EP0451343A1 - Hochdruckheissabscheider - Google Patents

Hochdruckheissabscheider Download PDF

Info

Publication number
EP0451343A1
EP0451343A1 EP90122735A EP90122735A EP0451343A1 EP 0451343 A1 EP0451343 A1 EP 0451343A1 EP 90122735 A EP90122735 A EP 90122735A EP 90122735 A EP90122735 A EP 90122735A EP 0451343 A1 EP0451343 A1 EP 0451343A1
Authority
EP
European Patent Office
Prior art keywords
pressure
hot separator
gas
separator
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90122735A
Other languages
English (en)
French (fr)
Other versions
EP0451343B1 (de
Inventor
Heinz Frohnert
Werner Riedel
Klaus Dr. Niemann
Edgar Prof. Dr. Muschelknautz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Publication of EP0451343A1 publication Critical patent/EP0451343A1/de
Application granted granted Critical
Publication of EP0451343B1 publication Critical patent/EP0451343B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/045Separation of insoluble materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only

Definitions

  • the invention relates to a high-pressure hot separator for the separation of a top product from a process of high-pressure hydrogenation of coals, tars, mineral oils, their distillation and extraction products or similar carbon-containing feedstocks such as heavy oils, sulfur oils, extracts of heavy oil sands and the like.
  • Hot separators as they are known, for example, in systems for liquefying coal hydrogenation, consist of pressure-resistant containers which contain inserts cooled by coils in order to facilitate the separation of a liquid phase with a liquid level in the lower part of the container and to prevent that the separated, also solid, particles on the hot separator wall - or ash components containing ash, despite the high temperatures prevailing in the hot separator, coke poorly volatile substances.
  • the lower cooled insert is usually designed as a funnel through which the non-volatile components are removed. In practical operation it has been shown that despite the cooling of the lower insert Pipe coils frequently occur as a result of coking problems which cause the separator to run erratically and even to shutdowns (cf. "The catalytic pressure hydrogenation of coal, tars and mineral oils, Springer-Verlag, Berlin / Göttingen / Heidelberg, 1950, page 243 ff.).
  • hot separators for the application area mentioned at the outset for which a pressure range of up to about 1,000 bar, preferably 150-500 bar, are suitable, are built in a finally geometrically and constructively fixed container shape in accordance with the requirements for high and very high pressure requirements.
  • a cyclone separator (4) with an inlet pipe (2) for the tangential entry of a gas / vapor phase containing liquid constituents, a cylindrical section (4 a ) and a lower conical section (4 b), a shielding cone (19) arranged in the cylindrical or conical section in the region of the axis, an axially symmetrically arranged central tube (4 c) for removing the gas / vapor phase freed from liquid parts upwards, the central pipe (4 c) extends beyond the area of the inlet connection (2) into the cyclone separator and is connected upwards to the outlet connection of the gas / vapor phase from the high-pressure vessel.
  • DE 34 05 730 A1 is mentioned, in which a separator for flash evaporators of coal hydrogenation systems and a method is described in which the suspension from the pressure hydrogenation is expanded to low pressures in one or more stages before the suspension is fed to the separator.
  • the separator has a cyclonic structure.
  • a high-level separation function in processes and products of the type used or used in the high-pressure hot separator according to the invention is not specified with the prior art mentioned, but is unavoidable because the bottom phase hydrogenation, as a rule, for the production of products, the reformer application specifications achieve, a so-called gas phase hydrogenation is connected immediately after the residue phase to be separated in the hot separator has been removed.
  • An inadequate separation function would soon be noticeable in a pressure loss in the gas phase hydrogenation taking place at a fixed bed contact, in that unseparated liquid particles entrained in the gas / vapor phase and the solid residues and ash-forming constituents contained therein would precipitate on the fixed bed contact and block it .
  • the cyclone separator (4) installed according to the invention in the interior of the hot separator is a pure flow apparatus and does not have to be designed for high pressure.
  • the cyclone separator (4) can correspond to the present process conditions and requirements are calculated and optimally designed.
  • An expedient embodiment of the high-pressure hot separator is that the inlet connection of the cyclone separator is equipped with a washing device consisting of a washing nozzle and a feed line for washing liquid. This effectively prevents the formation of solid deposits in the area of the inlet connection of the cyclone separator.
  • the product inlet pipe for the top product from the bottom phase reactor is expediently designed such that it ends in the gas / steam chamber of the pressure vessel above the liquid level formed by the bottom product in the hot separator and is adapted to the shape of the cylindrical wall insert so that the wall insert is essentially tangential flow is directed obliquely downwards.
  • another expedient embodiment provides that the bottom product is drawn off from the conical part of the cyclone separator through a line connected to an expansion vessel connected downstream of the hot separator.
  • the conical part of the cyclone separator can also be closed at the bottom.
  • the main portion of the condensed bottom product is still discharged through the bottom outlet connection in the lower cover of the hot separator. Only the amount of liquid separated in the cyclone separator (4) is drawn off from the high-pressure vessel by means of a separate line, for example through the outlet connection for the gas / vapor phase.
  • the high-pressure hot separator is expediently equipped with a level control measurement.
