EP0459360A2 - RDS-Rundfunkempfänger mit einer Einrichtung zum Aufsuchen aktuell empfangswürdiger alternativer Frequenzen - Google Patents

RDS-Rundfunkempfänger mit einer Einrichtung zum Aufsuchen aktuell empfangswürdiger alternativer Frequenzen Download PDF

Info

Publication number
EP0459360A2
EP0459360A2 EP91108609A EP91108609A EP0459360A2 EP 0459360 A2 EP0459360 A2 EP 0459360A2 EP 91108609 A EP91108609 A EP 91108609A EP 91108609 A EP91108609 A EP 91108609A EP 0459360 A2 EP0459360 A2 EP 0459360A2
Authority
EP
European Patent Office
Prior art keywords
receiver
rds
memory
background
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91108609A
Other languages
English (en)
French (fr)
Other versions
EP0459360A3 (en
EP0459360B1 (de
Inventor
Arnold Prof. Dr. Grundig E.M.V. Glaab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Original Assignee
Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH filed Critical Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Publication of EP0459360A2 publication Critical patent/EP0459360A2/de
Publication of EP0459360A3 publication Critical patent/EP0459360A3/de
Application granted granted Critical
Publication of EP0459360B1 publication Critical patent/EP0459360B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/20Arrangements for broadcast or distribution of identical information via plural systems
    • H04H20/22Arrangements for broadcast of identical information via plural broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/10Arrangements for replacing or switching information during the broadcast or the distribution
    • H04H20/106Receiver-side switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/26Arrangements for switching distribution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/55Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/13Aspects of broadcast communication characterised by the type of broadcast system radio data system/radio broadcast data system [RDS/RBDS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/60Aspects of broadcast communication characterised in that the receiver comprises more than one tuner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/49Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations
    • H04H60/51Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations of receiving stations

Definitions

  • PI codes program identification codes
  • This RDS service is particularly useful for mobile radio receivers because changes in location can constantly change the reception conditions.
  • the receiving device In order to supply the radio receiver with the current program without an audible interruption, the receiving device must therefore be able to fall back on alternative frequencies already recognized as worth receiving if the reception conditions within an internal memory deteriorate.
  • the alternative frequencies transmitted by wave propagation with the RDS data are stored in a memory, but also an evaluation of the reception quality of the stored AFs is carried out at least with each change to an alternative frequency.
  • the quality assessment can only be carried out by briefly checking an alternative frequency, ie within a time window of approx. 20 ms including the necessary switchover times to the AF and returning to the currently received frequency to avoid an audible program interruption.
  • the particularly annoying multi-path reception disturbances can hardly be detected because they occur briefly, but have a follow-up time of 100 ms and longer.
  • the receiving device may be tuned to a usable but not the best quality AF. This condition may persist for a long time if the current tuning frequency has just not reached the thresholds for triggering an AF check.
  • An RDS receiver with a single receiver cannot solve the following problem: If the threshold for an AF change is reached, the receiver can only access those AFs whose quality assessment is a priori no longer up-to-date, ie that u. An AF may be set that was the best in the last quality check, but has deteriorated significantly in the meantime without falling below the minimum requirements for reception. A complete check of all AFs that have been useful in the recent past is not possible due to the long interruption of the current program. The user must therefore occasionally accept a multiple AF change, during which the reception quality deteriorates audibly in the meantime.
  • the RDS receiver described in EP application 0 333 194 essentially contains one Data memory which is occupied by a second receiving part with the list of alternative frequencies transmitted via wave propagation in the RDS signal of the currently received program.
  • a selection device uses the second tuner to select those AFs whose signal field strength exceeds a predetermined value and stores them in a selection memory.
  • a comparison device then decides whether the current reception frequency of the first reception section should be exchanged with one of these AFs.
  • the data memory contains the entire AF list of a program broadcast by a broadcaster and, on the other hand, in the case of an abrupt program change by pressing a program selection button, no AFs of the program can provide newly selected programs as long as the associated AF list has not been detected from the RDS signal transmitted via wave propagation.
  • the object of the present invention was therefore to develop a two-receiver concept with a background memory which can immediately offer a number of alternative frequencies which are worth receiving even in the case of a spontaneous program change.
  • the background memory should also reflect the entire transmitter landscape tested for reception quality, which corresponds to the range of action of the mobile receiving device.
  • the alternative frequencies transmitted to the working memory in the case of a spontaneous program call are to be periodically checked in terms of their reception quality and ranked with the aid of the second receiving part in order to be able to switch to a reliable alternative frequency without loss of time even in the case of short-term, striking interferences.
  • the frequency should only be switched after a long period of interference in order to avoid a continuous frequency change.
  • the RF signal received via the antenna is fed to both the tuner 2 of the foreground receiver 1 and the tuner 17 of the background receiver 19 and converted into an intermediate frequency.
  • the low-frequency multiplex signal is available at the output of IF amplifiers 3 and 18 for further processing.
  • the audio signals for the left and right stereo channels are obtained via the stereo decoder 4, which are fed to the power amplifier 5 and the loudspeakers.
  • both the foreground receiver 1 and the background receiver 19 each have a level detector 6 or 14 and a multipath detector 7 or 15.
  • the level detectors receive a measurement variable from the IF amplifiers in accordance with the IF signal level to determine the signal field strength, which is processed in the microprocessor 9 acting as a central control unit.
  • the multipath detectors are fed with the demodulated multiplex signal and supply the microprocessor 9 with a control signal for recognizing multipath reception.
  • the analog / digital conversion of the control signals for the microprocessor 9 takes place either in the detectors 6 and 7 or 14 and 15 or in the microprocessor 9, provided that this is provided with corresponding converter inputs.
  • only the background receiver 19 contains one for evaluating the RDS data RDS decoder 16. A version in which the foreground receiver also has its own RDS decoder is also conceivable.
  • the demodulated multiplex signal is first subjected to 57 kHz bandpass filtering in the RDS decoder 16.
  • the quadrature-amplitude-modulated RDS signal is then demodulated and, after a further biphase and differential decoding, supplied to the microprocessor 9.
  • the microprocessor 9 supplies the tuning signals for the synthesizer tuners 2 and 17 and feeds the display 12, via which i.a.
  • the station names obtained from the PS code (Program Service Name Code) of the RDS signal are displayed alphanumerically.
  • control unit 13 which generates the corresponding commands for the microprocessor 9.
  • the operating program for the microprocessor 9 is stored in the ROM memory 8.
  • the EEPROM memory 10 serves as a non-volatile program memory and, assigned to the program selection buttons in the operating part 13, contains the PI code and the associated PS code for each stored program.
