours, the reaction temperature is gradually increased within 2 to 5, preferably 3 increased to 4 levels.
  • Compounds of formula (15) can also be obtained by mixing one mole of the compound of formula (12) with one mole of the corresponding lower alkanolate, phenylalkanolate, cycloalkanolate, phenolate, lower alkylthiolate, cycloalkylthiolate, phenylthiolate or a phenylalkylthiolate compound implements.
  • the chronological order the reactions with the piperidine compound of formula (11) and the N-alkyl compound depend on the reactivity of the respective compounds.
  • the procedure is such that the 2,4,6-trihalo-s-triazine compound is reacted with the compound which has the lower reactivity in the first reaction step.
  • the hydrohalic acid formed in the condensation reactions can be trapped by the end product itself or by adding a further base, such as, for example, aqueous ammonia, alkali metal hydroxides, alkali metal carbonates, hydrogen carbonates or an organic base, such as, for example, triethylamine.
  • a further base such as, for example, aqueous ammonia, alkali metal hydroxides, alkali metal carbonates, hydrogen carbonates or an organic base, such as, for example, triethylamine.
  • Alkali metal carbonate e.g. Sodium carbonate.
  • the reactions are expediently carried out in aqueous solution without the addition of organic solvents.
  • the 2,4,6-trihalo-s-triazine compounds used as starting compounds are generally known. They are preferably used as aqueous suspensions.
  • a particularly preferred starting compound is cyanuric chloride.
  • All compounds according to formula (5) are preferably used as sodium salts. For this purpose, they are dissolved, for example, with the equivalent amount of sodium hydroxide solution and formulated as a solution, dispersion or emulsion for an application.
  • the process according to the invention and the new water-soluble triazine derivatives according to formula (5) are suitable for increasing the thermal and photochemical stability of undyed and dyed polyamide fiber materials.
  • the use of the compounds according to the invention for increasing the thermal and photochemical stability of polyamide fibers and dyeings thus represents a further subject of the present invention.
  • novel and known compounds represent representatives of the class of sterically hindered amines ("HALS" stabilizers) and can be applied to the polyamide fiber materials from conventional liquors by customary methods.
  • HALS sterically hindered amines
  • the compounds of the formula (1) are applied from an aqueous bath which contains the compounds in an amount of 0.005 to 10% by weight, preferably 0.05 to 2% by weight.
  • the compounds are preferably added to the dyebath.
  • the application can take place before, during or after dyeing, using an exhaust or continuous process. Application during dyeing is preferred.
  • the liquor ratio can be selected within a wide range, e.g. 1: 5 to 1: 300, preferably 1:10 to 1:50. It is convenient to work at a temperature of 30 to 120 ° C, preferably 50 to 98 ° C.
  • the liquor application is expediently 30-400% by weight, preferably 75-250% by weight.
  • the fiber material is subjected to a heat treatment.
  • the fixing process can also be carried out using the cold dwell method.
  • the heat treatment is preferably carried out by a steaming process with treatment in a steamer with possibly superheated steam at a temperature of 98 to 105 ° C during e.g. 1 to 7, preferably 1 to 5 minutes.
  • the dyes and the compounds of formula (1) can be fixed in accordance with the cold residence process by storing the impregnated and preferably rolled-up goods at room temperature (15 to 30 ° C), e.g. take place for 3 to 24 hours, the cold residence time being known to depend on the type of dye applied.
  • the dyeings produced are rinsed and dried in the customary manner.
  • the process according to the invention gives polyamide dyeings and fibers with good thermal and photochemical stability.
  • dyeings to be stabilized according to the invention there are those which are characterized by acid or metal complex dyes, e.g. 1: 2 chromium, 1: 2 cobalt complex dyes or Cu complex dyes but also dispersion and reactive dyes.
  • acid or metal complex dyes e.g. 1: 2 chromium, 1: 2 cobalt complex dyes or Cu complex dyes but also dispersion and reactive dyes.
  • Polyamide fiber material is understood to mean synthetic polyamide, such as, for example, polyamide 6, polyamide 6,6 or polyamide 12, and modified polyamide, for example polyamide which can be dyed in a basic manner.
  • fiber blends made of polyurethane and polyamide, for example tricot material made of polyamide / polyurethane in a mixing ratio of 70:30.
  • the pure or mixed polyamide fiber material can be in a wide variety of processing forms, such as fiber, yarn, woven, knitted, nonwoven or pile material.
  • the present method is particularly advantageous for the treatment of polyamide fiber material which is exposed to light and heat and e.g. used as car upholstery or carpet.
  • Example 1 An ice-cold suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of dist. 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine are added to water with rapid stirring. The temperature is allowed to rise to room temperature and the mixture is stirred at 35 ° C. for one hour. After cooling to room temperature, the reaction mixture is mixed with 1.6 g of sodium carbonate and stirred for 15 hours. The suspension is filtered off, with distilled water. Washed water and dried at 40 ° C in a vacuum. 12.8 g of a colorless powder of the formula are obtained The compound shows the longest-wavelength absorption maximum at 282 nm (water / DMF (1: 1)).
  • EXAMPLE 2 4.7 g of 4-amino-2,2, to a suspension of 10.3 g of 3-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of distilled water at 5 ° C. 6,6-tetramethylpiperidine entered. The internal temperature is allowed to rise to 20 ° C. and the mixture is stirred at this temperature for 2 hours. The mixture is then left stand for 15 hours at room temperature. The resulting precipitate is filtered off, washed free of chloride with distilled water and dried in vacuo at 40 ° C. 11.7 g of a colorless compound of the formula are obtained with the longest wave absorption maximum at 266 nm (water).
  • Example 3 The procedure is as described in Example 1, but instead of 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine, 5.1 g of 4-amino-1,2,2,6,6-pentamethylpiperidine are used a. 13.4 g of a colorless powder of the formula are obtained The compound shows the longest-wavelength absorption maximum at 282 nm (water / DMF (1: 1)).
  • EXAMPLE 4 The procedure is as described in Example 1, but 4.7 g of 4-N-methylamino-2,2,6,6-tetramethylpiperidine are used instead of 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine a. 12.2 g of a colorless compound of the formula are obtained The compound shows the longest wave absorption maximum at 275 nm (water).
  • Example 5 To an ice-cold suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 80 ml of dist. 4.7 g of 4-hydroxy-2,2,6,6-tetramethylpiperidine are added to water. Then 2.5 g of sodium hydrogen carbonate are introduced. The temperature is allowed to rise to room temperature and then heated to 30-40 ° C for 4 hours. After cooling to room temperature, the reaction mixture is neutralized with conc. Hydrochloric acid and mixed with 8 g of sodium chloride. The suspension is filtered off, washed with 10% sodium chloride solution and dried at 60 ° C. in vacuo. 14.4 g of a colorless powder of the formula are obtained with an active content of 81%. The longest wave absorption maximum is 277 nm (water).
  • Example 6 To a suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of dist. 11.2 g of 4-amino-1,2,2,6,6-pentamethylpiperidine are added to water at 0.degree. The temperature is allowed to rise to 20 ° C. and the mixture is stirred at this temperature for 3 hours. The mixture is then stirred for a further 2 hours at 35 ° C. and 8 hours at 75 ° C. After cooling, the precipitate formed is filtered off with a little dist. Washed water and dried at 40 ° C in a vacuum. 11.8 g of a colorless compound of the formula are obtained The longest wave absorption maximum is 273 nm (water).
  • Example 7 In a suspension of 5.2 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 80 ml of dist. 9.4 g of 4-amino-2,2,6,6-tetramethylpiperidine are introduced into the water at 0.degree. The temperature is allowed to rise to room temperature and then heated to 35, 45 and 90 ° C. for 1 hour each. The reaction mixture is cooled to 70 ° C. and 12% sodium chloride is added. The mixture is cooled further to room temperature and stirred for 4 hours at room temperature. The precipitate is filtered off, washed with brine and dried at 50 ° C. in vacuo. 11.7 g of a colorless compound of the formula are obtained with an active content of 68%. The longest wave absorption maximum is 273 nm (water).
  • Example 8 The procedure is as described in Example 7, but instead of 9.4 g of 4-amino-2,2,6,6-tetramethylpiperidine, 10.2 g of 4-N-methylamino-2,2,6,6-tetramethylpiperidine are used , the compound of the formula is obtained with an active content of 94%. The compound shows the longest-wave absorption maximum at 275 nm (water).
  • Example 9 To an ice-cold suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 350 ml of dist. 2.8 g of aniline are introduced into the water within 5 minutes. At the same time, the pH of the reaction mixture is kept at 6 by dropwise addition of 2 M sodium hydroxide solution. The consumption of sodium hydroxide solution is 15 ml. The internal temperature is allowed to rise to 20 ° C., diluted with 30 ml of distilled water and stirred at 30 to for 1 hour 35 ° C after. 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine are then introduced and the mixture is stirred at 70 ° C.
  • Example 10 The procedure is as described in Example 2 and instead of 4.7 g 4-amino-2,2,6,6-tetramethylpiperidine 5.1 g 4-N-methylamino-2,2,6,6-tetramethylpiperidine, the product obtained is a compound of the formula The compound shows the longest wave absorption maximum at 235 nm (water).
  • Example 11 The procedure is as described in Example 2, but instead of 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine, 5.1 g of 4-amino-1,2,2,6,6-pentamethylpiperidine are used , a compound of the formula is obtained The longest wave absorption maximum is 269 nm (water).
  • Examples 12 to 14 The following compounds (Table I) can be prepared by the method described in Example 2.
  • Example 15 A solution of 4-N- (2-chloro-4-isopropoxy-6-triazinyl) is prepared from 18.4 g of cyanuric chloride, 46.7 g of isopropanol and 17.4 g of sulfanilic acid analogously to DE-A-2,828,030. aminobenzenesulfonic acid sodium salt in 100 ml dist. Water. 15.6 g of 4-amino-2,2,6,6-tetramethylpiperidine are then added to the reaction mixture at room temperature and the mixture is stirred at 70 ° C. for 16 h.
  • Example 16 A suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid Sodium salt in 50 ml dist. Water is added dropwise at 20 ° C with a neutral solution of 5.2 g of sulfanilic acid in 30 ml of dist. Water is added, the pH of the reaction mixture being kept between 6 and 7 by simultaneous dropwise addition of 2 M sodium hydroxide solution. The mixture is then stirred at 40 ° C. for 2.5 h. 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine are then rapidly introduced and the mixture is stirred at 70 ° C. for 12 hours.
  • the resulting reaction solution is evaporated to dryness at 70 ° C. in vacuo. 25.9 g of a colorless powder of the formula are obtained with an active content of 75%.
  • the compound shows the longest-wavelength absorption maximum at 284 nm (water).