  • This can be carried out as a differential pressure measurement, with hydrogen being bubbled in via two separate lines, the so-called zero line and a line reaching into the bottom of the conical part of the cyclone, and the differential pressure to be measured in the hydrogen supply lines due to the standing height is registered.
  • the hydrogen inlets for the level measurement and the line (20) for the discharge of sump product from the conical part of the cyclone separator are guided, for example, through the special lens seal on the outlet connection of the gas / vapor phase from the high-pressure vessel, as shown in detail in FIG. 4.
  • the vertical cylindrical wall insert (18) of the high-pressure hot separator merges according to an expedient design via the conical part into the sump drain connection (5) in the bottom of the pressure vessel.
  • the cylindrical wall insert will be part of a cooling circuit for the purpose of indirect cooling by means of lines for coolant supply and removal through the upper or also the lower cover of the pressure container, the wall insert being able to be constructed from fin tubes, as are known from steam boiler technology.
  • the wall insert can also consist of normal pipes with welded-in webs.
  • the present high pressure hot separator can be used in the case of particularly wear-intensive mineral constituents in the top product of the bottom phase hydrogenation, such as e.g. B. aluminum oxide from alumina, such as occur when using oils from tar sands in particularly wear-stressed zones or on the entire inner surface with wear armor, for example made of tungsten carbide or wear-resistant ceramic coatings.
  • particularly wear-intensive mineral constituents in the top product of the bottom phase hydrogenation such as e.g. B. aluminum oxide from alumina, such as occur when using oils from tar sands in particularly wear-stressed zones or on the entire inner surface with wear armor, for example made of tungsten carbide or wear-resistant ceramic coatings.
  • FIG. 1 An overall view of a high-pressure separator with installed cyclone separator in a longitudinal section can be seen in FIG. 1.
  • Figure 2 shows a section along the line A-A of Figure 1.
  • FIG. 3 shows an enlarged representation of a cross section through the cyclone separator, from which the position of the washing nozzle in the inlet nozzle in the cyclone separator can be seen.
  • FIG. 4 is a view of the outlet connection leading from the hot separator for the gas / vapor phase in longitudinal section and in greater detail.
  • the high-pressure hot separator consists of the cylindrical, vertical container casing (11) with flange attachment zones reinforced at the ends, with which the upper cover (12) and the lower cover (13) are firmly screwed. Inside the pressure vessel jacket (11) and the cover (12) and (13) is the
  • the non-load-bearing wall insert (18) adjoins the thermal insulation of the pressure vessel jacket (11) and is tapered at the lower end.
  • the conical wall insert (18 a) opens at the bottom into the sump drain connection (5).
  • the top product of the bottom phase hydrogenation from the bottom phase reactor enters the high-pressure vessel via the product inlet pipe (1) through the upper lid.
  • the gas / vapor phase which is freed from entrained liquid components in the high-pressure hot separator under the prevailing pressure and temperature conditions and also contains residues or ash-forming constituents and from liquid particles condensed under the pressure and temperature conditions in the high-pressure hot separator leaves the high-pressure Heat separator via the outlet connection (3), which also runs through the upper cover.
  • the product inlet pipe into the high-pressure vessel is designed in the area of its mouth so that the top product, which also contains liquid and residue components, flows in tangentially and downward from the bottom phase reactor into the pressure vessel jacket (11) at a short distance above the liquid level held by measuring and control devices.
  • the measuring and control devices are among others supplied with the necessary data by the temperature measuring probe (16) shown here and the level measuring probes (9).
  • the cyclone separator (4) is fastened in the gas / steam chamber of the high-pressure hot separator to the upper cover (12) in the center of the outlet connection of the gas / steam phase from the high-pressure vessel (3).
  • the cyclone separator (4) consists of the usual components, namely inlet connector (2), cylindrical part (4 a), conical part (4 b) and the central tube (4 c), which is attached to the upper end of the cylindrical part (4 a) is and has a connection to the outlet nozzle (3).
  • the central tube (4 c) in the cylindrical part of the cyclone is pulled down so far that its mouth protrudes beyond the inlet area of the inlet nozzle into the cyclone separator, as a result of which there is still a tear or short-circuit mixing between the inlet nozzle (2) Process stream containing liquid components and the "dried" process stream is avoided.
  • the feed pipe (7) for a suitable washing liquid for washing the inlet pipe (2) freely is passed through the outlet nozzle (3) via the washing nozzle (6).
  • the drain on the lower conical part (4 b) of the cyclone separator (4) is designed as an immersion tube (10) immersed in the liquid level of the high-pressure container.
  • FIG. 4 The outlet connection (3) and the measurement and product lines guided through it are shown in greater detail in FIG.
  • the reference symbols in FIG. 4 have the same meaning as in FIGS. 1 to 3.
  • the special lens seal (17) is shown in FIG. 4, through which the feed line (7) and the lines (15) for the level measurements are passed.
  • An outlet pipe (3), not shown here, for the bottom product from the cyclone separator can also be passed through the outlet connection (3), if this is designed closed at its lower conical end.
  • the immersion (10) is shielded from the vacuum prevailing in the cyclone axis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cyclones (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Cell Separators (AREA)

