EP0459602B1 - Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern - Google Patents

Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern Download PDF

Info

Publication number
EP0459602B1
EP0459602B1 EP91250128A EP91250128A EP0459602B1 EP 0459602 B1 EP0459602 B1 EP 0459602B1 EP 91250128 A EP91250128 A EP 91250128A EP 91250128 A EP91250128 A EP 91250128A EP 0459602 B1 EP0459602 B1 EP 0459602B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
field
octupole
sextupole
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91250128A
Other languages
English (en)
French (fr)
Other versions
EP0459602A2 (de
EP0459602A3 (en
EP0459602B2 (de
Inventor
Jochen Dr. Franzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruken Franzen Analytik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6407411&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0459602(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bruken Franzen Analytik GmbH filed Critical Bruken Franzen Analytik GmbH
Publication of EP0459602A2 publication Critical patent/EP0459602A2/de
Publication of EP0459602A3 publication Critical patent/EP0459602A3/de
Application granted granted Critical
Publication of EP0459602B1 publication Critical patent/EP0459602B1/de
Publication of EP0459602B2 publication Critical patent/EP0459602B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes

Definitions

  • the invention relates to an ion cage mass spectrometer, a quistor, an ion trap or the like according to the preamble of patent claims 1 and 6.
  • a mass spectrometer is known in which the electrodes are arranged so that the surfaces of the ring electrode and the end cap electrodes form a one-piece rotary hyperboloid or a two-part rotary hyperboloid, the end cap electrodes being conductively connected to one another and between the ring electrode and a time-varying voltage is applied to the end cap electrodes. If there is a potential U + V between the ring electrode and the end cap electrodes . sin ( ⁇ t) is generated, ions remain whose specific charge e / m lies in a certain range between the electrodes, while the others hit the electrodes.
  • the superimposition of DC and radio frequency fields in such mass spectrometers is called a quadrupole memory field.
  • the ion movement forms a spatial overlay of two independent harmonic oscillators.
  • the force integrated over half of the so-called secular period approximately fulfills the condition of a harmonic oscillator, so that such a system is also called a pseudo-harmonic oscillator.
  • Two such pseudoharmonic oscillator systems form the aforementioned ion cage, which is also referred to as a quistor or ion trap (for terminology: Dawson, “Quadrupole Mass Spectrometry", Elsevier, Amsterdam, 1976; Mahrs / Hughes “Quadrupole Storage Mass Spectrometry", John Wiley & Sons, New York, 1989).
  • the two pseudoharmonic oscillator systems of the quistor consist of a cylinder-symmetrical system, which shows the same behavior regardless of the coordinate in the direction of the cylinder axis (z-axis), and a plane system, the behavior of which is independent of the distance r from the cylinder axis.
  • the ions vibrate with so-called "secular frequencies", which are completely independent of one another.
  • the secular frequencies can be determined using known formulas. Since the secular frequencies in the r and z directions and the storage frequency only have a common divisor in rare situations, the movement patterns of the ions are usually very complicated.
  • An ion cage can be used as a mass spectrometer.
  • the well-known basic principle of mass spectrometry consists in the proportions of ions with different masses relative to one another ascertain.
  • so-called scan methods are used, which carry out the measurement of the different types of ions one after the other by varying measurement or filter conditions.
  • Various scanning methods are known for the ion cage.
  • the ions of successive masses are ejected sequentially in time from the cage and fed to a detection system, so that the measurement signals of the ions can be processed to a mass spectrum in a known manner.
  • mass-selective ejection can be carried out in three different ways.
  • the ions can be ejected by changing the storage conditions in the ion cage so that the ions move mass by mass beyond the edge of the stability range, become unstable, and leave the ion cage ("Mass-selective instability scan", US Pat. No. 4,440 884).
  • the secular frequency of successive ion masses can be excited by an external high-frequency voltage so that they absorb kinetic energy in resonance and thus leave the cage ("mass-selective resonance scan by excitation frequency", US Pat. No. 4,736,101).
  • the ions can be introduced into a device-specific non-linear resonance condition in which they absorb kinetic energy and leave the cage ("mass-selective scan by means of non-linear device resonance", US Pat. No. 4,882,484 or EP-A- 0 336 990).
  • a mass spectrometer is already known from US Pat. No. 4,882,484 Generic type known, in which the non-linear resonances of an octupole field superimposed on the quadrupole field are used to accelerate the creation of the mass spectrum.
  • a general reference to the structure and shape of the multipole field overlay of the quadrupole field cannot be found in this document.
  • the known quadrupole cage can not only be used to identify individually supplied substances on the basis of their primary spectra, but can also be used to identify mixture components by tandem mass spectrometry, whereby daughter ion spectra are generated.
  • an ion type the parent ion
  • all other types of ions are removed from the cage.
  • the parent ion is fragmented by collision with a gas introduced into the cage.
  • the parent ion must be accelerated to increase the collision energy above the fragmentation threshold.
  • the simplest way is to excite ion oscillation in the z direction by an alternating voltage between the end cap electrodes which is in resonance with the corresponding secular frequency.
  • the excitation is critical in the known quadrupole cages.
  • the amplitude of the secular motion increases linearly with time, and eventually the ions will collide with the end cap electrodes.
  • Fine tuning is required between a low excitation voltage and a high collision gas density, and a yield of about 30 to 50% of daughter ions can be achieved; the rest of the parent ions are lost.