  • Example 17 3.15 g of diethanolamine are added to an ice-cold suspension of 10.3 g of 4-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt. The mixture is slowly warmed to 40 ° C. and the pH of the reaction mixture is kept between 6.5 and 7 by dropwise addition of about 15 ml of 15% sodium carbonate solution. After 3 hours at 40 ° C., 4.7 g of 4-amino are rapidly 2,2,6,6-tetramethylpiperidine entered. The mixture is subsequently stirred at 70 ° C. for 16 hours and the reaction solution is evaporated in vacuo. 11.8 g of a colorless powder of the formula are obtained which has an active content of 73% and the longest-wavelength absorption maximum at 275 nm (water).
  • Example 18 A suspension of 10.3 g of 2-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of dist. 2.6 g of morpholine are added to water at 5 ° C. and the mixture is heated to 40 ° C. in the course of 1.5 hours, the pH of the reaction mixture being kept between 6.5 and 7 by dropwise addition of 19 ml of 15% sodium carbonate solution . The mixture is then stirred at 40 ° C for 1 hour. The colorless suspension is mixed with 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine and heated to 70.degree. The mixture is stirred at this temperature for 15 hours, cooled to room temperature and filtered. The residue is washed with water and dried in vacuo at 80 ° C. 11.7 g of a colorless compound of the formula are obtained which has the longest wave absorption maximum at 264 nm (water).
  • Example 19 A suspension of 4.4 g of the compound from Example 1 in 30 ml of dist. Water is concentrated by adding 2 ml. Bring sodium hydroxide solution. Then neutralize the solution with conc. Hydrochloric acid, creating a finely divided suspension. 5 ml of an aqueous solution of 0.94 g of phenol are then added and the mixture is heated at 90 ° C. for 15 hours. After cooling to room temperature, the mixture is filtered, washed with water and dried in vacuo at 80 ° C. 4.7 g of a white powder of the formula are obtained with the longest wave absorption maximum at 275 nm (water).
  • Example 20 A suspension of 10.3 g of 2-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of dist. Water is mixed with 3.3 g of thiophenol at 5 ° C. The pH of the reaction mixture is kept between 6.5 and 7 by dropwise addition of 15% sodium carbonate solution and the internal temperature is allowed to rise to room temperature at the same time. The mixture is then stirred at 40 ° C. for one hour, 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine are rapidly introduced and the mixture is heated to 70 ° C. for 16 hours. The mixture is cooled to room temperature, the reaction mixture is ground in a mixer, filtered and washed with water. The residue is suspended in 100 ml of ethanol, filtered off, washed with ethanol and dried in vacuo at 80 ° C. 9.7 g of a colorless compound of the formula are obtained melting point 354 ° C.
  • Example 21 A solution of 5.9 g of 2,4-dichloro-6-methylthio-s-triazine in 30 ml of acetone is stirred into 50 ml of ice water. 100 ml of a neutral aqueous solution of 5.2 g of sulfanilic acid are then added dropwise, and the pH of the reaction mixture is kept between 6.5 and 7 by the dropwise addition of 15% sodium carbonate solution one hour at 40 ° C and the acetone is then distilled off under reduced pressure. The reaction mixture is quickly mixed with 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine and stirred at 70 ° C. for 2 hours. The suspension is cooled to room temperature, filtered off and distilled with dist. Washed water. After drying in vacuo at 80 ° C., 13.1 g of a colorless compound of the formula remain which has the longest-wavelength absorption maximum at 281 nm (water).
  • Example 22 A suspension of 9.95 g of 2-N- (2,4-dichloro-6-triazinyl) aminobenzenesulfonic acid sodium salt in 100 ml of dist. Water is added at 5 ° C with 5.0 g of 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl and stirred for 16 hours at room temperature. The orange-colored suspension is then brought into solution by adding concentrated sodium hydroxide solution at a pH of 10. 7.8 g of sodium dithionite are added and the mixture is stirred at room temperature until it has completely decolorized. Then the reaction mixture is neutralized with conc. Hydrochloric acid, filtered and washed with dist. Water. The residue is dried in vacuo at 50 ° C. 6.1 g of a colorless powder of the formula are obtained in this way with the longest wave absorption maximum at 279 nm (water).
  • Example 23a (intermediate): A slurry of 22.6 g of 2-phenyl-4,6-dichloro-s-triazine in 150 ml of acetone is poured onto 100 ml of ice water with stirring and then with a neutral solution of 17.3 g of sulfanilic acid in 100 ml dist. Water added. The internal temperature is allowed to rise to 10-15 ° C. and the pH of the Reaction mixture by dropwise addition of 30% sodium hydroxide solution at 6 (consumption 13 ml). The mixture is then stirred at 40 ° C. for 15 hours. The resulting solution is cooled to room temperature. The precipitated product is filtered off, washed with 20% sodium chloride solution and dried in vacuo at 50 ° C. 39.1 g of a white powder of the formula are obtained with an active content of 90.1%.
  • Example 23 A suspension of 12.8 g of the compound of the formula (123a) in 70 ml of dist. 4.7 g of 4-amino-2,2,6,6-tetramethylpiperidine are added to water at room temperature with stirring. The mixture is then stirred at 55 ° C. for 30 minutes, with solution entering, and then at 80 ° C. for one hour. Finally, the mixture is stirred at 55 ° C. for 15 hours. The mixture is cooled to room temperature, the precipitate is filtered off and washed with dist. Chloride-free water. After drying in vacuo at 50 ° C., 13.5 g of a colorless compound of the formula are obtained The longest wave absorption maximum is 262 nm (water).
  • Example 24 A suspension of 12.8 g of the compound of formula (123a) in 70 ml of dist.
  • Example 25 A suspension of 12.8 g of the compound of formula (123a) in 70 ml of dist. 6.4 g of 4-N-butylamino-2,2,6,6-tetramethylpiperidine are added to water at room temperature with stirring. The reaction mixture is stirred at 70 ° C. for 4 hours, cooled to room temperature and filtered. After washing with dist. Water and drying in vacuo at 55 ° C remain 15.2 g of a colorless powder of the formula The longest wave absorption maximum is 255 nm (methanol).
  • Example 26 A suspension of 4-N-methyl- (2-chloro-4-phenyl-6-s-triazinyl) -aminobenzenesulfonic acid sodium salt is prepared by reacting 5.65 g of 2-phenyl-4,6-dichloro-s -triazine with 4.7 g of N-methylsulfanilic acid and the reaction conditions of Example 23a. 4.3 g of 4-N-methylamino-2,2,6,6-tetramethylpiperidine are then introduced with stirring at 40 ° C. and the temperature is raised to 75 ° C. The mixture is subsequently stirred at this temperature for 18 hours, cooled to room temperature and the precipitate formed is filtered off with suction. After washing with dist. Water and drying in vacuo at 55 ° C gives 12.6 g of a colorless compound of the formula which has the longest-wavelength absorption maximum at 250 nm (methanol).
  • Example 27 The procedure is as described in Example 23a, but using 2-p-tolyl-4,6-dichloro-s-triazine instead of 2-phenyl-4,6-dichloro-s-triazine and instead of sulfanil-metanilic acid , the corresponding 3-N- (2-chloro-4-p-tolyl-6-s-triazinyl) aminobenzenesulfonic acid is obtained as the sodium salt. This is condensed directly with 4-amino-1,2,2,6,6-pentamethyl-piperidine without isolation under the reaction conditions of Example 24. A colorless powder of the formula is obtained The longest wave absorption maximum is 265 nm (water).
  • Example 28 A solution of 4.9 g of 2,4-dichloro-6-methyl-s-triazine in acetone (50 ml) is discharged onto ice water (50 ml). A neutral solution of 5.2 g of sulfanilic acid is then added with rapid stirring at 10 ° C. and the pH of the reaction mixture is kept at 6 by dropwise addition of a 30% strength sodium hydroxide solution. The consumption of sodium hydroxide solution is 4.1 ml. The mixture is then stirred at room temperature for 1 hour and at 40 ° C. for 3 hours. 5.1 g of 4-N-methylamino-2,2,6,6-tetramethylpiperidine are rapidly introduced and the temperature is raised to 55 ° C. in the course of 30 minutes.
  • Example 29 4 samples of a polyamide 6 knitted fabric of 10 g each are prepared and treated in a dyeing machine, for example an ®AHIBA dyeing machine, at a liquor ratio of 1:30. Two of these samples are "blind-dyed" (ie treated without dye: fleets 1 and 3), two are stained (fleets 2 and 4).
  • a dyeing machine for example an ®AHIBA dyeing machine
  • dyeing liquors are thus prepared, each containing 0.5 g / l monosodium phosphate and 1.5 g / l disodium phosphate ( ⁇ pH 7).
  • the following dyes (calculated on the weight of the goods) are dissolved in fleets 2 and 4: 0.04% of the dye mixture consisting of 81 parts of the compound of the formula and 12 parts of the compound of the formula and 0.002% of the dye of the formula
  • the liquors 3 and 4 additionally contain 1% of the sodium salt of the compound of the formula (101).
  • the blind dyeings are exposed according to DIN 75.202 for 216 hours and tear strength and elongation determined according to SN 198.461.
  • Example 30 Two samples of a polyamide 6 knitted fabric of 10 g each are dyed as described in Example 29, with the difference that the two liquors contain the following dyes: 0.05% of the dye of the formula 0.085% of the dye mixture of the formulas and 0.035% of the dye mixture of the formulas (Ia) and (Ib).
  • the liquor (2) additionally contains 1% of the sodium salt of the compound of the formula (101).
  • Examples 31 and 32 As described in Examples 29 and 30, light gray and olive dyeings are produced in a conventional manner on polyamide 6 woven jersey. These dyeings are impregnated on a foulard (squeezing effect 105%) with solutions which contain 10 g / l of the compounds of the formulas (105) and (107) in solution. The padded dyeings are rolled and then left in a polyethylene film for 2 hours. The mixture is then dried at 80 ° C.
  • the dyeings are tested for their light fastness in accordance with DIN 75.202 ("FAKRA").
  • the two dyeings are exposed on an area of approx. 4 x 12 cm for 216 hours using the same method and then tested for tensile strength and elongation according to SN 198 461.
  • the results are shown in Table IV: Table IV COLORING * FAKRA light fastness
  • Tensile strength / elongation (% of starting material) 144 hours 216 hours 1 1 1 10.7 / 16.2 2nd 2-3 2nd 76.7 / 79.2 * Assessment according to gray scale 1-5
  • Examples 34 and 35 Three samples of 10 g each of a knitted polyamide fabric are prepared, dyed and finished as described in Example 29, using the same dye combination.
  • the liquor for dyeing No. 1 contains no further additives, dye liquor 2 still contains 0.75% of the sodium salt of the compound of formula (111), dye liquor 3 contains 0.75% of the sodium salt of the compound of formula (110).
  • Example 36 10 samples of a PA jersey of 10 g each and 10 fleets are prepared as indicated in Example 29.
  • 0.04% of the dye mixture of the formulas (Ia) and (Ib) and 0.002% of the dye of the formula (II) are dissolved; in the liquors 6 to 10, dyeing is carried out blindly without any additional dye.
  • Fleets 2 and 7 are each added 0.75% of the sodium salt of the compound of the formula (109), fleets 3 and 8 each 0.75% of the compound of the formula (112), fleets 4 and 9 each 0.75% 0.75% of a compound of the formula (114) was added to the compound of the formula (113) and the liquors 5 and 10 in dissolved form.
  • Example 37 The procedure is as described in Example 29, ie blind treatments and light gray colorations are alternately produced and tested.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien.
  • In Journal of Applied polymer Science, Bd. 33, Nr. 5, 1987, Seiten 2087 bis 2095 wird ein Verfahren zum Photostabilisieren von Wolle durch eine Kombination aus sulfonierten UV-Absorbern und Antioxidantien offenbart.
  • Das neue Verfahren ist dadurch gekennzeichnet, dass man gefärbte ungefärbte Polyamid-Fasermaterialien mit wasserlöslichen Triazinderivaten der allgemeinen Formel
    Figure imgb0001