Abstract

Bei diesem Hochdruckheißabscheider zur Auftrennung eines Kopfproduktes aus einem Verfahren der Hochdruckhydrierung von Kohlen, Teeren, Mineralölen, deren Destillations- und Extraktionsprodukten o. ä. kohlenstoffhaltigen Einsatzprodukten wie Schwerölen, Schwelölen, Extrakten von Schwerölsanden u. dgl., der den Sumpfphasereaktoren der Hochdruckhydrierung nachgeschaltet ist, wird das Kopfprodukt in eine Gas-/Dämpfephase und ein Sumpfprodukt aufgetrennt. Zwecks Verbesserung der Trennfunktion ist im Gas-/Dämpferaum des Heißabscheiders ein Zyklonabscheider installiert. <IMAGE>

Description

  • Die Erfindung betrifft einen Hochdruckheißabscheider zur Auftrennung eines Kopfproduktes aus einem Verfahren der Hochdruckhydrierung von Kohlen, Teeren, Mineralölen, deren Destillations- und Extraktionsprodukten oder ähnlichen kohlenstoffhaltigen Einsatzprodukten wie Schwerölen, Schwelölen, Extrakten von Schwerölsanden u. dgl., der den Sumpfphasereaktoren der Hochdruckhydrierung nachgeschaltet ist, in eine Gas-/Dämpfephase und ein Sumpfprodukt, aufgebaut aus einem vertikal aufgestellten zylindrischen Druckbehältermantel (11) mit oberem Deckel (12) und unterem Deckel bzw. Boden (13), einer innen anliegenden Wärmedämmung (14), einem zylindrischen Wandeinsatz (18), der in einen unteren konisch zulaufenden Teil (18 a) übergeht, mit Produkteintrittsrohr (1) in den Druckbehälter, Austrittsstutzen (3) für die Gas-/Dämpfephase aus dem Druckbehälter, Sumpfablaufstutzen (5) und einem im Wandeinsatz (18), (18 a) vorgesehenen Kühlkreislauf für indirekte Kühlung.
  • Heißabscheider wie sie beispielsweise bei Anlagen zur verflüssigenden Kohlehydrierung bekannt sind, bestehen aus druckfesten Behältern, welche durch Rohrschlangen gekühlte Einsätze enthalten, um die Abscheidung einer Flüssigphase mit Flüssigstand im unteren Behälterteil zu erleichtern und zu verhindern, daß an der heißen Abscheiderwand die abgeschiedenen, auch Feststoff- oder Aschebestandteile enthaltenden, trotz der im Heißabscheider herrschenden hohen Temperaturen, schwer flüchtigen Stoffe verkoken. Der untere gekühlte Einsatz ist üblicherweise als Trichter ausgebildet, durch den die nicht flüchtigen Anteile abgeführt werden. Im praktischen Betrieb hat sich gezeigt, daß trotz der Kühlung des unteren Einsatzes durch Rohrschlangen häufig durch Verkokung Störungen auftreten, die unregelmäßigen Gang des Abscheiders und sogar Betriebsunterbrechungen herbeiführten (vgl. "Die katalytische Druckhydrierung von Kohlen, Teeren und Mineralölen, Springer-Verlag, Berlin/Göttingen/Heidelberg, 1950, Seite 243 ff.).
  • Üblicherweise werden Heißabscheider für den eingangs genannten Einsatzbereich, wofür insbesondere ein Druckbereich bis zu etwa 1 000 bar, vorzugsweise 150-500 bar in Betracht kommt, in endgültig geometrisch und konstruktiv fixierter Behälterform entsprechend den Erfordernissen für Hoch- und Höchstdruckanforderungen gebaut.
  • Bei gravierenden prozeßseitigen Massenstromänderungen, wie sie beispielsweise bei dem Einsatz anderer Einsatzprodukte als für die Hochdruckhydrierung geeigneter Kohlesorten oder Schweröle auftreten, beispielsweise bei der Hydrierung von Extrakten aus Schwerölsanden oder Teersanden, die sich u.a. durch erhebliche Gehalte an Aluminiumoxid aus Tonerden auszeichnen und die als aschebildende Bestandteile in das Kopfprodukt der Sumpfphasehydrierung und damit in den Heißabscheider übergehen, kann sich bei einer fixierten Behälterform, die wegen der Auslegung auf Höchstdrücke sehr teure Apparate darstellen, der Abscheidegrad erheblich verschlechtern. Bei solchen Hochdruckbehältern würden geometrische und konstruktive Änderungen zur Anpassung an veränderte Einsatzprodukte und veränderte Betriebsverhältnisse und zur Optimierung des Abscheidegrades zu zusätzlichen Kosten führen.
  • Aus diesen Gegebenheiten folgt die Aufgabe, einen Heißabscheider, der in seiner Geometrie im Wesentlichen durch die Anforderung festgelegt ist, die aus dem Einsatz im Hochdruckund Höchstdruckbereich folgen, mit einer mit vergleichsweise geringem Aufwand optimierbaren Abscheidefunktion auszustatten.
  • Die Aufgabe, die Abscheidefähigkeit der bekannten Heißabscheiderkonstruktionen zu verbessern wird auch daran deutlich, daß in einem Verfahren zur Herstellung von Flüssigkraftstoffen durch katalytische Druckhydrierung in einer Sumpfphasenhydrierung schwerer Öle oder Ölrückstände und einer direkt angekoppelten Gasphasenhydrierung mindestens zwei hintereinandergeschaltete Heißabscheider eingesetzt worden sind (vgl. DE-PS 933 826).