  • the invention is therefore based on the object of developing the generic mass spectrometer in such a way that in order to increase the ability and the detection power while further - resolving - accelerating the measurement of the mass spectrum a general rule for the appropriate type of multi-field overlay is given, the ion losses from the spectrometer being reduced by unwanted resonances in use for tandem mass spectrometry and the yield should be increased in the case of shock-induced fragmentation.
  • the invention is based on the surprising finding that, with a multipole overlay according to the invention, be it in a mathematically exact description or in accordance with the approximate formula of claim 6, the time smearing of the ejection process can be tightened, thereby accelerating the creation of the mass spectrum. Furthermore, ion losses are reduced and the yield of daughter ions is improved. The superimposition of z-asymmetrical multipole fields intensifies the ejection by the non-linear resonance effects that then occur.
  • the surface shape of the electrodes is chosen in the invention so that the effect of the desired multipole field overlay results.
  • the exact dimensions of the electrodes are determined by the relative strength A3 of the sextupole field or the relative strength A4 of the octupole field in relation to the strength A2 of the quadrupole field.
  • the strengths of the sextupole field or the octupole field in relation to the quadrupole field can be between approximately 0% and 20%, it being particularly advantageous if the proportion of the overlaid fields is between 0.5% and 4.5%; the proportion is particularly preferably between 1% and 3%.
  • the electrodes can easily be shaped in such a way that mathematically exact superimpositions of the quadrupole field with predetermined contributions of the octupole field or the sextupole field are obtained.
  • the deviations due to the overlaid fields are mainly noticeable in the outer areas of the spectrometer area, while an almost exact quadrupole field is present in the area of the center.
  • the manufacture of electrodes according to the regulation of the invention in one embodiment, as is the subject of claim 6, is carried out by successively adding higher-order thermal springs in w, once the measure p 1 for the proportion of the octupole field, the measure p2 are specified for the portion of the sextupole field or the correction portion p3 of the octupole field. It is again advantageous if p1, p2 and p3 are between 0% and 20%, these variables should not, however, at the same time take the value 0, so that in any case a superimposed heat contributes.
  • Figure 1 shows the arrangement of two end cap electrodes 1, 2, which are each arranged at a distance z0 from the equatorial plane 4.
  • a ring electrode 3 such that the entire arrangement of the electrodes 1, 2, 3 is axially symmetrical, the axis of symmetry coinciding with the z axis of the coordinate system.
  • the octupole field generated by the electrode shape has a strength A4 / A2 of 2%, measured in the equatorial plane 4 at the ring electrode 3.
  • the overlaid field causes non-linear forces both in the z direction and as a function of r, the distance from the z -Axis generated.
  • the secular frequencies become dependent on the secular amplitudes and either increase or at.
  • a resonance catastrophe of the secular amplitude is prevented.
  • the increasing secular oscillation shifts in frequency and phase through the octupole field and reaches a maximum amplitude when the phase shift is 90 °, after which the amplitude decreases again. Therefore, like all other "even" multipole fields, the octupole field has a surprisingly positive effect. Almost all ion losses due to resonance effects are prevented, whatever the cause of the resonance.
  • the excitation voltage can be selected such that the parent ions never reach the end cap electrodes 1, 2. Yields of daughter ions in the order of 80 to 100% of the parent ions are possible.
  • An octupole field that normally blocks the resonance reactions of ions can still have a positive effect on the Have resonance response during a scan.
  • the secular frequency reaches the external excitation frequency, due to the coupling of the secular frequency and the secular amplitude, the effects of the increase in the sampling frequency and the decrease in the amplitude are compensated, whereby the ion is expelled from the mass spectrometer.
  • FIG. 2 shows an electrode arrangement comprising end cap electrodes 1, 2 and ring electrode 3, in which the electrodes are shaped in such a way that a sextupole field is superimposed on the base quadrupole field.
  • the dotted lines 5, 6 indicate the corresponding electrode structure in which a pure quadrupole field would be present. It can be seen that deviations only occur in the outer regions of the electrode arrangement, while an almost exact quadrupole field results in the interior.
  • the secular frequency remains essentially unchanged in the z direction, while frequency splitting takes place in the r direction.
  • the sextupole field produces a strong nonlinear resonance at a frequency that is exactly one third of the storage frequency. If an excitation voltage is now applied in phase and at this frequency, the ion oscillation is first increased by this excitation voltage, which leads to a linear increase in the secular amplitude, then the oscillation will increase exponentially due to the sextupole resonance.
  • the hexapole resonance can therefore be used for mass-selective ejection of the ion. The ejection process is therefore exacerbated by overlaying the sextupole field. Good results are achieved when the proportion A3 of the overlying sextupole field is 2% of the quadrupole field.
  • FIG. 3 shows an electrode arrangement in which both a superimposed octupole field and a superimposed one Sextupol field have been generated, the octupole portion is 2% and the sextupole portion is 6%.
  • the combination of the two superimposed fields has the result that the advantages of both systems are realized in the arrangement.
  • the loss of ions is reduced by the octupole effect, the non-linear resonance of the sextupole field promotes the ejection of the ions and sharpens the ejection process. It has been found that the best results are achieved if the proportion A3 of the overlaid sextupole field is twice as large as the proportion A4 of the overlaid octupole field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

    Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern
  • Die Erfindung betrifft ein Ionenkäfig-Massenspektrometer, einen Quistor, eine Ionenfalle oder dergleichen nach dem Oberbegriff des Patentanspruches 1 und 6.
  • Aus der DE-PS 944 900 ist ein Massenspektrometer bekannt, bei dem die Elektroden so angeordnet sind, daß die Oberflächen der Ringelektrode und der Endkappenelektroden ein einteiliges Drehhyperboloid bzw. ein zweiteiliges Drehhyperboloid bilden, wobei die Endkappenelektroden leitend miteinander verbunden sind und zwischen der Ringelektrode und den Endkappenelektroden eine zeitlich veränderliche Spannung angelegt ist. Wenn zwischen der Ringelektrode und den Endkappenelektroden ein Potential U + V . sin (ωt) erzeugt wird, bleiben Ionen, deren spezifische Ladung e/m in einem bestimmten Bereich liegt, zwischen den Elektroden, während die anderen auf die Elektroden auftreffen. Die Überlagerung von Gleich- und Hochfrequenzfeld bei derartigen Massenspektrometern wird Quadrupol-Speicherfeld genannt. Die Ionenbewegung bildet hierbei in guter Näherung eine räumliche Überlagung zweier unabhängiger harmonische Oszillatoren. In dem hierdurch gebildeten Ionenkäfig oszillieren die Kräfte des Speicherfeldes, welches auf die Ionen wirkt. Dabei erfüllt die über die halbe sogenannte Säkularperiode integrierte Kraft näherungsweise die Bedingung eines harmonischen Oszillators, so daß ein solches System auch pseudoharmonischer Oszillator genannt wird. Zwei derartige pseudoharmonische Oszillatorsysteme bilden den vorgenannten Ionenkäfig, der auch als Quistor oder Ionenfalle bezeichnet wird (zur Terminologie: Dawson, "Quadrupole Mass Spectrometry", Elsevier, Amsterdam, 1976; Mahrs/Hughes "Quadrupole Storage Mass Spectrometry", John Wiley & Sons, New York, 1989). Die beiden pseudoharmonischen Oszillatorensysteme des Quistors bestehen dabei aus einem zylindersymmetrischen System, welches unabhängig von der Koordinate in Richtung der Zylinderachse (z-Achse) dasselbe Verhalten zeigt, und einem Ebenensystem, dessen Verhalten unabhängig vom Abstand r von der Zylinderachse ist.
  • In beiden pseudoharmonischen Oszillatorsystemen, also in r- und z-Richtung, schwingen die Ionen mit sogenannten "Säkularfrequenzen", die voneinander vollständig unabhängig sind. Die Säkularfrequenzen können nach bekannten Formeln bestimmt werden. Da die Säkularfrequenzen in r- und in z-Richtung und die Speicherfrequenz nur in seltenen Situationen einen gemeinsamen Teiler haben, werden die Bewegungsbilder der Ionen in der Regel sehr kompliziert.
  • Ein Ionenkäfig kann als Massenspektrometer benutzt werden. Das bekannte Grundprinzip der Massenspektrometrie besteht darin, die Anteile der Ionen mit verschiedenen Massen relativ zueinander festzustellen. Dazu wendet man sogenannte Scan-Verfahren an, die die Messung der verschiedenen Ionensorten durch Variation von Meß- oder Filterbedingungen zeitlich nacheinander durchführen. Für den Ionenkäfig sind verschiedene Scanverfahren bekannt.
  • An dieser Stelle ist jedoch nur das Verfahren der massenselektiven Ejektion der Ionen aus dem Käfig interessant. Dazu werden die Ionen aufeinanderfolgender Massen zeitlich aufeinanderfolgend aus dem Käfig ejiziert und einem Nachweissystem zugeführt, so daß die Meßsignale der Ionen in bekannter Weise zu einem Massenspektrum verarbeitet werden können.
  • Die massenselektive Ejektion kann, wie bisher bekannt, auf drei verschiedene Weisen erfolgen. Erstens kann man die Ionen dadurch ejizieren, daß man die Speicherbedingungen im Ionenkäfig so ändert, daß die Ionen Masse für Masse über den Rand des Stabilitätsbereiches hinausgeraten, instabil werden, und den Ionenkäfig verlassen ("Massenselektiver Instabilitäts-Scan", US-PS 4 540 884). Zweitens kann man die Säkularfrequenz aufeinanderfolgender Ionenmassen durch eine äußerlich anzulegende Hochfrequenz-Spannung so anregen, daß sie in Resonanz Bewegungs-Energie aufnehmen und so den Käfig verlassen ("Massenselektiver Resonanz-Scan durch Anregungs-Frequenz", US-PS 4 736 101). Und drittens kann man die Ionen in eine geräte-eigene nichtlineare Resonanz-Bedingung hineinführen, in der sie Bewegungs-Energie aufnehmen und den Käfig verlassen ("Massenselektiver Scan durch nichtlineare Geräte-Resonanz", US-PS 4 882 484 oder EP-A-0 336 990).
  • Bei allen Anwendungen des Ionenkäfigs als Massenspektrometer, ist es wünschenswert, daß der Ejektionsprozeß von nichtspezifischen Ionen möglichst schnell erfolgt.
  • Aus der US-PS 4 882 484 ist bereits ein Massenspektrometer der gattungsgemäßen Art bekannt, bei dem die nichtlinearen Resonanzen eines dem Quadrupolfeld überlagerten Oktupolfeldes zur Beschleunigung des Erstellens des Massenspektrums verwendet werden. Ein allgemein gültiger Hinweis auf die Struktur und Form der Multipolfeldüberlagerung des Quadrupolfeldes ist dieser Druckschrift nicht zu entnehmen.
  • Der bekannte Quadrupol-Käfig kann nicht nur zur Identifizierung von einzeln zugeführten Substanzen anhand ihrer Primärspektren verwendet werden, sondern kann auch durch Tandem-Massenspektrometrie, wobei Tochterionenspektren erzeugt werden, zur Identifizierung von Gemischkomponenten herangezogen werden. Dabei wird zunächst eine Ionensorte, die Eltern-Ionen, ausgewählt; alle anderen Ionensorten werden aus dem Käfig entfernt. Dann wird das Eltern-Ion durch Kollision mit einem dafür in den Käfig eingeführten Gas fragmentiert. Dazu muß das Eltern-Ion beschleunigt werden, um die Kollisionsenergie über den Schwellenwert für das Fragmentieren zu erhöhen. Am einfachsten ist es, Ionenoszillation in z-Richtung durch eine Wechselspannung zwischen den Endkappenelektroden anzuregen, die in Resonanz mit der entsprechenden Säkularfrequenz ist.