    behandelt, worin R₁ einen Rest der Formel
    Figure imgb0002

    wobei R₃ Wasserstoff, Oxyl, Hydroxy, Niederalkyl, Niederalkenyl, Niederalkoxy, Acyl oder Benzyl und
    Z -O- oder -(NR₄)-,
    worin R₄ Wasserstoff oder Niederalkyl,
    R₂ Wasserstoff, Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy, einen nichtsubstituierten oder durch ein Halogenatom oder Niederalkyl substituierten Phenylsulfo-, Phenoxy-, Phenylthio-, oder Styrylrest oder -SO₃M, Q -(NR₄)-,
    R Halogen, Niederalkyl, Niederalkoxy, Phenylniederalkoxy, Cycloalkoxy, Niederalkylthio, Phenylniederalkylthio, Cycloalkylthio, Mononiederalkylamino, Diniederalkylamino, Phenylniederalkylamino, Cycloalkylamino, Phenoxy, Phenylamino, Phenylthio, Phenyl, 1-Azacycloalkyl, Morpholino, R₁ oder einen Rest der Formel
    Figure imgb0003

    bedeutet, worin
    M Wasserstoff, Alkalimetall, Erdalkalimetall, Ammonium oder einen organischen Ammoniumrest bedeuten und
    Q die in Formel (1) angegebene Bedeutung hat,
    und die Verbindungen der Formel (1) maximal 2 -SO₃M-Substituenten aufweisen.
  • Bei der Definition der Reste R, R₂, R₃ und R₄ stellen Niederalkyl, Niederalkoxy, Niederalkylthio, Mononiederalkylamino und Diniederalkylamino solche Gruppen oder Gruppenbestandteile dar, die 1 bis 5, insbesondere 1 bis 3 Kohlenstoffatome aufweisen. Beispiele für derartige Gruppen sind Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, tert. Butyl, Amyl oder Isoamyl bzw. Methoxy, Ethoxy, Isopropoxy, Isobutoxy, tert-Butoxy oder tert.-Amyloxy bzw. Methylthio, Ethylthio, Propylthio oder Butylthio. Cycloalkyloxy- und Cycloalkylthiogruppen weisen 4 bis 8, vorzugsweise 5 bis 7 Kohlenstoffatome auf. Beispiele für solche Gruppen sind Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy, Methylcyclohexyloxy, Ethylcyclohexyloxy, Cycloheptyloxy oder Cyclooctyloxy. Als bevorzugte Cycloalkyloxygruppe kommt Cyclohexyloxy in Frage.
  • Niederalkenyl bedeutet beispielsweise Vinyl, Propenyl, Butenyl oder vorzugsweise Allyl.
  • Phenylniederalkylamino bedeutet beispielsweise Phenethyl-, Phenylpropyl-, Phenylbutyl- oder vorzugsweise Benzylamino.
  • Halogen bei den Resten R und R₂ bedeutet Fluor, Brom oder vorzugsweise Chlor.
  • Bei der Definition des Restes R₃ bedeutet Acyl besonders Formyl, Niederalkanoyl, wie z.B. Acetyl, Propionyl oder Benzoyl.
  • Als Beispiele für Alkalimetalle seien Lithium, Natrium oder Kalium genannt. Bevorzugt ist Natrium. Beispiele für Erdalkalimetalle sind Calcium und Magnesium.
  • Als organischer Ammoniumrest kommt Trimethylammonium oder vorzugsweise Triethylammonium in Betracht.
  • Niederalkylamino, Diniederalkylamino und Cycloniederalkylamino können mit Halogen, Alkoxy, Hydroxy, Carboxy oder Carboxyalkyl substituiert sein. Niederalkoxy und Cycloalkoxy können mit Niederalkoxy substituiert sein. Niederalkylthio und Cycloalkylthio können durch Alkoxy oder Hydroxy substituiert sein. Phenyl kann durch Niederalkyl substituiert sein. 1-Azacycloalkyl kann durch C₁-C₃-Alkyl, Phenyl, Hydroxy, Carboxy oder Acylamido substituiert sein. Phenyl kann durch Niederalkyl und Niederalkoxy bzw. Halogen substituiert sein. Morpholino kann durch einen oder mehrere C₁ bis C₃-Alkylreste substituiert sein.
  • Von besonderem Interesse sind wasserlösliche Triazinderivate, bei denen in Formel (1) R Halogen und R₁ den Rest der Formel
    Figure imgb0004

    bedeuten, worin
    R₅ Wasserstoff oder Niederalkyl bedeutet und
    Z die in Formel (2) angegebene Bedeutung hat.
  • Weiterhin bevorzugt sind Verbindungen, bei denen in Formel (1) R und R₁ einem Rest der Formel (4) entsprechen.
  • Von Interesse sind weiterhin wasserlösliche Triazinderivate gemäss Formel (1), bei denen R einen Rest der Formel (3) und R₁ einen Rest der Formel (4) bedeuten.
  • Weiterhin sind wasserlösliche Triazinderivate gemäss Formel (1) von Bedeutung, bei denen der Rest R Niederalkoxy, Cycloalkoxy, Phenoxy, Niederalkylthio, Cycloalkylthio oder Phenylthio und R₁ einen Rest der Formel (4) bedeuten.
  • Von Interesse sind auch wasserlösliche Triazinderivate der Formel (1), bei denen R einen Rest der Formel
    Figure imgb0005

    worin R₆ und R₇, unabhängig voneinander Wasserstoff, Niederalkyl, Cycloalkyl oder nichtsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten, wobei, wenn einer der Reste R₆ und R₇ Wasserstoff bedeutet, der andere nicht Wassrstoff sein darf oder
    R 1-Azacycloalkyl oder Morpholino und
    R₁ einen Rest der Formel (4) bedeuten und
    R₂ die in Formel (1) angegebene Bedeutung hat.
  • Die für das erfindungsgemässe Verfahren eingesetzten wasserlösliche Triazinderivate sind z.T. bekannt, beispielsweise aus Zhurnal Prikladnoi Khimii, 59(5), 1144ff (1986). Sie stellen aber auch neue Verbindungen dar. Die neuen wasserlöslichen Triazinderivate bilden einen weiteren Erfindungsgegenstand der vorliegenden Anmeldung und entsprechen der Formel
    Figure imgb0006

    worin R'₁ einen Rest der Formel
    Figure imgb0007

    wobei R'₃ Wasserstoff, Hydroxy, Niederalkyl, Niederalkenyl, Niederalkoxy, Acyl oder Benzyl und
    Z' -O- oder -(NR'₄)-,
    worin R'₄ Wasserstoff oder Niederalkyl bedeutet,
    R'₂ Wasserstoff, Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy, einen nichtsubstituierten oder durch ein Halogenatom oder Niederalkyl substituierten Phenylsulfo-, Phenoxy-, Phenylthio- oder Styrylrest oder -SO₃M bedeutet, Q' -(NR'₄)-,
    R' Halogen, Niederalkyl, Niederalkoxy, Phenylniederalkoxy, Cycloalkoxy, Niederalkylthio, Phenylniederalkylthio, Cycloalkylthio, Mononiederalkylamino, Diniederalkylamino, Cycloalkylamino, Phenoxy, Phenylamino, Phenylthio, Phenyl, 1-Azacycloalkyl, Morpholino, R'₁ oder einen Rest der Formel
    Figure imgb0008

    bedeuten, worin
    R'₂ und Q' die in Formel (5) angegebene Bedeutung haben,
    M' Wasserstoff, Alkalimetall, Erdalkalimetall, Ammonium oder einen organischen Ammoniumrest bedeutet,
    wobei, wenn R' Chlor und R'₂ Wasserstoff bedeuten, R'₁ nicht einen Rest der Formel
    Figure imgb0009

    bedeutet, und wenn R' einen Rest der Formel (7),
    R'₂ nicht Wasserstoff bedeutet
    und die Verbindungen der Formel (5) maximal 2 SO₃M'-Substituenten aufweisen. Von besonderem Interesse sind wasserlösliche Triazinderivate der Formel (5), bei denen R' Halogen und R'₁ den Rest der Formel
    Figure imgb0010

    bedeuten, worin
    R'₅ Wasserstoff oder Niederalkyl bedeutet und
    Z' die in Formel (6) angegebene Bedeutung hat,
    wobei, wenn R' Chlor und R'₂ Wasserstoff bedeuten, R'₁ nicht einen Rest der Formel (8) bedeutet.
  • Weiterhin bevorzugt sind auch wasserlösliche Triazinderivate entsprechend Formel (5), bei denen R' einen Rest der Formel (7) und R'₁ einen Rest der Formel (9) bedeuten.
  • Von besonderem Interesse sind auch wasserlösliche Triazinderivate entsprechend Formel (5), bei denen R' und R'₁ einen Rest der Formel (6) bedeuten.
  • Weitere bedeutende wasserlösliche Triazinderivate entsprechen der Formel (5), worin R' Niederalkoxy, Cycloalkoxy, Phenoxy, Phenylalkoxy, Niederalkylthio Phenylthio oder Phenylalkylthio bedeutet und
    Q', R'₁ und R'₂ die angegebene Bedeutung haben.
  • Von Interesse sind auch wasserlösliche Triazinderivate entsprechend Formel (5), bei denen R' einen Rest der Formel
    Figure imgb0011

    bedeutet, worin
    R'₆ und R'₇, unabhängig voneinander, Wasserstoff, C₁-C₄-Alkyl, Cycloalkyl oder nichtsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten, wobei, wenn einer der Reste R'₆ oder R'₇ Wasserstoff bedeutet, der andere nicht Wasserstoff sein darf, oder R' 1-Azacycloalkyl oder Morpholino bedeutet.
  • Die Herstellung der wasserlöslichen Triazinderivate entsprechend der Formel (5) kann auf verschiedene Art und Weise erfolgen. Ausgangsverbindung ist im allgemeinen eine 2,4,6-Trihalogen-s-triazinverbindung. In den Fällen, wo R' Niederalkyl oder Phenyl ist, geht man immer vom 2,4-Dihalogen-6-niederalkyl- bzw. 6-phenyl-s-triazin aus.
  • Die Herstellung der erfindungsgemässen wasserlöslichen Triazinderivate entsprechend Formel (5) erfolgt z.B. dadurch, dass man 1 Mol einer 2,4,6-Trihalogen-s-triazinverbindung oder einer 2,4-Dihalogen-6-niederalkyl- bzw. -phenyl-s-triazinverbindung nacheinander mit einem Mol der Verbindung der Formel
    Figure imgb0012

    worin M' Wasserstoff oder Alkalimetall bedeutet, und Q' und R'₂ die in Formel (5) angegebene Bedeutung haben, mit einem oder 2 Mol der Piperidinverbindung der Formel
    Figure imgb0013

    worin R'₃ und Z' die in Formel (6) angegebene Bedeutung haben, und, wenn man 1 Mol der Piperidinverbindung der Formel (11) einsetzt, mit einem Mol einer Niederalkanolat-, Cycloalkanolat-, Phenolat-, Niederalkylthiolat-, Cycloalkylthiolat- oder einer Phenylthiolatverbindung, eines Mononiederalkylamins, Diniederalkylamins, Cycloalkylamins, Phenylamins, einer 1-Azacycloalkyl-, einer Morpholinoverbindung oder einer Verbindung der Formel (10) umsetzt, wobei die Reihenfolge der einzelnen Reaktionsschritte beliebig ist.
  • Zur Herstellung von wasserlöslichen Triazinderivaten, bei denen R' Halogen bedeutet, geht man so vor, dass man 1 Mol einer 2,4,6-Trihalogen-s-triazinverbindung mit einem Mol einer Verbindung der Formel (10) und einem Mol der Piperidinverbindung der Formel (11) zu einer Verbindung der Formel
    Figure imgb0014

    worin R'₂, R'₃, M', Q' und Z' die in den Formeln (5) und (6) angegebene Bedeutung haben, umsetzt. Auf diese Weise entstehen monopiperidyl-substituierte Triazinderivate.
  • Bei dieser Reaktionsführung liegt die Reaktionstemperatur zwischen 0 und 50, vorzugsweise 20 und 40°C, die Reaktionszeit zwischen 1 und 20, vorzugsweise 1 und 4 Stunden.
  • Die entsprechenden dipiperidyl-substituierten Triazinverbindungen entsprechend Formel
    Figure imgb0015

    worin R'₂, R'₃, M', Q' und Z' die in den Formeln (5) und (6) angegebene Bedeutung haben, werden hergestellt, indem man die Verbindung der Formel (12) mit einem Mol der Piperidinverbindung der Formel (11) umsetzt. Wasserlösliche Triazinderivate entsprechend Formel (13) lassen sich auch herstellen, indem man 1 Mol einer 2,4,6-Trihalogen-s-triazinverbindung nacheinander mit einem Mol der Verbindung der Formel (10) und 2 Mol der Piperidinverbindung der Formel (11) umsetzt. Bei dieser Reaktionsführung liegt die Reaktionstemperatur zwischen 20 und 100, vorzugsweise 30 und 80°C. Dabei geht man so vor, dass man während einer Reaktionszeit von 1 bis 6, vorzugsweise 2 bis 4 Stunden, die Reaktionstemperatur stufenweise innerhalb von 2 bis 5, vorzugsweise 3 bis 4 Stufen erhöht.
  • Die Herstellung von wasserlöslichen Triazinderivaten, bei denen der Rest R' einen Rest der Formel (7) und R'₁ einen Rest der Formel (6) bedeuten, erfolgt dadurch, dass man 1 Mol einer 2,4,6-Trihalogen-s-triazinverbindung mit zwei Mol der Verbindung der Formel (10), worin Q' -(NR'₄)- und R'₂ Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy oder -SO₃M' bedeuten und anschliessend mit einem Mol der Piperidinverbindung der Formel (11) zu Verbindungen der Formel
    Figure imgb0016