  • Diese Aufgaben werden mit der Erfindung gelöst, die darin besteht, daß im Gas-/Dämpferaum des Heißabscheiders ein zyklonabscheider (4) mit Eintrittsrohr (2) für den tangentialen Eintritt einer Flüssigkeitsbestandteile mit Feststoffgehalt enthaltenden Gas-/Dämpfephase, einem zylindrischen Abschnitt (4 a) sowie einem unteren konischen Abschnitt (4 b), einem in dem zylindrischen oder dem konischen Abschnitt im Bereich der Achse angeordnetem Abschirmkegel (19), einem axialsymetrisch angeordneten Zentralrohr (4 c) zur Abführung der von Flüssigkeitsteilen befreiten Gas-/Dämpfephase nach oben, wobei das Zentralrohr (4 c) über den Bereich des Eintrittsstutzens (2) in den zyklonabscheider nach unten hinausreicht und nach oben mit dem Austrittsstutzen der Gas-/Dämpfephase aus dem Hochdruckgefäß in Verbindung steht, installiert ist.
  • Zum Stand der Technik wird eine Patentveröffentlichung genannt, in welcher bei Vorliegen mehrerer Reaktorstufen als zweckmäßig angegeben wird, am Kopf jedes Reaktors einen inneren Zyklon zum zurückhalten größerer Katalysatorteilchen vorzusehen. Die weitere Abtrennung der Katalysatorteilchen soll zweckmäßigerweise unter Verfahrensdruck mittels eines Zyklons erfolgen, welcher innerhalb des dem Hydrierreaktor nachgeschalteten Heißabscheiders angeordnet ist (vgl. DE 26 46 605 C 2).
  • Ferner wird genannt die DE 34 05 730 A 1, in welcher ein Abscheider für Entspannungsverdampfer von Kohlehydrieranlagen sowie ein Verfahren beschrieben ist, in welchem die Suspension aus der Druckhydrierung ein- oder mehrstufig auf geringe Drucke entspannt wird, bevor die Suspension dem Abscheider zugeführt wird. Der Abscheider weist einen zyklonartigen Aufbau auf.
  • Eine hochgradige Abscheidefunktion bei Verfahren und Einsatzprodukten der Art wie sie bei dem erfindungsgemäßen Hochdruckheißabscheider zur Anwendung bzw. zum Einsatz kommen,ist mit dem genannten Stand der Technik nicht vorgegeben, aber deshalb unumgänglich, weil der Sumpfphasenhydrierung in aller Regel zur Gewinnung von Produkten, die Reformereinsatzspezifikationen erreichen, eine sogenannte Gasphasenhydrierung unmittelbar nachgeschaltet wird, nachdem die im Heißabscheider abzutrennende Rückstandsphase ausgeschleust ist. Eine nicht ausreichende Abscheidefunktion würde sich alsbald in einem Druckverlust in der an einem Festbettkontakt ablaufenden Gasphasenhydrierung bemerkbar machen, indem sich in der Gas-/Dämpfephase mitgerissene nicht abgeschiedene Flüssigkeitspartikel und die in diesen enthaltenen festen Rückstände und aschebildenden Bestandteile auf dem Festbettkontakt niederschlagen und diesen blockieren würden.
  • Der im Innenraum des Heißabscheiders erfindungsgemäß installierte zyklonabscheider (4) ist ein reiner Strömungsapparat und muß nicht für hohen Druck ausgelegt werden. Der Zyklonabscheider (4) kann entsprechend den vorliegenden prozeßbedingungen und Anforderungen berechnet und optimal ausgelegt werden.
  • Eine zweckmäßige Ausgestaltung des Hochdruckheißabscheiders besteht darin, daß der Eintrittsstutzen des Zyklonabscheiders mit einer aus einer Waschdüse und Zuleitung für Waschflüssigkeit bestehenden wascheinrichtung ausgestattet ist. Hierdurch kann die Bildung von Feststoffablagerungen im Bereich des Eintrittsstutzens des Zyklonabscheiders wirksam verhindert werden.
  • Das produkteintrittsrohr für das Kopfprodukt aus dem Sumpfphasereaktor wird zweckmäßig so ausgebildet, daß es in dem Gas-/Dämpferaum des Druckbehälters oberhalb des vom Sumpfprodukt gebildeten Flüssigkeitsstandes in dem Heißabscheider endet und so an die Form des zylindrischen Wandeinsatzes angepaßt wird, daß der Wandeinsatz im Wesentlichen tangential schräg nach unten gerichtet angeströmt wird.
  • Es kann zweckmäßig sein, den Ablauf des Sumpfproduktes aus dem Zyklonabscheider mittels eines Ablaufrohres unter den Flüssigkeitsspiegel in dem Heißabscheider abzutauchen. Bei der eigentlichen Auslegung ist u. a. zu beachten, daß in jedem Zyklon in der Achse ein hoher Unterdruck herrscht. Dieser ist bei großer Dichte im Hochdruck-Heißabscheider dem höheren Druck entsprechend viel größer als man von normalen Anwendungen gewohnt ist. Nach durchgeführten Rechnungen würde der Zyklon von unten her vollaufen. Der Vermeidung dieser Schwierigkeit dient der in dem zylindrischen Teil im Bereich der Achse vorgesehene Abschirmkegel. Durch geeignete Dimensionierung des Ablaufrohres kann verhindert werden, daß das Rohr durch Feststoffablagerungen verstopft werden kann.
  • Aus den genannten Gründen sieht eine andere zweckmäßige Ausführung vor, daß das Sumpfprodukt aus dem konischen Teil des Zyklonabscheiders durch eine mit einem dem Heißabscheider nachgeschalteten Entspannungsgefäß verbundene Leitung abgezogen wird.
