EP0882836A2 - Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien - Google Patents

Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien Download PDF

Info

Publication number
EP0882836A2
EP0882836A2 EP98810490A EP98810490A EP0882836A2 EP 0882836 A2 EP0882836 A2 EP 0882836A2 EP 98810490 A EP98810490 A EP 98810490A EP 98810490 A EP98810490 A EP 98810490A EP 0882836 A2 EP0882836 A2 EP 0882836A2
Authority
EP
European Patent Office
Prior art keywords
formula
radical
alkyl
compound
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810490A
Other languages
English (en)
French (fr)
Other versions
EP0882836A3 (de
Inventor
Peter Scheibli
Peter Aeschlimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
BASF Schweiz AG
Original Assignee
Ciba Geigy AG
Ciba Spezialitaetenchemie Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG, Ciba Spezialitaetenchemie Holding AG filed Critical Ciba Geigy AG
Publication of EP0882836A2 publication Critical patent/EP0882836A2/de
Publication of EP0882836A3 publication Critical patent/EP0882836A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6426Heterocyclic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • D06P3/66Natural or regenerated cellulose using reactive dyes

Definitions

  • the present invention relates to a method for crosslinking cellulosic fiber materials.
  • high finishing effects e.g. B. in the area of crease resistance, easy care, dimensional stability and No shrinkage achieved.
  • N-methylol compounds normally still contain residues of free formaldehyde, and they release formaldehyde to a certain extent during thermal treatment, which can lead to unpleasant odors and intolerance. This disadvantage of the N-methylol compounds can be reduced or avoided by using low-formaldehyde or formaldehyde-free products as crosslinkers for cellulose.
  • N-methylol groups products which have etherified N-methylol groups or products which do not contain any -N-CH 2 -O groupings are suitable here.
  • An example of the latter class of compounds are N, N'-dialkyl-4,5-dihydroxiimidazolidinones (N, N'-dialkyl-dihydroxyethylene ureas), which can be obtained by reacting N, N'-dialkylureas with glyoxal.
  • Etherification products of the last-mentioned compounds with polyhydric alcohols are also known as crosslinking agents for cellulosic materials.
  • the object of the present invention is a method for crosslinking cellulose-containing To develop fiber materials, e.g. highly effective formaldehyde-free To achieve equipment of fiber materials, which does not have the disadvantages described having.
  • the process should allow the reaction of the crosslinker with the Cellulose (condensation) at relatively low temperatures, i.e. H. Temperatures of less than 150 ° C, and should at a higher level of crease or Easy care effects have so far led to this with known formaldehyde-free crosslinkers is possible.
  • the object is achieved by a method for crosslinking cellulose-containing fiber materials, in particular those fiber materials which consist of 20 to 100% by weight of natural or regenerated cellulose fibers, which is characterized in that the cellulose-containing fiber materials, the cellulose fibers being natural or regenerated cellulose, at least one product of the general formula (1) is applied, wherein A is a colorless aliphatic, aromatic or heteroaromatic radical, R is a fiber-reactive radical, and n is the number 1, 2, 3 or 4, with the condition that the radical [R] n contains at least two fiber-reactive groups.
  • A is preferably an aromatic radical which is unsubstituted or substituted by C 1 -C 4 -alkyl, such as methyl or ethyl, C 1 -C 4 -alkoxy, such as methoxy or ethoxy, halogen, such as fluorine, bromine or especially chlorine, Carboxy or preferably one or more water solubilizing groups may be substituted.
  • Sulfo groups (-SO 3 H) are particularly suitable as water-solubilizing groups.
  • An aromatic radical A is preferably a benzene radical which can be substituted by one or two sulfo groups.
  • the aromatic radical A can preferably also be free of water-solubilizing groups if at least one of the radicals R contains a water-solubilizing group, such as a sulfato group.
  • the aliphatic radical for A is, for example, an optionally one or more heteroatoms, such as, for. B. the oxygen atom, interrupted C 1 -C 18 alkyl radical, preferably a C 2 -C 12 alkyl radical, which may be substituted by one or more water-solubilizing groups.
  • suitable water-solubilizing groups are sulfo groups or hydroxyl groups.
  • the radical A as a heteroaromatic radical is, for example, a morpholino, pyrimidine or Triazine residue which may optionally be substituted, e.g. through halogen.
  • a fiber-reactive radical is to be understood as radicals which are associated with the hydroxyl groups of the Cellulose, the amino, carboxy, hydroxyl and thiol groups in wool and silk, or with the amino and possibly carboxy groups of synthetic polyamides to form covalent chemical bonds are able to react.
  • the reactive groups are in the Usually bound to the colorless radical A directly or via a bridge link.
  • Suitable Reactive groups are, for example, those which have at least one removable substituent contain an aliphatic, aromatic or heterocyclic radical or wherein said radicals are a radical suitable for reaction with the fiber material, such as e.g. a triazine residue.
  • a reactive group includes, for example, those by a removable atom or a removable group of substituted carbo- or heterocyclic 4-, 5- or 6-rings to understand contained residues.
  • heterocyclic radicals come e.g. such a Consider which at least one removable substituent on a heterocyclic Rest bound included; including those that have at least one reactive substituent contain bound to a 5- or 6-membered heterocyclic ring, such as a monoazine, diazine, triazine, pyridine, pyrimidine, pyridazine, pyrazine, thiazine, Oxazine or asymmetrical or symmetrical triazine ring.
  • the mentioned heterocyclic fiber-reactive radicals via a direct bond or via a Other fiber-reactive residues, e.g. the listed residues.
  • reactive groups there are also those which have at least one activated group unsaturated group, especially an unsaturated aliphatic group such as e.g. the Vinyl, halovinyl, styryl, acrylic or methacrylic group, or at least one polymerizable Show ring system.
  • an unsaturated aliphatic group such as e.g. the Vinyl, halovinyl, styryl, acrylic or methacrylic group, or at least one polymerizable Show ring system.
  • the halogen atoms containing unsaturated groups such as halogenomaleic acid and halogenopropiolic acid residues, the ⁇ - or ⁇ -bromo or chloroacrylic groups, halogenated vinyl cetyl groups, Halogencrotonyl or halogen methacrylic groups.
  • halogen-containing unsaturated groups e.g. the dichloro or dibromopropionyl group.
  • halogen atoms here are fluorine, chlorine, bromine and iodine atoms as well Pseudohalogen atoms, e.g. to understand the cyano group. Good results will come after achieved the inventive method with compounds which have an ⁇ -bromoacrylic group contain.
  • compounds containing a polymerizable double bond are preferably those which contain at least one acryloyl, methacryloyl, ⁇ -bromocryloyl, contain ⁇ -chloroacryloyl, vinyl or vinylsulfonyl radical; most notably preferably those which have at least one acryloyl, ⁇ -bromoacryloyl or vinylsulfonyl radical contain.
  • atoms or groups that can be removed are, for example, ammonium including hydrazinium, sulfato, thiosulfato, phosphato, acetoxy, propionoxy or Carboxypyridinium.
  • the one to four reactive residues are not necessarily all to the rest A bound, but there can also be two or three reactive residues directly or via Bridge elements must be connected to each other.
  • a wide variety of radicals can be considered as a bridge between the colorless radical A and the fiber-reactive radical or as a bridge between two or three fiber-reactive radicals.
  • the bridge member is, for example, an aliphatic, aromatic or heterocyclic radical; Furthermore, the bridge member can also be composed of various such residues.
  • the bridge member can contain at least one functional group, for example the carbonyl group or the amino group, the amino group being optionally substituted by halogen, hydroxy, cyano, C 1 -C 4 -alkoxy, C 1 -C 4 -alkoxycarbonyl, carboxy, sulfamoyl, sulfo or Sulfato substituted C 1 -C 4 alkyl may be further substituted.
  • An aliphatic radical for example, is an alkylene radical with 1 to 7 carbon atoms or its branched isomers. The carbon chain of the alkylene radical can be interrupted by a hetero atom, such as an oxygen atom.
  • the aromatic radical is, for example, a phenyl radical which is substituted by C 1 -C 4 alkyl, such as methyl or ethyl, C 1 -C 4 alkoxy, such as methoxy or ethoxy, halogen, such as fluorine, bromine or, in particular, chlorine, carboxy or can be substituted by sulfo, and a heterocyclic radical, for example a piperazine radical.
  • C 1 -C 4 alkyl such as methyl or ethyl
  • C 1 -C 4 alkoxy such as methoxy or ethoxy
  • halogen such as fluorine, bromine or, in particular, chlorine, carboxy or can be substituted by sulfo
  • a heterocyclic radical for example a piperazine radical.
  • bridge members are the following radicals: -CO-N (R 1 ) - (CH 2 ) 2-3 -; -CO-N (R 1 ) - (CH 2 ) 2 -O- (CH 2 ) 2 -; -N (R 1 ) -CO- (CH 2 ) 3 -; -N (R 1 ) -; -N (R 1 ) - (CH 2 ) 2 -O- (CH 2 ) 2 -; -O- (CH 2 ) 2 -; - CH 2 -N (R 1 ) -;
  • R 1 is hydrogen or C 1 -C 4 alkyl, which is substituted by halogen, hydroxy, cyano, C 1 -C 4 alkoxy, C 1 -C 4 alkoxycarbonyl, carboxy, sulfamoyl, sulfo or sulfato can be.
  • radicals A and [R] n in formula (1) are preferably connected to one another via a bridge member containing the amino group -N (R 1 ), particularly preferably via the bridge member -N (R 1 ) -, where R 1 is the one indicated Has meaning.
  • B. for n 2, a 4-monochloro or 4-monofluorotriazin-2-yl radical which in the 6 position contains a fiber-reactive group, for example a vinylsulfonyl group, bonded directly or via a bridge member.
  • Reactive residues R one or two fluorine or chlorotriazine groups and optionally an aliphatic reactive group, in particular of the vinylsulfonyl type contain, or contain two vinylsulfonyl reactive groups.
  • Important connections of the Formula (1) contain as the colorless radical A an unsubstituted or by Sulfo group substituted benzene radical and as fiber-reactive radical R one or two over a bridging member linked fluorine or chlorotriazine groups, via a bridging member contain a further reactive radical, in particular a vinylsulfonyl radical.
  • Further important compounds of formula (1) contain an unsubstituted as colorless radical A. or a benzene radical substituted by a sulfo group and two as the fiber-reactive radical R. vinyl sulfonyl residues bonded directly or via a bridge member.
  • T 1 is fluorine, chlorine or carboxypyridinium and the substituents V 1 on the triazine ring which may be mentioned in particular are: fluorine, chlorine, -NH2, a C 1 -C 6 -alkylamino-, N, N-di-C 1 -C 6 Alkylamino, cyclohexylamino, N, N-dicyclohexylamino, benzylamino, phenethylamino, phenylamino, naphthylamino, NC 1 -C 6 alkyl, N-cyclohexylamino or NC 1 -C 6 alkyl-N-phenylamino radical , or morpholino, piperidino, piperazino, hydrazino or semicarbazido, or an amino group substituted by a furan, thiophene, pyrazole, pyridine,
  • alkyl, cycloalkyl, aralkyl and aryl radicals mentioned and the heterocyclic radicals can be further substituted, for example by C 1 -C 4 -alkyl, such as methyl or ethyl, C 1 -C 4 -alkoxy, such as methoxy or ethoxy, Halogen, such as fluorine, bromine or especially chlorine, carboxy or sulfo.
  • C 1 -C 4 -alkyl such as methyl or ethyl
  • C 1 -C 4 -alkoxy such as methoxy or ethoxy
  • Halogen such as fluorine, bromine or especially chlorine, carboxy or sulfo.
  • V 1 is particularly preferred in the remainder of the formula (2) fluorine, chlorine, phenylamino or NC 1 -C 4 -alkyl-N-phenylamino, the phenyl rings optionally being replaced by halogen, such as fluorine, chlorine or bromine, nitro, cyano, trifluoromethyl, Sulfamoyl, carbamoyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, acylamino groups such as acetylamino or benzoylamino, ureido, hydroxy, carboxy, sulfomethyl or in particular sulfo are substituted.
  • halogen such as fluorine, chlorine or bromine, nitro, cyano, trifluoromethyl
  • Sulfamoyl carbamoyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy
  • acylamino groups such as acetylamino or benzoy
  • interesting fiber-reactive residues are e.g. B. also those of the formula wherein T 2 and T 3 are independently fluorine, chlorine or carboxypyridinium and B is a bridge member.
  • a bridge of the formula (2 ') is, for example, a radical of the formula into consideration, wherein R 1 'and R 1 "independently of one another are hydrogen or C 1 - substituted by halogen, hydroxy, cyano, C 1 -C 4 alkoxy, C 1 -C 4 alkoxycarbonyl, carboxy, sulfamoyl, sulfo or sulfato C 4 alkyl and X is a C 2 -C 6 alkylene or C 5 -C 9 cycloalkylene radical which is optionally substituted by hydroxy, sulfo, sulfato, C 1 -C 4 alkoxy, carboxy or halogen or a radical which is optionally substituted by C 1 -C 4 alkyl, C 1 -C 4 alkoxy, sulfo, halogen or carboxy substituted phenylene, biphenylene or naphthylene.
  • halogen such as fluorine, chlorine or bromine, nitro, cyano, trifluoromethyl, sulfamoyl, carbamoyl, C 1 -C 4 alkyl, C 1 -C 4 -alkoxy, acylamino groups, such as acetylamino or benzoylamino, ureido, hydroxy, carboxy, sulfomethyl and sulfo.
  • the radical B 1 contains 1 to 6, preferably 1 to 4, carbon atoms.
  • B 1 are: methylene, ethylene, propylene, butylene, methyleneoxy, ethyleneoxy, propyleneoxy and butyleneoxy. If B 1 is a remainder B 1 is bonded to the benzene ring through the oxygen atom. B 1 is preferably the direct bond.
  • Z is especially the ⁇ -chloroethyl radical as ⁇ -haloethyl and ⁇ -acyloxyethyl in particular the ⁇ -acetoxyethyl radical into consideration.
  • the alkylene radical alk is preferred Methylene, ethylene, methylmethylene, propylene or butylene.
  • the substituent T is as Alkanoyloxy radical, in particular acetyloxy, propionyloxy or butyryloxy, and as an alkoxycarbonyl radical especially methoxycarbonyl, ethoxycarbonyl or propyloxycarbonyl.
  • V is an alkyl radical, this can be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or be tert-butyl.
  • the radical R is, for example, methyl, ethyl, propyl, isopropyl, butyl, Isobutyl, sec-butyl, tert-butyl, pentyl or hexyl, or preferably hydrogen.
  • the Polymethylene residues alk ' are preferably ethylene, propylene or butylene.
  • the index is t preferably 2, 3 or 4.
  • the indices r and s are independently preferred 2nd
  • V 2 are those of the formula (4), in which B 1 is the direct bond and R is a radical of the formula (4a), or in which V 2 is a radical of the formula (4b), (4c) or which is bonded directly to the triazine ring (4f), or wherein V 2 is a radical of formula (4 ').
  • Reactive groups of the formulas are also interesting and wherein R 1 has the meaning given above and X 1 and X 2 are chlorine, or X 1 is chlorine and X 2 is fluorine, with the condition that the radical [R] n in formula (1) contains at least two groups which act in a fiber-reactive manner.
  • aliphatic reactive groups are those of the formulas -SO 2 Z. -SO 2 -NH-Z -NH-CO- (CH 2 ) 3 -SO 2 Z. -CO-NH-CH 2 CH 2 -SO 2 Z. and -NH-CO-Z 1 wherein Z has the meanings given above, Z 1 has the meanings of Z and may additionally be halomethyl or ⁇ , ⁇ -dihalogenethyl, is preferred.
  • Z 1 in particular chlorine and bromine are suitable as halogen in the halomethyl, ⁇ -haloethyl and ⁇ , ⁇ -dihaloethyl groups.
  • Particularly preferred aliphatic reactive groups are those of the formula (5a) and furthermore those of the formulas (5c) and (5d).
  • Z is in particular ⁇ -sulfatoethyl or ⁇ -haloethyl.
  • Q represents the radical CY or in particular a nitrogen atom, Y chlorine, V 3 and W 3 , independently of one another, each fluorine, chlorine, R 2 -X 2 '-, R 3 -X 3 ' -, hydroxy, R 2 and R.
  • A is an aliphatic radical
  • a 1 is an aliphatic radical having 1 to 18 carbon atoms and is free of sulfo groups
  • R 5 is hydrogen or C 1 -C 4 -alkyl or the meaning of A 1 independently of A 1 .
  • a 1 as an aliphatic radical having 1 to 18 carbon atoms is, for example, a C 1 -C 18 alkyl radical, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl , Isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl, where the alkyl radical can be substituted, for example by hydroxy or alkoxy, and where the alkyl chain can be interrupted one or more times , such as by oxygen, sulfur, amino, carbonamido, aminocarbonyl, ureido, sulfonamido, aminosulfonyl, carboxy, and carbonyloxy.
  • R 5 as C 1 -C 4 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl or iso-butyl.
  • a 1 is preferably a linear or branched C 1 -C 18 alkyl, in particular a C 1 -C 8 alkyl, which is substituted by -OR 6 , where the alkyl chain can be interrupted by one or more radicals -Q-, or a linear or branched C 1 -C 18 alkyl, in particular a C 1 -C 8 alkyl, the alkyl chain being interrupted by one or more radicals -Q 1 -, in which -Q 1 - -O-, -S-, -NR 7 -, -CONR 7 -, -NR 7 CO-, -NR 7 -CO-NR 7 -, -SO 2 NR 7 -, -NR 7 SO 2 -, -COO-, -OCO-, -NR 7 is COO- or -OCOO-, R 6 is hydrogen or C 1 -C 4 alkyl and R 7 is hydrogen or C 1 -C 4 alkyl.
  • C 1 -C 18 alkyl or C 1 -C 8 alkyl as A 1 can optionally be substituted one or more times, for example by carboxy, carbonamido or sulfonamido.
  • R 5 methyl and especially hydrogen are preferred.
  • R 6 as C 1 -C 4 alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl or iso-butyl.
  • R 7 as C 1 -C 4 alkyl are methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, or iso-butyl.
  • R 6 methyl and especially hydrogen are preferred.
  • Hydrogen is preferred as R 7 .