  • Allerdings ist die Anregung bei den bekannten Quadrupol-Käfigen kritisch. Im Quadrupolfeld wächst die Amplitude der Säkularbewegung linear mit der Zeit, und schließlich werden die Ionen mit den Endkappenelektroden zusammenstoßen. Es ist eine Feinabstimmung zwischen einer niedrigen Anregungsspannung und einer hohen Kollisionsgasdichte erforderlich, wobei eine Ausbeute von etwa 30 bis 50% an Tochterionen erreicht werden kann; der Rest der Eltern-Ionen geht verloren.
  • Der Erfindung liegt daher die Aufgabe zugrunde, das gattungsgemäße Massenspektrometer dahingehend weiterzubilden, daß zur Erhöhung des Vermögens und der Nachweiskraft unter weiterer - Auflösungs- - Beschleunigung der Messung des Massenspektrums eine allgemeine Vorschrift für die zweckmäßige Art der Multifeldüberlagerung gegeben wird, wobei in Verwendung für die Tandem-Massenspektrometrie die Ionenverluste aus dem Spektrometer durch ungewollte Resonanzen reduziert und die Ausbeute bei stoßinduzierter Fragmentierung erhöht werden sollen.
  • Diese Aufgabe wird von einem Massenspektrometer der eingangs genannten Art durch die im Kennzeichen des Patentanspruches 1 aufgeführten Merkmale gelöst. Besonders vorteilhafte Ausführungsformen der Erfindung nach dem Patentanspruch 1 sind Gegenstand der Unteransprüche.
  • Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß es gelingt, bei einer Multipolüberlagerung nach der Erfindung, sei es in mathematisch exakter Beschreibung oder nach der Näherungsformel des Patentanspruches 6, die zeitliche Verschmierung des Ejektionsvorganges zu verschärfen, wodurch das Erstellen des Massenspektrums beschleunigt wird. Weiterhin werden Ionenverluste reduziert und die Ausbeute an Tochterionen verbessert. Die Überlagerung z-unsymmetrischer Multipolfelder verschärft die Ejektion durch die dann auftretenden nichtlinearen Resonanzeffekte.
  • Es hat sich herausgestellt, daß es im allgemeinen nicht notwendig ist, Multipolfelder höherer Ordnung als Oktupolfelder dem Basis-Quadrupolfeld zu überlagern, obwohl dies grundsätzlich möglich ist und innerhalb des Erfindungsgedankens liegt. Erwähnt sei, daß das Auftreten von nichtlinearen Resonanzen und deren Folgeerscheinung von F.v. Busch und W. Paul in der "Zeitschrift für Physik" 164, Seiten 588 bis 594 (1961) beschrieben sind. Hier wird festgestellt, das die durch Feldfehler hervorgerufenen nicht-linearen Resonanzen im Massenspektrometer so schwach ausgeprägt sind, daß sie dessen Funktionsfähigkeit nicht beeinträchtigen, lediglich zu einer Aufspaltung von Massenlinien im Spektrum führen können. Vorteilhafte Effekte der nichtlinearen Resonanzen werden nicht erkannt, so daß sich aus dieser Schrift nicht ableiten läßt, wie diese zu einer Verbesserung der Eigenschaften des Massenspektrometers führen könnten.
  • Die Oberflächenform der Elektroden wird bei der Erfindung so gewählt, daß sich der Effekt der gewünschten Multipolfeldüberlagerung ergibt. Bei den mathematisch exakten Ausführungsformen der Erfindung werden die genauen Abmessungen der Elektroden durch die relative Stärke A₃ des Sextupolfeldes bzw. die relative Stärke A₄ des Oktupolfeldes in Bezug auf die Stärke A₂ des Quadrupolfeldes festgelegt. Die Stärken des Sextupolfeldes bzw. des Oktupolfeldes in Bezug auf das Quadrupolfeld können zwischen annährend 0 % und 20 % liegen, wobei es besonders vorteilhaft ist, wenn der Anteil der überlagerten Felder zwischen 0,5 % und 4,5 % beträgt; besonders bevorzugt liegt der Anteil zwischen 1 % und 3 %.
  • Nach den erfindungsgemäß angegebenen Formeln können die Elektroden leicht so ausgeformt werden, daß man mathematisch exakte Überlagerungen des Quadrupolfeldes mit vorgegebenen Beiträgen des Oktupolfeldes bzw. des Sextupolfeldes erhält. Die Abweichungen durch die überlagerten Felder machen sich dabei hauptsächlich in den Außenbereichen des Spektrometerraumes bemerkbar, während im Bereich des Zentrums ein nahezu exaktes Quadrupolfeld vorliegt.
  • Angemerkt sei, daß die Fertigung von Elektroden nach der Vorschrift der Erfindung bei einer Ausführungsform, wie Sie Gegenstand des Patentanspruches 6 ist, durch sukzessives Hinzufügen von Thermen höherer Ordnung in w durchgeführt wird, wenn einmal das Maß p₁ für den Anteil des Oktupolfeldes, das Maß p₂ für den Anteil des Sextupolfeldes bzw. der Korrekturanteil p₃ des Oktupolfeldes vorgegeben sind. Es ist wiederum vorteilhaft, wenn p₁, p₂ und p₃ zwischen einschließlich 0 % und 20 % liegen, wobei diese Größen jedoch nicht gleichzeitig den Wert 0 annehmen sollen, so daß auf jeden Fall ein Überlagerungstherm beiträgt.
  • Im folgenden ist die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die schematische Zeichnung im einzelnen erläutert. Dabei zeigt:
  • Fig. 1
    den Längsschnitt durch Elektrodenanordnung eines Massenspektrometers gemäß der vorliegenden Erfindung, wobei ein Oktupolfeld als Multipolfeld höherer Ordnung einem Basis-Quadrupolfeld überlagert ist,
    Fig. 2
    einen Längsschnitt durch die Elektrodenanordnung, wobei ein Sextupolfeld überlagert ist, und
    Fig. 3
    einen Längsschnitt durch die Elektrodenanordnung, wobei sowohl ein Oktupol- als auch ein Sextupolfeld überlagert sind.
  • Figur 1 zeigt die Anordnung zweier Endkappenelektroden 1, 2, die jeweils in einem Abstand z₀ von der Äquatorebene 4 angeordnet sind. Das beschreibende Koordinatensystem ist so gewählt, daß die Äquatorebene 4 mit der Koordinatenebene z = 0 zusammenfällt. Zwischen den Endkappenelektroden 1, 2 befindet sich eine Ringelektrode 3 derart, daß die gesamte Anordnung der Elektroden 1, 2, 3 axialsymmetrisch ist, wobei die Symmetrieachse mit der z-Achse des Koordinatensystems übereinstimmt. Der Abstand der Ringelektrode 3 vom Mittelpunkt z = 0 in der Äquatorebene 4 wird mit r₀ bezeichnet. Die Elektrodenanordnung ist so gewählt, daß r 0 /z 0 = 1.8
    Figure imgb0001
    ist. Das durch die Elektrodenform erzeugte Oktupolfeld hat eine Stärke A₄/A₂ von 2 %, gemessen in der Äquatorebene 4 an der Ringelektrode 3. Durch das überlagerte Feld werden nichtlineare Kräfte sowohl in z-Richtung als auch in Abhängigkeit von r, dem Abstand von der z-Achse, erzeugt. Dadurch werden die Säkularfrequenzen von den Säkularamplituden abhängig und nehmen entweder zu oder ab. In beiden Fällen jedoch wird eine Resonanzkatastrophe der Säkularamplitude verhindert. Durch das Oktupolfeld verschiebt sich die anwachsende Säkularschwingung in der Frequenz und in der Phase und erreicht eine maximale Amplitude, wenn die Phasenverschiebung 90° beträgt, danach nimmt die Amplitude wieder ab. Daher übt das Oktupolfeld wie alle anderen "geradzahligen" Multipolfelder eine überraschend positive Wirkung aus. Nahezu alle Ionenverluste durch Resonanzeffekte werden verhindert, was auch immer die Resonanz verursacht haben mag.
  • Normalerweise störende Resonanzen können sein
    • (1) Resonanzen zwischen den Endkappenelektroden 1, 2, die durch eine Anregungsfrequenz hervorgerufen werden,
    • (2) nichtlineare Resonanzen aus Überlagerungen von gegenüber der Speicherfrequenz verschobenen Frequenzen oder hervorgerufen durch Multipolfelder, die durch ungenaue Anordnung der Elektroden erzeugt werden oder auch durch Oberflächenladungen auf den Elektroden.
  • Eine Ausnahme bildet lediglich die sogenannte Oktupol-Summenresonanz, bei der das Ion sowohl in r-Richtung als auch in z-Richtung Energie aufnimmt.
  • Mit der Elektrodenanordnung aus Figur 1 gelingt es auch, die Nachteile des Standes der Technik bezüglich der Erzeugung von Tochterionen zu vermeiden. Wenn dem Basis-Quadrupolfeld ein Oktupolfeld überlagert ist, kann die Anregungsspannung so gewählt werden, daß die Eltern-Ionen niemals die Endkappenelektroden 1, 2 erreichen. Damit sind Ausbeuten an Tochterionen in der Größenordnung von 80 bis 100 % der Eltern-Ionen möglich.
  • Ein Oktupolfeld, das die Resonanzreaktionen von Ionen normalerweise blockiert, kann dennoch positive Auswirkungen auf die Resonanzreaktion während eines Scan-Vorganges haben. Wenn die Säkularfrequenz die äußere Anregungsfrequenz erreicht, werden wegen der Kopplung von Säkularfrequenz und Säkularamplitude die Effekte aus der Zunahme der Abtastfrequenz und der Abnahme der Amplitude, kompensiert, wodurch das Ion aus dem Massenspektrometer ausgestoßen wird.
  • In Figur 2 ist eine Elektrodenanordnung aus Endkappenelektroden 1, 2 und Ringelektrode 3 gezeigt, bei der die Elektroden so ausgeformt sind, daß dem Basis-Quadrupolfeld ein Sextupolfeld überlagert ist. Die Dimensionierung der Elektroden stimmt ansonsten mit derjenigen aus Figur 1 überein, insbesondere ist wiederum r 0 /z 0 = 1.8 .
    Figure imgb0002
    Durch die punktierten Linien 5, 6 wird die entsprechende Elektrodenstruktur angedeutet, bei der ein reines Quadrupolfeld vorliegen würde. Es zeigt sich, daß Abweichungen nur in den Außenbereichen der Elektrodenanordnung auftreten, während sich im Inneren ein nahezu exaktes Quadrupolfeld ergibt. Durch die Überlagerung des Sextupolfeldes bleibt die Säkularfrequenz in z-Richtung im wesentlichen unverändert, während in r-Richtung eine Frequenzaufspaltung erfolgt. Das Sextupolfeld erzeugt eine starke nichtlineare Resonanz bei einer Frequenz, die bei exakt einem Drittel der Speicherfrequenz liegt. Wenn nun eine Anregungsspannung phasengerecht und mit dieser Frequenz aufgegeben wird, wird die Ionenoszillation zunächst durch die diese Anregungsspannung vergrößert, was zu einem linearen Ansteigen der Säkularamplitude führt, dann wird die Oszillation exponentiell durch die Sextupolresonanz ansteigen. Die Hexapolresonanz kann daher für ein massenselektives Ausstoßen des Ions verwendet werden. Durch das Überlagern des Sextupolfeldes wird daher der Ejektionsprozeß verschärft. Gute Ergebnisse werden dabei erreicht, wenn der Anteil A₃ des überlagernden Sextupolfeldes 2 % des Quadrupolfeldes beträgt.
  • In Figur 3 ist eine Elektrodenanordnung dargestellt, bei der sowohl ein überlagertes Oktupolfeld als auch ein überlagertes Sextupolfeld erzeugt worden sind, wobei der Oktupolanteil 2 % und der Sextupolanteil 6 % beträgt. Die Kombination der beiden überlagerten Felder hat zur Folge, daß die Vorteile beider Systeme in der Anordnung realisiert werden. Die Ionenverluste werden durch den Oktupol-Effekt vermindert, die nichtlineare Resonanz des Sextupolfeldes fördert den Ausstoß der Ionen und schärft den Ejektionsprozeß. Es wurde gefunden, daß die besten Ergebnisse erreicht werden, wenn der Anteil A₃ des überlagerten Sextupolfeldes doppelt so groß ist wie der Anteil A₄ des überlagerten Oktupolfeldes.
  • Die in der vorstehenden Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.
  • BEZUGSZEICHENLISTE
    • 1 Endkappenelektrode
    • 2 Endkappenelektrode
    • 3 Ringelektrode
    • 4 Äquatorebene
    • 5 punktierte Linie (Quadrupolstruktur)
    • 6 punktierte Linie (Quadrupolstruktur)

Claims (6)

  1. Ionenkäfig-Massenspektrometer, auch Quistor oder Ionenfalle genannt, mit zwei Endkappenelektroden (1,2) und einer Ringelektrode (3), die sich derart zwischen den Endkappenelektroden (1,2) befindet, daß die gesamte Anordnung der Elektroden (1,2,3) axialsymetrisch ist, wobei die Symmetrieachse die z-Achse definiert und wobei der Punkt z = 0 von den beiden Endkappenelektroden den gleichen Abstand hat, Spannungsversorgungen zur Erzeugung eines ionenspeichernden HF-Quadrupolfeldes, Mitteln zur Erzeugung von Ionen der massenspektrometrisch zu untersuchenden Substanzen innerhalb oder außerhalb des Ionenkäfigs, gegebenenfalls Mitteln zur Einführung der Ionen in den Ionenkäfig, Mitteln zum Nachweis solcher Ionen, die aus dem Ionenkäfig austreten, dadurch gekennzeichnet, daß dem exakten Quadrupol-Potential P q = (A 2 /4z 0 2 ) * (r 2 -2z 2 ) * [U - Vcos(ωt)]
    Figure imgb0003
    durch besondere Formgebung der Elektroden exakt oder näherungsweise ein Sextupol-Potential P s = (A 3 /4z 0 3 ) * (3r 2 z-2z 3 ) * [U - Vcos(ωt)],
    Figure imgb0004
    oder ein Oktupol-Potential P o = (A 4 /4z 0 4 ) * (r 4 +8z 4 /3-8r 2 z 2 ) * [U - Vcos(ωt)],
    Figure imgb0005
    oder eine Linearkombination aus beiden überlagert ist, mit
    r =   Abstand von der z-Achse,
    z =   Abstand von der Ebene z = 0.
    z₀ =   Abstand einer Endkappe vom Zentrum z = 0,
    A₂ =   Stärke des Quadrupolfeldes,
    A₃ =   Stärke des Sextupolfeldes,
    A₄ =   Stärke des Oktupolfeldes,
    U =   Wert der Gleichspannung,
    V =   Scheitelwert der Wechselspannung,
    ω =   Kreisfrequenz der Wechselspannung, und
    t =   Zeit.
  2. Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß eine Überlagerung exakter Sextupol- und Oktupol-Felder durch eine Oberflächenform der Endkappenelektroden (1,2) rk(z) und der Ringelektrode (3) rr(z) nach den Gleichungen r k z = (d- (d 2 +e k )) und
    Figure imgb0006
    r r z = (d- (d 2 +e r )
    Figure imgb0007
    gegeben ist, mit den Abkürzungen d = 4*z 2 - (3A 3 /2A 4 )*z*z 0 - (A 2 /2A 4 )*z 0 2 ,
    Figure imgb0008
    e k = (2A 2 /A 4 )*z 0 2 *z 2 + (2A 3 /A 4 )*z 0 *z 3 - (8/3)*z 4 + P k ,
    Figure imgb0009
    e r (2A 2 /A 4 )*z 0 2 *z 2 + (2A 3 /A 4 )*z 0 *z 3 - (8/3)*z 4 + P r ,
    Figure imgb0010
    wobei Pk und I Pr proportional zu den gewünschten SpitzenWechselpotentialen an den Elektroden (1,2 und 3) sind.
  3. Massenspektrometer nach Anspruch 2, dadurch gekennzeichnet, daß die Oberflächenformen der Endkappenelektroden (1,2) rk(z) und der Ringelektrode (3) rr(z) nach den Gleichungen r k z = (d- (d 2 +f k )) und
    Figure imgb0011
    r r z = (d- (d 2 +f r )
    Figure imgb0012
    gegeben sind, mit den Abkürzungen d = 4*z 2 - (3A 3 /2A 4 )*z*z 0 - (A 2 /2A 4 )*z 0 2 ,
    Figure imgb0013
    f k = (2A 2 /A 4 )*z 0 2 * (z 2 -z 0 2 ) + (2A 3 /A 4 ) *z 0 * (z 3 -z 0 3 ) - (8/3)*(z 4 -z 0 4 ), und
    Figure imgb0014
    f r =(2A 2 /A 4 )*z 0 2 *(z 2 +z 0 2 ) + (2A 3 /A 4 )*z 0 *(z 3 +z 0 3 ) - (8/3)* (z 4 +z 0 4 ) .
    Figure imgb0015
  4. Massenspektrometer nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß
    0,002 <= A₄/A₂ <= 0,08, und
    0 <= A₃/A₂ <= 0,16 ist.
  5. Massenspektrometer mit überlagertem exakten Sextupolfeld nach Anspruch 1, dadurch gekennzeichnet, daß die Oberflächenformen der Endkappenelektroden (1,2) rk(z) und der Ringelektrode (3) rr(z) nach den Gleichungen r k = (2z 2 -2z 0 2 *g z ) und
    Figure imgb0016
    r r = (2z 2 +2z 0 2 *g z )
    Figure imgb0017
    gegeben sind, mit g(z) = (A 2 +A 3 )/(A 2 +3*A 3 *z/z 0 ), und
    Figure imgb0018
    0,001 <= A 3 /A 2 <= 0,2.
    Figure imgb0019
  6. Massenspektrometer nach Anspruch 1 mit genäherten Sextupol- und Oktupol-Feldern, dadurch gekennzeichnet, daß die Multipolfelder durch Oberflächenformen der Elektroden (1,2, 3) nach den Gleichungen z r (r) = (w r + (p 1 *w r )+ (p 2 *w r 2 ) + (p 3 *w r 3 )),
    Figure imgb0020
    z k (r) = (w k + (p 1 *w k ) + (p 2 *w k 2 ) + (p 3 *w k 3 )),
    Figure imgb0021
    mit w r = w r (r) = ((r 2 - r o 2 )/2),
    Figure imgb0022
    w k - w k (r) = ((r 2 + r o 2 )/2),
    Figure imgb0023
    und 0≦ p 1 ≦ 0,2
    Figure imgb0024
    (grob genäherter Oktupol-Anteil), oder 0≦ p 2 ≦ 0,2
    Figure imgb0025
    (genäherter Sextupol-Anteil), und/oder 0 ≦ p 3 ≦ 0,2
    Figure imgb0026
    (besser genäherter Oktupol-Anteil), jedoch nicht p₁, p₂, p₃ gleichzeitig verschwindend, erzeugt sind.
EP91250128A 1990-05-29 1991-05-08 Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern Expired - Lifetime EP0459602B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4017264 1990-05-29
DE4017264A DE4017264A1 (de) 1990-05-29 1990-05-29 Massenspektrometrischer hochfrequenz-quadrupol-kaefig mit ueberlagerten multipolfeldern

Publications (4)

Publication Number Publication Date
EP0459602A2 EP0459602A2 (de) 1991-12-04
EP0459602A3 EP0459602A3 (en) 1992-07-01
EP0459602B1 true EP0459602B1 (de) 1996-03-13
EP0459602B2 EP0459602B2 (de) 2000-02-09

Family

ID=6407411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91250128A Expired - Lifetime EP0459602B2 (de) 1990-05-29 1991-05-08 Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern

Country Status (3)

Country Link
US (1) US5170054A (de)
EP (1) EP0459602B2 (de)
DE (2) DE4017264A1 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451782A (en) * 1991-02-28 1995-09-19 Teledyne Et Mass spectometry method with applied signal having off-resonance frequency
DE4139037C2 (de) * 1991-11-27 1995-07-27 Bruker Franzen Analytik Gmbh Verfahren zum Isolieren von Ionen einer auswählbaren Masse
GB2267385B (en) * 1992-05-29 1995-12-13 Finnigan Corp Method of detecting the ions in an ion trap mass spectrometer
US5291017A (en) * 1993-01-27 1994-03-01 Varian Associates, Inc. Ion trap mass spectrometer method and apparatus for improved sensitivity
DE4324224C1 (de) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupol-Ionenfallen mit schaltbaren Multipol-Anteilen
DE4425384C1 (de) * 1994-07-19 1995-11-02 Bruker Franzen Analytik Gmbh Verfahren zur stoßinduzierten Fragmentierung von Ionen in Ionenfallen
US5714755A (en) * 1996-03-01 1998-02-03 Varian Associates, Inc. Mass scanning method using an ion trap mass spectrometer
US5693941A (en) * 1996-08-23 1997-12-02 Battelle Memorial Institute Asymmetric ion trap
DE19751401B4 (de) 1997-11-20 2007-03-01 Bruker Daltonik Gmbh Quadrupol-Hochfrequenz-Ionenfallen für Massenspektrometer
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
DE10028914C1 (de) * 2000-06-10 2002-01-17 Bruker Daltonik Gmbh Interne Detektion von Ionen in Quadrupol-Ionenfallen
US20050229003A1 (en) 2004-04-09 2005-10-13 Miles Paschini System and method for distributing personal identification numbers over a computer network
US7676030B2 (en) 2002-12-10 2010-03-09 Ewi Holdings, Inc. System and method for personal identification number distribution and delivery
US6608303B2 (en) 2001-06-06 2003-08-19 Thermo Finnigan Llc Quadrupole ion trap with electronic shims
US6777673B2 (en) 2001-12-28 2004-08-17 Academia Sinica Ion trap mass spectrometer
JP3653504B2 (ja) * 2002-02-12 2005-05-25 株式会社日立ハイテクノロジーズ イオントラップ型質量分析装置
US6897438B2 (en) 2002-08-05 2005-05-24 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field
US7045797B2 (en) 2002-08-05 2006-05-16 The University Of British Columbia Axial ejection with improved geometry for generating a two-dimensional substantially quadrupole field
US10205721B2 (en) 2002-12-10 2019-02-12 Ewi Holdings, Inc. System and method for distributing personal identification numbers over a computer network
US6710334B1 (en) 2003-01-20 2004-03-23 Genspec Sa Quadrupol ion trap mass spectrometer with cryogenic particle detector
US7019289B2 (en) * 2003-01-31 2006-03-28 Yang Wang Ion trap mass spectrometry
US7131578B2 (en) 2003-05-28 2006-11-07 Ewi Holdings, Inc. System and method for electronic prepaid account replenishment
EP1668665A4 (de) * 2003-09-25 2008-03-19 Mds Inc Dba Mds Sciex Verfahren und vorrichtung zur bereitstellung von zweidimensionalen feldern im wesentlichen des quadrupol-typs mit gewählten hexapol-komponenten
US6982417B2 (en) * 2003-10-09 2006-01-03 Siemens Energy & Automation, Inc. Method and apparatus for detecting low-mass ions
US11599873B2 (en) 2010-01-08 2023-03-07 Blackhawk Network, Inc. Systems and methods for proxy card and/or wallet redemption card transactions
US7280644B2 (en) 2004-12-07 2007-10-09 Ewi Holdings, Inc. Transaction processing platform for faciliating electronic distribution of plural prepaid services
US11475436B2 (en) 2010-01-08 2022-10-18 Blackhawk Network, Inc. System and method for providing a security code
US7034293B2 (en) * 2004-05-26 2006-04-25 Varian, Inc. Linear ion trap apparatus and method utilizing an asymmetrical trapping field
US20060045244A1 (en) 2004-08-24 2006-03-02 Darren New Method and apparatus for receipt printing and information display in a personal identification number delivery system
US10296895B2 (en) 2010-01-08 2019-05-21 Blackhawk Network, Inc. System for processing, activating and redeeming value added prepaid cards
US7656236B2 (en) 2007-05-15 2010-02-02 Teledyne Wireless, Llc Noise canceling technique for frequency synthesizer
US8179045B2 (en) 2008-04-22 2012-05-15 Teledyne Wireless, Llc Slow wave structure having offset projections comprised of a metal-dielectric composite stack
CA2786264A1 (en) 2010-01-08 2011-07-14 Blackhawk Network, Inc. A system for processing, activating and redeeming value added prepaid cards
US10037526B2 (en) 2010-01-08 2018-07-31 Blackhawk Network, Inc. System for payment via electronic wallet
AU2011293250A1 (en) 2010-08-27 2013-03-21 Blackhawk Network, Inc. Prepaid card with savings feature
US11042870B2 (en) 2012-04-04 2021-06-22 Blackhawk Network, Inc. System and method for using intelligent codes to add a stored-value card to an electronic wallet
WO2014081822A2 (en) 2012-11-20 2014-05-30 Blackhawk Network, Inc. System and method for using intelligent codes in conjunction with stored-value cards
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8625529D0 (en) * 1986-10-24 1986-11-26 Griffiths I W Control/analysis of charged particles
DE3886922T2 (de) * 1988-04-13 1994-04-28 Bruker Franzen Analytik Gmbh Methode zur Massenanalyse einer Probe mittels eines Quistors und zur Durchführung dieses Verfahrens entwickelter Quistor.
ATE101942T1 (de) * 1989-02-18 1994-03-15 Bruker Franzen Analytik Gmbh Verfahren und geraet zur massenbestimmung von proben mittels eines quistors.

Also Published As

Publication number Publication date
US5170054A (en) 1992-12-08
DE4017264A1 (de) 1991-12-19
DE59107529D1 (de) 1996-04-18
EP0459602A2 (de) 1991-12-04
EP0459602A3 (en) 1992-07-01
EP0459602B2 (de) 2000-02-09
DE4017264C2 (de) 1992-12-03

Similar Documents

Publication Publication Date Title
EP0459602B1 (de) Massenspektrometrischer Hochfrequenz-Quadrupol-Käfig mit überlagerten Multipolfeldern
DE3886922T2 (de) Methode zur Massenanalyse einer Probe mittels eines Quistors und zur Durchführung dieses Verfahrens entwickelter Quistor.
DE3688215T2 (de) Steuerungsverfahren fuer eine ionenfalle.
DE69317693T2 (de) Methode zur Erhöhung des Auflösungsvermögens in einem Tandem-Nassenspektrometer
DE69233406T2 (de) Massenspektrometrieverfahren unter benutzung eines kerbfilters
DE60209132T2 (de) Quadrupolionenfalle, verfahren zur verwendung derselben und ein eine solche ionenfalle enthaltendes massenspektrometer
DE69810175T2 (de) Ionenfalle
DE69502662T2 (de) Ionenfallenmassenspektromer und Betriebsmethode dafür
DE3914838C2 (de)
DE68913290T2 (de) Verfahren und Gerät zur Massenbestimmung von Proben mittels eines Quistors.
DE3784428T2 (de) Quadrupol-massenspektrometer und verfahren zum betrieb desselben.
DE112011103930B4 (de) Verfahren zum Massenselektieren von Ionen und Massenselektor
DE69402569T2 (de) Ionenfalle Massenspektrometer
DE69722717T2 (de) Ionenspeicherungsvorrichtung für Massenspektrometrie
DE69825789T2 (de) Vorrichtung und verfahren zur stoss-induzierten dissoziation von ionen in einem quadrupol-ionenleiter
DE4317247C2 (de) Verfahren zur Aufnahme der Massenspektren gespeicherter Ionen
EP0321819B1 (de) Verfahren zur massenspektroskopischen Untersuchung eines Gasgemisches und Massenspektrometer zur Durchführung dieses Verfahrens
DE10296794B4 (de) Ionenfalle
DE10244736B4 (de) Massenanalysator mit Ionenfalle
DE69211420T2 (de) Verfahren zum Betrieb eines Ionenfalle-Massenspektrometers im hochauflösenden Modus
DE112012005395T5 (de) Kollisionszellenmultipol
DE69232866T2 (de) Chemisches ionisationsmassenspektrometrieverfahren mit einem kerbfilter
DE69807119T2 (de) Grenzangeregte dissoziation in linear-quadrupol-massenspektrometer
DE69322706T2 (de) Quadrupolionenfalle mit hoher Empfindlichkeit und Verfahren zum Betrieb derselben
DE69725600T2 (de) Radiofrequenz-massenspektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19921207

17Q First examination report despatched

Effective date: 19950504

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960313

REF Corresponds to:

Ref document number: 59107529

Country of ref document: DE

Date of ref document: 19960418

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: FINNIGAN CORPORATION

Effective date: 19961212

NLR1 Nl: opposition has been filed with the epo

Opponent name: FINNIGAN CORPORATION

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRUKER DALTONIK GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BRUKER DALTONIK GMBH

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000209

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE FR GB NL

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 20000209

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090504

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090525

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100531

Year of fee payment: 20

BERE Be: lapsed

Owner name: *BRUKER DALTONIK G.M.B.H.

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100505

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59107529

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110508