  • Bei der vorgenannten Ausgestaltung kann der konische Teil des Zyklonabscheiders aber auch nach unten abgeschlossen ausgeführt werden. Hierbei wird der Hauptanteil des kondensierten Sumpfproduktes nach wie vor über den Sumpfablaufstutzen in dem unteren Deckel des Heißabscheiders abgeführt. Lediglich die in dem Zyklonabscheider (4) abgeschiedene Flüssigkeitsmenge wird mittels einer gesonderten beispielsweise durch den Austrittsstutzen für die Gas-/Dämpfephase geführten Leitung aus dem Hochdruckgefäß abgezogen.
  • Der Hochdruck-Heißabscheider ist aus den angeführten Gründen zweckmäßig mit einer Standkontrollmessung ausgerüstet. Diese kann als Differenzdruckmessung ausgeführt sein, wobei Wasserstoff über zwei separate Leitungen, die sogenannte Null-Leitung und eine in den Boden des konischen Teils des Zyklons reichende Leitung eingeperlt wird und der aufgrund der Standhöhe in den Wasserstoffzuleitungen zu messende Differenzdruck registriert wird.
  • Die Wasserstoffeinleitungen für die Standmessung sowie die Leitung (20) für die Ableitung von Sumpfprodukt aus dem konischen Teil des Zyklonabscheiders werden beispielsweise durch die Sonderlinsendichtung an dem Austrittsstutzen der Gas-/Dämpfephase aus dem Hochdruckgefäß geführt, wie das als Einzelheit in Figur 4 dargestellt ist.
  • Durch direkte Einleitung (8) wasserstoffhaltiger Gase in den Flüssigkeitsstand des Sumpfproduktes im unteren konischen Abscheiderteil (18 a) wird einer Wasserstoffverarmung, die zu zusätzlicher Koksbildung und -ablagerung führen kann, entgegengewirkt.
  • Der vertikale zylindrische Wandeinsatz (18) des HochdruckHeißabscheiders geht entsprechend einer zweckmäßigen Ausgestaltung über den konischen Teil in den Sumpfablaufstutzen (5) im Boden des Druckbehälters über.
  • Der zylindrische Wandeinsatz wird zwecks indirekter Kühlung mittels durch den oberen oder auch den unteren Deckel des Druckbehälters geführter Leitungen für Kühlmittelzu- und -abfuhr Bestandteil eines Kühlkreislaufes sein, wobei der Wandeinsatz aus Flossenrohren, wie sie aus der Dampfkesseltechnik bekannt sind, aufgebaut sein kann. Der wandeinsatz kann aber auch aus normalen Rohren mit zwischengeschweißten Stegen bestehen.
  • Durch die tangentiale Anströmung mit dem Kopfprodukt der Sumpfphasenhydrierung an die Behälterwand wird eine gewisse Vorabscheidung erreicht und die Funktionsweise des Heißabscheiders als Schwerkraftabscheider dadurch verbessert, daß der Flüssigkeitsstand in dem Heißabscheider nicht durch aus einer gewissen Höhe herabfallende kondensierte Flüssigkeitsanteile unnötig wieder aufgewirbelt wird.
  • Der vorliegende Hochdruck-Heißabscheider kann in Fällen von besonders verschleißintensiven mineralischen Bestandteilen in dem Kopfprodukt der Sumpfphasehydrierung, wie z. B. Aluminiumoxid aus Tonerden, wie sie beim Einsatz von Ölen aus Teersanden auftreten an besonders verschleißbeanspruchten Zonen oder an der gesamten Innenfläche mit einer Verschleißpanzerung, beispielsweise aus Wolframkarbid oder verschleißresistenten Keramikbeschichtungen, ausgestattet sein.
  • Eine Gesamtansicht eines Hochdruckabscheiders mit installiertem Zyklonabscheider in einem Längsschnitt ist Figur 1 zu entnehmen.
  • Figur 2 stellt einen Schnitt längs der Linie A-A von Figur 1 dar.
  • Figur 3 zeigt in einer vergrößerten Darstellung einen Querschnitt durch den Zyklonabscheider, aus welchem die Position der Waschdüse in dem Eintrittsstutzen in den Zyklonabscheider zu ersehen ist.
  • Figur 4 ist eine Ansicht des aus dem Heißabscheider führenden Austrittsstutzens für die Gas-/Dämpfephase im Längsschnitt und in größerem Detail.
  • Die in den Figuren der Zeichnung angebrachten Bezugszeichen haben die folgende Bedeutung:
    • 1 Produkteintrittsrohr in das Hochdruckgefäß
    • 2 Eintrittsstutzen in den Zyklonabscheider
    • 3 Austrittsstutzen der Gas-/Dämpfephase aus dem Hochdruckgefäß
    • 4 Zyklonabscheider
    • 4 a Zylindrischer Teil des Zyklonabscheiders
    • 4 b Oberes Zentralrohr zur Abführung der Gas-/Dämpfephase aus dem Zyklonabscheider
    • 5 Sumpfablaufstutzen
    • 6 Waschdüse
    • 7 Zuleitung Waschflüssigkeit
    • 8 Einleitung für wasserstoffhaltiges Gas
    • 9 Standmeßsonden
    • 10 Abgetauchtes Ablaufrohr aus dem Zyklonabscheider
    • 11 Behältermantel
    • 12 Oberer Deckel
    • 13 Unterer Deckel
    • 14 Wärmedämmung
    • 15 Standmeßsonde
    • 16 Temperaturmeßsonde
    • 17 Sonderlinsendichtung
    • 18 Zylindrischer Wandeinsatz mit konischem unteren Teil 18 a
    • 19 Abschirmkegel
    • 20 Abzugsrohr für Sumpfprodukt aus dem Zyklonabscheider

    Ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung wird nachfolgend anhand der Figuren 1 bis 4 der Zeichnung weiter erläutert, ohne daß die Erfindung auf diese spezielle Ausführungsform beschränkt sein soll.
  • Der Hochdruck-Heißabscheider besteht aus dem zylindrischen vertikal aufgestellten Behältermantel (11) mit an den Enden verstärkten Flanschansatzzonen, mit denen der obere Deckel (12) und der untere Deckel (13) fest verschraubt sind. Innerhalb des Druckbehältermantels (11) und der Deckel (12) und (13) ist die
  • Wärmedämmung (14) vorgesehen. An die Wärmedämmung des Druckbehältermantels (11) schließt sich der nicht tragende Wandeinsatz (18) an, der am unteren Ende konisch eingezogen ist. Der konisch eingezogene Wandeinsatz (18 a) mündet am unteren Ende in den Sumpfablaufstutzen (5). Das Kopfprodukt der Sumpfphasehydrierung aus dem Sumpfphasereaktor tritt über das Produkteintrittsrohr (1) durch den oberen Deckel in das Hochdruckgefäß ein. Die unter den herrschenden Druck- und Temperaturbedingungen in dem Hochdruck-Heißabscheider von mitgerissenen Flüssigkeitsbestandteilen, die auch Rückstands- oder aschebildende Bestandteile eingeschlossen enthalten sowie von unter den Druck- und Temperaturbedingungen in dem Hochdruck-Heißabscheider kondensierten Flüssigkeitspartikeln befreite Gas-/Dämpfephase verläßt den Hochdruck-Heißabscheider über den ebenfalls durch den oberen Deckel geführten Austrittsstutzen (3). Das Produkteintrittsrohr in das Hochdruckgefäß ist im Bereich seiner Mündung so ausgebildet, daß das auch Flüssigkeits- und Rückstandsbestandteile enthaltende Kopfprodukt aus dem Sumpfphasereaktor den Druckbehältermantel (11) tangential und nach unten gerichtet in einem geringen Abstand über dem durch Meß- und Regeleinrichtungen gehaltenen Flüssigkeitsstand einströmt. Die Meß- und Regeleinrichtungen werden u.a. durch die hier gezeigte Temperaturmeßsonde (16), sowie die Standmeßsonden (9) mit den notwendigen Daten versorgt.
  • Der Zyklonabscheider (4) ist in dem Gas-/Dämpferaum des Hochdruck-Heißabscheiders an dem oberen Deckel (12) mittig zu dem Austrittsstutzen der Gas-/Dämpfephase aus dem Hochdruckgefäß (3) befestigt. Der Zyklonabscheider (4) besteht aus den üblichen Bauteilen, nämlich Eintrittsstutzen (2), zylindrischem Teil (4 a), konischem Teil (4 b) sowie dem Zentralrohr (4 c), das am oberen Ende des zylindrischen Teils (4 a) befestigt ist und eine Verbindung zu dem Austrittsstutzen (3) hat. Das zentralrohr (4 c) ist in dem zylindrischen Teil des Zyklons soweit nach unten gezogen, daß es mit seiner Mündung über den Eintrittsbereich des Eintrittsstutzens in den Zyklonabscheider hinausragt, wodurch ein Überriß oder eine kurzschlüssige Vermischung zwischen dem über den Eintrittsstutzen (2) eintretenden noch Flüssigkeitsbestandteile enthaltenden Prozeßstrom und dem "getrockneten" Prozeßstrom vermieden wird. Durch den Austrittsstutzen (3) ist die Zuleitung (7) für eine geeignete Waschflüssigkeit zum Freiwaschen des Eintrittsstutzens (2) über die Waschdüse (6) geführt. Der Ablauf am unteren konischen Teil (4 b) des Zyklonabscheiders (4) ist als in den Flüssigkeitsstand des Hochdruckbehälters abgetauchtes Tauchrohr (10) ausgeführt.
  • Der Austrittsstutzen (3) und die durch ihn geführten Meß- und Produktleitungen sind im größeren Detail in der Figur 4 dargestellt. Die Bezugszeichen in Figur 4 haben die gleiche Bedeutung wie in den Figuren 1 bis 3. Zusätzlich ist in 4 die Sonderlinsendichtung (17) dargestellt, durch welche die Zuleitung (7) sowie die Leitungen (15) für die Standmessungen geführt sind. Durch den Austrittsstutzen (3) kann auch noch ein hier nicht gezeigtes Abzugsrohr für Sumpfprodukt aus dem Zyklonabscheider, wenn dieser an seinem unteren konischen Ende verschlossen ausgeführt ist, geführt werden.
  • Durch die axial symetrisch angebrachte Installation des Kegels (19) im konischen Teil des Zyklons wird die Abtauchung (10) von dem in der Zyklonachse herrschenden Vakuum abgeschirmt.

Claims (11)

  1. Hochdruckheißabscheider zur Auftrennung eines Kopfproduktes aus einem Verfahren der Hochdruckhydrierung von Kohlen, Teeren, Mineralölen, deren Destillations- und Extraktionsprodukten oder ähnlichen kohlenstoffhaltigen Einsatzprodukten wie Schwerölen, Schwelölen, Extrakten von Schwerölsanden u. dgl., der den Sumpfphasereaktoren der Hochdruckhydrierung nachgeschaltet ist, in eine Gas-/Dämpfephase und ein Sumpfprodukt, aufgebaut aus einem vertikal aufgestellten zylindrischen Druckbehältermantel (11) mit oberem Deckel (12) und unterem Deckel bzw. Boden (13), einer innen anliegenden Wärmedämmung (14), einem zylindrischen Wandeinsatz (18), der in einen unteren konisch zulaufenden Teil (18 a) übergeht, mit Produkteintrittsrohr (1) in den Druckbehälter, Austrittsstutzen (3) für die Gas-/Dämpfephase aus dem Druckbehälter, Sumpfablaufstutzen (5) und einem im Wandeinsatz (18), (18 a) vorgesehenen Kühlkreislauf für indirekte Kühlung, dadurch gekennzeichnet, daß im Gas-/Dämpferaum des Heißabscheiders ein Zyklonabscheider (4) mit Eintrittsrohr (2) für den tangentialen Eintritt einer Flüssigkeitsbestandteile mit Feststoffgehalt enthaltenden Gas-/Dämpfephase, einem zylindrischen Abschnitt (4 a) sowie einem unteren konischen Abschnitt (4 c), einem in dem zylindrischen oder dem konischen Abschnitt im Bereich der Achse angeordnetem Abschirmkegel (19), einem axialsymetrisch angeordneten Zentralrohr (4 c) zur Abführung der von Flüssigkeitsteilen befreiten Gas-/Dämpfephase nach oben, wobei das Zentralrohr (4 c) über den Bereich des Eintrittsstutzens (2) in den Zyklonabscheider nach unten hinausreicht und nach oben mit dem Austrittsstutzen der Gas-/Dämpfephase aus dem Hochdruckgefäß in Verbindung steht, installiert ist.
  2. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der Eintrittsstutzen (2) des Zyklonabscheiders (4) mit einer aus einer Waschdüse (6) und Zuleitung (7) für waschflüssigkeit bestehenden Wascheinrichtung ausgestattet ist.
  3. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß das Produkteintrittsrohr (1) in den Gas-/Dämpferaum des Druckbehälters oberhalb des vom Sumpfprodukt gebildeten Flüssigkeitsstandes endet und so ausgebildet ist, daß der zylindrische Wandeinsatz (18) im wesentlichen tangential und schräg nach unten gerichtet angeströmt wird.
  4. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der Ablauf des Sumpfproduktes aus dem konischen Teil (4 b) des Zyklonabscheiders (4) mittels eines Ablaufrohres (10) unter den Flüssigkeitsspiegel in dem Heißabscheider abgetaucht ist.
  5. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß das Sumpfprodukt durch eine mit einem dem Heißabscheider nachgeschalteten Entspannungsgefäß verbundene Leitung (20) aus dem konischen Teil (4 b) des Zyklonabscheiders (4), abgezogen werden kann.
  6. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der konische Teil (4 b) des Zyklonabscheiders (4) nach unten abgeschlossen ist.
  7. Hochdruckheißabscheider nach Anspruch 1, dadurch-gekennzeichnet, daß der Zyklonabscheider (4) mit einer Standkontrollmessung (15) ausgestattet ist.
  8. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß im unteren konischen Abscheiderteil (18 a) eine direkte Einleitung (8) wasserstoffhaltiger Gase in den Flüssigkeitsstand des sumpfproduktes vorgesehen ist.
  9. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der Druckbehältermantel (11) durch eine obere und untere Flanschansatzzone verstärkt ist.
  10. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der konische Blechelement Wandeinsatz (18 a) in den Sumpfablaufstutzen (5) mündet.
  11. Hochdruckheißabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der im Wandeinsatz (18) und (18 a) vorgesehene Kühlkreislauf für indirekte Kühlung mittels Flossenrohren oder mittels normaler Rohre mit zwischen deren Außenwandungen eingeschweißten Stegen realisiert wird.
EP90122735A 1990-03-09 1990-11-28 Hochdruckheissabscheider Expired - Lifetime EP0451343B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4007543A DE4007543A1 (de) 1990-03-09 1990-03-09 Hochdruckheissabscheider
DE4007543 1990-03-09

Publications (2)

Publication Number Publication Date
EP0451343A1 true EP0451343A1 (de) 1991-10-16
EP0451343B1 EP0451343B1 (de) 1993-03-10

Family

ID=6401829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90122735A Expired - Lifetime EP0451343B1 (de) 1990-03-09 1990-11-28 Hochdruckheissabscheider

Country Status (9)

Country Link
US (1) US5084079A (de)
EP (1) EP0451343B1 (de)
JP (1) JPH04220493A (de)
AT (1) ATE86649T1 (de)
CA (1) CA2037856A1 (de)
DE (2) DE4007543A1 (de)
DK (1) DK0451343T3 (de)
ES (1) ES2040023T3 (de)
GR (1) GR3007343T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726491B2 (en) 2002-09-19 2010-06-01 Suncor Energy Inc. Bituminous froth hydrocarbon cyclone
US7736501B2 (en) 2002-09-19 2010-06-15 Suncor Energy Inc. System and process for concentrating hydrocarbons in a bitumen feed
US8968580B2 (en) 2009-12-23 2015-03-03 Suncor Energy Inc. Apparatus and method for regulating flow through a pumpbox

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2455011C (en) 2004-01-09 2011-04-05 Suncor Energy Inc. Bituminous froth inline steam injection processing
CA2526336C (en) 2005-11-09 2013-09-17 Suncor Energy Inc. Method and apparatus for oil sands ore mining
US8168071B2 (en) 2005-11-09 2012-05-01 Suncor Energy Inc. Process and apparatus for treating a heavy hydrocarbon feedstock
CA2827237C (en) 2005-11-09 2016-02-09 Suncor Energy Inc. Mobile oil sands mining system
DK2069467T3 (da) 2006-10-06 2014-10-20 Vary Petrochem Llc Adskillende sammensætninger og fremgangsmåder til anvendelse
US8062512B2 (en) 2006-10-06 2011-11-22 Vary Petrochem, Llc Processes for bitumen separation
US7758746B2 (en) * 2006-10-06 2010-07-20 Vary Petrochem, Llc Separating compositions and methods of use
JP5007403B2 (ja) * 2007-01-19 2012-08-22 三菱マテリアル株式会社 高温高圧水と油分の分離方法及びその分離装置
US10208261B2 (en) 2014-02-12 2019-02-19 Lummus Technology Inc. Processing vacuum residuum and vacuum gas oil in ebullated bed reactor systems
US10143937B2 (en) 2016-08-23 2018-12-04 Vitalis Extraction Technology Inc. Superfluid extraction apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884796A (en) * 1974-03-04 1975-05-20 Us Interior Solvent refined coal process with retention of coal minerals
DE3300372A1 (de) * 1983-01-07 1984-07-12 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von kohlenwasserstoffoelen aus kohle durch druckhydrierung in zwei stufen sowie druckbehaelter zur durchfuehrung des verfahrens
DE3405730A1 (de) * 1983-02-19 1984-08-23 Basf Ag, 6700 Ludwigshafen Abscheider fuer entspannungsverdampfer von kohlehydrieranlagen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE933826C (de) * 1953-08-12 1955-10-06 Basf Ag Verfahren zur Herstellung von Benzin und gegebenenfalls von Dieseloel aus Rohoel
DE2646605C2 (de) * 1976-10-15 1986-09-18 Saarbergwerke AG, 6600 Saarbrücken Verfahren zum Hydrieren von Kohle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884796A (en) * 1974-03-04 1975-05-20 Us Interior Solvent refined coal process with retention of coal minerals
DE3300372A1 (de) * 1983-01-07 1984-07-12 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von kohlenwasserstoffoelen aus kohle durch druckhydrierung in zwei stufen sowie druckbehaelter zur durchfuehrung des verfahrens
DE3405730A1 (de) * 1983-02-19 1984-08-23 Basf Ag, 6700 Ludwigshafen Abscheider fuer entspannungsverdampfer von kohlehydrieranlagen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726491B2 (en) 2002-09-19 2010-06-01 Suncor Energy Inc. Bituminous froth hydrocarbon cyclone
US7736501B2 (en) 2002-09-19 2010-06-15 Suncor Energy Inc. System and process for concentrating hydrocarbons in a bitumen feed
US8968580B2 (en) 2009-12-23 2015-03-03 Suncor Energy Inc. Apparatus and method for regulating flow through a pumpbox