    worin Q' -(NR'₄)- und
    R'₂ Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy oder -SO₃H bedeuten und R'₃ und Z' die in der Formel (6) angegebene Bedeutung haben, umsetzt.
  • Die Herstellung von wasserlöslichen Triazinderivaten, bei denen der Rest R Niederalkoxy, Cycloalkoxy, Phenylalkoxy, Phenoxy, Niederalkylthio, Cycloalkylthio, Phenylthio oder Phenylalkylthio bedeutet, erfolgt dadurch, dass man nacheinander 1 Mol einer 2,4,6-Trihalogen-s-triazinverbindung mit einem Mol der entsprechenden Niederalkanolat-, Phenylalkanolat-, Cycloalkanolat, Phenolat-, Niederalkylthiolat-, Cycloalkylthiolat-, Phenylthiolat- oder einer Phenylalkylthiolatverbindung, einem Mol der Verbindung der Formel (10) und einem Mol der Piperidinverbindung der Formel (11) zu Verbindungen der Formel
    Figure imgb0017

    worin R'₉ Niederalkoxy, Cycloalkoxy, Phenylalkoxy, Phenoxy, Niederalkylthio, Cycloalkylthio, Phenylthio oder Phenylalkylthio bedeuten und R'₂, R'₃, M', Q' und Z' die oben angegebene Bedeutung haben, umsetzt. Zu Verbindungen der Formel (15) gelangt man auch, indem man ein Mol der Verbindung der Formel (12) mit einem Mol der entsprechenden Niederalkanolat-, Phenylalkanolat-, Cycloalkanolat-, Phenolat-, Niederalkylthiolat-, Cycloalkylthiolat-, Phenylthiolat- oder einer Phenylalkylthiolatverbindung umsetzt.
  • Die Herstellung von wasserlöslichen Triazinderivaten, bei denen der Rest R Mononiederalkylamino, Diniederalkylamino, Phenylniederalkylamino, Cycloalkylamino, Phenylamino, 1-Azacycloalkyl oder Morpholino, bedeutet, erfolgt dadurch, dass man eine 2,4,6-Trihalogen-s-triazinverbindung nacheinander mit einer Verbindung der Formel (10), einer Piperidinverbindung der Formel (11) und einer N-Alkylverbindung oder Aminophenylverbindung zu einer Verbindung der Formel
    Figure imgb0018

    worin R' einen Rest der Formel
    Figure imgb0019

    bedeutet, worin R'₇ und R'₈, unabhängig voneinander, Wasserstoff, C₁-C₄Alkyl, Cycloalkyl, unsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten oder der Rest R' 1-Azacycloalkyl oder Morpholino bedeutet, wobei, wenn einer der Reste R'₇ oder R'₈ Wasserstoff bedeutet, der andere nicht Wasserstoff sein darf, und R'₂, R'₃, M', Q' und Z' die in den Formeln (5) und (6) angegebene Bedeutung haben, umsetzt. Die Reihenfolge der Umsetzungen mit der Piperidinverbindung der Formel (11) und der N-Alkylverbindung hängt von der Reaktivität der jeweiligen Verbindungen ab. In der Regel geht man so vor, dass man im ersten Reaktionsschritt die 2,4,6-Trihalogen-s-triazinverbindung mit der Verbindung umsetzt, die die geringere Reaktivität aufweist.
  • Die bei den Kondensationsreaktionen entstehende Halogenwasserstoffsäure kann durch das Endprodukt selbst oder durch Hinzufügen einer weiteren Base, wie beispielsweise wässrigem Ammoniak, Alkalimetallhydroxiden, Alkalimetallcarbonaten, -hydrogencarbonaten oder einer organischen Base, wie beispielsweise Triethylamin, abgefangen werden. Vorzugsweise wird als Base Alkalimetallcarbonat, wie z.B. Natriumcarbonat, verwendet.
  • Die Umsetzungen erfolgen zweckmässigerweise in wässriger Lösung ohne den Zusatz von organischen Lösungsmitteln. Die als Ausgangsverbindungen verwendeten 2,4,6-Trihalogen-s-triazinverbindungen sind allgemein bekannt. Sie werden dabei vorzugsweise als wässrige Suspensionen eingesetzt. Besonders bevorzugte Ausgangsverbindung ist Cyanurchlorid.
  • Alle Verbindungen gemäss Formel (5) werden vorzugsweise als Natriumsalze eingesetzt. Dazu werden sie beispielsweise mit der äquivalenten Menge Natronlauge gelöst und als Lösung, Dispersion oder Emulsion für eine Anwendung formuliert..
  • Das erfindungsgemässe Verfahren sowie die neuen wasserlöslichen Triazinderivate gemäss Formel (5) eignen sich dazu, die thermische und photochemische Stabilität von ungefärbten und gefärbten Polyamid-Fasermaterialien zu erhöhen. Die Verwendung der erfindungsgemässen Verbindungen zur Erhöhung der thermischen und photochemischen Stabilität von Polyamidfasern und -färbungen stellt somit einen weiteren Gegenstand der vorliegenden Erfindung dar.
  • Die neuartigen und bekannten Verbindungen stellen Vertreter der Klasse der sterisch gehinderten Amine ("HALS"-Stabilisatoren) dar und können aus üblichen Flotten nach gängigen Methoden auf die Polyamid-Fasermaterialien aufgebracht werden.
  • Die Verbindungen der Formel (1 ) werden erfindungsgemäss aus wässrigem Bad appliziert, das die Verbindungen in einer Menge von 0,005 bis 10 Gew.-%, vorzugsweise 0,05 bis 2 Gew.-% enthält. Vorzugsweise werden die Verbindungen dem Färbebad zugefügt.
  • Die Applikation kann dabei vor, während oder nach dem Färben, nach einem Auszieh- oder Kontinueverfahren erfolgen. Die Applikation während des Färbens ist bevorzugt.
  • Beim Ausziehverfahren kann das Flottenverhältnis innerhalb eines weiten Bereiches gewählt werden, z.B. 1:5 bis 1:300, vorzugsweise 1:10 bis 1:50. Man arbeitet zweckmässig bei einer Temperatur von 30 bis 120°C, vorzugsweise 50 bis 98°C.
  • Beim Kontinue-Verfahren beträgt der Flottenauftrag zweckmässig 30-400 Gew.-%, vorzugsweise 75-250 Gew.-%. Zur Fixierung der applizierten Farbstoffe und der bekannten und neuen Verbindungen wird das Fasermaterial einer Hitzebehandlung unterworfen. Der Fixierprozess kann auch nach der Kaltverweilmethode erfolgen.
  • Die Hitzebehandlung erfolgt vorzugsweise durch ein Dämpfverfahren unter Behandlung in einem Dämpfer mit gegebenenfalls überhitztem Dampf bei einer Temperatur von 98 bis 105°C während z.B. 1 bis 7, vorzugsweise 1 bis 5 Minuten. Die Fixierung der Farbstoffe und der Verbindungen der Formel (1) gemäss dem Kaltverweilverfahren kann durch Lagerung der imprägnierten und vorzugsweise aufgerollten Ware bei Raumtemperatur (15 bis 30°C), z.B. während 3 bis 24 Stunden erfolgen, wobei die Kaltverweilzeit bekanntlich von der Art des applizierten Farbstoffes abhängig ist.
  • Nach Beendigung des Färbeprozesses bzw. der Fixierung werden die hergestellten Färbungen auf übliche Weise gespült und getrocknet.
  • Man erhält mit dem erfindungsgemässen Verfahren Polyamid-Färbungen und -fasern mit guter thermischer und photochemischer Stabilität.
  • Als die erfindungsgemäss zu stabilisierenden Färbungen kommen solche in Betracht, die durch Säure- oder Metallkomplexfarbstoffe, z.B. 1:2-Chrom, 1:2-Kobaltkomplexfarbstoffe oder Cu-Komplexfarbstoffe aber auch Dispersions- und Reaktivfarbstoffe erzeugt werden.
  • Beispiele für solche Farbstoffe sind in Colour Index, 3. Auflage, 1971, Band 4, beschrieben.
  • Unter Polyamidfasermaterial wird synthetisches Polyamid, wie z.B. Polyamid 6, Polyamid 6,6 oder Polyamid 12, sowie modifiziertes Polyamid, z.B. basisch anfärbbares Polyamid verstanden. Neben den reinen Polyamidfasern kommen vor allem auch Fasermischungen aus Polyurethan und Polyamid in Betracht, so z.B. Trikotmaterial aus Polyamid/Polyurethan im Mischungsverhältnis 70:30. Grundsätzlich kann das reine oder gemischte Polyamidfasermaterial in den verschiedensten Verarbeitungsformen vorliegen, wie z.B. als Faser, Garn, Gewebe, Gewirke, Vlies oder Flormaterial.
  • Das vorliegende Verfahren eignet sich besonders vorteilhaft zur Behandlung von Polyamidfasermaterial, das Licht und Hitze ausgesetzt wird und z.B. als Autopolsterstoff oder Teppich Verwendung findet.
  • Die folgenden Beispiele veranschaulichen die Erfindung. Teile bedeuten Gewichtsteile und Prozente Gewichtsprozente.
  • Herstellung der bekannten Verbindungen:
  • Beispiel 1: Eine eiskalte Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser wird unter schnellem Rühren mit 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin versetzt. Man lässt die Temperatur auf Raumtemperatur steigen und rührt noch während einer Stunde bei 35°C nach. Nach dem Abkühlen auf Raumtemperatur versetzt man das Reaktionsgemisch mit 1,6 g Natriumcarbonat und rührt während 15 Stunden. Die Suspension wird abfiltriert, mit dest. Wasser gewaschen und bei 40°C im Vakuum getrocknet. Man erhält 12,8 g eines farblosen Pulvers der Formel
    Figure imgb0020

    Die Verbindung zeigt das langwelligste Absorptionsmaximum bei 282 nm (Wasser/DMF (1:1)).
  • Beispiel 2: Zu einer Suspension von 10,3 g 3-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml destilliertem Wasser von 5°C werden 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin eingetragen. Man lässt die Innentemperatur auf 20°C steigen, und rührt während 2 Stunden bei dieser Temperatur. Anschliessend lässt man das Gemisch während 15 Stunden bei Raumtemperatur stehen. Der entstandene Niederschlag wird abgesaugt, mit destilliertem Wasser chloridfrei gewaschen und im Vakuum bei 40°C getrocknet. Man erhält 11,7 g einer farblosen Verbindung der Formel
    Figure imgb0021

    mit dem langwelligsten Absorptionsmaximum bei 266 nm (Wasser).
  • Herstellung neuer Verbindungen:
  • Beispiel 3: Man verfährt wie in Beispiel 1 beschrieben, setzt jedoch statt 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin 5,1 g 4-Amino-1,2,2,6,6-pentamethylpiperidin ein. Man erhält 13,4 g eines farblosen Pulvers der Formel
    Figure imgb0022

    Die Verbindung zeigt das langwelligste Absorptionsmaximum bei 282 nm (Wasser/DMF (1:1)).
  • Beispiel 4: Man verfährt wie in Beispiel 1 beschrieben, setzt jedoch statt 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin 4,7 g 4-N-Methylamino-2,2,6,6-tetramethylpiperidin ein. Man erhält 12,2 g einer farblosen Verbindung der Formel
    Figure imgb0023

    Die Verbindung zeigt das langwelligste Absorptionsmaximum bei 275 nm (Wasser).
  • Beispiel 5: Zu einer eiskalten Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 80 ml dest. Wasser werden 4,7 g 4-Hydroxy-2,2,6,6-tetramethylpiperidin gegeben. Anschliessend trägt man 2,5 g Natriumhydrogencarbonat ein. Man lässt die Temperatur auf Raumtemperatur steigen und erwärmt dann während 4 Stunden auf 30-40°C. Nach dem Abkühlen auf Raumtemperatur neutralisiert man das Reaktionsgemisch mit konz. Salzsäure und versetzt mit 8 g Natriumchlorid. Die Suspension wird abfiltriert, mit 10%iger Natriumchloridlösung gewaschen und bei 60°C im Vakuum getrocknet. Man erhält 14,4 g eines farblosen Pulvers der Formel
    Figure imgb0024

    mit einem Aktivgehalt von 81 %. Das langwelligste Absorptionsmaximum beträgt 277 nm (Wasser).
  • Beispiel 6: Zu einer Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser von 0°C werden 11,2 g 4-Amino-1,2,2,6,6-pentamethylpiperidin hinzugegeben. Man lässt die Temperatur auf 20°C steigen und rührt während 3 Stunden bei dieser Temperatur. Anschliessend wird noch 2 Stunden bei 35°C und 8 Stunden bei 75°C gerührt. Nach dem Erkalten wird der gebildete Niederschlag abfiltriert, mit wenig dest. Wasser gewaschen und bei 40°C im Vakuum getrocknet. Man erhält 11,8 g einer farblosen Verbindung der Formel
    Figure imgb0025