  • -X 4 -A 1 represents the following radicals: -NHCH 2 CH 2 SCH 2 CH 2 OH, -NHCH 2 CH 2 CONHCH 2 CH 2 OH, -NHCH 2 CH 2 CH 2 CONHCH 2 CH 2 OH, -NHCH 2 CONHCH 2 CH 2 CH 2 OH, -NHCH 2 CONHCH 2 CH 2 CH 2 OH, -NHCH 2 CON (CH 2 CH 2 OH) 2 , -NHCH 2 CH 2 NHCOCH 2 CH 2 CH 2 OH, -NHCH 2 CH 2 CH 2 NHCOCH 2 CH 2 CH 2 OH, -NHCH 2 CH 2 CH 2 CONHCH 2 CH 2 CH 2 OH.
  • the compounds of the formula (6) used in the process according to the invention are prepared by methods known per se, for example by using a trichlorotriazine of the formula with an equimolar amount of a compound of the formula HX 4 -A 1 wherein X 4 and A 1 has the meaning given under the formula (6), and the resulting end product of the formula (6) is isolated.
  • the new compounds of the formulas (6a) to (6n) are prepared in an analogous manner by using a trichlorotriazine of the formula (7), for example with an amine of the formula NH 2 -CH 2 CH 2 OCH 2 CH 2 OH NH 2 -CH 2 CH (OH) CH 2 OH NH 2 -CH 2 CH 2 CON (CH 2 CH 2 OH) 2 NH 2 -CH 2 CH 2 CH 2 CONHCH 2 CH 2 CH 2 OH NH 2 -CH 2 CH 2 NHCONHCH 2 CH 2 OH NH 2 -CH 2 CH 2 CH 2 SO 2 NHCH 2 CH 2 CH 2 OH NH 2 -CH 2 CH 2 NHSO 2 CH 2 CH 2 CH 2 OH or NH 2 -CH 2 CH 2 NHSO 2 CH 2 CH 2 CH 2 CH 2 OH implements.
  • the compounds of the formula (1) very particularly preferably comprise at least one reactive group of the formulas (2), (2 '), (3), (4i) to (4l), (5a) to (5e) and (6), where for A, A 1 R 1 , T 1 , T 2 , T 3 , T 4 , V 1 , V 2 , B, X 1 , X 2 , X 4 , Z and Z 1 the meanings and preferences given above apply.
  • T 5 is fluorine or especially chlorine
  • R 1 is hydrogen, methyl or ethyl
  • T 5 and R 1 have the meanings given under formula (1b).
  • a particularly preferred embodiment of the process according to the invention is characterized in that a compound of the formula (1c) is used in which T 5 is chlorine and R 1 is hydrogen.
  • the two -NR 1 - groups are bonded to the benzene nucleus in the m- or p-position.
  • a 2 is a benzene radical optionally substituted by sulfo
  • R 10 is a radical of the formula (2), (2 ') or (3), or in which R 10 is the radical -SO 2 -Z, where Z has the meaning given has, and n is the number 1, 2, 3 or 4, with the condition that the radical [R 10 ] n contains at least two fiber-reactive groups.
  • A is a heteroaromatic radical
  • R 1 and Z have the meanings given under formula (4) or (4h)
  • Hal is halogen, preferably chlorine.
  • Hal is especially chlorine
  • R 1 is hydrogen and -SO 2 -Z is bonded in the m- or p-position to the amino group and means the ⁇ -sulfatoethylsulfonyl radical.
  • the method according to the invention is suitable for achieving high finishing effects, especially to improve wrinkle-free, easy-care, dimensional stability and freedom from shrinkage of fiber materials which are at least 20% by weight natural or contain regenerated cellulose fibers. If the content is less than 20% by weight the effect of the equipment is too small to take advantage of the process allow.
  • the fiber materials can be cellulose fibers in a mixture with other fibers, especially made of polyester or polyamide, or they can be made exclusively of Cellulose fibers exist. Both cellulose fibers come as cellulose fibers Cotton as well as fibers from regenerated cellulose such as viscose (cellulose) in Question. Furthermore, modal fibers such as e.g. Polynosic fibers and Cupro fibers called. In no lyocell fiber is used in the process according to the invention.
  • Suitable fiber materials which are treated by the process according to the invention, especially aftertreated, are mainly textile fabrics or Knitwear. However, yarns whose tensile strength with the Application of the inventive method can be increased.
  • An important and preferred application is the application of the method according to the invention Terrycloth goods.
  • the process according to the invention can be used Change in fiber surface, e.g. through the dyeing process, prevented or at least be reduced.
  • the process according to the invention has a number of advantages: the fiber materials, to which the above products have been applied can be found at 80 to 130 ° C to achieve good easy care effects. Temperatures up to 150 ° C and more, as known in the case of use formaldehyde-free crosslinkers are not required.
  • the method according to the invention can be used to apply a crosslinker Carry out alkaline liquor using the wet dwell process. This means that after Application and a squeezing process, e.g. B. as part of a padding, the Fiber material, e.g. in the form of a textile fabric, protected against drying out stored at room temperature and after a certain dwell time of e.g. B. 20 hours with Water is rinsed and dried. During wet storage here networking takes place at least partially.
  • Dry pilling in particular, can also be carried out using the method according to the invention important for upholstery fabrics.
  • the finished and dried fiber materials have after application of the Crosslinkers in the wet crosslinking process often have a higher degree of whiteness than in the case of Implementation of known methods with heat fixation. Protection against decay of the finished fiber materials is often much better than known ones Method.
  • the method according to the invention can also be advantageously used combine with other processes, e.g. B. with a reactive dye in alkaline Medium or other processes to be carried out in alkaline medium.
  • the Combination of the method according to the invention together with the dyeing and fixing of reactive dyes is of great advantage.
  • the method according to the invention offers also has the advantage of less impairment of light fastness Substantive and reactive stains than is the case with known methods.
  • the application of such product mixtures can be done using a single treatment liquor, e.g. B. done by padding, with the liquor absorption as a rule at least 50%, preferably 60 to 80%, if these product mixtures are homogeneous mixtures represent. It is particularly advantageous for economic and ecological reasons that to carry out the method according to the invention such that a product of the formula (1) or a Product mixture in the form of an alkaline aqueous solution or dispersion of this Product or these products applied to the fiber materials and the fiber materials then be dried. Drying is preferably carried out in a temperature range of 80 to 130 ° C, e.g. by means of hot air; can if necessary however, other temperatures can also be used, e.g. up to 140 ° C.
  • the treatment fleet is excluded one or more products of the formula (1) and optionally further products added a reactive dye.
  • This preferred embodiment of the The method according to the invention is particularly useful for alkaline treatment liquors Question whose pH value at 20 ° C is preferably in a range from 7 to 13.
  • the solutions or dispersions to be used for the process according to the invention preferably aqueous solutions or dispersions, have a pH during storage which is not below 7.0 and not above 10 , 0, in some cases does not exceed 9.0. Adjusting or stabilizing the desired pH, e.g. B. in the range of 7 to 10, z. B. by Na 2 CO 3 , K 2 CO 3 , KHCO 3 or NaHCO 3 .
  • the amount of alkali for example NaOH or KOH, which is required for the treatment of the fiber materials (crosslinking reaction with cellulose) and / or for the reactive dyeing should only be added shortly before use.
  • the metal salts present in the alkaline aqueous medium which are classified under the formula (1) fall and are suitable for the inventive method, salts of be monovalent or multivalent metal cations.
  • monovalent metals or Metal cations sodium and potassium are particularly preferred.
  • the sodium or Potassium salts of the water-soluble compounds of formula (1) are particularly preferred.
  • a preferred embodiment of the method according to the invention thus consists in to use water-soluble products of the formula (1); these are water soluble products especially Na or K salts, which are used in aqueous equipment fleets. If only these Na ⁇ or K salts are used, this is preferably the case about alkaline aqueous solutions.
  • the inventive method is preferably under Performed using aqueous dispersions.
  • aqueous dispersions which in addition to at least one compound of Formula (1) contain other products, preferably have alkaline pH values in the Range from pH 7 to 13.
  • the treatment of the fiber materials by the method according to the invention can be carried out according to generally known methods.
  • An application of solutions is well suited or dispersions which contain at least one product of the formula (1), by means of Padding.
  • This treatment is conveniently carried out with an aqueous liquor carried out, which 1 to 12 wt .-%, based on the entire fleet, on one or contains several products of formula (1).
  • the fiber material normally contains the subsequent squeezing off about 1 to 6% by weight of product of the formula (1), based on the total weight of the finished fiber material.
  • the subsequent one Drying can be done in known devices, e.g. using hot air and will preferably carried out in a temperature range of 80 to 130 ° C. During the There may be a temperature gradient during the drying process.
  • reaction Simultaneously with the drying there is a reaction (crosslinking) of the product of formula (1) with cellulose.
  • This reaction is achieved by the presence of an alkaline pH.
  • a treatment with saturated steam at temperatures such. B. between 98 and 105 ° C or the combination of the treatment with hot air and the treatment with Saturated steam can be considered.
  • the crosslinking with the OH groups of the cellulose is thus achieved by the presence alkaline compounds.
  • alkaline compounds of formula (1) e.g. B. metal salts of water-soluble Compounds of formula (1)
  • the addition of other is recommended alkaline connections to the treatment liquors.
  • sodium hydroxide and Potassium hydroxide is well suited for this.
  • this Alkaline compounds can be the inventive Carry out the procedure in two stages. This is done, for example, by looking in the first stage, a first aqueous treatment liquor is applied to the fiber materials which contains a product of formula (1) and has a pH at which this liquor has high stability, e.g.
  • This first aqueous treatment liquor may contain other products such as reactive dyes. Applying this first Treatment liquor can be done by padding. After squeezing it will Dried fiber material.
  • a second aqueous treatment liquor applied which the amount required for crosslinking with cellulose contains alkaline compound.
  • This alkaline compound is preferably sodium hydroxide or potassium hydroxide. After the second liquor has been applied, drying is carried out, for example at 80 up to 130 ° C, where the crosslinking takes place.
  • the second treatment fleet can be, for example aqueous sodium hydroxide or potassium hydroxide solution of relatively high concentration, e.g. between 30 and 60% by weight.
  • the fiber materials treated by the process according to the invention stand out due to good finishing effects, especially easy care, dimensional stability and Freedom from shrinking.
  • the compounds used in the process according to the invention can be apply in different ways to the fiber material and fix it on the fiber, especially in the form of aqueous solutions, preferably using the exhaust method.
  • the treated fiber materials are cold and hot Water, optionally with the addition of a dispersing and the diffusion of non-fixed portions of the agent thoroughly rinsed.
  • the compounds of formula (1) containing a water solubilizing group such as. B. a sulfo or sulfato group, are either in the form of their free acid or preferably as their salts such as. B. the alkali, alkaline earth or ammonium salts or as Salts of an organic amine. Examples include sodium, potassium, lithium or Ammonium salts or the salt of triethanolamine called.
  • the compounds of formula (1) are known or can be used in analogy to known ones Connections are made. So the compounds of formula (1) z. B. Reactive dye precursors as they are or can be known from WO 96/00399 can be produced analogously.
  • the amounts in which the compounds of Formula (1) in the treatment baths, in particular in the dye baths together with Dyes, preferably reactive dyes, are used in a wide range fluctuate, generally there are quantities from 0.01 to 20 percent by weight, in particular 0.1 to 15 percent by weight, based on the fiber material, as advantageous proven.
  • the process according to the invention is preferably carried out before or during dyeing, but especially applied after the production of the cellulose fiber.
  • Treatment according to the exhaust method is preferred for the method according to the invention. It is usually carried out in an aqueous medium with a liquor ratio of for example 1: 2 to 1:60, in particular 1: 5 to 1:20. This is where the treatment takes place for example at a temperature of 20 to 100 ° C, in particular 40 to 90 ° C, and preferably 55 to 80 ° C.
  • a particularly preferred embodiment of the method according to the invention is characterized in that the crosslinking of the cellulose-containing fiber materials along with the coloring.
  • the compounds of formula (1) used are characterized by high reactivity, good Fixing ability and a very good building ability. You can therefore after Pull-out dyeing processes can be used at low dyeing temperatures. The degrees of fixation are high and the unfixed portions can be easily washed out, the Difference between degree of extension and degree of fixation remarkably small, i.e. the soap loss is very low.
  • Example 1 10 g of viscose fabric is clamped at 50 ° C. in a pull-out dyeing machine with 100 ml of a liquor containing 8 g of Glauber's salt and 1 g of the colorless compound of the formula (100) according to Table 1. After 10 minutes of agitation at 50 ° C, 2 g of anhydrous sodium carbonate are added in two portions. The viscose fabric is kept in motion for a further 20 minutes. The liquor is heated to 60 ° C. and 0.2 ml of 30% sodium hydroxide solution are added. After 20 minutes, the bath is drained and the viscose fabric is rinsed cold, washed to the boil and rinsed again cold, and then dried. A viscose fabric with higher dimensional stability and higher wet abrasion resistance is obtained.
  • Example 2 10 g of viscose fabric is at 50 ° C. in a pull-out dyeing apparatus with 100 ml of a liquor containing 8 g of Glauber's salt, 1 g of the colorless compound of the formula (100) according to Table 1 and 0.1 g of the dye of the formula (200) according to table 2, clamped. After 20 minutes of agitation at 50 ° C, 2 g of anhydrous sodium carbonate are added in two portions. The viscose fabric is kept in motion for a further 10 minutes. The liquor is heated to 60 ° C. and 0.2 ml of 30% sodium hydroxide solution are added.
  • Example 1 When in Example 1 the compound of formula (100) is replaced by another of the ones in Table 1 specified compounds replaced, you also get a viscose fabric with the specified advantageous properties.
  • Example 2 If in Example 2 the dye of formula (200) is replaced by the dye of formula (201) replaced, you get a red-colored viscose fabric with the specified advantageous properties.
  • Example 2 If the compound of formula (100) in Example 2 is replaced by another of the compounds shown in Table 1, a viscose fabric with the advantageous properties indicated is also obtained.
  • cyanuric chloride 18.5 g are introduced into a mixture consisting of 100 g of finely ground ice and 50 ml of water, which contains 0.6 g of a commercially available surfactant, and wetted for 15 minutes. Then, with thorough stirring, 6.1 g of ethanolamine are added dropwise in such a way that the pH of the mixture is kept at about 8. After the addition of ethanolamine has ended, about 8 g of a 50% strength aqueous solution of NaOH are then added dropwise in such a way that the pH can be maintained at 8. The resulting fine suspension is filtered off and dried. 15.5 g of a white powdery compound of the formula are obtained
  • Example 5 10 g of viscose fabric is clamped at 50 ° C. in a pull-out dyeing machine with 100 ml of a liquor containing 8 g of Glauber's salt, 1 g of the first compound in Table 3 and 0.1 g of the dye of the formula (200) according to Table 2 . After 20 minutes of agitation at 50 ° C, 2 g of anhydrous sodium carbonate are added in two portions. The viscose fabric is kept in motion for a further 10 minutes. The liquor is heated to 60 ° C. and 0.2 ml of 30% sodium hydroxide solution are added. After 20 minutes, the bath is drained and the viscose fabric is rinsed cold, washed to the boil and rinsed again cold, and then dried. A navy-blue colored viscose fabric with higher dimensional stability and higher wet abrasion resistance is obtained.
  • Example 6 An aqueous suspension containing 85 g per liter of the colorless compound of the formula (100) is mixed in equal parts by volume with an aqueous alkaline solution containing 140 ml of 38 ° Bé water glass and 20 g of sodium hydroxide per liter and then immediately after a cotton fabric is lined up, the liquor absorption being 70 to 75%.
  • the fabric treated in this way is then immediately treated with hot air at 110 ° C. for 5 minutes, the alkali is removed by rinsing with cold and warm water, and the fabric is then dried again. A fabric with significantly improved creasing properties is obtained.
  • EXAMPLE 7 An aqueous suspension containing 85 g per liter of the colorless compound of the formula (100) is mixed in equal parts by volume with an aqueous alkaline solution containing 60 g of calcined sodium carbonate per liter and then immediately blotted onto a cotton fabric. the fleet absorption is 70 to 75%. The tissue treated in this way is then immediately dried with hot air at 130 ° C. for 2 minutes, treated with saturated steam at 102 ° C. for 8 minutes, the alkali is removed by rinsing with cold and warm water, and the tissue is then dried again. A fabric with significantly improved creasing properties is obtained.

Abstract

Das Verfahren zur Vernetzung von cellulosehaltigen Fasermaterialien, insbesondere solche Fasermaterialien, welche zu 20 bis 100 Gew.-% aus natürlichen oder regenerierten Cellulosefasern bestehen, ist dadurch gekennzeichnet, dass auf die cellulosehaltigen Fasermaterialien, wobei die Cellulosefasern aus natürlicher oder regenerierter Cellulose bestehen, mindestens ein Produkt der allgemeinen Formel (1) aufgebracht wird, <IMAGE> worin A ein farbloser aliphatischer, aromatischer oder heteroaromatischer Rest, R ein faserreaktiver Rest, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass der Rest [R]n mindestens zwei faserreaktiv wirkende Gruppen enthält, eignet sich um Hochveredlungseffekte z. B. im Bereich Pflegeleichtheit, Dimensionsstabilität und Schrumpffreiheit zu erreichen.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Vernetzung von cellulosehaltigen Fasermaterialien. Durch die Vernetzung der cellulosehaltigen Fasermaterialien werden Hochveredlungseffekte, z. B. im Bereich Knitterfreiheit, Pflegeleichtheit, Dimensionsstabilität und Schrumpffreiheit, erreicht.
Es ist bekannt, Fasermaterialien, wie Textilien, welche Cellulosefasern enthalten oder aus Cellulosefasern bestehen, mit Produkten zu behandeln, die Hochveredlungseffekte, wie z.B. Krumpf- und Knitterfesteigenschaften verleihen. Hierfür werden z. B. Produkte verwendet, die sich durch Addition von Formaldehyd an Amidgruppen erhalten lassen. Diese N-Methylolverbindungen enthalten im Normalfall noch Reste an freiem Formaldehyd, und sie spalten bei thermischer Behandlung in gewissem Ausmass Formaldehyd ab, was zu Geruchsbelästigungen und Unverträglichkeit führen kann. Diesen Nachteil der N-Methylolverbindungen kann man vermindern oder umgehen, indem man formaldehydarme oder formaldehydfreie Produkte als Vernetzer für Cellulose einsetzt. Hierfür kommen Produkte in Frage, deren N-Methylolgruppen verethert sind oder Produkte, welche überhaupt keine -N-CH2-O-Gruppierungen enthalten. Ein Beispiel für die zuletzt genannte Klasse von Verbindungen sind N,N'-Dialkyl-4,5-dihydroxiimidazolidinone (N,N'-Dialkyl-dihydroxyethylenharnstoffe), die sich durch Umsetzung von N,N'-Dialkylharnstoffen mit Glyoxal erhalten lassen. Auch Veretherungsprodukte der zuletzt genannten Verbindungen mit mehrwertigen Alkoholen sind als Vernetzer für cellulosische Materialien bekannt.
Der Nachteil bisher bekannter formaldehydfreier Cellulosevernetzer besteht darin, dass nicht in allen Fällen das gewünschte Effektniveau erreicht wird. Daneben erfordern bekannte Produkte für ausreichende Vernetzungsreaktion mit Cellulose in der Regel Temperaturen von ca. 160°C oder höher, was unerwünscht ist. Bisher bekannte formaldehydfreie Vernetzer erfordern ausserdem relativ hohe oder sehr hohe Einsatzmengen und Auflagen und führen häufig zu unerwünschter Vergilbung der behandelten Fasermaterialien.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Vernetzung von cellulosehaltigen Fasermaterialien zu entwickeln, um z.B. hochwirksame formaldehydfreie Ausrüstung von Fasermaterialien zu erreichen, welches die beschriebenen Nachteile nicht aufweist. Das Verfahren sollte es ermöglichen, die Reaktion des Vernetzers mit der Cellulose (Kondensation) bei verhältnismässig niedrigen Temperaturen, d. h. Temperaturen von weniger als 150°C durchzuführen, und sollte zu einem höheren Niveau des Knitterfest-bzw. Pflegeleichteffekts führen als dies mit bekannten formaldehydfreien Vernetzern bisher möglich ist.
Die Aufgabe wird gelöst durch ein Verfahren zur Vernetzung von cellulosehaltigen Fasermaterialien, insbesondere solche Fasermaterialien, welche zu 20 bis 100 Gew.-% aus natürlichen oder regenerierten Cellulosefasern bestehen, welches dadurch gekennzeichnet ist, dass auf die cellulosehaltigen Fasermaterialien, wobei die Cellulosefasern aus natürlicher oder regenerierter Cellulose bestehen, mindestens ein Produkt der allgemeinen Formel (1) aufgebracht wird,
Figure 00020001
worin A ein farbloser aliphatischer, aromatischer oder heteroaromatischer Rest, R ein faserreaktiver Rest, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass der Rest [R]n mindestens zwei faserreaktiv wirkende Gruppen enthält.
Vorzugsweise ist A ein aromatischer Rest, der unsubstituiert oder durch C1-C4-Alkyl, wie z.B. Methyl oder Aethyl, C1-C4-Alkoxy, wie z.B. Methoxy oder Aethoxy, Halogen, wie z.B. Fluor, Brom oder insbesondere Chlor, Carboxy oder vorzugsweise eine oder mehrere wasserlöslichmachende Gruppen substituiert sein kann. Als wasserlöslichmachende Gruppen kommen insbesondere Sulfogruppen (-SO3H) in Betracht. Ein aromatischer Rest A ist vorzugsweise ein Benzolrest, der durch ein oder zwei Sulfogruppen substituiert sein kann. Der aromatische Rest A kann vorzugsweise auch frei von wasserlöslichmachenden Gruppen sein, wenn mindestens einer der Reste R eine wasserlöslichmachende Gruppe, wie z.B. eine Sulfatogruppe, enthält.
Als aliphatischer Rest kommt für A z.B. ein gegebenenfalls durch ein oder mehrere Heteroatome, wie z. B. das Sauerstoffatom, unterbrochener C1-C18-Alkylrest, vorzugsweise ein C2-C12-Alkylrest in Betracht, der durch ein oder mehrere wasserlöslichmachende Gruppen substituiert sein kann. Als wasserlöslichmachende Gruppen kommen z.B. Sulfogruppen oder Hydroxygruppen in Betracht.
Der Rest A als heteroaromatischer Rest ist beispielsweise ein Morpholino-, Pyrimidin- oder Triazin-rest, der gegebenenfalls substituiert sein kann, z.B. durch Halogen.
Unter einem faserreaktiven Rest sind Reste zu verstehen, die mit den Hydroxygruppen der Cellulose, den Amino-, Carboxy-, Hydroxy- und Thiolgruppen bei Wolle und Seide, oder mit den Amino- und eventuell Carboxygruppen von synthetischen Polyamiden unter Bildung kovalenter chemischer Bindungen zu reagieren vermögen. Die Reaktivgruppen sind in der Regel direkt oder über ein Brückenglied an den farblosen Rest A gebunden. Geeignete Reaktivgruppen sind beispielsweise solche, die mindestens einen abspaltbaren Substituenten an einem aliphatischen, aromatischen oder heterocyclischen Rest enthalten oder worin die genannten Reste einen zur Reaktion mit dem Fasermaterial geeigneten Rest, wie z.B. einen Triazinrest, enthalten.
Unter einer Reaktivgruppe sind beispielsweise solche durch ein abspaltbares Atom oder eine abspaltbare Gruppe substituierte carbo- oder heterocyclische 4-, 5- oder 6-Ringe enthaltende Reste zu verstehen. Als heterocyclische Reste kommen z.B. solche in Betracht, welche mindestens einen abspaltbaren Substituenten an einen heterocyclischen Rest gebunden enthalten; unter anderem solche, die mindestens einen reaktiven Substituenten an einen 5- oder 6-gliedrigen heterocyclischen Ring gebunden enthalten, wie an einen Monoazin-, Diazin-, Triazin-, Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Thiazin-, Oxazin- oder asymmetrischen oder symmetrischen Triazinring. Des weiteren können die genannten heterocyclischen faserreaktiven Reste über eine direkte Bindung oder über ein Brückenglied weitere faserreaktive Reste, wie z.B. die angeführten Reste, enthalten.
Als Reaktivgruppen kommen ferner solche in Betracht, die mindestens eine aktivierte ungesättigte Gruppe, insbesondere eine ungesättigte aliphatische Gruppe, wie z.B. die Vinyl-, Halogenvinyl-, Styryl-, Acryl- oder Methacrylgruppe, oder mindestens ein polymerisierbares Ringsystem aufweisen. Als solche Gruppen seien z.B. die Halogenatome enthaltenden ungesättigten Gruppen genannt, wie Halogenmaleinsäure- und Halogenpropiolsäurereste, die α- oder β-Brom- oder Chloracrylgruppen, halogenierte Vinylcetylgruppen, Halogencrotonyl- oder Halogenmethacrylgruppen. Weiterhin kommen auch solche Gruppen in Betracht, die leicht, z.B. durch Abspaltung von Halogenwasserstoff, in halogenhaltige ungesättigte Gruppen übergehen, z.B. die Dichlor- oder Dibrompropionylgruppe. Unter Halogenatomen sind hier Fluor-, Chlor-, Brom- und Jodatome als auch Pseudohalogenatome, wie z.B. die Cyangruppe zu verstehen. Gute Resultate werden nach den erfindungsgemässen Verfahren mit Verbindungen erzielt, welche eine α-Bromacrylgruppe enthalten. Als Verbindungen, die eine polymerisierbare Doppelbindung enthalten, kommen vorzugsweise solche in Betracht, die mindestens einen Acryloyl-, Methacryloyl-, α-Bromcryloyl-, α-Chloracryloyl-, Vinyl- oder Vinylsulfonylrest enthalten; ganz besonders bevorzugt jene, die mindestens einen Acryloyl-, α-Bromacryloyl- oder Vinylsulfonylrest enthalten.
Weitere abspaltbare Atome bzw. abspaltbare Gruppen sind beispielsweise Ammonium einschliesslich Hydrazinium, Sulfato, Thiosulfato, Phosphato, Acetoxy, Propionoxy oder Carboxypyridinium.
In Formel (1) sind die ein bis zu vier Reaktivreste nicht notwendigerweise alle an den Rest A gebunden, sondern es können auch zwei oder drei Reaktivreste direkt oder über Brückenglieder miteinander verbunden sein.
Als Brückenglied zwischen dem farblosen Rest A und dem faserreaktiven Rest oder als Brückenglied zwischen zwei oder drei faserreaktiven Resten kommen neben der direkten Bindung die verschiedensten Reste in Betracht. Das Brückenglied ist z.B. ein aliphatischer, aromatischer oder heterocyclischer Rest; ferner kann das Brückenglied auch aus verschiedenen derartigen Resten zusammengesetzt sein. Das Brückenglied kann mindestens eine funktionelle Gruppe enthalten, z.B. die Carbonylgruppe oder die Aminogruppe, wobei die Aminogruppe durch gegebenenfalls durch Halogen, Hydroxy, Cyan, C1-C4-Akoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiertes C1-C4-Alkyl weitersubstituiert sein kann. Als aliphatischer Rest kommt z.B. ein Alkylenrest mit 1 bis 7 Kohlenstoffatomen oder dessen verzweigte Isomere in Betracht. Die Kohlenstoffkette des Alkylenrestes kann durch ein Heteroatom, wie z.B. ein Sauerstoffatom, unterbrochen sein. Als aromatischer Rest kommt z.B. ein Phenylrest, der durch C1-C4-Alkyl, wie z.B. Methyl oder Aethyl, C1-C4-Alkoxy, wie z.B. Methoxy oder Aethoxy, Halogen, wie z.B. Fluor, Brom oder insbesondere Chlor, Carboxy oder Sulfo substituiert sein kann, und als heterocyclischer Rest z.B. ein Piperazinrest in Betracht. Beispiele für solche Brückenglieder sind die folgenden Reste: -CO-N(R1)-(CH2)2-3-; -CO-N(R1)-(CH2)2-O-(CH2)2-; -N(R1)-CO-(CH2)3-; -N(R1)-; -N (R1)-(CH2)2-O-(CH2)2-; -O-(CH2)2-;-CH2-N(R1)-;
Figure 00050001
Figure 00050002
In den oben angegebenen Formeln bedeutet R1 Wasserstoff oder C1-C4-Alkyl, welches durch Halogen, Hydroxy, Cyan, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiert sein kann.
Die Reste A und [R]n in Formel (1) sind vorzugsweise über eines die Aminogruppe -N(R1)-enthaltendes Brückenglied, besonders bevorzugt über das Brückenglied -N(R1)-, miteinander verbunden, wobei R1 die angegebene Bedeutung hat.
Die Bedingung, dass der Rest [R]n mindestens zwei faserreaktiv wirkende Gruppen enthält, bedeutet, dass die Verbindung der Formel (1) mindestens zwei der genannten faserreaktiven Gruppen enthält, wie z.B. für n=1 der Dichlor- oder Difluortriazinrest, der zwei abspaltbare Halogenatome besitzt, die beide mit der Cellulosefaser reagieren können, oder z. B. für n=2 ein 4-Monochlor- oder 4-Monofluortriazin-2-yl-rest, der in 6 Stellung eine direkt oder über ein Brückenglied gebundene faserreaktive Gruppe, z.B. eine Vinylsulfonylgruppe, enthält.
Wichtig sind Reaktivreste R, die ein oder zwei Fluor- oder Chlortriazingruppen und gegebenenfalls eine aliphatische Reaktivgruppe, insbesondere vom Vinylsulfonyltyp enthalten, oder die zwei Vinylsulfonyl-Reaktivreste enthalten. Wichtige Verbindungen der Formel (1) enthalten als farblosen Rest A einen unsubstituierten oder durch eine Sulfogruppe substituierten Benzolrest und als faserreaktiven Rest R eine oder zwei über ein Brückenglied gebundene Fluor- oder Chlortriazingruppen, die über ein Brückenglied einen weiteren Reaktivrest, insbesondere einen Vinylsulfonylrest, enthalten. Weitere wichtige Verbindungen der Formel (1) enthalten als farblosen Rest A einen unsubstituierten oder durch eine Sulfogruppe substituierten Benzolrest und als faserreaktiven Rest R zwei direkt oder über ein Brückenglied gebundene Vinylsulfonylreste.
Interessante Reaktivgruppen sind 1,3,5-Triazinreste der Formel
Figure 00060001
worin T1 Fluor, Chlor oder Carboxypyridinium ist und wobei als Substituenten V1 am Triazinring insbesondere zu nennen sind: Fluor, Chlor, -NH2, ein C1-C6-Alkylamino-, N,N-Di-C1-C6-Alkylamino-, Cyclohexylamino-, N,N-Dicyclohexylamino-, Benzylamino-, Phenäthylamino-, Phenylamino-, Naphthylamino-, N-C1-C6-Alkyl-N-cyclohexylamino- oder N-C1-C6-Alkyl-N-phenylaminorest, oder Morpholino, Piperidino, Piperazino, Hydrazino oder Semicarbazido, oder eine durch einen Furan-, Thiophen-, Pyrazol-, Pyridin-, Pyrimidin-, Chinolin-, Benzimidazol-, Benzthiazol- oder Benzoxazolrest substituierte Aminogruppe. Die genannten Alkyl-, Cycloalkyl-, Aralkyl- und Arylreste sowie die heterocyclischen Reste können weitersubstituiert sein, z.B. durch C1-C4-Alkyl, wie z.B. Methyl oder Aethyl, C1-C4-Alkoxy, wie z.B. Methoxy oder Aethoxy, Halogen, wie z.B. Fluor, Brom oder insbesondere Chlor, Carboxy oder Sulfo. Die oben angegebene Bedingung, dass der Rest [R]n mindestens zwei faserreaktiv wirkende Gruppen enthält, bedeutet für den Fall n=1 und R ein Rest der Formel (2), dass V1 Fluor oder Chlor ist.
Besonders bevorzugt ist V1 im Rest der Formel (2) Fluor, Chlor, Phenylamino oder N-C1-C4-Alkyl-N-phenylamino, wobei die Phenylringe gegebenenfalls durch Halogen, wie Fluor, Chlor oder Brom, Nitro, Cyan, Trifluormethyl, Sulfamoyl, Carbamoyl, C1-C4-Alkyl, C1-C4-Alkoxy, Acylaminogruppen, wie Acetylamino oder Benzoylamino, Ureido, Hydroxy, Carboxy, Sulfomethyl oder insbesondere Sulfo substituiert sind.
Interessante faserreaktive Reste sind z. B. auch solche der Formel
Figure 00070001
worin T2 und T3 unabhängig voneinander Fluor, Chlor oder Carboxypyridinium sind und B ein Brückenglied ist.
Als Brückenglied B in Formel (2') kommt beispielsweise ein Rest der Formel
Figure 00070002
in Betracht, worin R1' und R1" unabhängig voneinander Wasserstoff oder gegebenenfalls durch Halogen, Hydroxy, Cyan, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiertes C1-C4-Alkyl sind und X ein gegebenenfalls durch Hydroxy, Sulfo, Sulfato, C1-C4-Alkoxy, Carboxy oder Halogen substituierter C2-C6-Alkylen- oder C5-C9-Cycloalkylenrest oder ein gegebenenfalls durch C1-C4-Alkyl, C1-C4-Alkoxy, Sulfo, Halogen oder Carboxy substituierter Phenylen-, Biphenylen- oder Naphthylenrest ist.
Weitere interessante Reaktivgruppen sind solche der Formel
Figure 00070003
worin T4 Fluor, Chlor oder Carboxypyridinium ist und
V2 ein Rest der Formel
Figure 00070004
ist, worin R1 Wasserstoff oder C1-C4-Alkyl, das durch Halogen, Hydroxy, Cyan, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiert sein kann; B1 die direkte Bindung oder ein Rest
Figure 00080001
m=1, 2, 3, 4, 5 oder 6; und R' ein Rest der Formel
Figure 00080002
Figure 00080003
Figure 00080004
Figure 00080005
Figure 00080006
Figure 00080007
oder
Figure 00080008
ist, worin R" Wasserstoff oder C1-C6-Alkyl ist, alk einen Alkylenrest mit 1 bis 7 Kohlenstoffatomen darstellt, T Wasserstoff, Halogen, Hydroxy, Sulfato, Carboxy, Cyano, C1-C4-Alkanoyloxy, C1-C4-Alkoxycarbonyl, Carbamoyl oder einen Rest -SO2-Z bedeutet, V Wasserstoff, gegebenenfalls substituiertes C1-C4-Alkyl oder ein Rest der Formel
Figure 00080009
ist, worin (alk) die zuvor angegebene Bedeutung hat, alk' unabhängig voneinander Polymethylenreste mit 2 bis 6 C-Atomen bedeutet, Z β-Sulfatoethyl, β-Thiosulfatoethyl, β-Phosphatoethyl, β-Acyloxyethyl, β-Halogenethyl oder Vinyl bedeutet, r und t unabhängig voneinander je die Zahl 1, 2, 3, 4, 5 oder 6 bedeuten und s die Zahl 2, 3, 4, 5 oder 6 ist; und der Benzolring in Formel (4) weitere Substituenten enthalten kann; oder worin V2 ein direkt an den Triazinring gebundener Rest der Formel (4a), (4b), (4c), (4d), (4e), (4f) oder (4g) ist, worin R', T, alk, V, alk', Z, p, q, r, s und t die angegebenen Bedeutungen haben; oder worin V2 ein Rest der Formel
Figure 00090001
ist, worin R1 und Z die oben angegebenen Bedeutungen haben und der Benzolring weitersubstituiert sein kann.
Als weitere mögliche Substituenten der Benzolringe der Verbindungen der Formeln (4) und (4') seien Halogen, wie Fluor, Chlor oder Brom, Nitro, Cyan, Trifluormethyl, Sulfamoyl, Carbamoyl, C1-C4-Alkyl, C1-C4-Alkoxy, Acylaminogruppen, wie Acetylamino oder Benzoylamino, Ureido, Hydroxy, Carboxy, Sulfomethyl und Sulfo genannt.
Der Rest B1 enthält 1 bis 6, vorzugsweise 1 bis 4 Kohlenstoffatome. Beispiele für B1 sind: Methylen, Ethylen, Propylen, Butylen, Methylenoxy, Ethylenoxy, Propylenoxy und Butylenoxy. Falls B1 einen Rest
Figure 00090002
darstellt, ist B1 durch das Sauerstoffatom an den Benzolring gebunden. Vorzugsweise ist B1 die direkte Bindung.
Als β-Halogenethyl kommt für Z insbesondere der β-Chlorethylrest und als β-Acyloxyethyl insbesondere der β-Acetoxyethylrest in Betracht. Der Alkylenrest alk ist vorzugsweise Methylen, Ethylen, Methylmethylen, Propylen oder Butylen. Der Substituent T ist als Alkanoyloxyrest insbesondere Acetyloxy, Propionyloxy oder Butyryloxy, und als Alkoxycarbonylrest insbesondere Methoxycarbonyl, Ethoxycarbonyl oder Propyloxycarbonyl. Falls V ein Alkylrest ist, kann dieser Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl oder tert-Butyl sein. Der Rest R" ist beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl oder Hexyl, oder vorzugsweise Wasserstoff. Die Polymethylenreste alk' sind vorzugsweise Ethylen, Propylen oder Butylen. Der Index t ist vorzugsweise 2, 3 oder 4. Die Indizes r und s sind unabhängig voneinander vorzugsweise 2.
Bevorzugte Reste V2 sind solche der Formel (4), worin B1 die direkte Bindung und R ein Rest der Formel (4a) ist, oder worin V2 ein direkt an den Triazinring gebundener Rest der Formel (4b), (4c) oder (4f) ist, oder worin V2 ein Rest der Formel (4') ist.
Ebenfalls interessant sind Reaktivgruppen der Formeln
Figure 00100001
Figure 00100002
Figure 00100003
und
Figure 00100004
worin R1 die oben angegebene Bedeutung hat und X1 und X2 Chlor, oder X1 Chlor und X2 Fluor sind, mit der Bedingung, dass der Rest [R]n in Formel (1) mindestens zwei faserreaktiv wirkende Gruppen enthält.
Als aliphatische Reaktivgruppen sind solche der Formeln -SO2Z -SO2-NH-Z -NH-CO-(CH2)3-SO2Z -CO-NH-CH2CH2-SO2Z und -NH-CO-Z1 worin Z die oben angegebenen Bedeutungen hat, Z1 die Bedeutungen von Z hat und zusätzlich Halogenmethyl oder α,β-Dihalogenethyl sein kann, bevorzugt.
Für Z1 kommen als Halogen in den Halogenmethyl-, β-Halogenethyl-, und α,β-Dihalogenethylgruppen insbesondere Chlor und Brom in Betracht.
Besonders bevorzugte aliphatische Reaktivgruppen sind solche der Formel (5a), sowie ferner solche der Formeln (5c) und (5d). Für diese Reste ist Z insbesondere β-Sulfatoethyl oder β-Halogenethyl.
Bevorzugt sind Verbindungen der Formel (1a)
Figure 00110001
worin Q den Rest C-Y oder insbesondere ein Stickstoffatom bedeutet, Y Chlor, V3 und W3, unabhängig voneinander, je Fluor, Chlor, R2-X2'-, R3-X3'-, Hydroxy, R2 und R3, unabhängig voneinander, je ein farbloser aliphatischer, insbesondere ein gegebenenfalls durch Sauerstoffatome unterbrochener C1-C8-Alkylrest, ein aromatischer, insbesondere ein gegebenenfalls durch C1-C4-Alkyl, C1-C4-Alkoxy, Halogen oder Sulfo substituierter Phenylrest, oder heteroaromatischer Rest, X1', X2' und X3', unabhängig voneinander, je -S-, -N(R4)-, -NH-CO-Phen-NH- oder -NH-CO-Phen-CO-NH-, R4 Wasserstoff, C1-C5-Alkyl, C5-C6-Cycloalkyl oder Phenyl, Phen eine unsubstituierte oder substituierte Phenylengruppe, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass der Rest [R]n in Formel (1) mindestens zwei faserreaktiv wirkende Gruppen enthält. Der Rest A in Formel (1a) hat die unter Formel (1) angegebenen Bedeutung.
Bevorzugte Verbindungen der Formel (1a), worin A ein aliphatischer Rest ist, entsprechen z.B. der Formel
Figure 00120001
worin X4 -NR5- oder -S- ist, A1 einen aliphatischer Rest mit 1 bis 18 C-Atomen, der frei von Sulfogruppen ist, bedeutet, und R5 Wasserstoff oder C1-C4-Alkyl ist oder die Bedeutung von A1 unabhängig von A1 hat.
A1 als aliphatischer Rest mit 1 bis 18 C-Atomen ist z.B. ein C1-C18-Alkylrest, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, iso-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Heptadecyl oder Octadecyl, wobei der Alkylrest substituiert sein kann, z.B. durch Hydroxy oder Alkoxy, und wobei die Alkylkette ein oder mehrfach unterbrochen sein kann, wie z.B. durch Sauerstoff, Schwefel, Amino-, Carbonamido-, Aminocarbonyl-, Ureido-, Sulfonamido-, Aminosulfonyl-, Carboxy-, und Carbonyloxy-.
R5 als C1-C4-Alkyl ist Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl oder iso-Butyl.
Vorzugsweise ist A1 ein lineares oder verzweigtes C1-C18-Alkyl, insbesondere ein C1-C8-Alkyl, das mit -OR6 substituiert ist, wobei die Alkylkette mit einem oder mehreren Resten -Q- unterbrochen sein kann, oder ein lineares oder verzweigtes C1-C18-Alkyl, insbesondere ein C1-C8-Alkyl, wobei die Alkylkette mit einem oder mehreren Resten -Q1- unterbrochen ist, worin -Q1- -O-, -S-, -NR7-, -CONR7-, -NR7CO-, -NR7-CO-NR7-, -SO2NR7-, -NR7SO2-, -COO-, -OCO-, -NR7COO- oder -OCOO- ist, R6 Wasserstoff oder C1-C4-Alkyl und R7 Wasserstoff oder C1-C4-Alkyl ist.
C1-C18-Alkyl, bzw. C1-C8-Alkyl als A1 kann gegebenenfalls ein- oder mehrfach z.B. durch Carboxy, Carbonamido oder Sulfonamido weitersubstituiert sein.
Als X4 ist -NR5- bevorzugt.
Als R5 ist Methyl und insbesondere Wasserstoff bevorzugt.
R6 als C1-C4-Alkyl ist Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl oder iso-Butyl.
R7 als C1-C4-Alkyl sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, oder iso-Butyl.
Als R6 ist Methyl und insbesondere Wasserstoff bevorzugt.
Als R7 ist Wasserstoff bevorzugt.
Als -Q1- ist -O-, -S- und -NH- bevorzugt.
Für das erfindungsgemässe Verfahren sind vom besonderen Interesse die Verbindungen der Formel (6), worin -X4-A1 für folgende Reste steht: -NHCH2CH2SCH2CH2OH, -NHCH2CH2CONHCH2CH2OH, -NHCH2CH2CH2CONHCH2CH2OH, -NHCH2CONHCH2CH2CH2OH, -NHCH2CONHCH2CH2CH2OH, -NHCH2CON(CH2CH2OH)2, -NHCH2CH2NHCOCH2CH2CH2OH, -NHCH2CH2CH2NHCOCH2CH2CH2OH, -NHCH2CH2CH2CONHCH2CH2CH2OH.
Besonders wichtig für das erfindungsgemässe Verfahren sind die Verbindungen der Formeln
Figure 00130001
Figure 00130002
Figure 00130003
Figure 00140001
Figure 00140002
Figure 00140003
Figure 00140004
Figure 00140005
Figure 00140006
Figure 00140007
Figure 00150001
Figure 00150002
Figure 00150003
Figure 00150004