  • the current transmitter data are recorded in the three memory levels of the RAM 11a-c.
  • Memory level 11a represents the main memory and contains, in addition to the PI code and the tuning frequency for the transmitter currently received by the foreground receiver 1, the associated PS code and the alternative frequencies that can be received on site.
  • Memory level 11b forms the background memory, which is loaded via the background receiver 19 with the PI codes and the alternative frequencies of all programs currently or previously confirmed to be worth receiving.
  • the memory level 11c works as an additional memory in which all RDS-TP frequencies, ie all RDS frequencies with Traffic Program Identification (TP), which originate from the same broadcaster which broadcasts the program received by the foreground receiver 1, are stored.
  • TP Traffic Program Identification
  • the microprocessor 9 starts tuning the tuner 17 in the search run over the entire reception range from 87.5 to 108.0 MHz, whereby it uses the level detector 14 and the multi-path detector 15 to check whether certain minimum values for the reception quality are met.
  • the microprocessor 9 uses the RDS demodulator 16 to determine whether the received frequency is an RDS transmission frequency with or without traffic information, and stores frequencies that are worth receiving, sorted according to PI codes and evaluated in the order of their reception quality in the background memory 11b.
  • the microprocessor 9 then transmits the data of the transmitter with the highest field strength including the associated AFs automatically into the first memory level 11a of the RAM, which serves as a working memory, and supplies a transmitter-related tuning signal to the tuner 2 of the foreground receiver 1.
  • the microprocessor 9 periodically checks the reception quality of the AFs stored in the working memory 11a via the background receiver 19 and continuously updates their ranking. In between at certain intervals, the microprocessor 9 uses the background receiver 19 to repeat its automatic search over the entire reception frequency range and empirically extends the memory content of the background memory 11b in accordance with the changed reception conditions in the case of mobile radio reception, the evaluation of the reception quality in the order of the local conditions is adjusted in each case. As a result, the background memory 11b reflects the transmitter landscape in the action area of the mobile radio receiver over time.
  • the frequencies of the PI code that has not been transferred to the working memory 11a for a long time for tuning the foreground receiver 1 are automatically deleted.
  • the transmission of a new PI code together with the associated AFs and thus a new program into the working memory 11a can take place when the receiving device is switched on in such a way that the background memory 11b is manually read out step by step in a special query mode by actuating a correspondingly labeled key, the Code-associated frequency data can be copied into the working memory 11a. The old data of the working memory will be deleted. As soon as the foreground receiver 1 recognizes the PS code from the RDS data transmitted via wave propagation in reception mode, the associated transmitter name is shown on the display 12 and the PS code is additionally stored in the working memory 11a.
  • Program data which should also be available spontaneously in the future, can be transferred to the program memory 10 by pressing an appropriate program selection key.
  • the microprocessor 9 only transfers the PI code and the PS code from the working memory 11a to the program memory 10.
  • the AFs which can currently be received are copied from the background memory 11b to the working memory 11a when the program is called up later spontaneously, and with the help of the PS code, the station name can be displayed immediately without waiting for the evaluation of the RDS data received via wave propagation.
  • the PS code subsequently obtained from the radio signal shows a difference the code stored in the program memory 10, e.g. B. because the station name has been changed in the meantime, the PS code assigned to a specific PI code is automatically corrected by the microprocessor 9 both in the working memory 11a and in the program memory 10.
  • the background receiver 19 can be activated for a short time after extended switch-off pauses when the audio mode is switched off, time-controlled by the microprocessor 9 which is fed in the standby mode.
  • the foreground receiver 1 can be tuned to a new frequency by pressing a corresponding program selection key, or a manual search can be carried out step by step using special up / down search keys. Since in the exemplary embodiment described, only the background receiver 19 has an RDS demodulator 16, the search must take place via the background receiver.
  • the search stops at a reception frequency worth receiving the RDS or RDS-TP signals can be decoded within 300 ms, for example, and z. B. within max. Identify with a valid PI code for 1 s.
  • This frequency is transmitted from microprocessor 9 to work memory 11a for tuning foreground receiver 1 and thus for program presentation, the current AF list for the associated PI code in background memory 11b also being automatically copied into work memory 11a. If the associated PI code is also already stored in the program memory 10 together with the corresponding PS code, the PS code is also copied from there into the working memory 11a by the microprocessor 9 in order to be able to immediately display the station name in the display 12.
  • the memory content is then updated with regard to the reception quality in the manner described above.
  • the continuous checking of the reception quality in the background receiver 19 parallel to the reproduction of the currently received program in the foreground receiver 1 would initially also have a brief and minor one Changes in the reception conditions result in a frequent change of the foreground receiver 1 to an alternative frequency.
  • the switch to an alternative frequency is software-controlled in the device according to the invention such that, with a slightly better reception quality of an AF, a frequency change only after a longer exposure and with strong ones Differences in quality occur within a very short period of time.
  • the delay time for a frequency change is switched over in stages depending on the reception field strength and the size of the detection signal for multipath reception.
  • designs with a constant delay or exposure time without signal dependence are also obvious.
  • the foreground receiver 1 can be tuned to an RDS transmission frequency without traffic reports, while traffic reports on other transmission frequencies of the same broadcaster are monitored with the background receiver 19.
  • the invention is therefore based on the idea that the driver with the foreground receiver selects the program of a broadcaster within his current target area and that by monitoring a traffic program of the same broadcaster in the background receiver, he only receives traffic information that is relevant to his route.
  • the PI code consists of four hexadecimal numbers of 4 bits each, the first HEX number (bits 1 to 4) representing the country code and the second HEX number (bits 5 to 8) representing the transmission area code, ie the second HEX number indicates whether the program is international, national, supraregional, regional or local.
  • the third and fourth HEX numbers (bits 9 to 16) form the program reference number and thus identify the respective programs of the various broadcasters in a country. In Germany, the third HEX number is the program area (e.g. Bavaria, Hesse etc.) and the fourth HEX number is the program code (e.g. 1st program, 2nd program etc.).
  • the microprocessor 9 uses the background receiver 19 to check whether the TP bit in the RDS data signal is set to 1, i.e. whether it is, by briefly tuning the tuner 17 is a traffic information station, otherwise there is no frequency transfer.
  • the traffic radio frequencies stored in the additional memory 11c are periodically checked by the microprocessor 9 alternately with the frequencies stored in the working memory 11a for reception quality and sorted according to their ranking.
  • TA traffic announcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