    Das langwelligste Absorptionsmaximum beträgt 273 nm (Wasser).
  • Beispiel 7: In eine Suspension von 5,2 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 80 ml dest. Wasser werden bei 0°C 9,4 g 4-Amino-2,2,6,6-tetramethylpiperidin eingetragen. Man lässt die Temperatur auf Raumtemperatur steigen und erhitzt anschliessend je 1 Stunde auf 35, 45 und 90°C. Das Reaktionsgemisch wird auf 70°C gekühlt und mit 12 % Natriumchlorid versetzt. Man kühlt weiter auf Raumtemperatur ab und rührt 4 Stunden bei Raumtemperatur. Der Niederschlag wird abfiltriert, mit Sole gewaschen und bei 50°C im Vakuum getrocknet. Man erhält 11,7 g einer farblosen Verbindung der Formel
    Figure imgb0026

    mit einem Aktivgehalt von 68 %. Das langwelligste Absorptionsmaximum beträgt 273 nm (Wasser).
  • Beispiel 8: Verfährt man wie in Beispiel 7 beschrieben, setzt jedoch statt 9,4 g 4-Amino-2,2,6,6-tetramethylpiperidin 10,2 g 4-N-Methylamino-2,2,6,6-tetramethylpiperidin ein, so erhält man die Verbindung der Formel
    Figure imgb0027

    mit einem Aktivgehalt von 94 %. Die Verbindung zeigt bei 275 nm (Wasser) das langwelligste Absorptionsmaximum.
  • Beispiel 9: Zu einer eiskalten Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 350 ml dest. Wasser werden 2,8 g Anilin innerhalb von 5 Minuten eingetragen. Gleichzeitig hält man den pH-Wert des Reaktionsgemisches durch Zutropfen von 2 M Natronlauge auf 6. Der Verbrauch an Natronlauge beträgt 15 ml. Man lässt die Innentemperatur auf 20°C steigen, verdünnt mit 30 ml destilliertem Wasser und rührt während einer Stunde bei 30 bis 35°C nach. Anschliessend trägt man 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin ein und rührt während 15 Stunden bei 70°C. Nach dem Erkalten auf Raumtemperatur wird der gebildete Niederschlag abgesaugt, mit destilliertem Wasser chloridfrei gewaschen und bei 50°C im Vakuum getrocknet. Man erhält quantitativ eine farblose Verbindung der Formel
    Figure imgb0028

    Die Verbindung zeigt in Wasser das langwelligste Absorptionsmaximum bei 277 nm.
  • Beispiel 10: Verfährt man wie in Beispiel 2 beschrieben und setzt anstelle von 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin 5,1 g
    4-N-Methylamino-2,2,6,6-tetramethylpiperidin ein, so erhält man als Produkt eine Verbindung der Formel
    Figure imgb0029

    Die Verbindung zeigt das langwelligste Absorptionsmaximum bei 235 nm (Wasser).
  • Beispiel 11: Verfährt man wie in Beispiel 2 beschrieben, setzt jedoch statt 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin 5,1 g 4-Amino-1,2,2,6,6-pentamethylpiperidin ein, so erhält man eine Verbindung der Formel
    Figure imgb0030

    Die langwelligste Absorptionsmaximum beträgt 269 nm (Wasser).
  • Beispiele 12 bis 14: Die folgenden Verbindungen (Tabelle I) können nach dem in Beispiel 2 beschriebenen Verfahren hergestellt werden.
    Figure imgb0031

    Beispiel 15: Man bereitet aus 18,4 g Cyanurchlorid, 46,7 g Isopropanol und 17,4 g Sulfanilsäure analog der DE-A-2,828,030 eine Lösung von 4-N-(2-Chlor-4-isopropoxy-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser. Anschliessend gibt man bei Raumtemperatur 15,6 g 4-Amino-2,2,6,6-tetramethylpiperidin zum Reaktionsgemisch und rührt während 16 h bei 70°C. Danach werden unter vermindertem Druck ca. 70 ml Isopropanol/Wasser-Gemisch abdestilliert. Man kühlt auf Raumtemperatur, filtriert und wäscht mit dest. Wasser chloridfrei. Nach dem Trocknen im Vakuum bei 60°C erhält man 34,6 g eines farblosen Pulvers der Formel
    Figure imgb0032

    Das langwelligste Absorptionsmaximum beträgt 274 nm (Wasser).
  • Beispiel 16: Eine Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 50 ml dest. Wasser wird bei 20°C tropfenweise mit einer neutralen Lösung von 5,2 g Sulfanilsäure in 30 ml dest. Wasser versetzt, wobei durch gleichzeitiges Zutropfen von 2 M Natronlauge der pH-Wert des Reaktionsgemisches zwischen 6 und 7 gehalten wird. Man rührt danach 2,5 h bei 40°C. Anschliessend trägt man rasch 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin ein und rührt während 12 Stunden bei 70°C aus. Die entstandene Reaktionslösung wird bei 70°C im Vakuum zur Trockne eingedampft. Man erhält 25,9 g eines farblosen Pulvers der Formel
    Figure imgb0033

    mit einem Aktivgehalt von 75%. Die Verbindung zeigt bei 284 nm (Wasser) das langwelligste Absorptionsmaximum.
  • Beispiel 17: Eine eiskalte Suspension von 10,3 g 4-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz wird mit 3,15 g Diethanolamin versetzt. Man erwärmt langsam auf 40°C und hält den pH-Wert des Reaktionsgemisches durch Zutropfen von ca. 15 ml 15%iger Sodalösung zwischen 6,5 und 7. Nach 3 Stunden bei 40°C werden rasch 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin eingetragen. Man rührt während 16 Stunden bei 70°C nach und dampft die Reaktionslösung im Vakuum ein. Man erhält 11,8 g eines farblosen Pulvers der Formel
    Figure imgb0034

    das einen Aktivgehalt von 73% und bei 275 nm (Wasser) das langwelligste Absorptionsmaximum aufweist.
  • Beispiel 18: Eine Suspension von 10,3 g 2-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser wird bei 5°C mit 2,6 g Morpholin versetzt und innerhalb von 1,5 Stunden auf 40°C erwärmt, wobei der pH-Wert des Reaktionsgemisches durch Zutropfen von 19 ml 15%iger Sodalösung zwischen 6,5 und 7 gehalten wird. Danach wird 1 Stunde bei 40°C ausgerührt. Die farblose Suspension wird mit 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin versetzt und auf 70°C erhitzt. Man rührt während 15 Stunden bei dieser Temperatur, kühlt auf Raumtemperatur ab und filtriert. Der Rückstand wird mit Wasser gewaschen und im Vakuum bei 80°C getrocknet. Man erhält 11,7 g einer farblosen Verbindung der Formel
    Figure imgb0035

    welche bei 264 nm (Wasser) das langwelligste Absorptionsmaximum aufweist.
  • Beispiel 19: Eine Suspension von 4,4 g der Verbindung von Beispiel 1 in 30 ml dest. Wasser wird durch Zugabe von 2 ml konz. Natronlauge in Lösung gebracht. Anschliessend neutralisiert man die Lösung mit konz. Salzsäure, wobei eine fein verteilte Suspension entsteht. Man gibt dann 5 ml einer wässrigen Lösung von 0,94 g Phenol hinzu und erhitzt während 15 Stunden auf 90°C. Nach dem Abkühlen auf Raumtemperatur filtriert man, wäscht mit Wasser und trocknet im Vakuum bei 80°C. Man erhält 4,7 g eines weissen Pulvers der Formel
    Figure imgb0036

    mit dem langwelligsten Absorptionsmaximum bei 275 nm (Wasser).
  • Beispiel 20: Eine Suspension von 10,3 g 2-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser wird bei 5°C mit 3,3 g Thiophenol versetzt. Man hält den pH-Wert des Reaktionsgemisches durch Zutropfen von 15%iger Sodalösung zwischen 6,5 und 7 und lässt die Innentemperatur gleichzeitig auf Raumtemperatur steigen. Anschliessend rührt man während einer Stunde bei 40°C aus, trägt rasch 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin ein und erhitzt während 16 Stunden auf 70°C. Man kühlt auf Raumtemperatur ab, zerkleinert das Reaktionsgemisch in einem Mixer, filtriert und wäscht mit Wasser. Der Rückstand wird in 100 ml Ethanol angeschlämmt, abfiltriert, mit Ethanol gewaschen und im Vakuum bei 80°C getrocknet. Man erhält 9,7 g einer farblosen Verbindung der Formel
    Figure imgb0037

    vom Schmelzpunkt 354°C.
  • Beispiel 21: Eine Lösung von 5,9 g 2,4-Dichlor-6-methylthio-s-triazin in 30 ml Aceton wird in 50 ml Eiswasser eingerührt. Anschliessend tropft man 100 ml einer neutralen wässrigen Lösung von 5,2 g Sulfanilsäure hinzu und hält den pH-Wert des Reaktionsgemisches durch Zutropfen von 15%iger Sodalösung zwischen 6,5 und 7. Danach erwärmt man eine Stunde auf 40°C und destilliert das Aceton anschliessend unter vermindertem Druck ab. Das Reaktionsgemisch wird rasch mit 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin versetzt und während 2 Stunden bei 70°C gerührt. Die Suspension wird auf Raumtemperatur gekühlt, abfiltriert und mit dest. Wasser gewaschen. Nach dem Trocknen im Vakuum bei 80°C verbleiben 13,1 g einer farblosen Verbindung der Formel
    Figure imgb0038

    welche bei 281 nm (Wasser) das langwelligste Absorptionsmaximum aufweist.
  • Beispiel 22: Eine Suspension von 9,95 g 2-N-(2,4-Dichlor-6-triazinyl)aminobenzolsulfonsäure Natriumsalz in 100 ml dest. Wasser wird bei 5°C mit 5,0 g 4-Amino-2,2,6,6-tetramethylpiperidin-1-oxyl versetzt und während 16 Stunden bei Raumtemperatur gerührt. Anschliessend wird die orangefarbene Suspension durch Hinzufügen konzentrierter Natronlauge bei einem pH-Wert von 10 in Lösung gebracht. Man versetzt mit 7,8 g Natriumdithionit und rührt bei Raumtemperatur bis zur vollständigen Entfärbung. Danach neutralisiert man das Reaktionsgemisch mit konz. Salzsäure, filtriert und wäscht mit dest. Wasser. Der Rückstand wird im Vakuum bei 50°C getrocknet. Man erhält auf diese Weise 6,1 g eines farblosen Pulvers der Formel
    Figure imgb0039

    mit dem langwelligsten Absorptionsmaximum bei 279 nm (Wasser).
  • Beispiel 23a(Zwischenprodukt): Eine Anschlämmung von 22,6 g 2-Phenyl-4,6-dichlor-s-triazin in 150 ml Aceton wird unter Rühren auf 100 ml Eiswasser gegossen und anschliessend mit einer neutralen Löstung von 17,3 g Sulfanilsäure in 100 ml dest. Wasser versetzt. Man lässt die Innentemperatur auf 10 - 15°C steigen und hält den pH-Wert des Reaktionsgemisches durch Zutropfen von 30%iger Natronlauge bei 6 (Verbrauch 13 ml). Danach rührt man während 15 Stunden bei 40°C. Die entstandene Lösung wird auf Raumtemperatur gekühlt. Das ausgefallene Produkt wird abgesaugt, mit 20%iger Kochsalzlösung gewaschen und im Vakuum bei 50°C getrocknet. Man erhält 39,1 g eines weissen Pulvers der Formel
    Figure imgb0040

    mit einem Aktivgehalt von 90,1%.
  • Beispiel 23: Eine Suspension von 12,8 g der Verbindung der Formel (123a) in 70 ml dest. Wasser wird bei Raumtemperatur unter Rühren mit 4,7 g 4-Amino-2,2,6,6-tetramethylpiperidin versetzt. Anschliessend rührt man während 30 Minuten bei 55°C, wobei Lösung eintritt, und dann während einer Stunde bei 80°C. Zuletzt rührt man während 15 Stunden bei 55°C nach. Man kühlt auf Raumtemperatur, saugt den Niederschlag ab und wäscht mit dest. Wasser chloridfrei. Nach dem Trocknen im Vakuum bei 50°C erhält man 13,5 g einer farblosen Verbindung der Formel
    Figure imgb0041