Ganz besonders wichtig für das erfindungsgemässe Verfahren sind die Verbindungen der Formeln (6f) und (6g).
Die Herstellung der in dem erfindungsgemässen Verfahren verwendeten Verbindungen der Formel (6), geschieht nach an sich bekannten Methoden, indem man z.B. ein Trichlortriazin der Formel
Figure 00150005
mit äquimolarer Menge einer Verbindung der Formel HX4-A1 worin X4 und A1 die unter der Formel (6) angegebene Bedeutung hat, umsetzt und das entstehende Endprodukt der Formel (6) isoliert.
Die Herstellung der neuen Verbindungen der Formeln (6a) bis (6n) geschieht in analoger Weise, indem man ein Trichlortriazin der Formel (7) z.B. mit einem Amin der Formel NH2-CH2CH2OCH2CH2OH NH2-CH2CH(OH)CH2OH NH2-CH2CH2CON(CH2CH2OH)2 NH2-CH2CH2CH2CONHCH2CH2CH2OH NH2-CH2CH2NHCONHCH2CH2OH NH2-CH2CH2CH2SO2NHCH2CH2CH2OH NH2-CH2CH2NHSO2CH2CH2CH2OH oder NH2-CH2CH2NHSO2CH2CH2CH2CH2OH umsetzt.
Die Amine der Formeln (8a) bis (8h) sind z.T. bekannt oder können nach an sich bekannten Methoden hergestellt werden.
Ganz besonders bevorzugt enthalten die Verbindungen der Formel (1) mindestens eine Reaktivgruppe der Formeln (2), (2'), (3), (4i) bis (4l), (5a) bis (5e) und (6), wobei für A, A1 R1, T1, T2, T3, T4, V1, V2, B, X1, X2, X4, Z und Z1 die oben angegebenen Bedeutungen und Bevorzugungen gelten. Besonders interessant sind die Verbindungen der Formel (1), welche mindestens eine Reaktivgruppe der Formeln (2), (2'), (3), (4i) bis (4l) und (5a) bis (5e) enthalten, wobei für R1, T1, T2, T3, T4, V1, V2, B, X1, X2, Z und Z1 die oben angegebenen Bedeutungen und Bevorzugungen gelten.
Ganz besonders bevorzugt sind ferner Verbindungen der Formel (1b)
Figure 00170001
worin T5 Fluor oder insbesondere Chlor, und R1 Wasserstoff, Methyl oder Aethyl ist.
Weitere in dem erfindungsgemässen Verfahren bevorzugte Verbindungen entsprechen der Formel (1c)
Figure 00170002
worin T5 und R1 die unter Formel (1b) angegebenen Bedeutungen haben. Eine besonders bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man als Verbindung der Formel (1c) eine Verbindung einsetzt, worin T5 Chlor und R1 Wasserstoff ist. Insbesondere sind die beiden -NR1- Gruppen in m- oder p-Stellung an den Benzolkern gebunden.
In dem erfindungsgemässen Verfahren werden vorzugsweise Verbindungen der Formel
Figure 00170003
verwendet, worin A2 ein gegebenenfalls durch Sulfo substituierter Benzolrest, R10 ein Rest der Formel (2), (2') oder (3) ist, oder worin R10 der Rest -SO2-Z ist, wobei Z die angegebenen Bedeutung hat, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass der Rest [R10]n mindestens zwei faserreaktiv wirkende Gruppen enthält.
Weitere interessante Verbindungen, die in dem erfindungsgemässen Verfahren eingesetzt werden können, worin A ein heteroaromatischer Rest ist, entsprechen der Formel,
Figure 00180001
worin R1 und Z die unter Formel (4) bzw. (4h) angegebenen Bedeutungen haben, und Hal Halogen, vorzugsweise Chlor ist. In Formel (1e) ist Hal insbesondere Chlor, R1 bedeutet Wasserstoff und -SO2-Z ist in m- oder p-Stellung zur Aminogruppe gebunden und bedeutet den β-Sulfatoäthylsulfonyl-Rest.
Das erfindungsgemässe Verfahren ist geeignet, um Hochveredlungseffekte zu erreichen, insbesondere zur Verbesserung der Knitterfreiheit, Pflegeleichtheit, Dimensionsstabilität und Schrumpffreiheit von Fasermaterialien, welche mindestens 20 Gew.-% natürlicher oder regenerierter Cellulosefasern enthalten. Bei einem Gehalt von weniger als 20 Gew.-% ist der Effekt der Ausrüstung zu gering, um die Vorteile des Verfahrens zur Geltung kommen zu lassen. Die Fasermaterialien können Cellulosefasern im Gemisch mit anderen Fasern, insbesondere aus Polyester oder Polyamid, enthalten, oder sie können ausschliesslich aus Cellulosefasern bestehen. Als Cellulosefasern kommen sowohl natürliche Fasern wie Baumwolle als auch Fasern aus regenerierter Cellulose wie z B. Viskose (Zellwolle) in Frage. Ferner seien Modal-Faser, wie z.B. Polynosic-Fasern und Cupro-Fasern genannt. In dem erfindungsgemässen Verfahren wird keine Lyocell-Faser eingesetzt.
Geeignete Fasermaterialien, welche nach dem erfindungsgemässen Verfahren behandelt, insbesondere nachbehandelt, werden können, sind vor allem textile Gewebe oder Maschenwaren. In Betracht kommen aber auch Garne deren Reissfestigkeit mit der Anwendung des erfindungsgemässen Verfahrens erhöht werden kann. Ein wichtiges und bevorzugtes Einsatzgebiet ist die Anwendung des erfindungsgemässen Verfahrens bei Frottè-Ware. Bei der Qualitätsbeurteilung der Frotté-Ware ist die Reduktion des Fusselns von Bedeutung, des Abriebs von Fäserchen, insbesondere nach der Anwendung in Wäschetrocknern. Bei Viskose-Fasern kann mit dem erfindungsgemässen Verfahren eine Änderung der Faseroberfläche, z.B. durch den Färbeprozess, verhindert oder zumindest reduziert werden.
Das erfindungsgemässe Verfahren weist eine Reihe von Vorteilen auf: Die Fasermaterialien, auf welche die oben genannten Produkte aufgebracht worden sind, können bei 80 bis 130°C getrocknet werden, um bereits gute Pflegeleichteffekte zu erzielen. Temperaturen bis zu 150° C und mehr, wie sie im Fall der Verwendung bekannter formaldehydfreier Vernetzer erforderlich sind, müssen nicht angewandt werden. Bei dem erfindungsgemässen Verfahren lässt sich die Applikation einer Vernetzer enthaltenden alkalischen Flotte auch mittels Nassverweilverfahren durchführen. Dies bedeutet, dass nach Applikation und einem Abquetschprozess, z. B. im Rahmen einer Foulardierung, das Fasermaterial, z B. in Form eines textilen Flächengebildes, geschützt gegen Austrocknung bei Raumtemperatur gelagert und nach einer gewissen Verweilzeit von z. B. 20 Stunden mit Wasser gespült und getrocknet wird. Während der Lagerung im nassen Zustand findet hierbei mindestens teilweise Vernetzung statt.
Mit dem erfindungsgemässen Verfahren kann auch das Trocken-Pilling, insbesondere wichtig bei Möbelbezugsstoffen, reduziert werden.
Die ausgerüsteten und getrockneten Fasermaterialien besitzen nach Applikation des Vernetzers im Nassvernetzungsverfahren vielfach einen höheren Weissgrad als im Fall der Durchführung bekannter Verfahren mit Hitzefixierung. Der Verrottungsschutz der ausgerüsteten Fasermaterialien ist zudem vielfach erheblich besser als bei bekannten Verfahren. Das erfindungsgemässe Verfahren lässt sich ausserdem in vorteilhafter Weise mit anderen Prozessen kombinieren, wie z. B. mit einer Reaktivfärbung in alkalischem Medium oder anderen in alkalischem Medium durchzuführenden Prozessen. Die Kombination des erfindungsgemässen Verfahrens zusammen mit dem Färben und Fixieren von Reaktivfarbstoffen ist von grossem Vorteil. Das erfindungsgemässe Verfahren bietet ausserdem vielfach den Vorteil einer geringeren Beeinträchtigung der Lichtechtheit bei Substantiv- und Reaktivfärbungen als dies bei bekannten Verfahren der Fall ist.
Bei dem erfindungsgemässen Verfahren wird auf die Fasermaterialien, die vorzugsweise textile Gewebe oder Gewirke sind, mindestens ein Produkt der Formel (1) aufgebracht. Es können jedoch auch Gemische von mehreren unter die Formel (1) fallenden Produkten aufgebracht werden. Daneben können gleichzeitig mit einem oder mehreren Produkten der Formel (1) weitere gewünschte Produkte auf die Fasermaterialien aufgebracht werden, wie z. B. Mittel zur wasserabweisenden, ölabweisenden oder flammhemmenden Ausrüstung.
Die Applikation solcher Produktgemische kann mittels einer einzigen Behandlungsflotte, z. B. mittels Foulardierung erfolgen, wobei in der Regel die Flottenaufnahme mindestens 50%, vorzugsweise 60 bis 80%, beträgt, wenn diese Produktgemische homogene Mischungen darstellen. Besonders vorteilhaft aus ökonomischen und ökologischen Gründen ist es, das erfindungsgemässe Verfahren so durchzuführen, dass ein Produkt der Formel (1) oder ein Produktgemisch in Form einer alkalischen wässrigen Lösung oder Dispersion dieses Produkts bzw. dieser Produkte auf die Fasermaterialien aufgebracht und die Fasermaterialien anschliessend getrocknet werden. Die Trocknung erfolgt dabei vorzugsweise in einem Temperaturbereich von 80 bis 130°C, z.B. mittels Heissluft; im Bedarfsfall können jedoch auch andere Temperaturen angewandt werden, z B. bis zu 140°C. Neben dem erwähnten Zusatz anderer Produkte zur Behandlungsflotte kommt in einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens die mit einer Reaktivfärbung in einem einzigen Arbeitsgang in Frage. In diesem Fall wird der Behandlungsflotte ausser einem oder mehreren Produkten der Formel (1) sowie gegebenenfalls weiteren Produkten noch ein Reaktivfarbstoff zugesetzt. Diese bevorzugte Ausführungsform des erfindungsgemässen Verfahrens kommt vor allem für alkalische Behandlungsflotten in Frage, deren pH-Wert bei 20° C vorzugsweise in einem Bereich von 7 bis 13 liegt.
Es ist normalerweise im Hinblick auf die Stabilität der Lösungen oder Dispersionen von Vorteil, wenn die für das erfindungsgemässe Verfahren einzusetzenden Lösungen oder Dispersionen, vorzugsweise wässrigen Lösungen oder Dispersionen während ihrer Lagerung einen pH-Wert aufweisen, der nicht unter 7,0 und nicht über 10,0, in manchen Fällen nicht über 9,0 liegt. Die Einstellung oder Stabilisierung des gewünschten pH-Werts, z. B. im Bereich von 7 bis 10, kann z. B. durch Na2CO 3, K2CO3, KHCO3 oder NaHCO3 erfolgen. Erst kurze Zeit vor der Anwendung sollte diejenige Menge Alkali, z B. NaOH oder KOH zugegeben werden, die für die Behandlung der Fasermaterialien (Vernetzungsreaktion mit Cellulose) und/oder für die Reaktivfärbung erforderlich ist.
Die im alkalischen wässrigen Medium vorliegenden Metallsalze, die unter die Formel (1) fallen und für das erfindungsgemässe Verfahren geeignet sind, können Salze von einwertigen bzw. mehrwertigen Metallkationen sein. Als einwertige Metalle bzw. Metallkationen sind Natrium und Kalium besonders bevorzugt. Die Natrium-oder Kaliumsalze der wasserlöslichen Verbindungen der Formel (1) sind besonders bevorzugt. Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht somit darin, wasserlösliche Produkte der Formel (1) zu verwenden; diese wasserlöslichen Produkte sind vor allem Na- oder K- Salze, die in wässrigen Ausrüstungsflotten eingesetzt werden. Kommen nur diese Na―oder K-Salze zur Anwendung, handelt es sich hierbei vorzugsweise um alkalische wässrige Lösungen. Bei Anwesenheit weiterer Zusätze, die wasserunlöslich, aber wasserdispergierbar sind, wird das erfindungsgemässe Verfahren vorzugsweise unter Verwendung wässriger Dispersionen durchgeführt. Die für die Dispergierung solcher zusätzlicher Ausrüstungsmittel in Wasser erforderlichen Dispergatoren sind dem Fachmann bekannt. Auch die wässrigen Dispersionen, welche neben mindestens einer Verbindung der Formel (1) weitere Produkte enthalten, weisen vorzugsweise alkalische pH-Werte im Bereich von pH 7 bis 13 auf.
Das Behandeln der Fasermaterialien nach dem erfindungsgemässen Verfahren kann nach allgemein bekannten Methoden erfolgen. Gut geeignet ist eine Applikation von Lösungen oder Dispersionen, welche mindestens ein Produkt der Formel (1) enthalten, mittels Foulardierung. Diese Behandlung wird zweckmässigerweise mit einer wässrigen Flotte durchgeführt, welche 1 bis 12 Gew.-%, bezogen auf die gesamte Flotte, an einem oder mehreren Produkten der Formel (1) enthält. Im Normalfall enthält das Fasermaterial nach dem darauffolgenden Abquetschen etwa 1 bis 6 Gew.-% an Produkt der Formel (1), bezogen auf Gesamtgewicht des ausgerüsteten Fasermaterials. Die anschliessende Trocknung kann in bekannten Vorrichtungen erfolgen, z.B. mittels Heissluft und wird vorzugsweise in einem Temperaturbereich von 80 bis 130°C durchgeführt. Während des Trocknungsvorgangs kann ein Temperaturgradient vorliegen. Gleichzeitig mit der Trocknung findet eine Reaktion (Vernetzung) von Produkt der Formel (1) mit Cellulose statt. Diese Reaktion wird erreicht durch Vorliegen eines alkalischen pH-Werts. Neben der Trocknung mit Heissluft kann auch eine Behandlung mit Sattdampf bei Temperaturen z. B. zwischen 98 und 105°C bzw. die Kombination der Behandlung mit Heissluft und der Behandlung mit Sattdampf in Betracht kommen.
Die Vernetzung mit den OH-Gruppen der Cellulose wird somit erreicht durch die Anwesenheit alkalischer Verbindungen. Selbst wenn für das erfindungsgemässe Verfahren bereits alkalische Verbindungen der Formel (1), z. B. Metallsalze von wasserlöslichen Verbindungen der Formel (1) eingesetzt werden, empfiehlt sich der Zusatz weiterer alkalischer Verbindungen zu den Behandlungsflotten. Insbesondere Natriumhydroxid und Kaliumhydroxid sind hierfür gut geeignet. An Stelle der zusätzlichen Zugabe dieser alkalischen Verbindungen zu den Behandlungsflotten lässt sich das erfindungsgemässe Verfahren auch zweistufig durchführen. Dies geschieht beispielsweise, indem man in der ersten Stufe auf die Fasermaterialien eine erste wässrige Behandlungsflotte aufbringt welche ein Produkt der Formel (1) enthält und einen pH-Wert aufweist, bei dem diese Flotte hohe Stabilität besitzt, z B. einen pH-Wert von 7 bis 10 Diese erste wässrige Behandlungsflotte kann weitere Produkte, wie Reaktivfarbstoffe, enthalten. Das Aufbringen dieser ersten Behandlungsflotte kann durch Foulardierung erfolgen. Nach dem Abquetschen wird das Fasermaterial getrocknet. In einer zweiten Stufe wird eine zweite wässrige Behandlungsflotte aufgebracht, welche die für die Vernetzung mit Cellulose erforderliche Menge an alkalischer Verbindung enthält. Diese alkalische Verbindung ist bevorzugt Natriumhydroxid oder Kaliumhydroxid. Nach der Applikation der zweiten Flotte wird getrocknet, z B. bei 80 bis 130°C, wobei die Vernetzung stattfindet. Die zweite Behandlungsflotte kann z B. eine wässrige Natriumhydroxid- oder Kaliumhydroxidlösung relativ hoher Konzentration, z B. zwischen 30 und 60 Gew.-%, sein.
Bei den angewandten Temperaturen von z B. 80 bis 130° C findet in Gegenwart alkalischer Verbindungen eine Vernetzung (Kondensation) mit Cellulose statt. Aus diesem Grund wird die Behandlung der Fasermaterialien mit Behandlungsflüssigkeit vorzugsweise bei einem pH-Wert im Bereich von 7 bis 13 (gemessen bei 20°C) durchgeführt.
Die nach dem erfindungsgemäßen Verfahren behandelten Fasermaterialien zeichnen sich durch gute Hochveredlungseffekte, insbesondere Pflegeleichtheit, Dimensionsstabilität und Schrumpffreiheit aus.
Die gemäss dem erfindungsgemässen Verfahren eingesetzten Verbindungen lassen sich auf verschiedene Weise auf das Fasermaterial applizieren und auf der Faser fixieren, insbesondere in Form von wässrigen Lösungen, vorzugsweise nach dem Ausziehverfahren. Nach dem Fixieren werden die behandelten Fasermaterilaien mit kaltem und heissem Wasser, gegebenenfalls unter Zusatz eines dispergierend wirkenden und die Diffusion der nicht fixierten Anteile fördernden Mittels gründlich gespült.
Die Verbindungen der Formel (1), die eine wasserlöslichmachende Gruppe enthalten, wie z. B. eine Sulfo- oder Sulfatogruppe, liegen entweder in der Form ihrer freien Säure oder vorzugsweise als deren Salze wie z. B. der Alkali-, Erdalkali- oder Ammoniumsalze oder als Salze eines organischen Amins vor. Als Beispiele seien die Natrium-, Kalium- Lithium- oder Ammoniumsalze oder das Salz des Triäthanolamins genannt.
Die Verbindungen der Formel (1) sind bekannt oder können in Analogie zu bekannten Verbindungen hergestellt werden. So sind die Verbindungen der Formel (1) z. B. Reaktivfarbstoffvorprodukte wie sie aus der WO 96/00399 bekannt sind oder können analog dazu hergestellt werden.
Für das erfindungsgemässe Verfahren können die Mengen, in denen die Verbindungen der Formel (1) in den Behandlungsbädern, insbesondere in den Färbebädern zusammen mit Farbstoffen, vorzugsweise Reaktivfarbstoffen, verwendet werden, in einem grossen Bereich schwanken, im allgemeinen haben sich Mengen von 0,01 bis 20 Gewichtsprozent, insbesondere 0,1 bis 15 Gewichtsprozent, bezogen auf das Fasermaterial, als vorteilhaft erwiesen.
Vorzugsweise wird das erfindungsgemässe Verfahren vor oder während des Färbens, insbesondere jedoch nach der Herstellung der Cellulosefaser angewendet.
Bevorzugt für das erfindungsgemässe Verfahren ist die Behandlung nach der Ausziehmethode. Sie erfolgt in der Regel in wässrigem Medium, bei einem Flottenverhältnis von beispielsweise 1:2 bis 1:60, insbesondere 1:5 bis 1:20. Hierbei erfolgt die Behandlung beispielsweise bei einer Temperatur von 20 bis 100°C, insbesondere 40 bis 90°C, und vorzugsweise 55 bis 80 °C.
Eine besonders bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass man die Vernetzung der cellulosehaltigen Fasermaterialien zusammen mit der Färbung ausführt.
Die eingesetzten Verbindungen der Formel (1) zeichnen sich durch hohe Reaktivität, gutes Fixiervermögen und ein sehr gutes Aufbauvermögen aus. Sie können daher nach dem Ausziehfärbeverfahren bei niedrigen Färbetemperaturen eingesetzt werden. Die Fixiergrade sind hoch und die nicht fixierten Anteile können leicht ausgewaschen werden, wobei die Differenz zwischen Ausziehgrad und Fixiergrad bemerkenswert klein, d.h. der Seifverlust sehr gering ist.
Die folgenden Beispiele veranschaulichen die Erfindung. Die Temperaturen sind in Celsiusgraden angegeben. Teile bedeuten Gewichtsteile und Prozente Gewichtsprozente, sofern nichts anderes vermerkt. Gewichtsteile stehen zu Volumenteilen im Verhältnis von Kilogramm zu Liter.
Beispiel 1: 10 g Viskose-Gewebe wird bei 50° C in einer Ausziehlaborfärbeapparatur mit 100 ml einer Flotte, enthaltend 8 g Glaubersalz und 1 g der farblosen Verbindung der Formel (100) gemäss Tabelle 1, eingespannt. Nach 10 Minuten Bewegung bei 50° C werden 2 g wasserfreies Natriumcarbonat in zwei Portionen zugegeben. Das Viskose-Gewebe wird weitere 20 Minuten in Bewegung gehalten. Die Flotte wird auf 60° C aufgeheizt, und es werden 0.2 ml 30%ige Natronlauge zugegeben. Nach 20 Minuten wird das Bad abgelassen und das Viskose-Gewebe kalt gespült, kochend ausgewaschen und nochmals kalt gespült, und anschliessend getrocknet. Man erhält ein Viskose-Gewebe mit höherer Dimensionsstabilität und höherer Nassscheuerfestigkeit.
Beispiel 2: 10 g Viskose-Gewebe wird bei 50° C in einer Ausziehlaborfärbeapparatur mit 100 ml einer Flotte, enthaltend 8 g Glaubersalz, 1 g der farblosen Verbindung der Formel (100) gemäss Tabelle 1 und 0.1 g des Farbstoffs der Formel (200) gemäss Tabelle 2, eingespannt. Nach 20 Minuten Bewegung bei 50° C werden 2 g wasserfreies Natriumcarbonat in zwei Portionen zugegeben. Das Viskose-Gewebe wird weitere 10 Minuten in Bewegung gehalten. Die Flotte wird auf 60° C aufgeheizt, und es werden 0.2 ml 30%ige Natronlauge zugegeben. Nach 20 Minuten wird das Bad abgelassen und das Viskose-Gewebe kalt gespült, kochend ausgewaschen und nochmals kalt gespült, und anschliessend getrocknet. Man erhält ein marineblau gefärbtes Viskose-Gewebe mit höherer Dimensionsstabilität und höherer Nassscheuerfestigkeit.
Wenn man in Beispiel 1 die Verbindung der Formel (100) durch eine andere der in Tabelle 1 angegebenen Verbindungen ersetzt, so erhält man ebenfalls ein Viskose-Gewebe mit den angegebenen vorteilhaften Eigenschaften.
Wenn man in Beispiel 2 den Farbstoff der Formel (200) durch den Farbstoff der Formel (201) ersetzt, so erhält man ein rot gefärbtes Viskose-Gewebe mit den angegebenen vorteilhaften Eigenschaften.
Wenn man in Beispiel 2 die Verbindung der Formel (100) durch eine andere der in Tabelle 1 angegebenen Verbindungen ersetzt, so erhält man ebenfalls ein Viskose-Gewebe mit den angegebenen vorteilhaften Eigenschaften.
Figure 00250001
Figure 00260001
Figure 00260002
Beispiel 3:
18,5 g Cyanurchlorid werden in eine Mischung bestehend aus 100 g fein gemahlenen Eis und 50 ml Wasser, welches 0,6 g eines handelsüblichen Tensids enthält, eingetragen und während 15 Minuten benetzt. Anschliessend werden bei guter Rührung 6,1 g Ethanolamin tropfenweise so zugesetzt, dass der pH-Wert der Mischung bei ca. 8 gehalten wird. Nach der beendeten Zugabe von Ethanolamin wird anschliessend ca. 8 g einer 50%-igen wässrigen Lösung von NaOH so zugetropft, dass der pH-Wert 8 gehalten werden kann. Die entstehende feine Suspension wird abfiltriert und getrocknet. Man erhält 15,5 g einer weissen pulverigen Verbindung der Formel
Figure 00270001
Beispiele 4:
Verfährt man wie im Beispiel 3 angegeben, verwendet aber anstatt 6,1 g Ethanolamin die äquivalente Menge eines der in Tabelle 3 angegebenen Amine, so erhält man die in der Tabelle 3 aufgeführten Verbindungen.
Figure 00270002
Figure 00280001
Beispiel 5: 10 g Viskose-Gewebe wird bei 50° C in einer Ausziehlaborfärbeapparatur mit 100 ml einer Flotte, enthaltend 8 g Glaubersalz, 1 g der ersten Verbindung in Tabelle 3 und 0.1 g des Farbstoffs der Formel (200) gemäss Tabelle 2, eingespannt. Nach 20 Minuten Bewegung bei 50° C werden 2 g wasserfreies Natriumcarbonat in zwei Portionen zugegeben. Das Viskose-Gewebe wird weitere 10 Minuten in Bewegung gehalten. Die Flotte wird auf 60° C aufgeheizt, und es werden 0.2 ml 30%ige Natronlauge zugegeben. Nach 20 Minuten wird das Bad abgelassen und das Viskose-Gewebe kalt gespült, kochend ausgewaschen und nochmals kalt gespült, und anschliessend getrocknet. Man erhält ein marineblau gefärbtes Viskose-Gewebe mit höherer Dimensionsstabilität und höherer Nassscheuerfestigkeit.
Beispiel 6: Eine wässrige Suspension, enthaltend 85 g pro Liter der farblosen Verbindung der Formel (100), wird in gleichen Volumenteilen mit einer wässrigen alkalischen Lösung, enthaltend pro Liter 140 ml Wasserglas 38° Bé und 20 g Natriumhydroxid, vermischt und sofort anschliessend auf ein Baumwollgewebe auffoulardiert, wobei die Flottenaufnahme 70 bis 75% beträgt. Das so behandelte Gewebe wird sofort anschliessend 5 Minuten bei 110°C mit Heissluft behandelt, das Alkali durch Spülen mit kaltem und warmem Wasser entfernt, und das Gewebe dann nochmals getrocknet. Man erhält ein Gewebe mit wesentlich verbesserten Knittereigenschaften.
Beispiel 7: Eine wässrige Suspension, enthaltend pro Liter 85 g pro Liter der farblosen Verbindung der Formel (100), wird in gleichen Volumenteilen mit einer wässrigen alkalischen Lösung, enthaltend pro Liter 60 g kalziniertes Natriumcarbonat, vermischt und sofort anschliessend auf ein Baumwollgewebe auffoulardiert, wobei die Flottenaufnahme 70 bis 75% beträgt. Das so behandelte Gewebe wird sofort anschliessend 2 Minuten bei 130°C mit Heissluft getrocknet, 8 Minuten bei 102°C mit Sattdampf behandelt, das Alkali durch Spülen mit kaltem und warmem Wasser entfernt, und das Gewebe dann nochmals getrocknet. Man erhält ein Gewebe mit wesentlich verbesserten Knittereigenschaften.