Also Published As

Publication number Publication date
ATE86649T1 (de) 1993-03-15
DK0451343T3 (da) 1993-05-03
CA2037856A1 (en) 1991-09-10
EP0451343B1 (de) 1993-03-10
DE4007543A1 (de) 1991-09-12
JPH04220493A (ja) 1992-08-11
GR3007343T3 (de) 1993-07-30
ES2040023T3 (es) 1993-10-01
DE4007543C2 (de) 1992-02-20
US5084079A (en) 1992-01-28
DE59001016D1 (de) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0451343B1 (de) Hochdruckheissabscheider
DE2940257C2 (de) Strahlungskessel für die Abkühlung eines feste und schmelzflüssige Partikel enthaltenden Gasstromes
DE3207789A1 (de) Phasenseparierung von kohlenwasserstoff-fluessigkeiten unter verwendung eines fluessigkeitswirbels
EP0284762A2 (de) Vorrichtung zum Kühlen eines Synthesegases in einem Quenchkühler
DE2442836A1 (de) Katalysatorueberfuehrungsverfahren fuer bewegtbett-reaktoren
DE3137576C2 (de) Vorrichtung zum Abkühlen von aus einem Vergasungsprozeß stammenden Prozeßgas
DE1093351B (de) Verfahren zur Verhuetung von Feststoffverlusten und Verstopfung der Leitungen bei der thermischen Umwandlung eines Kohlenwasserstoffoeles in normalerweise gasfoermige, ungesaettigte Kohlenwasserstoffe
EP2451904A2 (de) Reaktor zur erzeugung eines produktgases durch allotherme vergasung von kohlenstoffhaltigen einsatzstoffen
DE3137586C2 (de)
DE3043853C2 (de) Heißgaskühler mit einem Druckbehälter
EP0297424B1 (de) Verfahren zum Kühlen von heissem Pyrolysegas
WO2013037722A1 (de) Quenchsystem zur kühlung und waschung staubführender vergasungsrohgase
DE102016012913A1 (de) Schutzvorrichtung für ein gekühltes Rohr
DE1950790A1 (de) Verfahren zur Entfernung von Eisenverunreinigungen aus Kohlenwasserstoff-Beschickungen
EP0045766B1 (de) Austragvorrichtung für eine abfall-pyrolyseanlage
DE3603971C1 (de) Verfahren zum Betreiben eines Heissabscheiders und zugehoerige Vorrichtung
DE102009006262A1 (de) Verfahren und Vorrichtung zur Abtrennung von festen Partikeln aus einer Wasserphase
EP0630397B1 (de) Verfahren zum kühlen eines staubbeladenen rohgases aus der vergasung eines festen kohlenstoffhaltigen brennstoffes
DE2742099A1 (de) Vorrichtung zur waermebehandlung von feinkoernigen feststoffen
DE102019122789B4 (de) Absetzbehälter und Verfahren zur Aufreinigung eines mit Komponenten, insbesondere Partikel und teerhaltige Substanz, einer erhitzten Erdgasfraktion verunreinigten Kühlmittels, wie beispielsweise Quenchfluid
DE4003715A1 (de) Hochdruckheissabscheider
DE4307462C2 (de) Einrichtung für die Vergasung feinkörniger bis staubförmiger Brennstoffe und Verfahren zu deren Betrieb
DE102021133899A1 (de) Pyrolyseverfahren und Pyrolysevorrichtung zur Herstellung von Pyrolysegas und Pyrolysekoks
DE1100601B (de) Vorrichtung zur Durchfuehrung katalytischer Umsetzungen im Wirbelbett
DE2502891C2 (de) Vorrichtung zur Entspannungsverdampfung feststoffhaltiger Flüssigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910830

17Q First examination report despatched

Effective date: 19920520

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 86649

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59001016

Country of ref document: DE

Date of ref document: 19930415

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930324

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3007343

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040023

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90122735.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19960823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19961001

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961003

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961007

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961010

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961011

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961106

Year of fee payment: 7

Ref country code: DK

Payment date: 19961106

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961129

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970204

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971129

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

BERE Be: lapsed

Owner name: VEBA OEL TECHNOLOGIE G.M.B.H.

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

EUG Se: european patent has lapsed

Ref document number: 90122735.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051128