    Das langwelligste Absorptionsmaximum beträgt 262 nm (Wasser).
  • Beispiel 24: Eine Suspension von 12,8 g der Verbindung der Formel (123a) in 70 ml dest.
  • Wasser wird bei Raumtemperatur unter Rühren mit 5,1 g 4-N-Methylamino-2,2,6,6-tetramethylpiperidin versetzt. Man rührt nacheinander während einer Stunde bei 55°C und 18 Stunden bei 70°C. Nach dem Abkühlen auf Raumtemperatur wird der entstandene Niederschlag abgesaugt, mit dest. Wasser chloridfrei gewaschen und im Vakuum bei 55°C getrocknet. Man erhält 14,1 g einer farblosen Verbindung der Formel
    Figure imgb0042

    mit dem langwelligsten Absorptionsmaximum bei 265 nm (Wasser).
  • Beispiel 25: Eine Suspension von 12,8 g der Verbindung der Formel (123a) in 70 ml dest. Wasser wird bei Raumtemperatur unter Rühren mit 6,4 g 4-N-Butylamino-2,2,6,6-tetramethylpiperidin versetzt. Das Reaktionsgemisch wird während 4 Stunden bei 70°C gerührt, auf Raumtemperatur gekühlt und filtriert. Nach dem Waschen mit dest. Wasser und Trocknen im Vakuum bei 55°C verbleiben 15,2 g eines farblosen Pulvers der Formel
    Figure imgb0043

    Das langwelligste Absorptionsmaximum beträgt 255 nm (Methanol).
  • Beispiel 26: Man bereitet eine Suspension von 4-N-Methyl-(2-chlor-4-phenyl-6-s-triazinyl)-aminobenzolsulfonsäure Natriumsalz durch Umsetzung von 5,65 g 2-Phenyl-4,6-dichlor-s-triazin mit 4,7 g N-Methylsulfanilsäure und den Reaktionsbedingungen von Beispiel 23a. Anschliessend werden unter Rühren bei 40°C 4,3 g 4-N-Methylamino-2,2,6,6-tetramethylpiperidin eingetragen und die Temperatur auf 75°C erhöht. Man rührt während 18 Stunden bei dieser Temperatur nach, kühlt auf Raumtemperatur und saugt den entstandenen Niederschlag ab. Nach dem Waschen mit dest. Wasser und Trocknen im Vakuum bei 55°C erhält man 12,6 g einer farblosen Verbindung der Formel
    Figure imgb0044

    welche bei 250 nm (Methanol) das langwelligste Absorptionsmaximum aufweist.
  • Beispiel 27: Verfährt man wie in Beispiel 23a beschrieben, setzt jedoch anstelle von 2-Phenyl-4,6-dichlor-s-triazin 2-p-Tolyl-4,6-dichlor-s-triazin und anstelle von Sulfanil-Metanilsäure ein, so erhält man die entsprechende 3-N-(2-Chlor-4-p-tolyl-6-s-triazinyl)aminobenzolsulfonsäure als Natriumsalz. Diese wird ohne Isolierung direkt mit 4-Amino-1,2,2,6,6-pentamethyl-piperidin unter den Reaktionsbedungungen von Beispiel 24 kondensiert. Man erhält ein farbloses Pulver der Formel
    Figure imgb0045

    Das langwelligste Absorptionsmaximum beträgt 265 nm (Wasser).
  • Beispiel 28: Eine Lösung von 4,9 g 2,4-Dichlor-6-methyl-s-triazin in Aceton (50 ml) wird auf Eiswasser (50 ml) ausgetragen. Anschliessend wird unter raschem Rühren bei 10°C eine neutrale Lösung von 5,2 g Sulfanilsäure zugegeben und durch Zutropfen einer 30%igen Natronlauge der pH-Wert des Reaktionsgemisches bei 6 gehalten. Der Verbrauch an Natronlauge beträgt 4,1 ml. Danach rührt man während einer Stunde bei Raumtemperatur und 3 Stunden bei 40°C aus. Man trägt rasch 5,1 g 4-N-Methylamino-2,2,6,6-tetramethylpiperidin ein und erhöht die Temperatur innerhalb von 30 Minuten auf 55°C. Zuletzt rührt man während einer Stunde bei dieser Temperatur. Nach dem Abkühlen auf Raumtemperatur lässt man das Reaktionsgemisch über Nacht stehen. Man saugt vom Niederschlag ab, wäscht mit dest. Wasser nach und trocknet im Vakuum bei 50°C. Es werden 9,9 g einer farblosen Verbindung der Formel
    Figure imgb0046

    erhalten, welche das langwelligste Absorptionsmaximum bei 276 nm (Wasser) aufweist.
  • Applikationsbeispiele:
  • Beispiel 29: Es werden 4 Muster einer Polyamid 6-Maschenware von je 10 g vorbereitet und in einem Färbeapparat, z.B. einem ®AHIBA-Färbeapparat, bei einem Flottenverhältnis von 1:30 behandelt. Zwei dieser Muster werden "blindgefärbt" (d.h. ohne Farbstoff behandelt: Flotten 1 und 3), zwei dagegen gefärbt (Flotten 2 und 4).
  • Es werden somit 4 Färbeflotten bereitet, die jeweils 0,5 g/l Mononatriumphosphat und 1,5 g/l Dinatriumphosphat (≙ pH-Wert 7) enthalten. In den Flotten 2 und 4 werden folgende Farbstoffe (berechnet auf das Warengewicht) gelöst:
    0,04 % des Farbstoffgemisches, bestehend aus 81 Teilen der Verbindung der Formel
    Figure imgb0047

    und 12 Teilen der Verbindung der Formel
    Figure imgb0048

    und 0,002 % des Farbstoffes der Formel
    Figure imgb0049

    Die Flotten 3 und 4 enthalten zusätzlich noch 1 % des Natriumsalzes der Verbindung der Formel (101).
  • Mit dem vorbereiteten Textilmaterial geht man bei 40°C in die Flotten ein, verweilt 10 Minuten bei dieser Temperatur und erhitzt innerhalb von 30 Minuten auf 95°C. Nach einer Behandlungszeit von 20 Minuten gibt man 2 % Essigsäure (80%ig) hinzu und behandelt weitere 20 Minuten. Schliesslich kühlt man auf 60°C ab, spült, zentrifugiert und trocknet die Muster.
  • Die Färbungen werden auf ihre Lichtechtheiten nach SN-ISO 105-B02 (= XENON) und DIN 75.202 (= FAKRA) geprüft, sodann werden sie einem Hitzetest bei 130°C, 60 Stunden zur Prüfung der Farbtonbeständigkeit unterworfen. Die Blindfärbungen werden nach DIN 75.202 während 216 Stunden belichtet und Reissfestigkeit und Dehnung nach SN 198.461 ermittelt.
  • Folgende Ergebnisse werden erhalten: Tabelle II
    Lichtechtheit Reissfestigkeit/Dehnung % Hitzetest 130°; 60 h
    Xenon Fakra 144h Fakra 216h
    Flotte 1 - - - 7,5/27,4 -
    Flotte 2 7 *1H *1H - Farbton: beige
    Flotte 3 - - - 74,4/85,5 -
    Flotte 4 7-8 3-4 2-3 - Farbton: grau (kaum verändert)
    * keine Reissfestigkeit mehr
  • Es ist ersichtlich, dass durch die Applikation der Verbindung der Formel (101) eine deutliche photochemische und thermische Stabilität des Fasermaterials bzw. der Färbung erzielt wird.
  • Beispiel 30: Zwei Muster einer Polyamid 6 - Maschenware von je 10 g werden wie in Beispiel 29 beschrieben, gefärbt, mit dem Unterschied, dass die beiden Flotten folgende Farbstoffe enthalten: 0,05 % des Farbstoffes der Formel
    Figure imgb0050