Claims (15)

  1. Verfahren zur Vernetzung von cellulosehaltigen Fasermaterialien, dadurch gekennzeichnet, dass auf die cellulosehaltigen Fasermaterialien, wobei die Cellulosefasern aus natürlicher oder regenerierter Cellulose bestehen, mindestens ein Produkt der allgemeinen Formel (1) aufgebracht wird,
    Figure 00290001
    worin A ein farbloser aliphatischer, aromatischer oder heteroaromatischer Rest, R ein faserreaktiver Rest, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass der Rest [R]n mindestens zwei faserreaktiv wirkende Gruppen enthält.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass Fasermaterialien verwendet werden, welche zu 20 bis 100 Gew.-% aus Cellulosefasern bestehen.
  3. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1) verwendet, worin R ein Rest der Formel
    Figure 00290002
    ist, worin T1 Fluor, Chlor oder Carboxypyridinium ist und V1 Fluor, Chlor, -NH2, ein C1-C6-Alkylamino-, N,N-Di-C1-C6-Alkylamino-, Cyclohexylamino-, N,N-Dicyclohexylamino-, Benzylamino-, Phenäthylamino-, Phenylamino-, Naphthylamino-, N-C1-C6-Alkyl-N-cyclohexylamino- oder N-C1-C6-Alkyl-N-phenylaminorest, oder Morpholino, Piperidino, Piperazino, Hydrazino oder Semicarbazido, oder eine durch einen Furan-, Thiophen-, Pyrazol-, Pyridin-, Pyrimidin-, Chinolin-, Benzimidazol-, Benzthiazol- oder Benzoxazolrest substituierte Aminogruppe.
  4. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1) verwendet, worin R ein Rest der Formel
    Figure 00300001
    ist, worin T2 und T3 unabhängig voneinander Fluor, Chlor oder Carboxypyridinium sind und B als Brückenglied ein Rest der Formel
    Figure 00300002
    ist, worin R1' und R1" unabhängig voneinander Wasserstoff oder gegebenenfalls durch Halogen, Hydroxy, Cyan, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiertes C1-C4-Alkyl sind und X ein gegebenenfalls durch Hydroxy, Sulfo, Sulfato, C1-C4-Alkoxy, Carboxy oder Halogen substituierter C2-C6-Alkylen- oder C5-C9-Cycloalkylenrest oder ein gegebenenfalls durch C1-C4-Alkyl, C1-C4-Alkoxy, Sulfo, Halogen oder Carboxy substituierter Phenylen-, Biphenylen- oder Naphthylenrest ist.
  5. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1a)
    Figure 00300003
    verwendet, worin A die in Anspruch 1 angegebenen Bedeutung hat, Q den Rest C-Y oder ein Stickstoffatom bedeutet, Y Chlor, V3 und W3, unabhängig voneinander, je Fluor, Chlor, R2-X2'-, R3-X3'-, Hydroxy, R2 und R3, unabhängig voneinander, je ein farbloser aliphatischer, insbesondere ein gegebenenfalls durch Sauerstoffatome unterbrochener C1-C8-Alkylrest, aromatischer, insbesondere ein gegebenenfalls durch C1-C4-Alkyl, C1-C4-Alkoxy, Halogen oder Sulfo substituierter Phenylrest, oder heteroaromatischer Rest, X1', X2' und X3', unabhängig voneinander, je -S-, -N(R4)-, -NH-CO-Phen-NH- oder -NH-CO-Phen-CO-NH-, R4 Wasserstoff, C1-C5-Alkyl, C5-C6-Cycloalkyl oder Phenyl, Phen eine unsubstituierte oder substituierte Phenylengruppe, und n die Zahl 1, 2, 3 oder 4 ist, mit der Bedingung, dass die Verbindung der Formel (1a) mindestens zwei faserreaktiv wirkende Gruppen enthält.
  6. Verfahren gemäss Anspruch 5, dadurch gekennzeichnet, dass man Verbindungen der Formel
    Figure 00310001
    verwendet, worin X4 -NR5- oder -S- ist, A1 einen aliphatischer Rest mit 1 bis 18 C-Atomen, der frei von Sulfogruppen ist, bedeutet, und R5 Wasserstoff oder C1-C4-Alkyl ist oder die Bedeutung von A1 unabhängig von A1 hat.
  7. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man als Verbindung der Formel (1) eine Verbindung der Formel
    Figure 00310002
    worin T5 Fluor oder insbesondere Chlor, und R1 Wasserstoff, Methyl oder Aethyl ist, verwendet.
  8. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Verbindungen der Formel (1c)
    Figure 00310003
    verwendet, worin T5 und R1 die in Anspruch 7 angegebenen Bedeutungen haben.
  9. Verfahren gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1) verwendet, worin A aromatischer Rest, insbesondere ein Benzolrest ist.
  10. Verfahren gemäss Anspruch 9, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1) verwendet, worin A ein durch mindestens eine wasserlöslichmachende Gruppe, insbesondere mindestens eine Sulfogruppe substituiert ist.
  11. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man eine Verbindung der Formel (1) verwendet, worin R ein Rest der Formel
    Figure 00320001
    worin T4 Fluor, Chlor oder Carboxypyridinium ist und
    V2 ein Rest der Formel
    Figure 00320002
    ist, worin R1 Wasserstoff oder C1-C4-Alkyl, das durch Halogen, Hydroxy, Cyan, C1-C4-Alkoxy, C1-C4-Alkoxycarbonyl, Carboxy, Sulfamoyl, Sulfo oder Sulfato substituiert sein kann; B1 die direkte Bindung oder ein Rest
    Figure 00320003
    m=1, 2, 3, 4, 5 oder6; und R' ein Rest der Formel
    Figure 00320004
    Figure 00320005
    Figure 00330001
    Figure 00330002
    Figure 00330003
    Figure 00330004
    oder
    Figure 00330005
    ist, worin R" Wasserstoff oder C1-C6-Alkyl ist, alk einen Alkylenrest mit 1 bis 7 Kohlenstoffatomen darstellt, T Wasserstoff, Halogen, Hydroxy, Sulfato, Carboxy, Cyano, C1-C4-Alkanoyloxy, C1-C4-Alkoxycarbonyl, Carbamoyl oder einen Rest -SO2-Z bedeutet, V Wasserstoff, gegebenenfalls substituiertes C1-C4-Alkyl oder ein Rest der Formel
    Figure 00330006
    ist, worin (alk) die zuvor angegebene Bedeutung hat, alk' unabhängig voneinander Polymethylenreste mit 2 bis 6 C-Atomen bedeutet, Z β-Sulfatoethyl, β-Thiosulfatoethyl, β-Phosphatoethyl, β-Acyloxyethyl, β-Halogenethyl oder Vinyl bedeutet, r und t unabhängig voneinander je die Zahl 1, 2, 3, 4, 5 oder 6 bedeuten und s die Zahl 2, 3, 4, 5 oder 6 ist; und der Benzolring in Formel (4) weitere Substituenten enthalten kann; oder worin V2 ein direkt an den Triazinring gebundener Rest der Formel (4a), (4b), (4c), (4d), (4e), (4f) oder (4g) ist, worin R', T, alk, V, alk', Z, p, q, r, s und t die angegebenen Bedeutungen haben; oder worin V2 ein Rest der Formel
    Figure 00330007
    ist, worin R1 und Z die oben angegebenen Bedeutungen haben und der Benzolring weitersubstituiert sein kann.
  12. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Verbindungen der Formel
    Figure 00340001
    verwendet, worin A1 ein gegebenenfalls durch Sulfo substituierter Benzolrest, R10 ein Rest der Formel (2), (2') oder (3) ist, oder worin R10 der Rest -SO2-Z ist, wobei Z die angegebenen Bedeutung hat, und n die Zahl 1, 2, 3 oder 4 ist.
  13. Verfahren gemäss einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man die Verbindung der Formel (1) zusammen mit Reaktivfarbstoffen auf die Faser aufbringt.
  14. Das gemäss Anspruch 1 behandelte cellulosehaltige Fasermaterial.
  15. Wässrige Lösung oder Dispersion enthaltend mindestens eine Verbindung der Formel (1) gemäss Anspruch 1.
EP98810490A 1997-06-04 1998-05-26 Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien Withdrawn EP0882836A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH133797 1997-06-04
CH1337/97 1997-06-04
CH133797 1997-06-04