RDS-Rundfunkempfänger mit nur einem Empfangsteil müssen bei Verschlechterung der Empfangsverhältnisse auf alternative Frequenzen zurückgreifen, deren Qualitätsbeurteilung im Zeitpunkt der Umschaltung nicht mehr aktuell ist. Um die vielfältigen Nachteile des Ein-Empfänger-Konzeptes zu umgehen, wird ein RDS-Rundfunkgerät mit zwei Empfangsteilen beschrieben, das mit Hilfe eines Hintergrundempfängers die Empfangsqualität alternativer Freqenzen fortlaufend überwacht und in einem Hintergrundspeicher empirisch eine nach Empfangsqualität geordnete Liste empfangswürdiger RDS-Frequenzen mit und ohne Verkehrsdurchsagen aus dem Aktionsgebiet des mobilen Empfängers aufbaut. Beim Empfang eines RDS-Rundfunkprogramms ohne Verkehrsnachrichten können Verkehrsdurchsagen auf anderen Frequenzen derselben Sendeanstalt automatisch eingeblendet werden. <IMAGE>

Description

  • Mit dem Radio-Daten-System (RDS) wird parallel zum ausgestrahlten Rundfunkprogramm, unhörbar für den Rundfunkhörer, ein binärer Datenstrom übertragen, der dem Empfangsgerät eine Reihe von Abstimm-, Schalt- und Betriebsinformationen liefert. Unter anderem werden z.B. als Abstimmhilfe fortlaufend sogenannte PI-Codes (Programme Identification Codes) gesendet, die dem Empfänger die Zuordnung einer Senderfrequenz zu einer bestimmten Programmkette erlauben und ihm alternative Frequenzen anbieten, mit denen das gleiche Programm empfangen werden kann. Dieser RDS-Service ist vor allem für mobile Rundfunkempfänger nützlich, weil sich durch Ortsveränderungen die Empfangsverhältnisse ständig ändern können.
  • Die Übertragung der alternativen Frequenzen (AF) vom Sender zum Empfänger über Wellenausbreitung kann aber im Grenzfall bis zu zwei Minuten dauern (störungsfreier Empfang vorausgesetzt), da die AFs in Form von Listen sequentiell übermittelt werden. Die Organisation dieser Listen, für die es zwei Versionen A und B gibt, ist in der Spezifikation des Radio-Daten-Systems, DIN/pr. EN 50 067 vom Oktober 1988 ausführlich beschrieben und soll hier nicht näher erläutert werden.
  • Um den Rundfunkhörer ohne hörbare Unterbrechung mit dem laufenden Programm zu versorgen, muß das Empfangsgerät deshalb bei Verschlechterung der Empfangsverhältnisse innerhalb eines internen Speichers auf bereits als empfangswürdig erkannte alternative Frequenzen zurückgreifen können. Nach dem Stand der Technik werden dazu nicht nur die per Wellenausbreitung mit den RDS-Daten übertragenen alternativen Frequenzen in einem Speicher abgelegt, sondern es wird auch zumindest bei jedem Wechsel auf eine alternative Frequenz eine Bewertung der Empfangsqualität der abgespeicherten AFs vorgenommen.
  • Bei Rundfunkempfängern mit einem einzigen Tuner kann die Qualitätsbewertung jedoch nur durch kurzzeitiges Aufprüfen einer alternativen Frequenz, d.h. innerhalb eines Zeitfensters von ca. 20 ms einschließlich der notwendigen Umschaltzeiten auf die AF und dem Zurückspringen auf die aktuell empfangene Frequenz erfolgen, um keine hörbare Programmunterbrechung zu erzeugen. Die besonders lästigen Mehrwegeempfangsstörungen sind dabei kaum detektierbar, weil diese zwar kurzzeitig auftreten, aber eine Folgezeit von 100 ms und größer aufweisen. Als Folge davon kann es vorkommen, daß das Empfangsgerät auf eine brauchbare, aber nicht auf die qualitativ beste AF abgestimmt ist. Dieser Zustand kann längere Zeit andauern, wenn die aktuelle Abstimmfrequenz gerade noch nicht die Schwellen für das Auslösen einer AF-Überprüfung erreicht.
  • Ein RDS-Empfänger mit einem einzigen Empfangsteil kann außerdem folgendes Problem nicht lösen:
    Wird die Schwelle für einen AF-Wechsel erreicht, so kann der Empfänger nur auf solche AFs zurückgreifen, deren Qualitätsbeurteilung a priori nicht mehr aktuell ist, d. h., daß u. U. eine AF eingestellt wird, die bei der letzten Qualitätsüberprüfung die beste war, sich in der Zwischenzeit aber deutlich verschlechtert hat, ohne die Mindestanforderungen an die Empfangswürdigkeit zu unterschreiten. Eine vollständige Überprüfung sämtlicher AFs, die in jüngerer Vergangenheit brauchbar waren, verbietet sich wegen der längeren Unterbrechung des laufenden Programms. Der Benutzer muß deshalb gelegentlich einen mehrfachen AF-Wechsel in Kauf nehmen, bei dem sich zwischendurch die Empfangsqualität hörbar verschlechtert.
  • Unter günstigen Empfangsbedingungen macht sich bei einem Ein-Empfänger-Konzept ein weiterer Zielkonflikt bemerkbar:
    Da sich unter günstigen topographischen Voraussetzungen die Empfangssituation im mobilen Betrieb nur langsam ändert, kann unter guten Empfangsbedingungen der Empfänger sehr lange an einer Abstimmfrequenz festhalten, obwohl eine alternative Frequenz inzwischen mit besserer Qualität zu empfangen wäre. Erst wenn die Qualitätsschwelle unterschritten wird, erfolgt die Umschaltung auf eine AF und erzeugt dabei u. U. einen hörbaren Qualitätssprung (z.B. von leicht gestörtem Monoempfang zu gutem Stereoempfang).
  • Um diese vielfältigen Einschränkungen bei der Nutzung des Radio-Daten-Systems im mobilen Empfangsbetrieb zu umgehen, ist es nach dem Stand der Technik bekannt, einen RDS-Empfänger mit einem zweiten Empfangsteil auszurüsten, das im Hintergrund fortlaufend nach empfangswürdigen alternativen Frequenzen sucht. Ein Empfänger dieser Art ist in der EP-Anmeldung 0 333 194 beschrieben. Weitere Offenlegungen über Empfänger mit zwei Empfangsteilen, jedoch nicht speziell ausgelegt auf das Radio-Daten-System, finden sich in der DE-OS 28 40 533, der DE-OS 30 20 135 und der EP-Anmeldung 0 036 086.
  • Der in der EP-Anmeldung 0 333 194 beschriebene RDS-Empfänger enthält im wesentlichen einen Datenspeicher, der von einem zweiten Empfangsteil mit der über Wellenausbreitung im RDS-Signal des aktuell empfangenen Programms übertragenen Liste alternativer Frequenzen belegt wird. Eine Auswahleinrichtung sucht mit Hilfe des zweiten Tuners diejenigen AFs aus, deren Signalfeldstärke einen vorgegebenen Wert übertrifft und legt diese in einem Auswahlspeicher ab. Eine Vergleichseinrichtung entscheidet dann, ob die aktuelle Empfangsfrequenz des ersten Empfangsteils mit einer dieser AFs ausgetauscht werden soll.
  • Der Nachteil dieser Anordnung besteht darin, daß der Datenspeicher zum einen ohne Rücksicht auf die vor Ort wirklich empfangbaren alternativen Frequenzen die gesamte, von einer Sendeanstalt ausgestrahlte AF-Liste eines Programms enthält und zum anderen bei einem abruptem Programmwechsel durch Betätigen einer Programmwahltaste zunächst keine AFs des neu gewählten Programms zur Verfügung stellen kann, solange nicht die zugehörige AF-Liste aus dem über Wellenausbreitung übertragenen RDS-Signal detektiert wurde.
  • Aufgabe der vorliegenden Erfindung war es deshalb, ein Zweiempfängerkonzept mit einem Hintergrundspeicher zu entwickeln, der auch bei einem spontanen Programmwechsel sofort eine Anzahl empfangswürdiger alternativer Frequenzen anbieten kann. Ferner soll der Hintergrundspeicher im Laufe der Zeit die gesamte, auf Empfangsqualität getestete Senderlandschaft widerspiegeln, die dem Aktionsradius des mobilen Empfangsgerätes entspricht.
  • Die bei einem spontanen Programmabruf in den Arbeitsspeicher übertragenen alternativen Frequenzen sollen gemäß der Erfindung mit Hilfe des zweiten Empfangsteils periodisch in ihrer Empfangsqualität überprüft und rangmäßig geordnet werden, um auch bei kurzzeitig auftretenden, markanten Störungen ohne Zeitverlust auf eine empfangssichere alternative Frequenz umschalten zu können. Bei geringfügigen Störungen soll jedoch die Frequenzumschaltung erst nach längerer Störeinwirkung erfolgen, um einen fortlaufenden Frequenzwechsel zu vermeiden.
  • Ein weiteres Ziel der Erfindung war es, den RDS-Rundfunkempfänger derart zu gestalten, daß beim Empfang eines Senders ohne Verkehrsmeldungen der Hintergrundempfänger sämtliche Verkehrsfunkfrequenzen derselben Sendeanstalt überwacht und beim Verbreiten einer Verkehrsmeldung nur während der Dauer der Verkehrsdurchsage (TA-Bit = 1) den Vordergrundempfänger auf die empfangswürdigste Verkehrsfunkfrequenz der für den aktuellen Empfangsort zuständigen Sendeanstalt abstimmt.
  • Die Erfindung wird nun nachfolgend anhand der Zeichnungen erläutert. Es zeigen:
  • Fig. 1
    das Blockschaltbild für ein Ausführungsbeispiel des erfindungsgemäßen RDS-Rundfunkempfängers
    Fig. 2
    das Strukturschema des PI-Codes.
  • Bei dem in Fig. 1 dargestellten Rundfunkempfänger wird das über die Antenne empfangene HF-Signal sowohl dem Tuner 2 des Vordergrundempfängers 1 als auch dem Tuner 17 des Hintergrundempfängers 19 zugeführt und in eine Zwischenfrequenz umgesetzt. Nach selektiver Verstärkung und Demodulation steht das niederfrequente Multiplexsignal am Ausgang der ZF-Verstärker 3 und 18 zur Weiterverarbeitung zur Verfügung. Aus dem Signal des Vordergrundempfängers 1 werden über den Stereo-Decoder 4 die Audiosignale für den linken und rechten Stereokanal gewonnen, die dem Endverstärker 5 und den Lautsprechern zugeleitet werden. Zur Beurteilung der Empfangsqualität besitzen sowohl der Vordergrundempfänger 1 als auch der Hintergrundempfänger 19 je einen Pegeldetektor 6 bzw. 14 und einen Mehrwegedetektor 7 bzw. 15. Die Pegeldetektoren erhalten von den ZF-Verstärkern nach Maßgabe des ZF-Signalpegels eine Meßgröße zur Feststellung der Signalfeldstärke, die in dem als zentrale Steuereinheit wirkenden Mikroprozessor 9 verarbeitet wird. Die Mehrwegedetektoren werden mit dem demodulierten Multiplexsignal gespeist und liefern dem Mikroprozessor 9 ein Steuersignal zum Erkennen von Mehrwegeempfang. Die Analog-/Digitalwandlung der Steuersignale für den Mikroprozessor 9 erfolgt entweder in den Detektoren 6 und 7 bzw. 14 und 15 oder im Mikroprozessor 9, sofern dieser mit entsprechenden Wandlereingängen versehen ist. Zur Auswertung der RDS-Daten enthält in dem gezeigten Ausführungsbeispiel nur der Hintergrundempfänger 19 einen RDS-Decoder 16. Eine Version, in der auch der Vordergrundempfänger einen eigenen RDS-Decoder aufweist, ist ebenfalls denkbar.
  • Das demodulierte Multiplexsignal wird im RDS-Decoder 16 zunächst einer 57 kHz-Bandpaßfilterung unterzogen. Danach wird das in Quadratur amplitudenmodulierte RDS-Signal demoduliert und nach einer weiteren Biphase- und Differential-Decodierung dem Mikroprozessor 9 zugeführt. Der Mikroprozessor 9 liefert die Abstimmsignale für die Synthesizer Tuner 2 und 17 und speist das Display 12, über das u.a. die aus dem PS-Code (Programm Service Name Code) des RDS-Signals gewonnenen Sendernamen alphanumerisch angezeigt werden.
  • Sämtliche manuellen Bedienfunktionen werden vom Bedienteil 13 gesteuert, das die entsprechenden Befehle für den Mikroprozessor 9 erzeugt.
  • Das Betriebsprogramm für den Mikroprozessor 9 ist im ROM-Speicher 8 abgelegt. Der EEPROM-Speicher 10 dient als nichtflüchtiger Programmspeicher und beinhaltet, zugeordnet zu den Programmwahltasten im Bedienteil 13, für jedes abgespeicherte Programm den PI-Code und den zugehörigen PS-Code. In den drei Speicherebenen des RAM-Speichers 11a-c werden die aktuellen Senderdaten festgehalten. Speicherebene 11a stellt den Arbeitsspeicher dar und enthält neben dem PI-Code und der Abstimmfrequenz für den vom Vordergrundempfänger 1 aktuell empfangenen Sender den zugehörigen PS-Code und die vor Ort empfangbaren alternativen Frequenzen. Speicherebene 11b bildet den Hintergrundspeicher, der über den Hintergrundempfänger 19 mit den PI-Codes und den alternativen Frequenzen sämtlicher derzeit oder vormals als empfangswürdig bestätigter Programme geladen wird. Die Speicherebene 11c arbeitet als Zusatzspeicher, in den alle RDS-TP-Frequenzen, d.h. alle RDS-Frequenzen mit Traffic Programme Identification (TP) abgelegt werden, die von derselben Sendeanstalt stammen, welche das vom Vordergrundempfänger 1 empfangene Programm ausstrahlt.
  • Sobald das Empfangsgerät erstmalig an die Spannungsversorgung angeschlossen wird (oder in abgewandelter Ausführung, sobald der Rundfunkempfänger zum ersten Male eingeschaltet wird), beginnt der Mikroprozessor 9 den Tuner 17 im Suchlauf über den gesamten Empfangsbereich von 87,5 bis 108,0 MHz durchzustimmen, wobei er über den Pegeldetektor 14 und den Mehrwegedetektor 15 prüft, ob bestimmte Mindestwerte für die Empfangsqualität erfüllt werden. Gleichzeitig ermittelt der Mikroprozessor 9 über den RDS-Demodulator 16, ob es sich bei der empfangenen Frequenz um eine RDS-Sendefrequenz mit oder ohne Verkehrsfunkausstrahlung handelt, und speichert empfangswürdige Frequenzen, geordnet nach PI-Codes und bewertet in der Rangfolge entsprechend ihrer Empfangsqualität im Hintergrundspeicher 11b ab. Die Daten des Senders mit der höchsten Feldstärke samt zugehöriger AFs überträgt der Mikroprozessor 9 anschließend automatisch in die als Arbeitsspeicher dienende erste Speicherebene 11a des RAM-Speichers und liefert ein senderbezogenes Abstimmsignal an den Tuner 2 des Vordergrundempfängers 1.
  • Unabhängig davon, ob das Empfangsgerät zur Rundfunkwiedergabe ein- oder ausgeschaltet ist, prüft der Mikroprozessor 9 periodisch über den Hintergrundempfänger 19 die Empfangsqualität der im Arbeitsspeicher 11a abgelegten AFs und aktualisiert fortlaufend deren Rangfolge. Zwischendurch in bestimmten Zeitabständen wiederholt der Mikroprozessor 9 mit Hilfe des Hintergrundempfängers 19 seinen automatischen Suchlauf über den gesamten Empfangs-Frequenzbereich und weitet empirisch den Speicherinhalt des Hintergrundspeichers 11b gemäß den veränderten Empfangsbedingungen bei mobilen Rundfunkempfang aus, wobei die Bewertung der Empfangsqualität in der Rangfolge den örtlichen Verhältnissen jeweils angepaßt wird. Dadurch spiegelt der Hintergrundspeicher 11b im Laufe der Zeit die Senderlandschaft im Aktionsgebiet des mobilen Rundfunkempfängers wider.
  • Werden die Grenzen der Speicherkapazität des Hintergrundspeichers 11b erreicht, so werden die Frequenzen desjenigen PI-Codes automatisch gelöscht, der für lange Zeit nicht zur Abstimmung des Vordergrundempfänges 1 in den Arbeitsspeicher 11a übertragen wurde.
  • Das Übertragen eines neuen PI-Codes samt zugehöriger AFs und damit eines neuen Programms in den Arbeitsspeicher 11a kann bei eingeschaltetem Empfangsgerät derart erfolgen, daß der Hintergrundspeicher 11b in einem speziellen Abfragemodus manuell durch Betätigen einer entsprechend gekennzeichneten Taste schrittweise ausgelesen wird, wobei die dem PI-Code zugehörigen Frequenzdaten in den Arbeitsspeicher 11a kopiert werden. Die Altdaten des Arbeitsspeichers werden dabei gelöscht. Sobald im Empfangsbetrieb der Vordergrundempfänger 1 aus den über Wellenausbreitung übermittelten RDS-Daten den PS-Code erkennt, wird der zugehörige Sendername im Display 12 angezeigt und der PS-Code im Arbeitsspeicher 11a zusätzlich abgelegt.
  • Programmdaten, die auch künftig spontan zum Aufruf zur Verfügung stehen sollen, können durch Betätigen einer entsprechenden Programmwahltaste in den Programmspeicher 10 übernommen werden. Dabei überträgt der Mikroprozessor 9 nur den PI-Code und den PS-Code aus dem Arbeitsspeicher 11a in den Programmspeicher 10. Anhand des gespeicherten PI-Codes werden bei einem späteren spontanen Programmabruf die aktuell empfangbaren AFs aus dem Hintergrundspeicher 11b in den Arbeitsspeicher 11a kopiert, und mit Hilfe des PS-Codes kann sofort der Sendername angezeigt werden, ohne daß die Auswertung der über Wellenausbreitung empfangenen RDS-Daten abgewartet werden muß. Weist jedoch der anschließend aus dem Funksignal gewonnene PS-Code eine Abweichung gegenüber dem im Programmspeicher 10 abgelegten Code auf, z. B. weil zwischenzeitlich der Sendername geändert wurde, so wird der einem bestimmten PI-Code zugeordnete PS-Code sowohl im Arbeitsspeicher 11a als auch im Programmspeicher 10 automatisch vom Mikroprozessor 9 nachträglich korrigiert.
  • Da als Programmspeicher 10 ein nichtflüchtiger Speicher verwendet wird, können die gespeicherten Programmdaten auch bei Unterbrechung der Versorgungsspannung nicht verloren gehen.
  • Die fortlaufende Überwachung der Empfangsqualität der im Arbeitsspeicher 11a und im Hintergrundspeicher 11b abgelegten Frequenzen, auch bei ausgeschaltetem Empfangsgerät, setzt natürlich eine stromsparende Ausführung des Hintergrundempfänges 19 voraus. Sind diese Voraussetzungen gerätetechnisch nicht gegeben, so kann der Hintergrundempfänger 19 bei ausgeschaltetem Audiobetrieb, zeitgesteuert von dem im Stand-by-Betrieb gespeisten Mikroprozessor 9, nach längeren Abschaltpausen jeweils für kurze Zeit aktiviert werden.
  • Zum Empfang eines anderen Programms kann, wie vorstehend beschrieben, der Vordergrundempfänger 1 durch Betätigen einer entsprechenden Programmwahltaste auf eine neue Frequenz abgestimmt werden, oder es kann mit speziellen Aufwärts-/Abwärtssuchlauftasten schrittweise ein manueller Suchlauf durchgeführt werden. Da im beschriebenen Ausführungsbeispiel nur der Hintergrundempfänger 19 einen RDS-Demodulator 16 aufweist, muß der Suchlauf über den Hintergrundempfänger erfolgen.
  • Der Suchlauf stoppt bei einer empfangswürdigen Sendefrequenz, deren RDS- bzw. RDS-TP-Signale innerhalb von beispielsweise 300 ms decodierbar sind und sich z. B. innerhalb von max. 1 s durch einen gültigen PI-Code ausweisen. Diese Frequenz wird zur Abstimmung des Vordergrundempfängers 1 und damit zur Programmdarbietung vom Mikroprozessor 9 in den Arbeitsspeicher 11a übertragen, wobei die zum zugehörigen PI-Code im Hintergrundspeicher 11b vorhandene aktuelle AF-Liste automatisch in den Arbeitsspeicher 11a zusätzlich kopiert wird. Ist der zugehörige PI-Code zusammen mit dem entsprechenden PS-Code auch bereits im Programmspeicher 10 abgelegt, so wird der PS-Code vom Mikroprozessor 9 ebenfalls von dort in den Arbeitsspeicher 11a kopiert, um sofort den Sendernamen im Display 12 darstellen zu können.
  • Die Aktualisierung des Speicherinhaltes im Hinblick auf die Empfangsqualität erfolgt dann in der vorbeschriebenen Weise.
  • Die fortlaufende Überprüfung der Empfangsqualität im Hintergrundempfänger 19 parallel zur Wiedergabe des aktuell empfangenen Programms im Vordergrundempfänger 1 hätte zunächst auch bei kurzzeitigen und geringfügigen Veränderungen der Empfangsverhältnisse einen häufigen Wechsel des Vordergrundempfängers 1 auf eine alternative Frequenz zur Folge. Da aber ein zu häufiger Frequenzwechsel trotz kurzer Umschaltzeiten auch zu einer negativen Beeinträchtigung der Übertragungsqualität führen kann, wird bei dem erfindungsgemäßen Gerät der Wechsel auf eine alternative Frequenz softwaregesteuert derart verzögert, daß bei geringfügig besserer Empfangsqualität einer AF ein Frequenzwechsel erst nach längerer Einwirkung und bei starken Qualitätsunterschieden innerhalb sehr kurzer Zeitspannen erfolgt. Die Verzögerungszeit für einen Frequenzwechsel wird dabei stufenweise in Abhängigkeit der Empfangsfeldstärke und der Größe des Erkennungssignals für Mehrwegeempfang umgeschaltet. Es sind jedoch auch Ausführungen mit konstanter Verzögerungs- bzw. Einwirkungszeit ohne Signalabhängigkeit naheliegend.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann der Vordergrundempfänger 1 auf eine RDS-Sendefrequenz ohne Verkehrsmeldungen abgestimmt sein, während Verkehrsmeldungen auf anderen Sendefrequenzen derselben Sendeanstalt mit dem Hintergrundempfänger 19 überwacht werden. Nach dem Stand der Technik ist es zwar bekannt, in einem Autoradio mit zwei Empfangsteilen beim Empfang eines Programms ohne Verkehrsnachrichten (z.B. auch eines Mittelwellenprogramms) den Hintergrundempfänger auf den feldstärkebesten Verkehrsfunksender abzustimmen und bei Verkehrsdurchsagen das Programm des Vordergrundempfängers zugunsten der Verkehrsmeldung zu unterbrechen, doch kann dabei ein Verkehrsfunkprogramm empfangen werden, das für die Reiseroute des Autofahrers ohne Bedeutung ist. Die Erfindung geht deshalb von dem Gedanken aus, daß der Autofahrer mit dem Vordergrundempfänger das Programm einer Sendeanstalt innerhalb seines aktuellen Zielgebietes wählt und daß durch die Überwachung eines Verkehrsfunkprogramms derselben Sendeanstalt im Hintergrundempfänger er nur solche Verkehrshinweise erhält, die für seine Fahrstrecke relevant sind. Zu diesem Zweck überträgt der Mikroprozessor 9, sobald der Vordergrundempfänger 1 auf einen RDS-Sender ohne Verkehrsmeldungen (Traffic Programme (TP)-Bit = 0) abgestimmt wird, sämtliche aktuell verfügbaren Verkehrsfunkfrequenzen derselben Sendeanstalt aus dem Hintergrundspeicher 11b in den Zusatzspeicher 11c. Die Aufschlüsselung der in Frage kommenden Frequenzen erfolgt anhand des PI-Codes. Wie aus Fig. 2 hervorgeht, besteht der PI-Code aus vier Hexadezimalzahlen zu je 4 Bit, wobei die erste HEX-Zahl (Bit 1 bis 4) die Länderkennung und die zweite HEX-Zahl (Bit 5 bis 8) die Sendebereichskennung darstellt, d.h., die zweite HEX-Zahl gibt an, ob es sich um eine internationale, nationale, supraregionale, regionale oder lokale Programmausstrahlung handelt. Die dritte und vierte HEX-Zahl (Bit 9 bis 16) bilden die Programmbezugszahl und kennzeichnen damit die jeweiligen Programme der verschiedenen Rundfunkanstalten eines Landes. In Deutschland soll die dritte HEX-Zahl den Programmbereich (z.B. Bayern, Hessen etc.) und die vierte HEX-Zahl den Programm-Code (z.B. 1. Programm, 2. Programm etc.) ausweisen. Um also einen Verkehrsfunksender derselben Sendeanstalt aufzufinden, müssen mindestens die erste und die dritte HEX-Zahl im PI-Code mit den PI-Code-Daten der vom Vordergrundempfänger 1 empfangenen Frequenz übereinstimmen. Bei der Übernahme der einzelnen Frequenzen aus dem Hintergrundspeicher 11b in den Zusatzspeicher 11c prüft der Mikroprozessor 9 mit Hilfe des Hintergrundempfängers 19 jeweils durch kurzzeitiges Abstimmen des Tuners 17, ob das TP-Bit im RDS-Datensignal auf 1 gesetzt ist, d.h., ob es sich um einen Verkehrsfunksender handelt, andernfalls erfolgt keine Frequenzübernahme.
  • Die im Zusatzspeicher 11c abgelegten Verkehrsfunkfrequenzen werden im Wechsel mit den im Arbeitsspeicher 11a abgelegten Frequenzen vom Mikroprozessor 9 periodisch auf Empfangsqualität überprüft und entsprechend ihrer Rangfolge sortiert. Gleichzeitig überwacht der Mikroprozessor 9, ob bei einer der Verkehrsfunkfrequenzen das Traffic Announcement (TA)-Bit = 1 gesetzt wird, d.h., ob die Durchsage einer Verkehrsmeldung angekündigt wird, und stimmt für den Zeitraum einer Verkehrsdurchsage den Vordergrundempfänger 1 auf die empfangsstärkste Verkehrsfunkfrequenz ab.

Claims (7)

  1. RDS-Rundfunkempfänger, insbesondere RDS-Autoradio mit einem ersten Empfangsteil (Vordergrundempfänger), einem zweiten Empfangsteil (Hintergrundempfänger) und einer zentralen Steuereinheit, dadurch gekennzeichnet, daß die zentrale Steuereinheit (9)
    a) den Tuner (17) des Hintergrundempfängers (19) periodisch auf die im Arbeitsspeicher (11a) abgelegten alternativen Frequenzen des vom Vordergrundempfänger (1) aktuell empfangenen Programms abstimmt, die Empfangsqualität der alternativen Frequenzen in ihrer Rangfolge untereinander und im Vergleich zur aktuell empfangenen Frequenz bewertet und bei höherer Empfangswürdigkeit einer alternativen Frequenz den Tuner (2) des Vordergrundempfängers (1) auf diese Frequenz einstellt,
    b) nach bestimmten Zeitabschnitten im Time-Sharing den Tuner (17) des Hintergrundempfängers (19) auf alle decodierbaren RDS- bzw. RDS-TP-Sendefrequenzen nacheinander abstimmt und diese, sofern sie gewisse Mindestanforderungen an die Empfangsqualität erfüllen, geordnet nach PI-Code und Empfangsqualität in einem Hintergrundspeicher (11b) ablegt und
    c) den Hintergrundspeicher (11b) derart verwaltet, daß Frequenzen, deren PI-Code über längeren Zeitraum nicht zur Abstimmung des Vordergrundempfängers (1) aufgerufen wurde, bei Vollauslastung der Speicherkapazität als erste wieder gelöscht werden.
  2. RDS-Rundfunkempfänger nach Anspruch 1, dadurch gekennzeichnet, daß die Überprüfung der alternativen Frequenzen im Arbeitsspeicher (11a) auf Empfangswürdigkeit und die Bewertung der Empfangsqualität der im Hintergrundspeicher (11b) abgelegten RDS- bzw. RDS-TP-Frequenzen durch den Hintergrundempfänger (19) sowohl bei ein- als auch bei ausgeschalteter Audiowiedergabe erfolgt.
  3. RDS-Rundfunkempfänger nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zentrale Steuereinheit (9) bei Sendersuchlauf den Tuner (17) des Hintergrundempfängers (19) durchstimmt und die bei einem Suchlaufstop als empfangswürdig erkannte RDS- bzw. RDS-TP-Frequenz zur Abstimmung des Vordergrundempfängers(1) in den Arbeitsspeicher (11a) überträgt.
  4. RDS-Rundfunkempfänger nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zentrale Steuereinheit (9) beim Abstimmen des Vordergrundempfängers (1) auf ein anderes Programm durch spontanen Abruf eines neuen PI-Codes aus dem Programmspeicher (10) mit Hilfe einer Programmwahltaste oder durch Übernahme einer neuen Empfangsfrequenz aus dem Hintergrundempfänger (19) nach Sendersuchlauf die dem zugehörigen PI-Code entsprechende aktuelle AF-Liste aus dem Hintergrundspeicher (11b) in den Arbeitsspeicher (11a) überträgt.
  5. RDS-Rundfunkempfänger nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß im Programmspeicher (10) für die den Programmwahltasten zugeordneten Programme jeweils nur der PI-Code und der PS-Code abgespeichert ist und daß die zentrale Steuereinheit (9) bei Sendersuchlauf prüft, ob für die vom Hintergrundempfänger (19) gefundene Empfangsfrequenz ein ihrem PI-Code zugehöriger PS-Code bereits im Programmspeicher (10) abgelegt ist, der zur sofortigen Anzeige des Sendernamens in den Arbeitsspeicher (11a) übernommen werden kann.
  6. RDS-Rundfunkempfänger nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die zentrale Steuereinheit (9) die Abstimmung des Vordergrundempfängers (1) auf eine alternative Frequenz mit geringfügig besserer Empfangsqualität nur mit einer zeitlichen Verzögerung vollzieht und daß die zeitliche Verzögerung in Abhängigkeit des Qualitätsunterschiedes gesteuert wird.
  7. RDS-Rundfunkempfänger nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zentrale Steuereinheit (9) für den Fall, daß der Vordergrundempfänger (1) auf einen RDS-Sender ohne Verkehrsmeldungen eingestellt ist, RDS-TP-Frequenzen derselben Sendeanstalt aus dem Hintergrundspeicher (11b) in den Zusatzspeicher (11c) überträgt, diese periodisch auf Empfangsqualität bewertet, den Status des TA-Bits überwacht und den Tuner (2) des Vordergrundempfängers (1) auf die empfangsbeste TP-Frequenz abstimmt, solange das TA-Bit = 1 gesetzt ist.
EP91108609A 1990-06-01 1991-05-27 RDS-Rundfunkempfänger mit einer Einrichtung zum Aufsuchen aktuell empfangswürdiger alternativer Frequenzen Expired - Lifetime EP0459360B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4017756A DE4017756A1 (de) 1990-06-01 1990-06-01 Rds-rundfunkempfaenger mit einer einrichtung zum aufsuchen aktuell empfangswuerdiger alternativer frequenzen
DE4017756 1990-06-01

Publications (3)

Publication Number Publication Date
EP0459360A2 true EP0459360A2 (de) 1991-12-04
EP0459360A3 EP0459360A3 (en) 1992-04-08
EP0459360B1 EP0459360B1 (de) 1995-10-18

Family

ID=6407668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91108609A Expired - Lifetime EP0459360B1 (de) 1990-06-01 1991-05-27 RDS-Rundfunkempfänger mit einer Einrichtung zum Aufsuchen aktuell empfangswürdiger alternativer Frequenzen

Country Status (2)

Country Link
EP (1) EP0459360B1 (de)
DE (2) DE4017756A1 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497115A2 (de) * 1991-02-01 1992-08-05 Blaupunkt-Werke GmbH RDS-Rundfunkempfänger
EP0497116A2 (de) * 1991-02-01 1992-08-05 HENZE, Werner RDS-Rundfunkempfänger
FR2699769A1 (fr) * 1992-12-21 1994-06-24 Electro Informatiques Eur Et Procédé pour optimiser le choix des fréquences dans une transmission radioélectrique à fréquences variables, et équipements pour sa mise en Óoeuvre.
EP0725503A1 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Verfahren zum Empfang und zur Ausgabe eines Rundfunkprogrammes mit zugefügten digitalen Informationen und Rundfunkempfänger zur Ausgabe von digitalen Informationen anderer Rundfunkprogramme
KR970009478A (ko) * 1995-07-26 1997-02-24 요트.게.아. 롤페즈 방송 수신기, 모듈 및 칩 카드
WO1997042724A1 (en) * 1996-05-06 1997-11-13 Digital D.J. Incorporated Data broadcast system with multiple-tuner receiver
EP0892513A2 (de) * 1997-07-15 1999-01-20 Robert Bosch Gmbh Rundfunkempfänger für den Empfang von mit dem Rundfunkprogramm übertragenen Zusatzdaten
EP0905929A2 (de) 1997-09-26 1999-03-31 Robert Bosch Gmbh Verfahren zur schnellen optimalen Auswahl der alternativen Frequenzen in einem Radiodatenempfänger
DE19531527C2 (de) * 1995-08-26 1999-09-02 Grundig Ag Verfahren und Schaltungsanordnung zum Programmwechsel bei kurzzeitigem Signalausfall
EP0994587A2 (de) * 1998-10-13 2000-04-19 Robert Bosch Gmbh Verfahren zur Auswahl eines Rundfunkprogramms aus einem Hintergrundspeicher eines zum Empfang von Radio-Daten geeigneten Rundfunkempfängers
EP1032128A1 (de) * 1999-02-23 2000-08-30 Mannesmann VDO Aktiengesellschaft Verfahren zur Verarbeitung von Sender- und Programmdaten in einem FM-RDS-Rundfunkempfänger
EP1032995A1 (de) * 1997-11-17 2000-09-06 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Rundfunknetzauswahltechnik für ein hybrides funkkommunikationssystem mit einem zellularen kommunikationssystem und einem rundfunksystem
EP1056203A1 (de) * 1999-05-26 2000-11-29 Mannesmann VDO Aktiengesellschaft Verfahren zur Auswahl einer Abstimmfrequenz
DE10004002A1 (de) * 2000-01-29 2001-08-09 Bosch Gmbh Robert Verfahren zum Verdecken von Unterbrechnungen der Wiedergabe empfangener Rundfunksignale
EP1275562A2 (de) * 2001-07-10 2003-01-15 Harman/Becker Automotive Systems (Becker Division) GmbH Funksignalempfänger
EP1357670A2 (de) * 2002-04-26 2003-10-29 Robert Bosch Gmbh Mehrkanal-Funkempfänger
EP0921637A3 (de) * 1997-12-04 2004-10-06 Grundig Multimedia B.V. Rundfunkempfänger mit Senderspeicheraktualisierung
EP1881701A1 (de) * 2006-07-20 2008-01-23 Samsung Electronics Co., Ltd. Rundfunkempfangsvorrichtung zum Bereitstellen eines festen Kanals sowie Verfahren dafür
US7747232B2 (en) 2001-07-13 2010-06-29 Harman Becker Automotive Systems Gmbh Radio reception system with automatic tuning
EP2632065A3 (de) * 2012-02-27 2014-08-06 Alpine Electronics, Inc. Empfangsvorrichtung und Verfahren zur Anzeige einer Rundfunkstation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316685A1 (de) * 1993-05-16 1994-11-17 H U C Elektronik Gmbh Verfahren zur Ermittlung und Speicherung von empfangswürdigen Rundfunksendern in einem Empfangsteil
DE4316687A1 (de) * 1993-05-16 1994-11-17 H U C Elektronik Gmbh Verfahren und Schaltungsanordnung zum Rundfunkempfang
JPH0758598A (ja) * 1993-08-10 1995-03-03 Pioneer Electron Corp チャンネルプリセット機能を有するrds受信機
DE19502359A1 (de) * 1995-01-26 1996-08-08 Becker Gmbh Rundfunkempfänger
KR19980074982A (ko) * 1997-03-28 1998-11-05 배순훈 에프엠부가방송의 수신방법
DE10034039A1 (de) 2000-07-13 2002-01-31 Harman Becker Automotive Sys Runddfunkempfangssystem, Empfänger und Betriebsverfahren dafür
DE10150596B4 (de) * 2001-10-12 2009-04-02 Audi Ag Vorrichtung zum Empfangen und Verfahren zur Aktualisierung von TMC-Meldungen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065422A (en) * 1979-11-20 1981-06-24 Philips Nv Radio receiver with search tuning
JPS6460115A (en) * 1987-08-31 1989-03-07 Fujitsu Ten Ltd Rds radio receiver
EP0333194A2 (de) * 1988-03-17 1989-09-20 Sanyo Electric Co., Ltd. Empfänger für ein Radio-Daten-System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065422A (en) * 1979-11-20 1981-06-24 Philips Nv Radio receiver with search tuning
JPS6460115A (en) * 1987-08-31 1989-03-07 Fujitsu Ten Ltd Rds radio receiver
EP0333194A2 (de) * 1988-03-17 1989-09-20 Sanyo Electric Co., Ltd. Empfänger für ein Radio-Daten-System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 270 (E-776)21. Juni 1989,;& JP-A-1 060 115 ( FUJITSU ) 7. März 1989 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497116A2 (de) * 1991-02-01 1992-08-05 HENZE, Werner RDS-Rundfunkempfänger
EP0497116B1 (de) * 1991-02-01 1996-11-27 HENZE, Werner RDS-Rundfunkempfänger
EP0497115B1 (de) * 1991-02-01 1998-05-27 Blaupunkt-Werke GmbH Verfahren zur Überbrückung von Audiosignalunterbrechungen
EP0497115A2 (de) * 1991-02-01 1992-08-05 Blaupunkt-Werke GmbH RDS-Rundfunkempfänger
FR2699769A1 (fr) * 1992-12-21 1994-06-24 Electro Informatiques Eur Et Procédé pour optimiser le choix des fréquences dans une transmission radioélectrique à fréquences variables, et équipements pour sa mise en Óoeuvre.
WO1994015414A1 (fr) * 1992-12-21 1994-07-07 3Ei - Europeenne D'etudes Electroniques Et Informatiques (S.A.R.L.) Procede pour optimiser le choix des frequences dans une transmission a frequences variables, et equipements pour sa mise en oeuvre
US5812937A (en) * 1993-04-08 1998-09-22 Digital Dj Inc. Broadcast data system with multiple-tuner receiver
EP0725503A1 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Verfahren zum Empfang und zur Ausgabe eines Rundfunkprogrammes mit zugefügten digitalen Informationen und Rundfunkempfänger zur Ausgabe von digitalen Informationen anderer Rundfunkprogramme
KR970009478A (ko) * 1995-07-26 1997-02-24 요트.게.아. 롤페즈 방송 수신기, 모듈 및 칩 카드
DE19531527C2 (de) * 1995-08-26 1999-09-02 Grundig Ag Verfahren und Schaltungsanordnung zum Programmwechsel bei kurzzeitigem Signalausfall
WO1997042724A1 (en) * 1996-05-06 1997-11-13 Digital D.J. Incorporated Data broadcast system with multiple-tuner receiver
EP0892513A3 (de) * 1997-07-15 2004-02-11 Robert Bosch Gmbh Rundfunkempfänger für den Empfang von mit dem Rundfunkprogramm übertragenen Zusatzdaten
EP0892513A2 (de) * 1997-07-15 1999-01-20 Robert Bosch Gmbh Rundfunkempfänger für den Empfang von mit dem Rundfunkprogramm übertragenen Zusatzdaten
EP0905929A2 (de) 1997-09-26 1999-03-31 Robert Bosch Gmbh Verfahren zur schnellen optimalen Auswahl der alternativen Frequenzen in einem Radiodatenempfänger
EP0905929A3 (de) * 1997-09-26 2000-05-17 Robert Bosch Gmbh Verfahren zur schnellen optimalen Auswahl der alternativen Frequenzen in einem Radiodatenempfänger
EP1032995A1 (de) * 1997-11-17 2000-09-06 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Rundfunknetzauswahltechnik für ein hybrides funkkommunikationssystem mit einem zellularen kommunikationssystem und einem rundfunksystem
EP0921637A3 (de) * 1997-12-04 2004-10-06 Grundig Multimedia B.V. Rundfunkempfänger mit Senderspeicheraktualisierung
EP0994587A2 (de) * 1998-10-13 2000-04-19 Robert Bosch Gmbh Verfahren zur Auswahl eines Rundfunkprogramms aus einem Hintergrundspeicher eines zum Empfang von Radio-Daten geeigneten Rundfunkempfängers
EP0994587A3 (de) * 1998-10-13 2004-03-17 Robert Bosch Gmbh Verfahren zur Auswahl eines Rundfunkprogramms aus einem Hintergrundspeicher eines zum Empfang von Radio-Daten geeigneten Rundfunkempfängers
US6711390B1 (en) 1999-02-23 2004-03-23 Siemens Vdo Automotive Ag Program related data in an FM RDS receiver
WO2000051235A1 (en) * 1999-02-23 2000-08-31 Mannesmann Vdo Ag Method for processing transmitter and program related data in an fm rds receiver
EP1032128A1 (de) * 1999-02-23 2000-08-30 Mannesmann VDO Aktiengesellschaft Verfahren zur Verarbeitung von Sender- und Programmdaten in einem FM-RDS-Rundfunkempfänger
EP1056203A1 (de) * 1999-05-26 2000-11-29 Mannesmann VDO Aktiengesellschaft Verfahren zur Auswahl einer Abstimmfrequenz
WO2000074237A1 (en) * 1999-05-26 2000-12-07 Siemens Ag Method for selection of a receiver tuning frequency
US6957053B1 (en) 1999-05-26 2005-10-18 Siemens Ag Method for selection of a receiver tuning frequency
DE10004002A1 (de) * 2000-01-29 2001-08-09 Bosch Gmbh Robert Verfahren zum Verdecken von Unterbrechnungen der Wiedergabe empfangener Rundfunksignale
EP1275562A2 (de) * 2001-07-10 2003-01-15 Harman/Becker Automotive Systems (Becker Division) GmbH Funksignalempfänger
EP1275562A3 (de) * 2001-07-10 2003-12-10 Harman/Becker Automotive Systems (Becker Division) GmbH Funksignalempfänger
US7305225B2 (en) 2001-07-10 2007-12-04 Harman Becker Automotive Systems Gmbh Radio signal receiver
US7747232B2 (en) 2001-07-13 2010-06-29 Harman Becker Automotive Systems Gmbh Radio reception system with automatic tuning
EP1357670A2 (de) * 2002-04-26 2003-10-29 Robert Bosch Gmbh Mehrkanal-Funkempfänger
EP1357670A3 (de) * 2002-04-26 2005-12-14 Robert Bosch Gmbh Mehrkanal-Funkempfänger
EP1881701A1 (de) * 2006-07-20 2008-01-23 Samsung Electronics Co., Ltd. Rundfunkempfangsvorrichtung zum Bereitstellen eines festen Kanals sowie Verfahren dafür
EP2632065A3 (de) * 2012-02-27 2014-08-06 Alpine Electronics, Inc. Empfangsvorrichtung und Verfahren zur Anzeige einer Rundfunkstation

Also Published As

Publication number Publication date
DE59106704D1 (de) 1995-11-23
DE4017756A1 (de) 1991-12-05
EP0459360A3 (en) 1992-04-08
EP0459360B1 (de) 1995-10-18

Similar Documents

Publication Publication Date Title
EP0459360B1 (de) RDS-Rundfunkempfänger mit einer Einrichtung zum Aufsuchen aktuell empfangswürdiger alternativer Frequenzen
EP0497116B1 (de) RDS-Rundfunkempfänger
EP0584839B1 (de) Verfahren zum empfangsseitigen Auswerten zusätzlicher Informationen innerhalb eines Rundfunksignals
DE68918460T2 (de) Modifiziertes rds-funksystem.
EP0415132B1 (de) RDS-Rundfunkempfänger mit einer Einrichtung zum automatischen Wechsel auf ein alternatives Regionalprogramm
EP1256176A2 (de) Verfahren zum verdecken von unterbrechungen der wiedergabe empfangener rundfunksignale
DE60006524T2 (de) Verfahren zur auswahl der abstimmfrequenz eines empfängers
EP0403744B1 (de) RDS-Rundfunkempfänger mit empirisch wachsendem Speicherinhalt seiner Programmspeicher
DE2850733A1 (de) Rundfunkempfaenger, insbesondere ukw- empfaenger, mit einer einrichtung zur programm-direktwahl
EP1172946A2 (de) Empfänger für den Empfang von Rundfunksignalen, mit Verwendung mehrerer Empfängern, und Betriebsverfahren dafür
DE69836527T2 (de) Datenmultiplex-Rundfunkempfänger mit mehreren Tunern
DE3942339C2 (de)
DE69525564T2 (de) Verfahren zur Erfassung von PTY-Burstsignalen in Radiodatenempfängern
EP0921637A2 (de) Rundfunkempfänger mit Senderspeicheraktualisierung
DE69020192T2 (de) Verfahren zum Verarbeiten eines Rundfunkdatensignals, sowie Empfänger zum Durchführen dieses Verfahrens.
EP0443436A2 (de) Verfahren zum Aufruf eines Rundfunkprogrammes
DE4005413C2 (de) RDS-Rundfunkempfänger mit einer Einrichtung zum beschleunigten Auffinden alternativer Frequenzen
DE69520911T2 (de) Verfahren eines RDS Empfängers zur Steuerung einer Programmunterbrechung
EP0907265A2 (de) RDS-Rundfunkempfänger mit Alternativfrequenzspeicher und Verfahren zur Speicherorganisation
EP0905929B1 (de) Verfahren zur schnellen optimalen Auswahl der alternativen Frequenzen in einem Radiodatenempfänger
DE69232829T2 (de) Empfänger für ein Radio-Daten-System
EP0762681B1 (de) Verfahren und Schaltungsanordnung zum Programmwechsel bei kurzzeitigem Signalausfall
DE19927243B4 (de) Empfänger
EP0294511B1 (de) Verfahren zum Übertragen einer digitalen Information
EP1248397A2 (de) Verfahren zum Abstimmen eines RDS-Rundfunkempfängers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19920918

17Q First examination report despatched

Effective date: 19940629

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GRUNDIG E.M.V. ELEKTRO-MECHANISCHE VERSUCHSANSTALT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59106704

Country of ref document: DE

Date of ref document: 19951123

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951127

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100522

Year of fee payment: 20

Ref country code: DE

Payment date: 20100519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106704

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110528