    0,085 % des Farbstoffgemisches der Formeln
    Figure imgb0051

    sowie 0,035 % des Farbstoffgemisches der Formeln (Ia) und (Ib).
  • Die Flotte (2) enthält zusätzlich 1 % des Natriumsalzes der Verbindung der Formel (101).
  • Die Prüfung von Lichtechtheit und Hitzebeständigkeit der Färbungen ergibt folgendes Ergebnis (Tabelle III): Tabelle III
    Lichtechtheit Hitzetest 130°; 60 h
    Xenon Fakra 144h Fakra 216 h
    Flotte 1 7 *1H *1H Farbton: oliv → braun
    Flotte 2 7-8 2-3 1-2 Farbton: kaum verändert
    * nicht mehr reissfest
  • Beispiel 31 und 32: Wie in den Beispielen 29 und 30 beschrieben, werden auf Polyamid 6 - Webtrikot Hellgrau- und Olivfärbungen auf herkömmliche Weise hergestellt. Diese Färbungen werden auf einem Foulard (Abquetscheffekt 105 %) mit Lösungen imprägniert, die 10 g/l der Verbindungen der Formeln (105) und (107) gelöst enthalten. Die foulardierten Färbungen werden gerollt, man lässt sie sodann in einer Polyethylenfolie 2 Stunden verweilen. Anschliessend wird bei 80°C getrocknet.
  • Unterwirft man diese Färbungen der Lichtechtheitsbewertung und dem Hitzetest, so erhält man ebenfalls Ergebnisse, die eine erhöhte photochemische und thermische Stabilität beweisen.
  • Beispiel 33: Man verfährt wie in Beispiel 30 beschrieben mit dem Unterschied, dass die Flotte 2 anstelle der Verbindung der Formel (101) die Verbindung der Formel (108) enthält.
  • Die Färbungen werden auf ihre Lichtechtheiten nach DIN 75.202 ("FAKRA") geprüft. Die beiden Färbungen werden dazu auf einer Fläche von ca. 4 x 12 cm während 216 Stunden nach derselben Methode belichtet und danach nach SN 198 461 auf ihre Reissfestigkeit und Dehnung geprüft. Die Ergebnisse sind in Tabelle IV aufgeführt: Tabelle IV
    FÄRBUNG * Lichtechtheit nach FAKRA Reissfestigkeit/Dehnung (% vom Ausgangsmaterial)
    144 Stunden 216 Stunden
    1 1 1 10,7/16,2
    2 2-3 2 76,7/79,2
    * Bewertung nach Graumassstab 1-5
  • Das Ergebnis zeigt, dass die Verbindung der Formel (108) eine deutliche Stabilisierung des Faserpolymers sowie des Farbstoffes selbst bewirkt.
  • Beispieie 34 und 35: Drei Muster von je 10 g einer Polyamid-Maschenware werden, wie in Beispiel 29 beschrieben, vorbereitet, gefärbt und fertiggestellt, wobei dieselbe Farbstoffkombination verwendet wird. Die Flotte für die Färbung Nr. 1 enthält keine weiteren Zusätze, Färbeflotte 2 enthält noch 0,75% des Natriumsalzes der Verbindung der Formel (111), Färbeflotte 3 enthält 0,75 % des Natriumsalzes der Verbindung der Formel (110).
  • Die Bestimmungen der Lichtechtheiten der Färbungen nach SN-ISO 105-B02 (Xenon) und DIN 75.202("FAKRA") ergeben folgende Ergebnisse (Tabelle V): Tabelle V
    GRAUFÄRBUNG LICHTECHTHEITEN nach
    XENON FAKRA 144 h FAKRA 216 h
    1 (ohne Zusatz) 6-7 1(*) 1(*)
    2 [+ Verbindung (111)] 7-8 -3 2+
    3 [+ Verbindung (110)] 7 2-3 2
    (*) nicht mehr reissfest
  • Aus den Resultaten ist ersichtlich, dass die Verbindungen (110) und (111) die photochemische Stabilität der Graufärbungen sehr deutlich verbessern. Die Färbung ohne Stabilisator ist von ihrer mechanischen Stabilität als auch von der Lichtechtheit betrachtet, unbrauchbar.
  • Beispiel 36: Es werden 10 Muster eines PA - Trikots von je 10 g und 10 Flotten bereitet wie in Beispiel 29 angegeben. In den Flotten 1 bis 5 werden jeweils 0,04 % des Farbstoffgemisches der Formeln (Ia) und (Ib) und 0,002 % des Farbstoffes der Formel (II) gelöst, in den Flotten 6 bis 10 wird ohne weiteren Farbstoffzusatz blindgefärbt. Den Flotten 2 und 7 werden jeweils 0,75 % des Natriumsalzes der Verbindung der Formel (109) zugesetzt, den Flotten 3 und 8 jeweils 0,75 % der Verbindung der Formel (112), den Flotten 4 und 9 jeweils 0,75 % der Verbindung der Formel (113) und den Flotten 5 und 10 jeweils 0,75 % einer Verbindung der Formel (114) in gelöster Form zugegeben. Alle 10 Muster werden, wie in Beispiel 29 beschrieben, behandelt und fertiggestellt. Die Färbungen 1 bis 5 werden nach DIN 75.202 (FAKRA) auf ihre Lichtechtheiten geprüft. Die Blindfärbungen 6 - 10 werden 216 Stunden nach SN-ISO 105-B02 (=XENON) und DIN 75.202 (FAKRA) belichtet und nach SN 198.451 auf Reissfestigkeit und Dehnung geprüft mit folgenden Ergebnissen (Tabelle VI): Tabelle VI
    MUSTER VON LICHTECHTHEIT REISSFESTIGKEIT/DEHNUNG (%)
    XENON FAKRA
    144 Stunden 216 Stunden
    Flotte 1 7 1H* 1H* -
    Flotte 6 - - - 3,9/22,8
    Flotte 2 X 7 - 8 3 - 4 2 - 3 -
    Flotte 7 - - - 61,7/73,7
    Flotte 3 7 - 8 3 - 4 2 - 3 -
    Flotte 8 - - - 66,2/74,7
    Flotte 4 7 - 8 3 - 4 2 - 3 -
    Flotte 9 - - - 79,3/84,9
    Flotte 5 7 - 8 2 - 3 2 -
    Flotte 10 - - - 62,4/77,4
    * Muster nicht mehr reissfest ● ohne Zusatz
    X + Verbindung der Formel (109)
    △ + Verbindung der Formel (112)
    □ + Verbindung der Formel (113)
    ○ + Verbindung der Formel (114)
  • Die Ergebnisse zeigen, dass dem Polyamidmaterial durch die Verbindungen der Formeln (109), (112), (113) und (114) eine deutliche photochemische Stabilisierung gegeben wird.
  • Beispiel 37: Man verfährt wie in Beispiel 29 beschrieben, d.h. es werden abwechselnd Blindbehandlungen und Hellgraufärbungen hergestellt und getestet. Somit enthalten die vorbereiteten Färbeflotten 1, 3, 5, 7, 9 (= Blindfärbung) und 2, 4, 6, 8, 10 (= Färbungen) jeweils 0,25% der Verbindungen der Formeln (122), (123), (127) und (128). Die Ergebnisse sind aus Tabelle VII zu entnehmen, wobei die Blindfärbungen durch die Reissfestigkeit und Dehnung (belichtet nach DIN 75.202 (=FAKRA) und geprüft nach SN 198.451), die Färbungen nach deren Lichtechtheiten (DIN 75.202/FAKRA) charakterisiert wurden. Tabelle VII
    FLOTTE Nr./ZUSATZ REISSFESTIGKEIT/DEHNUNG (%) nach Belichtung nach 216 h FAKRA LICHTECHTHEITEN
    FAKRA 144 h FAKRA 216 h
    Flotte 1: kein Zusatz 7,9/28,6 - -
    Flotte 2: kein Zusatz 1H 1H
    Flotte 3: + 0,25% der Verbindung der Formel (123) 75,8/82,1 - -
    Flotte 4: + 0,25% der Verbindung der Formel (123) - 3 2-3
    Flotte 5: + 0,25% der Verbindung der Formel (128) 58,0/71,6 - -
    Flotte 6: + 0,25% dr Verbindung der Formel (128) - 2-3 1-2
    Flotte 7: + 0,25% der Verbindung der Formel (127) 64,3/72,0 - -
    Flotte 8: + 0,25% der Verbindung der Formel (127) - 3 2-3
    Flotte 9: + 0,25% der Verbindung der Formel (122) 87,9/88,5 - -
    Flotte 10: + 0,25% der Verbindung der Formel (122) - 3-4 3

Claims (14)

  1. Verfahren zur photochemischen und thermischen Stabilisierung von Polyamidfasermaterialien, dadurch gekennzeichnet, dass man gefärbte oder ungefärbte Polyamid-Fasermaterialien mit wasserlöslichen Triazinderivaten der allgemeinen Formel
    Figure imgb0052
    behandelt, worin R₁ einen Rest der Formel
    Figure imgb0053
    wobei R₃ Wasserstoff, Oxyl, Hydroxy, Niederalkyl, Niederalkenyl, Niederalkoxy, Acyl oder Benzyl und
    Z -O- oder -(NR₄)-,
    worin R₄ Wasserstoff oder Niederalkyl,
    R₂ Wasserstoff, Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy, einen nichtsubstituierten oder durch ein Halogenatom oder Niederalkyl substituierten Phenylsulfo-, Phenoxy-, Phenylthio-, oder Styrylrest oder -SO₃M, Q -(NR₄)-, R Halogen, Niederalkyl, Niederalkoxy, Phenylniederalkoxy, Cycloalkoxy, Niederalkylthio, Phenylniederalkylthio, Cycloalkylthio, Mononiederalkylamino, Diniederalkylamino, Phenylniederalkylamino, Cycloalkylamino, Phenoxy, Phenylamino, Phenylthio, Phenyl, 1-Azacycloalkyl, Morpholino, R₁ oder einen Rest der Formel
    Figure imgb0054
    bedeutet, worin
    M Wasserstoff, Alkalimetall, Erdalkalimetall, Ammonium oder einen organischen Ammoniumrest bedeuten und
    Q die in Formel (1) angegebene Bedeutung hat,
    und die Verbindungen der Formel (1) maximal 2 -SO₃M-Substituenten aufweisen.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass
    R Halogen und R₁ den Rest der Formel
    Figure imgb0055
    bedeutet, worin
    R₅ Wasserstoff oder Niederalkyl bedeutet, und
    Z die in Formel (2) angegebene Bedeutung hat.
  3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass R und R₁ einen Rest der Formel (4) bedeuten.
  4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass R einen Rest der Formel (3) und R₁ einen Rest der Formel (4) bedeuten.
  5. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass R Niederalkoxy, Cycloalkoxy, Phenoxy, Niederalkylthio, Cycloalkylthio oder Phenylthio und R₁ einen Rest der Formel (4) bedeuten.
  6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass R einen Rest der Formel
    Figure imgb0056
    worin R₆ und R₇, unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, Cycloalkyl oder nichtsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten wobei, wenn einer der Reste R₆ und R₇ Wasserstoff bedeutet, der andere nicht Wasserstoff ist oder R 1-Azacycloalkyl oder Morpholino und
    R₁ einen Rest der Formel (4) bedeuten und
    R₂ die in Anspruch 1 angegebene Bedeutung hat.
  7. Wasserlösliche Triazinderivate der Formel
    Figure imgb0057
    worin R'₁ einen Rest der Formel
    Figure imgb0058
    wobei R'₃ Wasserstoff, Oxyl, Hydroxy, Niederalkyl, Niederalkenyl, Niederalkoxy, Acyl oder Benzyl und
    Z' -O- oder -(NR'₄)-,
    worin R'₄ Wasserstoff oder Niederalkyl bedeutet,
    R'₂ Wasserstoff, Halogen, Niederalkyl, Niederalkoxy, Acylamino, Carboxy, einen nichtsubstituierten oder durch ein Halogenatom oder Niederalkyl substituierten Phenylsulfo-, Phenoxy-, Phenylthio- oder Styrylrest oder -SO₃M bedeutet Q' -(NR'₄)-,
    R' Halogen, Niederalkyl, Niederalkoxy, Phenylniederalkoxy, Cycloalkoxy, Niederalkylthio, Phenylniederalkylthio, Cycloalkylthio, Mononiederalkylamino, Diniederalkylamino, Cycloalkylamino, Phenoxy, Phenylamino, Phenylthio, Phenyl, 1-Azacycloalkyl, Morpholino, R'₁ oder einen Rest der Formel
    Figure imgb0059
    bedeuten, worin
    R'₂ und Q' die in Formel (5) angegebene Bedeutung hat,
    M' Wasserstoff, Alkalimetall, Erdalkalimetall, Ammonium oder einen organischen Ammoniumrest bedeutet,
    wobei, wenn R' Chlor und R'₂ Wasserstoff bedeuten, R'₁ nicht einen Rest der Formel
    Figure imgb0060
    bedeutet, und wenn R' einen Rest der Formel (7)
    bedeute[n]t, R'₂ nicht Wasserstoff bedeutet
    und die Verbindungen der Formel (5) maximal 2 SO₃M'-Substituenten aufweisen.
  8. Wasserlösliche Triazinderivate gemäss Anspruch 7, dadurch gekennzeichnet, dass R' Halogen und R'₁ den Rest der Formel
    Figure imgb0061
    bedeuten, worin
    R'₅ Wasserstoff oder Niederalkyl bedeutet und
    Z' die in Formel (6) angegebene Bedeutung hat,
    wobei, wenn R' Chlor und R'₂ Wasserstoff bedeuten, R'₁ nicht einen Rest der Formel (8) bedeutet.
  9. Wasserlösliche Triazinderivate gemäss Anspruch 7, dadurch gekennzeichnet, dass R' einen Rest der Formel (7) und R'₁ einen Rest der Formel (6) bedeuten.
  10. Wasserlösliche Triazinderivate gemäss Anspruch 7, dadurch gekennzeichnet, dass R' und R'₁ einen Rest der Formel (6) bedeuten.
  11. Wasserlösliche Triazinderivate gemäss Anspruch 7, dadurch gekennzeichnet, dass R' Niederalkoxy, Cycloalkoxy, Phenoxy, Phenylalkoxy, Niederalkylthio, Phenylthio oder Phenylalkylthio bedeutet.
  12. Wasserlösliche Triazinderivate gemäss Anspruch 7, dadurch gekennzeichnet, dass R' einen Rest der Formel
    Figure imgb0062
    bedeutet, worin
    R'₆ und R'₇, unabhängig voneinander, Wasserstoff, C₁-C₄-Alkyl, Cycloalkyl oder nichtsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten, wobei, wenn einer der Reste R'₆ und R'₇ Wasserstoff bedeutet, der andere nicht Wasserstoff sein darf oder
    R' 1-Azacycloalkyl oder Morpholino bedeutet.
  13. Verfahren zur Herstellung der Triazinderivate gemäss Anspruch 7, gekennzeichnet durch die Umsetzung von 1 Mol einer 2,4,6-Halogen-s-triazinverbindung oder, wenn R' Niederalkyl oder Phenyl ist, einer 2,4-Dihalogen-6-niederalkyl- bzw. -phenyl-s-triazinverbindung nacheinander mit einem oder 2 Mol der Verbindung der Formel
    Figure imgb0063
    und/oder mit einem oder 2 Mol der Piperidinverbindung der Formel
    Figure imgb0064
    oder durch Umsetzung einer 2,4,6-Halogen-s-triazinverbindung mit 1 Mol der Piperidinverbindung der Formel (11) und 1 Mol der Verbindung der Formel (10) und einem Mol einer Niederalkanolat-, Cycloalkanolat-, Phenolat-, Niederalkylthiolat-, Cycloalkylthiolat- oder einer Phenylthiolatverbindung, eines Mononiederalkylamins, Diniederalkylamins, Cycloalkylamins, Phenylamins, einer 1-Azacycloalkyl-, einer Morpholinoverbindung, wobei die Reihenfolge der einzelnen Reaktionsschritte beliebig ist, oder, wenn R' Halogen bedeutet, durch Umsetzung einer 2,4,6-Trihalogen-s-triazinverbindung mit einem Mol einer Verbindung der Formel (10) und einem Mol der Piperidinverbindung der Formel (11) zu einer Verbindung der Formel
    Figure imgb0065
    oder, wenn R' 1-Azacycloalkyl, Morpholino oder einen Rest der Formel
    Figure imgb0066
    bedeutet, durch Umsetzung einer 2,4,6-Trihalogen-s-triazinverbindung nacheinander mit einer Verbindung der Formel (10), einer Piperidinverbindung der Formel (11) und einer N-Alkylverbindung oder Aminoverbindung
    wobei
    R'₂, R'₃, Q', M', Z'
    die in in den Formeln (5) und (6) angegebene Bedeutung haben,
    R'₇ und R'₈, unabhängig voneinander, Wasserstoff, C₁-C₄-Alkyl, Cycloalkyl unsubstituiertes oder durch Niederalkyl substituiertes Phenyl bedeuten, wobei, wenn einer der Reste R'₇ und R'₈ Wasserstoff bedeutet, der andere nicht Wasserstoff sein darf.
  14. Verwendung der Triazinderivate gemäss einem der Ansprüche 7 bis 12 zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien und -Färbungen.
EP91810519A 1990-07-12 1991-07-03 Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien Expired - Lifetime EP0466647B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH232490 1990-07-12
CH2324/90 1990-07-12