Publications (2)

Publication Number Publication Date
EP0882836A2 true EP0882836A2 (de) 1998-12-09
EP0882836A3 EP0882836A3 (de) 2000-11-22

Family

ID=4208125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810490A Withdrawn EP0882836A3 (de) 1997-06-04 1998-05-26 Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien

Country Status (6)

Country Link
US (1) US6036731A (de)
EP (1) EP0882836A3 (de)
JP (1) JPH1112928A (de)
CN (1) CN1210918A (de)
BR (1) BR9801749A (de)
TR (1) TR199801002A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950750A1 (de) * 1998-04-14 1999-10-20 Ciba SC Holding AG Verfahren zur Behandlung von Cellulosefasern
EP0950751A1 (de) * 1998-04-14 1999-10-20 Ciba SC Holding AG Verfahren zur Behandlung von Cellulosefasern
TR199900811A3 (tr) * 1998-04-14 1999-11-22 Ciba Specialty Chemicals Holding Inc. Selüloz liflerin islem görme yöntemi.
TR199900810A3 (tr) * 1998-04-14 1999-11-22 Ciba Specialty Chemicals Holding Inc. Selüloz liflerin islem görme yöntemi.
WO2001023660A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Cotton fabric with durable properties
WO2001023661A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Durable fabric enhancement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038100A1 (de) * 2000-08-04 2002-02-14 Degussa Verfahren zur Flammschutzausrüstung von Cellulosefasern und sie enthaltenden Artikeln und verfahrensgemäß ausgerüstete Produkte
US20030144640A1 (en) * 2002-01-24 2003-07-31 Nguyen Hien Vu High absorbency lyocell fibers and method for producing same
GB0413890D0 (en) * 2004-06-22 2004-07-21 Unilever Plc Improvements relating to triazines
GB0413889D0 (en) * 2004-06-22 2004-07-21 Unilever Plc Improvements relating to fabric treatment
JP5010175B2 (ja) * 2006-04-13 2012-08-29 萩原 敏夫 セルロース系繊維材料の改質加工法
CN101215267B (zh) * 2007-12-26 2011-04-27 东华大学 具有双反应活性基团的棉用紫外线吸收剂、其制备及应用
KR101794125B1 (ko) * 2008-01-16 2017-11-06 렌찡 악티엔게젤샤프트 섬유 혼합물, 얀 및 이로 제작한 직물
US9410292B2 (en) 2012-12-26 2016-08-09 Kimberly-Clark Worldwide, Inc. Multilayered tissue having reduced hydrogen bonding
US9416494B2 (en) 2012-12-26 2016-08-16 Kimberly-Clark Worldwide, Inc. Modified cellulosic fibers having reduced hydrogen bonding
US8834679B2 (en) 2012-12-26 2014-09-16 Kimberly-Clark Worldwide, Inc. Soft tissue having reduced hydrogen bonding
US8980054B2 (en) 2012-12-26 2015-03-17 Kimberly-Clark Worldwide, Inc. Soft tissue having reduced hydrogen bonding
CN104672160B (zh) * 2013-12-02 2017-06-13 浙江龙盛集团股份有限公司 一种三嗪类化合物及其作为染料添加剂的应用
GB201604563D0 (en) * 2016-03-17 2016-05-04 Syntor Specialty Chemicals Ltd Method of coating
CN106478745B (zh) * 2016-10-14 2019-02-05 高介平 一种无甲醛水性交联剂及其制备方法和对织物的整理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892674A (en) * 1955-05-27 1959-06-30 Ici Ltd Treatment of cellulosic materials
US3719449A (en) * 1972-04-27 1973-03-06 Us Agriculture Crosslinked hetercyclic cellulosic products
GB1389663A (en) * 1971-03-18 1975-04-03 Unilever Ltd Triazine compounds useful as textile softening agents
EP0118983A2 (de) * 1983-02-11 1984-09-19 Wool Development International Limited Textilbehandlung
EP0538977A1 (de) * 1991-10-21 1993-04-28 Courtaulds Plc Faserbehandlung
EP0616071A1 (de) * 1993-03-13 1994-09-21 Pfersee Chemie GmbH Verfahren zur Behandlung von Fasermaterialien mittels Triazinderivaten
US5571444A (en) * 1989-09-11 1996-11-05 Invicta Group Industries Pty Ltd. Textile treatment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869660A (en) * 1958-01-15 1961-06-07 Ici Ltd Treatment of cellulosic materials
US3124414A (en) * 1959-02-11 1964-03-10 Textile finishing process
JPS5430999A (en) * 1977-08-04 1979-03-07 Wakayama Prefecture Shrink and wrinckle risistant finish for cellulose fiber
US4313732A (en) * 1980-10-30 1982-02-02 Burlington Industries, Inc. Process for improving washfastness of indigo-dyed fabrics
FR2509336A1 (fr) * 1981-02-14 1983-01-14 Sandoz Sa Procede pour ameliorer les solidites au mouille des colorants reactifs ou directs sur un substrat cellulosique et substrat cellulosique obtenu
GB9222059D0 (en) * 1992-10-21 1992-12-02 Courtaulds Plc Fibre treatment
GB9304887D0 (en) * 1993-03-10 1993-04-28 Courtaulds Plc Fibre treatment
GB9313128D0 (en) * 1993-06-24 1993-08-11 Courtaulds Fibres Ltd Fabric treatment
GB9407496D0 (en) * 1994-04-15 1994-06-08 Courtaulds Fibres Holdings Ltd Fibre treatment
GB9408742D0 (en) * 1994-05-03 1994-06-22 Courtaulds Fibres Holdings Ltd Fabric treatment
GB9410912D0 (en) * 1994-06-01 1994-07-20 Courtaulds Plc Fibre treatment
GB9505281D0 (en) * 1995-03-16 1995-05-03 Courtaulds Fibres Holdings Ltd Fibre treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892674A (en) * 1955-05-27 1959-06-30 Ici Ltd Treatment of cellulosic materials
GB1389663A (en) * 1971-03-18 1975-04-03 Unilever Ltd Triazine compounds useful as textile softening agents
US3719449A (en) * 1972-04-27 1973-03-06 Us Agriculture Crosslinked hetercyclic cellulosic products
EP0118983A2 (de) * 1983-02-11 1984-09-19 Wool Development International Limited Textilbehandlung
US5571444A (en) * 1989-09-11 1996-11-05 Invicta Group Industries Pty Ltd. Textile treatment
EP0538977A1 (de) * 1991-10-21 1993-04-28 Courtaulds Plc Faserbehandlung
EP0616071A1 (de) * 1993-03-13 1994-09-21 Pfersee Chemie GmbH Verfahren zur Behandlung von Fasermaterialien mittels Triazinderivaten

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950750A1 (de) * 1998-04-14 1999-10-20 Ciba SC Holding AG Verfahren zur Behandlung von Cellulosefasern
EP0950751A1 (de) * 1998-04-14 1999-10-20 Ciba SC Holding AG Verfahren zur Behandlung von Cellulosefasern
TR199900811A3 (tr) * 1998-04-14 1999-11-22 Ciba Specialty Chemicals Holding Inc. Selüloz liflerin islem görme yöntemi.
TR199900810A3 (tr) * 1998-04-14 1999-11-22 Ciba Specialty Chemicals Holding Inc. Selüloz liflerin islem görme yöntemi.
WO2001023660A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Cotton fabric with durable properties
WO2001023661A1 (en) * 1999-09-30 2001-04-05 The Procter & Gamble Company Durable fabric enhancement

Also Published As

Publication number Publication date
TR199801002A3 (tr) 1999-10-21
TR199801002A2 (xx) 1999-10-21
US6036731A (en) 2000-03-14
CN1210918A (zh) 1999-03-17
JPH1112928A (ja) 1999-01-19
EP0882836A3 (de) 2000-11-22
BR9801749A (pt) 2000-04-25

Similar Documents

Publication Publication Date Title
EP0882836A2 (de) Verfahren zum Vernetzen von cellulosehaltigen Fasermaterialien
EP0693538B1 (de) Azofarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
EP0466647A1 (de) Verfahren zur photochemischen und thermischen Stabilisierung von Polyamid-Fasermaterialien
EP0870807A1 (de) Mischungen von Reaktivfarbstoffen und deren Verwendung
DE2726432A1 (de) Verfahren zur verbesserung der farbausbeute und der echtheiten von mit anionischen farbstoffen auf cellulosefasermaterial erzeugten faerbungen, fluorhaltige verbindungen und ihre herstellung
AT409144B (de) Verfahren zur behandlung von cellulosefasern und von gebilden aus diesen fasern
EP0616071A1 (de) Verfahren zur Behandlung von Fasermaterialien mittels Triazinderivaten
CH624139A5 (de)
DE60007156T2 (de) Reaktivfarbstoffe
EP0903434B1 (de) Verfahren zur Behandlung von Cellulosefasern
EP1000982A2 (de) Farbstoffmischungen von faserreaktiven Azofarbstoffen und ihre Verwendung
EP0250365A1 (de) Verfahren zur Nachbehandlung von gefärbtem Cellulosefasermaterial
EP0242324A1 (de) Verfahren zum endengleichen Färben von Cellulosefasern
EP0950751B1 (de) Verfahren zur Behandlung von Cellulosefasern
EP0857762B1 (de) Wässrige Reaktivfarbstoff-Formulierungen sowie Verfahren zum Färben und Bedrucken von textilen Fasermaterialien
EP0310556B1 (de) Verfahren zum endengleichen Färben von Cellulosefasern
DE2505497C3 (de) Verwendung eines Farbstoffs mit Phosphor- und/oder Phosphonsäureestergruppen zum Färben von Wolle oder Nylon
EP0832940B1 (de) Farbstoffmischungen, Verfahren zu deren Herstellung und deren Verwendung
CH692582A5 (de) Wasserlösliche Reaktivfarbstoffmischungen und ihre Verwendung zum Färben.
EP0950750B1 (de) Verfahren zur Behandlung von Cellulosefasern
DE2813400A1 (de) Verfahren zum kontinuierlichen faerben von bahnfaermigem textilgut aus cellulosefasern mit reaktivfarbstoffen
DE3427806C2 (de)
CH687355B5 (de) Verfahren zum Färben von Cellulose-Textilmaterial.
EP0273300A2 (de) Verfahren zum einbadig/einstufigen Färben von Mischungen aus carrierfrei färbbaren Polyesterfasern und Cellulosefasern
DE2023179C (de) Verfahren zum Farben und Bedrucken von Textilfasern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI PT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990511

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7D 06M 13/35 A, 7D 06P 1/642 B, 7D 06P 3/66 B, 7D 06M 13/358 B, 7D 06M 13/352 B, 7D 06M 13/355 B

AKX Designation fees paid

Free format text: AT CH DE ES FR GB IT LI PT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021203