Publications (2)

Publication Number Publication Date
EP0466647A1 EP0466647A1 (de) 1992-01-15
EP0466647B1 true EP0466647B1 (de) 1995-11-29

Family

ID=4231151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810519A Expired - Lifetime EP0466647B1 (de) 1990-07-12 1991-07-03 Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien

Country Status (7)

Country Link
US (2) US5160346A (de)
EP (1) EP0466647B1 (de)
JP (1) JPH04241170A (de)
KR (1) KR920002875A (de)
AT (1) ATE130882T1 (de)
BR (1) BR9102947A (de)
DE (1) DE59106971D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893112B1 (ko) 2012-01-06 2018-08-30 아지오스 파마슈티컬스 아이엔씨. 치료학적으로 활성인 화합물 및 이의 이용 방법

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409771A3 (en) * 1989-06-27 1991-06-12 Ciba-Geigy Ag Process of photochemical and thermal stabilization of polyamide fibres, dyeable by acid and basic dyes, and of their mixtures amongst themselves and with other fibres
DE4032744A1 (de) * 1990-10-16 1992-04-23 Basf Ag Polyalkylpiperidin-derivate
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5721287A (en) 1993-08-05 1998-02-24 Kimberly-Clark Worldwide, Inc. Method of mutating a colorant by irradiation
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US5700850A (en) 1993-08-05 1997-12-23 Kimberly-Clark Worldwide Colorant compositions and colorant stabilizers
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
DE59509122D1 (de) 1994-08-25 2001-05-03 Ciba Sc Holding Ag Wasserlösliche Piperidin-Triazinverbindungen und ihre Verwendung zur Stabilisierung von Polyamidfasern
EP0703227A1 (de) * 1994-09-19 1996-03-27 Ciba-Geigy Ag Wasserlösliche Antioxidantien, Verfahren zu deren Herstellung und deren Verwendung zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
WO1996039646A1 (en) 1995-06-05 1996-12-12 Kimberly-Clark Worldwide, Inc. Novel pre-dyes
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
MX9710016A (es) 1995-06-28 1998-07-31 Kimberly Clark Co Colorantes novedosos y modificadores de colorante.
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
ES2175168T3 (es) 1995-11-28 2002-11-16 Kimberly Clark Co Compuestos de colorantes estabilizados por la luz.
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6326368B1 (en) 1996-03-27 2001-12-04 Dupont Pharmaceuticals Company Aryloxy- and arylthiosubstituted pyrimidines and triazines and derivatives thereof
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5851238A (en) * 1996-07-31 1998-12-22 Basf Corporation Photochemically stabilized polyamide compositions
US20020019183A1 (en) * 1997-02-12 2002-02-14 Demott Roy P. Release barrier fabrics
US6136433A (en) 1997-05-01 2000-10-24 Basf Corporation Spinning and stability of solution-dyed nylon fibers
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
JP2002517540A (ja) 1998-06-03 2002-06-18 キンバリー クラーク ワールドワイド インコーポレイテッド インク及びインクジェット印刷用のネオナノプラスト及びマイクロエマルション技術
EP1000090A1 (de) 1998-06-03 2000-05-17 Kimberly-Clark Worldwide, Inc. Neue photoinitiatoren und deren anwendung
CA2336641A1 (en) 1998-07-20 2000-01-27 Kimberly-Clark Worldwide, Inc. Improved ink jet ink compositions
DE69930948T2 (de) 1998-09-28 2006-09-07 Kimberly-Clark Worldwide, Inc., Neenah Chelate mit chinoiden gruppen als photoinitiatoren
EP1144512B1 (de) 1999-01-19 2003-04-23 Kimberly-Clark Worldwide, Inc. Farbstoffe, farbstoffstabilisatoren, tintenzusammensetzungen und verfahren zu deren herstellung
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6297296B1 (en) 1999-05-19 2001-10-02 Kodak Polychrome Graphics Llc Latex complexes as stabilized colorant
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
JP4850694B2 (ja) * 2003-02-26 2012-01-11 チバ ホールディング インコーポレーテッド 水融和性立体阻害されたヒドロキシ置換アルコキシアミン類
US7550599B2 (en) * 2003-02-26 2009-06-23 Ciba Specialty Chemicals Corporation Water compatible sterically hindered alkoxyamines and hydroxy substituted alkoxyamines
DE102005039580A1 (de) 2005-08-19 2007-02-22 Henkel Kgaa Farbschützendes Waschmittel
EP1787989A1 (de) * 2005-11-17 2007-05-23 Degussa GmbH Triazinverbindungen mit Aminogruppen- und Carboxygruppen-haltigen Substituenten
DE102008026075B4 (de) 2008-05-30 2015-04-30 Lurgi Zimmer Gmbh Verfahren zur Herstellung von Polyamiden unter Verwendung von Carbonsäuren und Amiden
JP5675647B2 (ja) 2009-01-19 2015-02-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機黒色顔料およびその製造
CN110386922A (zh) 2013-08-02 2019-10-29 安吉奥斯医药品有限公司 治疗活性化合物及其使用方法
US9751863B2 (en) 2015-08-05 2017-09-05 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
CN111875584A (zh) * 2020-08-07 2020-11-03 宿迁市振兴化工有限公司 一种多功能光稳定剂的制备方法
CN114058079A (zh) * 2021-12-23 2022-02-18 中交第一公路勘察设计研究院有限公司 一种兼具强紫外吸收功能的沥青光稳定剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156689A (en) * 1960-04-12 1964-11-10 Geigy Chem Corp 1, 4-phenylene-bis
AU573053B2 (en) * 1984-12-07 1988-05-26 Commonwealth Scientific And Industrial Research Organisation Sulfonated triazine as photostabilisers on fibres and leather
US4775386A (en) * 1986-05-05 1988-10-04 Ciba-Geigy Corporation Process for photochemical stabilization of undyed and dyed polyamide fibre material and blends thereof with other fibres: copper complex and light stabilizer treatment
EP0352221B1 (de) * 1988-06-14 1994-03-09 Ciba-Geigy Ag Verfahren zum fotochemischen Stabilisieren von ungefärbten und gefärbten Polypropylenfasern
US5030243A (en) * 1989-01-05 1991-07-09 Ciba-Geigy Corporation Process for the photochemical stabilization of undyed and dyeable artificial leather with a sterically hindered amine
DE4000551A1 (de) * 1989-01-13 1990-07-19 Ciba Geigy Ag Verfahren zum fotochemischen stabilisieren von gefaerbter wolle
EP0438381B1 (de) * 1990-01-19 1995-04-05 Ciba-Geigy Ag Stabilisierung von Färbungen auf Polyamidfasern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893112B1 (ko) 2012-01-06 2018-08-30 아지오스 파마슈티컬스 아이엔씨. 치료학적으로 활성인 화합물 및 이의 이용 방법

Also Published As

Publication number Publication date
US5160346A (en) 1992-11-03
EP0466647A1 (de) 1992-01-15
KR920002875A (ko) 1992-02-28
JPH04241170A (ja) 1992-08-28
BR9102947A (pt) 1992-02-11
ATE130882T1 (de) 1995-12-15
DE59106971D1 (de) 1996-01-11
US5281707A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
EP0466647B1 (de) Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien
EP0459950B1 (de) Stabilisierung von Färbungen auf Polyamidfasern
EP1247842B1 (de) Faserreaktive Anthrachinonfarbstoffe, deren Herstellung und deren Verwendung
EP0511166A1 (de) Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterial mit einer faseraffinen Kupferkomplexverbindung und einem Oxalsäurediarylamid
DE2726432A1 (de) Verfahren zur verbesserung der farbausbeute und der echtheiten von mit anionischen farbstoffen auf cellulosefasermaterial erzeugten faerbungen, fluorhaltige verbindungen und ihre herstellung
EP0882836A2 (de) Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien
EP0707002A1 (de) UV-Absorber, ihre Herstellung und Verwendung
EP0704444B1 (de) UV-Absorber, ihre Herstellung und Verwendung
EP0657508A1 (de) Reaktivfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE2255256A1 (de) Verfahren zur erhoehung der affinitaet fuer anionische farbstoffe von alkylierbare gruppen enthaltenden hochmolekularen, organischen verbindungen
EP0546993A1 (de) Wasserlöschliche Triazinderivate zur photochemischen und thermischen Stabilisierung von Polyamidfasermaterialien
CH624139A5 (de)
EP0418198A1 (de) Monosulfonierte 2-(2'-Hydroxyphenyl)benzotriazole
EP0702011B1 (de) Wasserlösliche Piperidin-Triazinverbindungen und ihre Verwendung zur Stabilisierung von Polyamidfasern
DE2015320B2 (de) Verfahren zur Herstellung reak tiver Phthalocyaninverbmdungen und deren Verwendung zum Klotzen und Bedrucken von natürlichen und synthetischen Poly amidfasern sowie von natürlichen und regenerierten Cellulosefasern
EP0618205A1 (de) Wasserlösliche Triazinderivate zur photochemischen und thermischen Stabilisierung von Polyamidfasermaterialien
CH641197A5 (de) Reaktive monoazofarbstoffe und verfahren zu deren herstellung.
EP0507732B1 (de) Asymmetrisches Oxalsäure-diarylamid
DE1210504B (de) Verfahren zur Herstellung von Anthrachinonfarbstoffen
DE2712289B2 (de) Verfahren zum Färben oder Bedrucken von Polyacrylnitrilmaterial
EP0621266A1 (de) Sterisch gehinderte Phenole und ihre Verwendung zur Stabilisierung von Polyamid-Fasermaterialen
EP0672727B1 (de) Anthrachinonfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
EP0570333B1 (de) Faserreaktive Anthrachinonfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
EP0703227A1 (de) Wasserlösliche Antioxidantien, Verfahren zu deren Herstellung und deren Verwendung zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien
EP0651028A1 (de) Verfahren zum Trichromie-Färben oder -Bedrucken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19930908

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951129

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951129

REF Corresponds to:

Ref document number: 130882

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106971

Country of ref document: DE

Date of ref document: 19960111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CIBA-GEIGY AG TRANSFER- CIBA SC HOLDING AG

26N No opposition filed
BECN Be: change of holder's name

Effective date: 19961129

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: CIBA SC HOLDING AG TRANSFER- CIBA SPECIALTY CHEMICALS HOLDING INC.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980730

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000606

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010629

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010918

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

BERE Be: lapsed

Owner name: *CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST