EP0450501A1 - Kolben-Zylinder-Aggregat - Google Patents

Kolben-Zylinder-Aggregat Download PDF

Info

Publication number
EP0450501A1
EP0450501A1 EP91104945A EP91104945A EP0450501A1 EP 0450501 A1 EP0450501 A1 EP 0450501A1 EP 91104945 A EP91104945 A EP 91104945A EP 91104945 A EP91104945 A EP 91104945A EP 0450501 A1 EP0450501 A1 EP 0450501A1
Authority
EP
European Patent Office
Prior art keywords
ring
stop
stop ring
piston
cylinder unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91104945A
Other languages
English (en)
French (fr)
Other versions
EP0450501B1 (de
Inventor
Walter Neumeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0450501A1 publication Critical patent/EP0450501A1/de
Application granted granted Critical
Publication of EP0450501B1 publication Critical patent/EP0450501B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/24Other details, e.g. assembly with regulating devices for restricting the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/16Characterised by the construction of the motor unit of the straight-cylinder type of the telescopic type

Definitions

  • the invention relates to a hydraulic piston-cylinder unit with a plurality of sealed and displaceably arranged cylinder elements - outer cylinder tube, telescopic tubes, pistons - which serve as limit stops in the inner wall (21) of the larger part in the area of at least the front end in one partially circular groove have a front outer part stop ring and in the outer wall of the smaller element in the area of the rear end in a part circular ring groove have a rear inner part stop ring, which abut each other when extending the cylinder elements and limit the relative movement between the two parts in the axial direction.
  • Limit stops with spring washers which have a circular cross section and are embedded in the cylinder walls, have long been known and are described, for example, in DE-OS 33 20 464. In many cases, however, they are also held stationary in an annular groove that has the same radius as the profile of the spring ring. Such rings must have a certain diameter to absorb the stop forces so that the groove shoulder can also absorb the forces that occur. It has hitherto been customary to provide the arrangement with such differences in diameter or gap widths that the line of the resulting forces of axial force and radial force extends at an angle of approximately 30 ° to the cylinder axis. A suitable space is left between the two cylinders, which is bridged by guide and sealing rings.
  • a radial force occurs which is approximately 58% of the axial force.
  • a stop ring arrangement with inclined shoulders is known which provides trapezoidal stop rings for receiving the forces, which lie loosely in their grooves, the two rings being intended to dampen the impact by elastic deformation.
  • the rings are expensive to manufacture, the sharp-edged grooves lead to notch effects. This requires correspondingly strong cylinder walls.
  • the invention has for its object to design a piston-cylinder unit, preferably with telescopic cylinders, in such a way that the wall thickness of the cylinder parts can be reduced without impairing the function by suitable design of the stop rings.
  • At least one intermediate stop ring is arranged between the stop rings which support one another when the stop is limited, with a diameter which is approximately the difference in diameter or the gap width between a smaller and a larger part, plus if necessary Depth corresponds to an associated intermediate ring holding groove or an intermediate ring holding and storage groove.
  • the support points of the stop forces to be transmitted are shifted in such a way that the angle between the line of action of the resulting force and the cylinder axis is reduced compared to the angle in known arrangements without such intermediate stop rings.
  • an angle between the axial direction and the resulting direction of force of about 20 ° to 13 ° can be maintained. That corresponds to a radial force of only about 36% to 23% of the axial force, so that about 38% to 60% can be saved compared to the axial force in constructions without an intermediate stop ring.
  • the wall thickness of the cylinder tubes can be reduced considerably, which contributes to great material and weight savings for the entire cylinder and thus for the entire construction in which it is installed.
  • the additional effort for the few, inexpensive to produce round wire rings per unit is insignificant in relation to the material and weight savings.
  • smooth pipes can also be used. As a result, the use of raw materials and processing costs are low.
  • the intermediate stop rings and stop rings made of round wire with the associated part-toroidal ring grooves provided according to the invention have the great advantage that they can all be produced inexpensively from round wire and that the grooves do not cause any particular peak effects and that this enables correspondingly small wall thicknesses.
  • the intermediate stop ring lies in an intermediate ring holding groove adjacent to the stop ring groove. This makes it easier to hold the intermediate stop ring in position. Its size can be dimensioned according to needs and the force distribution can also be adapted to the circumstances in a more variable manner.
  • the piston-cylinder unit 10 has an outer cylinder tube 11 with a screwed-on end and connecting base 12 of a conventional type. There, the line 13 is provided for the hydraulic connection. Telescopic tubes 14 and 15 and a piston 16 can be slid into each other with smaller diameters. The piston 16 has a connecting ball 17. The axis is designated 18. The displaceable components are guided and sealed into one another in the usual way with the aid of guide rings 19 and seals 20. A stop ring arrangement 25V or 25H is provided in the area of each end of each tube or the piston.
  • annular groove 22 is provided in the inner wall 21 - lying within the seals.
  • This has a semicircular cross section and thus forms a partial torus.
  • a front outer part stop ring 23 which consists of a round spring steel wire and has a separation gap 24 (Fig. 2).
  • Fig. 2 in the outer wall 26 of the smaller part in each case in the area of the rear end H there is a pair of annular grooves 27.1 and 27.2 spaced apart from one another.
  • These also have a semicircular cross section.
  • the rear inner part stop rings 28.1 and 28.2. These also have a circular cross section and each have a separation gap. They are also made of round steel spring wire.
  • the radius difference 29 between the outer radius 31 of the smaller part and the inner radius 32 of the larger part forms a free space or gap. As can be seen, this is bridged in the usual way with the guide rings 19 and suitably sealed with the seals 20.
  • the radius difference 29, that is to say the gap width of the gap 33, is as large as the radius of the cross section of the stop rings 23 or 28, since the ring grooves 22 or 27 are generally designed as semicircular grooves.
  • annular groove 22 of semi-circular cross-section is also formed for the inner stop in the respective inner wall 21, in which a stop ring 23H made of spring steel, likewise circular in cross section, is inserted - as is the case with it 1 and 3 show.
  • an intermediate stop ring 35 is located in the gap 33, namely between the two stop rings 23V and 28.1, which are supported on one another in the respective stop position, on the one hand, and 23H and 28.2, on the other hand, that is to say with the telescopic Tubes 14 and 15 both in the area of the front end V and in the area of the rear end H - as can be clearly seen from FIG. 3.
  • the intermediate stop rings 35 are each assigned to the stop ring of the larger part and can be expediently installed with a preload to the outside. Their reference numerals are supplemented with the additional letters 'V' and 'H' to indicate their assignment, where it makes sense in the text.
  • FIG. 3 shows in more detail how the stop ring 28.2 assigned to the smaller sliding part is supported on the rear intermediate stop ring 35H at the support point 39.
  • the intermediate stop ring 35H is in turn supported on the support point 41 on the outer rear stop ring 23H assigned to the larger part.
  • the diameters are chosen so that the center points 45.1 and 45.2 of the two stop rings 28H and 23H lie on a straight line with the support points 39 and 41. This takes an angle 49 to the axis 18.
  • the axial force 51 and the radial force 52 together form the resulting force 50.
  • the angle 49 is 20 °, for example.
  • the length of the path 52 is 36% of the length of the path 51, which are proportional to the magnitudes of the forces occurring.
  • FIG. 3 In the upper part of FIG. 3 it is shown how the stop ring 28.1 assigned to the smaller part - here telescopic tube 14 - in the front extended stop position, in which it is designated 28.12, rests on its upper side at the support point 39.1 on the intermediate stop ring 35V of the front outer part stop ring 23 V is supported accordingly.
  • the relationships in terms of angles and forces are the same as at the rear.
  • FIG. 5 shows a variant in which the intermediate stop rings 35H and 35V are each located in an intermediate ring holding groove 55. These each directly adjoin the ring grooves 22 and are designed in such a way that the respective intermediate stop ring 35 is securely held on the stop ring 23 to which it is associated even when it is displaced.
  • the intermediate ring holding grooves 55 are only a few mm deep into the inner wall 21 of the larger part. As a result, each intermediate stop ring 35 is slightly larger in cross section and the centers of the three adjoining rings are no longer on a straight line, but on a line which is slightly bent in the center of the cross section of the intermediate stop ring 35.
  • the angle 49.2 between the resultant 50 of the forces passing through the support point 39 and the axis 18 is significantly further reduced and is approximately 13 ° with practically feasible dimensions.
  • the radial force 52 is then only 23% of the axial force 51. This leads to a reduction in the axial force of 60% compared to the previously known solution shown in FIG. 4.
  • the intermediate stop ring does not need to be installed with a correspondingly large tension and is included Security kept in place. Since the associated shoulder of the annular groove 22 is not loaded, a corresponding recess can be worked in right next to it. This advantageous solution seems particularly practical.
  • a further intermediate stop ring is provided in a corresponding intermediate ring holding groove for each stop.
  • a further intermediate stop ring 35H2 is now also provided in the smaller part 15 between the rear stop ring 28.2 and the rear intermediate stop ring 35H. This lies in a further intermediate ring holding groove 55.2, which adjoins the annular groove of the stop ring 28.2 in the outer wall 26 of the rear end H of the smaller part 15.
  • a further intermediate stop ring 35H3 is assigned to the rear stop ring 28.1 for striking the intermediate stop ring 35V of the front stop ring 23V.
  • the radial force is only 23% of the axial force.
  • This solution can be provided in particular on the ends of thin tubes that are subject to high loads. As can be seen, it is designed as a double design, so that a rear guide ring 19.1 is also provided between the two stop rings of the smaller part. It is rectangular and rounded at the edges. It can consist of bronze and has the strength of the radius difference 29 of the gap 33.
  • FIG. 7 shows a further advantageous embodiment of the invention.
  • the design is similar to that in FIGS. 5 and 6 with two rear stop rings 28.1 and 28.2 on the smaller part 15 and an intermediate guide ring 19.1 of the thickness of the gap 33.
  • the intermediate stop ring is no longer designed with approximately the thickness 29 of the gap 33 as in the first exemplary embodiment, but with the same thickness as the stop rings 23H and 23V or 28.1 and 28.2.
  • the groove recess is correspondingly larger and it lies in its own part-circular intermediate ring retaining groove 55.3, which has the function of a storage groove because of the expansion and circumferential reduction of the intermediate stop ring.
  • the intermediate stop ring 35.5 is biased outwards in the direction of the larger part 14, so that it detaches from the intermediate ring holding groove 55.3 for striking and rests against the support surface 57 of the inner wall of the larger part and arrives in the position suitable for supporting the stop forces .
  • the support surface 57 is offset to the outside against the inner wall 21 of the larger part 14 by such an amount that the center point of the cross section of the intermediate stop ring 35.4 in the stop position shown in FIG. 7 again on a straight line through the centers of the two abutting support rings 23 and 28, on which the support points 39 and 41 are located.
  • a run-up bevel 58 is provided which smoothly adjusts the diameter difference between the inner wall 21 and the supporting surface 57 compensates and by means of which the intermediate stop ring 35.5 between its rest position and the stop position is shifted radially and thereby stretched or reduced. Since the stop rings are only loaded on the shoulder facing away from the support point 41, corresponding grooves can be provided, as in the exemplary embodiments in FIGS. 5, 6 and 7. Also in this embodiment, the cost of additional rings and incorporation of appropriately designed grooves is so low that it is worthwhile in any case for the considerable savings in material, wall thickness and weight of the overall arrangement in which the piston-cylinder unit is used.
  • the piston-cylinder unit has the usual stop rings (23, 28) made of round spring steel to limit its sliding parts, in particular the telescopic tubes (14, 15) and the piston (16). In order to reduce the radial forces, intermediate stop rings (35) are provided between them in the stop position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Eye Examination Apparatus (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

Das Kolben-Zylinder-Aggregat hat zur Auszugbegrenzung seiner verschiebbaren Teile, insbesondere der Teleskop-Rohre (14, 15) und des Kolbens (16) übliche Anschlagringe (23, 28) aus rundem Federstahl. Zur Verringerung der Radialkräfte sind in Anschlagstellung zwischen ihnen liegende Zwischenanschlagringe (35) vorgesehen. <IMAGE>

Description

  • Die Erfindung betrifft ein hydraulisches Kolben-Zylinder-Aggregat mit mehreren, abgedichtet und ineinander verschiebbar angeordneten Zylinderelementen - Außenzylinder-Rohr, Teleskoprohre, Kolben -, die als Anschlagbegrenzung in der Innenwand (21) des jeweils größeren Teiles im Bereich wenigstens des vorderen Endes in einer teilkreisförmigen Nut einen vorderen Außenteil-Anschlagring und in der Außenwand des jeweils kleineren Elementes im Bereich des hinteren Endes in einer teilkreisförmigen Ringnut einen hinteren Innenteil-Anschlagring aufweisen, die beim Ausfahren der Zylinderelemente aneinanderstoßen und die Relativbewegung zwischen den beiden Teilen in Axialrichtung begrenzen.
  • Anschlagbegrenzungen mit Federringen, die Kreisquerschnitt aufweisen und in die Zylinderwände eingelassen sind, sind seit langem bekannt und beispielsweise in DE-OS 33 20 464 beschrieben. Vielfach werden sie jedoch auch feststehend in einer Ringnut gehalten, die den gleichen Radius hat, wie das Profil des Federringes. Solche Ringe müssen zur Aufnahme der Anschlagkräfte einen gewissen Durchmesser haben, damit auch die Nutschulter die auftretenden Kräfte aufnehmen kann. Dabei ist es bisher üblich, die Anordnung mit solchen Durchmesser-Differenzen bzw Spaltbreiten vorzusehen, daß die Linie der resultierenden Kräfte aus Axialkraft und Radialkraft unter einem Winkel von etwa 30° zur Zylinderachse verläuft. Dabei wird ein geeigneter Zwischenraum zwischen den beiden Zylindern belassen, der von Führungs- und Dichtungsringen überbrückt wird. Dabei tritt eine Radialkraft auf, die etwa 58 % der Axialkraft beträgt. Dadurch ergeben sich im Bereich der zumeist an beiden Rohrenden vorgesehen Anschlagringe, vor allem bei Teleskopzylindern, beträchtliche Radialkräfte, die eine entsprechende Dimensionierung der Teleskopzylinderwände erfordern. Daraus resultiert auch ein entsprechender Anteil am Gesamtgewicht des Kolben-Zylinder-Aggregates.
    Aus DE-PS 2 649 524 C2 ist eine Anschlagring-Anordnung mit Schrägschultern bekannt, die zur Aufnahme der Kräfte trapezförmige Anschlagringe vorsieht, die lose in ihreren Nuten liegen, wobei die beiden Ringe durch elastische Verformung den Aufprall dämpfen sollen. Die Ringe sind in der Herstellung aufwendig, die scharfkantigen Nuten führen zu Kerbwirkungen. Das erfordert entsprechend starke Zylinderwände.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Kolben-Zylinder-Aggregat, vorzugsweise mit Teleskopzylindern, derart auszugestalten, daß ohne Beeinträchtigung der Funktion durch geeignete Ausbildung der Anschlagringe die Wandstärke der Zylinderteile verringert werden kann.
  • Erfindungsgemäß ist vorgesehen, daß zwischen den sich bei der Anschlagbegrenzung aufeinander abstützenden Anschlagringen jeweils wenigstens ein Zwischenanschlagring angeordnet ist, dessen Profil Kreisquerschnitt besitzt, mit einem Durchmesser, der etwa der Durchmesser-Differenz bzw. der Spaltbreite zwischen kleinerem und größerem Teil, ggf. zuzüglich der Tiefe einer zugehörigen Zwischenring-Haltenut oder einer Zwischenring-Halte- und Speichernut entspricht.
  • Durch das Einlegen eines Zwischenanschlagringes werden die Stützpunkte der zu übertragenden Anschlagkräfte derart verschoben, daß der Winkel zwischen der Wirkungslinie der resultierenden Kraft und der Zylinderachse sich gegenüber dem Winkel bei bekannten Anordnungen ohne solche Zwischenanschlagringe verkleinert. Dabei kann man bei sinvoller und praktisch ausführbarer Dimensionierung der Zylinderbauteile einen Winkel zwischen der Achsrichtung und der resultierenden Kraftrichtung von etwa 20° bis 13° einhalten. Das entspricht einer Radialkraft von nur etwa 36% bis 23 % der Axialkraft, so daß gegenüber der Axialkraft bei Konstruktionen ohne einen Zwischenanschlagring etwa 38% bis 60 % eingespart werden können. Demgemäß kann die Wandstärke der Zylinderrohre beträchtlich verringert werden, was zu großer Material- und Gewichtseinsparung für den ganzen Zylinder und damit für die ganze Konstruktion, in die er eingebaut wird, beiträgt. Der Mehraufwand für die wenigen, preiswert zu fertigenden Rund-Drahtringe je Aggregat ist im Verhältnis zu der Material- und Gewichtseinsparung unbedeutend. Auch können, wie bisher, glatte Rohre verwendet werden. Dadurch sind der Rohmaterialeinsatz und Bearbeitungsaufwand gering.
  • Die erfindungsgemäß vorgesehenen Zwischenanschlagringe und Anschlagringe aus Runddraht mit den zugehörigen teiltorusförmigen Ringnuten haben den großen Vorteil, daß sie alle preiswert aus Runddraht gefertigt werden können und die Nuten keine besonderen Spitzenwirkungen hervorrufen und daß dadurch entsprechend geringe Wandstärken ermöglicht werden.
  • In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß der Zwischenanschlagring in einer an die Anschlagringnut angrenzende Zwischenring-Haltenut liegt. Dadurch läßt sich der Zwischenanschlagring besser in seiner Position halten. Seine Größe kann den Bedürfnissen gemäß dimensioniert werden und die Anschlagkraft-Verteilung kann ebenfalls den Gegebenheiten variabler angepaßt werden.
  • Um die Radialkraft möglichst gering zu halten, kann man zweckmäßig zwei hintereinander liegende Zwischenanschlagringe vorsehen. Das führt - insbesondere bei in Haltenuten liegenden Zwischenanschlagringen - zu besonders ausgeprägter Verringerung der Radialkräfte und damit der Wandstärken und Gesamtgewichte.
  • Weitere Ausgestaltungen, Merkmale, Vorteile, Einzelheiten und Gesichtspunkte der Erfindung ergeben sich auch aus den weiteren Ansprüchen und dem nachfolgenden, anhand der Zeichnungen abgehandelten Beschreibungsteil.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen erläutert.
  • Es zeigen:
  • Fig. 1
    Eine Ansicht mit halbem Längsschnitt eines Kolben-Zylinder-Aggregats in Teleskopausführung;
    Fig. 2
    einen halben Querschnitt längs der Linie 2-2 in Fig. 1;
    Fig. 3
    einen vergrößerten Teil-Längsschnitt durch die Bereiche, in denen die Anschlagringe einer Seite liegen in der eingeschobenen Anschlagposition.
    Fig. 4
    eine der Fig. 3 entsprechende Darstellung einer Ausführung gemäß dem Stand der Technik;
    Fig. 5
    eine der Fig. 3 entsprechende Darstellung eines weiteren Ausführungsbeispieles der Erfindung;
    Fig. 6
    eine der Fig. 5 entsprechende Darstellung eines weiteren Ausführungsbeispieles der Erfindung;
    Fig. 7
    eine der Fig. 5 entsprechende Darstellung eines weiteren Ausführungsbeispieles der Erfindung.
  • Das Kolben-Zylinder-Aggregat 10 hat ein Außenzylinder-Rohr 11 mit einem aufgeschraubten Abschluß- und Anschlußboden 12 üblicher Bauart. Dort ist die Leitung 13 für den Hydraulikanschluß vorgesehen. Teleskoprohre 14 und 15 und ein Kolben 16 sind mit jeweils kleineren Durchmessern ineinander verschiebbar. Der Kolben 16 hat eine Anschlußkugel 17. Die Achse ist mit 18 bezeichnet. Die verschiebbaren Bauteile sind mit Hilfe von Führungsringen 19 und Dichtungen 20 ineinander in üblicher Weise geführt und abgedichtet. Im Bereich jedes Endes jedes Rohres bzw des Kolbens ist eine Anschlagring-Anordnung 25V bzw 25H vorgesehen.
  • Im Bereich des vorderen Endes V jedes Rohres ist in der Innenwand 21 - innerhalb der Dichtungen liegend - eine Ringnut 22 vorgesehen. Diese hat Halbkreisquerschnitt und bildet damit einen Teiltorus. In ihr liegt ein vorderer Außenteil-Anschlagring 23, der aus einem runden Federstahl-Draht besteht und einen Trennspalt 24 (Fig. 2) aufweist. in der Außenwand 26 des jeweils kleineren Teiles befindet sich im Bereich des hinteren Endes H jeweils ein Paar von untereinander beabstandeten Ringnuten 27.1 und 27.2. Diese haben ebenfalls etwa Halbkreisquerschnitt. Darin liegen die hinteren Innenteil-Anschlagringe 28.1 ud 28.2. Diese haben ebenfalls Kreisquerschnitt und ebenfalls je einen Trennspalt. Sie sind ebenfalls aus rundem Stahlfederdraht gefertigt. Zwischen ihnen sitzt auf der Außenwand des kleineren Teiles ein zwischen die beiden Wände 21 und 26 passender Führungsring 19, beispielsweise aus Bronze. Die Radiusdifferenz 29 zwischen dem Außenradius 31 des kleineren Teiles und dem Innenradius 32 des größeren Teiles bildet einen Freiraum oder Spalt. Dieser ist mit den Führungsringen 19 - wie ersichtlich - in üblicher Weise überbrückt und mit den Dichtungen 20 geeignet abgedichtet. Die Radiusdifferenz 29, also die Spaltbreite des Spaltes 33, ist so groß wie der Radius des Querschnittes der Anschlagringe 23 bzw 28, da die Ringnuten 22 bzw 27 in der Regel als Halbkreisnuten ausgeführt sind.
  • Im Bereich des hinteren Endes H jedes Teleskop-Rohres 14 bzw. 15 ist für den inneren Anschlag in der jeweiligen Innenwand 21 ebenfalls eine im Querschnitt halbkreisförmige Ringnut 22 ausgebildet, in der ein im Querschnitt ebenfalls kreisrunder, aus Federstahl bestehender Anschlagring 23H eingelegt - wie es die Fig. 1 und 3 zeigen.
  • In dem Spalt 33 liegt bei dem ersten Ausführungsbeispiel (Fig. 1 und 3.) jeweils ein Zwischenanschlagring 35 und zwar jeweils zwischen den beiden sich in der jeweiligen Anschlagstellung aufeinander abstützenden Anschlagringen 23V und 28.1 einerseits und 23H und 28.2 andererseits, also bei den Teleskop-Rohren 14 und 15 sowohl im Bereich des vorderen Endes V als auch im Bereich des hinteren Endes H - wie es deutlich aus Fig. 3 hervorgeht. Dabei sind die Zwischenanschlagringe 35 jeweils dem Anschlagring des größeren Teiles zugeordnet und können dafür zweckmäßigerweise mit Vorspannung nach außen eingebaut sein. Ihre Bezugszeichen sind zur Kennzeichnung ihrer Zuordnung mit den zusätzlichen Buchstaben 'V' und 'H' ergänzt, wo es im Text sinnvoll erscheint.
  • Die Fig. 1 und die Fig. 3 sind bezüglich der Teleskop-Rohre 14 und 15 und des Kolbens 16 in der eingezogenen, hinteren Anschlagstellung gezeichnet. Das ganze Paket von Teleskop-Rohren und Kolben ist gegenüber dem Außenzylinder-Rohr 11 und dessen Anschlußboden 12 in Fig. 1 geringfügig ausgefahren gezeichnet. Es kann am Boden anschlagen und sich abstützen. Deshalb benötigt der Ring 28H im hinteren Ende H des Außenzylinder-Rohres 11 keinen Außenteil-Anschlagring und dient im Wesentlichen dem Halten und Führen des nebenliegenden Führungsringes 19, während der danebenliegende InnenteilAnschlagring 28.1 zur Auszugbegrenzung des größten Teleskop-Rohres 14 dient, wie es im Zusammenhang mit den anderen Ausziehteilen erläutert wurde.
  • In Fig. 3 ist genauer dargestellt, wie sich der dem kleineren Schiebeteil zugeordnete Anschlagring 28.2 auf dem hinteren Zwischenanschlagring 35H am Stützpunkt 39 abstützt. Der Zwischenanschlagring 35H stützt sich seinerseits am Stützpunkt 41 auf dem dem größeren Teil zugeordneten äußeren, hinteren Anschlagring 23H ab. Dabei sind die Durchmesser so gewählt, daß die Mittelpunkte 45.1 und 45.2 der beiden Anschlagringe 28H und 23H auf einer Geraden mit den Stützpunkten 39 und 41 liegen. Diese nimmt zur Achse 18 einen Winkel 49 ein. Die Achskraft 51 und die Radialkraft 52 bilden zusammen die resultierende Kraft 50.
  • Sie hängen über den Winkel 49 zusammen. Dieser ergibt sich aus den Abmessungen. Hier beträgt der Winkel 49 beispielsweise 20°. Infolgedessen beträgt die Länge der Strecke 52 36 % der Länge der Strecke 51, welche den Größen der auftretenden Kräfte proportional sind.
  • Im oberen Teil der Fig. 3 ist dargestellt, wie der dem kleineren Teil - hier Teleskop-Rohr 14 - zugeordnete Anschlagring 28.1 in der vorderen ausgefahrenen Anschlagposition, in welcher er mit 28.12 bezeichnet ist, sich auf seiner oberen Seite am Stützpunkt 39.1 auf dem Zwischenanschlagring 35V des vorderen Außenteil-Anschlagringes 23 V entsprechend abstützt. Die Verhältnisse bezüglich Winkeln und Kräften sind gleich wie hinten.
  • Die Fig.4 zeigt, wie bei der bisher üblichen Lösung ohne Zwischenanschlagring 35 die Mittelpunkte der Anschlagringe, und der einzige Stützpunkt zueinander liegen und wie dadurch der Winkel 49.1 zwischen resultierender Kraft 50.1 und der Achse 18 viel größer ist, als bei der erfindungsgemäßen, neuen Ausbildung nach Fig. 1 bis 3 - bei sonst gleichen Abmessungen. Er beträgt beispielsweise etwa 30°, was dazu führt, daß die Radialkraft etwa 58 % der Axialkraft beträgt. Somit ist bei der erfindungsgemäßen Lösung nach den Fig. 1 bis 3 die Radialkraft um 37 % verkleinert. Entsprechend kann die Wandstärke der Rohre 11, 14 und 15 des neuen Kolben-Zylinder-Aggregates 10 dünner gewählt werden. Damit verringert sich bei sonst gleicher Leistung des Kolben-Zylinder-Aggregats das Gesamtgewicht beträchtlich, was entsprechend günstige Folgewirkungen für die ganze Konstruktion, in der das Kolben-Zylinder-Aggregat eingesetzt wird, hat.
  • Das Ausführungsbeispiel der Fig. 5 zeigt eine Variante, bei der die Zwischenanschlagringe 35H und 35V jeweils in einer Zwischenring-Haltenut 55 liegen. Diese schließen sich hier jeweils unmittelbar an die Ringnuten 22 an und sind so gestaltet, daß der jeweilige Zwischenanschlagring 35 auch bei Verschiebung mit Sicherheit an dem Anschlagring 23, dem er zugeordnet ist, festgehalten wird. Die Zwischenring-Haltenuten 55 sind nur wenige mm tief in die Innenwand 21 des größeren Teiles eingearbeitet. Dadurch wird jeder Zwischenanschlagring 35 im Querschnitt etwas größer und die Mittelpunkte der drei aneinanderliegenden Ringe liegen nicht mehr auf einer Geraden, sondern auf einer leicht im Zentrum des Querschnitts des Zwischenanschlagringes 35 abgeknickten Linie. Der Winkel 49.2 zwischen der Resultierenden 50 der durch den Stützpunkt 39 gehenden Kräfte und der Achse 18 ist wesentlich weiter verringert und beträgt bei praktisch ausführbaren Abmessungen etwa 13°. Damit beträgt dann die Radialkraft 52 nur noch 23% der Axialkraft 51. Das führt zu einer Verringerung des Axialkraft gegenüber der in Fig. 4 dargestellten, vorbekannten Lösung von 60 %. Außerdem braucht der Zwischenanschlagring nicht mit entsprechend großer Vorsatzspannung eingebaut zu werden und wird mit Sicherheit an seinem Platz gehalten. Da die zugehörige Schulter der Ringnut 22 nicht belastet ist, kann man eine entsprechende Vertiefung unmittelbar daneben einarbeiten. Diese vorteilhafte Lösung erscheint besonders praxisgerecht.
  • Die Fig. 6 zeigt eine weitere, besonders vorteilhafte Variante der Erfindung. Dabei ist für jeden Anschlag ein weiterer Zwischenanschlagring in einer entsprechenden Zwischenring-Haltenut vorgesehen. Und zwar ist nunmehr auch im kleinern Teil 15 zwischen dem hinteren Anschlagring 28.2 und und dem hinteren Zwischenanschlagring 35H ein weiterer Zwischenanschlagring 35H2 vorgesehen. Dieser liegt in einer weiteren Zwischenring-Haltenut 55.2, die sich an die Ringnut des Anschlagringes 28.2 in der Außenwand 26 des hinteren Endes H des kleineren Teiles 15 anschließt. Gleichartig ist dem hinteren Anschlagring 28.1 für das Anschlagen an den Zwischenanschlagring 35V des vorderen Anschlagringes 23 V ein weiterer Zwischenanschlagring 35H3 zugeordnet. Dieser liegt in einer weiteren Zwischenring-Haltenut 55.1, die sich an die Ringnut des Anschlagringes 28.1 in der Außenwand 26 des hinteren Endes H des kleineren Teiles 15 nach vorn anschließt. Die vordere Anschlagposition ist strichpunktiert nur mit der entsprechenden Lage des weiteren Zwischenaschlagringes 35H3 mit der Kennzeichnung 35H3.2 angedeutet. Wie aus Fig.6 unten ersichtlich - liegen durch die Einfügung des weiteren Zwischenanschlagringes die Mittelpunkte aller vier Ringe in der Anschlagstellung wiederum auf einer Geraden. Diese nimmt nun den geringstmöglichen Winkel 49.3 zur Achse 18 ein. Dieser beträgt bei praktisch ausführbaren Abmessungen genauso wie beim Ausführungsbeispiel der Fig. 5 wiederum nur etwa 13°. Außerdem entfallen Radialkräfte auf den Zwischenanschlagring. So beträgt die Radialkraft auch hier nur noch 23 % der Axialkraft. Diese Lösung kann man insbesondere an hochbelasteten Enden dünner Rohre vorsehen. Sie ist - wie ersichtlich als Doppelausführung gestaltet, sodaß zwischen beiden Anschlagringen des kleineren Teiles auch ein hinterer Führungsring 19.1 vorgesehen ist. Dieser ist rechteckig gestaltet und an den Kanten abgerundet. Er kann aus Bronze bestehen und hat die Stärke der Radiusdifferenz 29 des Spaltes 33.
  • Das Ausführungsbeispiel der Fig. 7 zeigt eine weitere vorteilhafte Ausgestaltung der Erfindung. Dabei ist die Gestaltung ähnlich wie in Fig. 5 und 6 mit zwei hinteren Anschlagringen 28.1 und 28.2 am kleineren Teil 15 und einem dazwischen liegenden Führungsring 19.1 von der Stärke des Spaltes 33 ausgeführt. Hier ist der Zwischenanschlagring nicht mehr mit etwa der Stärke 29 des Spaltes 33 wie beim ersten Ausführungsbeispiel sondern mit der gleichen Stärke wie die Anschlagringe 23H und 23V bzw 28.1 und 28.2 gestaltet. Die Nutvertiefung ist entsprechend größer und er liegt in einer eigenen teilkreisförmigen Zwischenring-Haltenut 55.3, die wegen der Dehnung und Umfangsverringerung des Zwischenanschlagringes die Funktion einer Speichernut hat. Der Zwischenanschlagring 35.5 ist nach außen in Richtung auf das größere Teil 14 vorgespannt, sodaß er sich für das Anschlagen aus der Zwischenring-Haltenut 55.3 herauslöst und an die Stützfläche 57 der Innenwand des größeren Teiles anlegt und in die für die Abstützung der Anschlagkräfte geeignete Position gelangt. Um das zu ermöglichen, ist die Stützfläche 57 um einen solchen Betrag nach außen gegenüber der Innenwand 21 des größeren Teiles 14 versetzt, daß der Mittelpunkt des Querschnittes des Zwischenanschlagringes 35.4 in der in Fig. 7 unten dargestellten Anschlagposition wiederum auf einer Geraden durch die Mittelpunkte der beiden sich aufeinander abstützenden Anschlagringe 23 und 28 liegt, auf der auch die Stützpunkte 39 und 41 liegen.
  • Um den Zwischenanschlagring 35.5 aus der Anschlagposition in die Zwischenring-Haltenut 55.3 entgegen seiner Federkraft zurückzudrücken und das Verschieben der Teleskoprohre 14, 15 bzw des Kolbens 16 zu ermöglichen, ist eine Anlaufschräge 58 vorgesehen, die die Durchmesserdifferenz zwischen der Innenwand 21 und der Stützfläche 57 ruckfrei ausgleicht und mittels deren der Zwischenanschlagring 35.5 zwischen seiner Ruheposition und der Anschlagstellung radial verschoben und dabei gedehnt bzw verkleinert wird . Da die Anschlagringe nur an der dem Stützpunkt 41 abgewandten Schulter belastet werden, kann man entsprechende Nuten, wie bei den Ausführungsbeispielen der Fig. 5, 6 und 7 vorsehen. Auch bei diesem Ausführungsbeispiel ist der Aufwand an zusätzlichen Ringen und Einarbeitung entsprechend gestalteter Nuten so gering, daß er sich für die beträchtliche Einsparung an Material, Wandstärke und Gewicht der Gesamtanordnung, in der das Kolben-Zylinder-Aggregat eingesetzt wird, in jedem Falle lohnt.
  • Die nachfolgend abgedruckte Zusammenfassung ist Bestandteil der Offenbarung der Erfindung:
    Das Kolben-Zylinder-Aggregat hat zur Auszugbegrenzung seiner verschiebbaren Teile, insbesondere der Teleskop-Rohre (14, 15) und des Kolbens (16) übliche Anschlagringe (23, 28) aus rundem Federstahl. Zur Verringerung der Radialkräfte sind in Anschlagstellung zwischen ihnen liegende Zwischenanschlagringe (35) vorgesehen.
    Figure imgb0001

Claims (7)

  1. Hydraulisches Kolben-Zylinder-Aggregat (10) mit mehreren, abgedichtet und ineinander verschiebbar angeordneten Zylinderelementen - Außenzylinder-Rohr (11), Teleskoprohre (14, 15), Kolben (16) -, die als Anschlagbegrenzung in der Innenwand (21) des jeweils größeren Teiles im Bereich wenigstens des vorderen Endes (V) in einer teilkreisförmigen Nut (22) einen vorderen Außenteil-Anschlagring (23V) und in der Außenwand (26) des jeweils kleineren Elementes im Bereich des hinteren Endes (H) in einer teilkreisförmigen Ringnut (27) einen hinteren Innenteil-Anschlagring(28) aufweisen, die beim Ausfahren der Zylinderelemente aneinanderstoßen und die Relativbewegung zwischen den beiden Teilen in Axialrichtung begrenzen,
    dadurch gekennzeichnet,
    daß zwischen den sich bei der Anschlagbegrenzung aufeinander abstützenden Anschlagringen (23, 28) jeweils wenigstens ein Zwischenanschlagring (35) angeordnet ist, dessen Profil Kreisquerschnitt besitzt, mit einem Durchmesser, der etwa der Durchmesser-Differenz bzw. der Spaltbreite (29) zwischen kleinerem und größerem Teil, ggf. zuzüglich der Tiefe einer zugehörigen Zwischenring-Haltenut (55) oder einer Zwischenring-Halte- und Speichernut (55.3) entspricht.
  2. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß der Zwischenanschlagring (35..) in einer an die Anschlagringnut (22, 27..) angrenzende Zwischenring-Haltenut (55..) liegt.
  3. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß zwei hintereinander liegende Zwischenanschlagringe (35..2, 35..3) vorgesehen sind.
  4. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß im Bereich des hinteren Ende des kleineren Teiles in der Außenwand zwei Anschlagringe (28.1; 28.2) vorgesehen sind, zwischen denen ein Führungsring (19.1) liegt und jedem Anschlagring ein Zwischenanschlagring (35..) zugeordnet ist.
  5. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß der Querschnitt des Zwischenanschlagringes (35) einen Durchmesser hat, der der Radiusdifferenz (29) zwischen Außenradius (31) des kleineren Teils und Innenradius (32) des größeren Teils gleich ist.
  6. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß der Querschnitt des Zwischenanschlagringes (35..) einen Durchmesser hat, der größer als die Radiusdifferenz (29) zwischen Außenradius (31) des kleineren Teils und Innenradius (32) des größeren Teils ist.
  7. Kolben-Zylinder-Aggregat nach wenigstens einem der übrigen Ansprüche,
    dadurch gekennzeichnet,
    daß der Querschnitt des Zwischenanschlagringes (35.5) einen Durchmesser hat, der dem Durchmesser des Querschnitts der Anschlagringe (23, 28) gleich ist und eine Abstützfläche (57) vorgesehen ist, die über eine Anlaufschräge (58) mit der Innenwand (21) des größeren Teils verbunden ist und der Zwischenanschlagring (35.5) eine nach außen gerichtete Vorspannung aufweist und die Abmessungen so getroffen sind, daß die Mittelpunkte der beiden sich über den Zwischenanschlagring (35.5) aufeinander abstützenden Anschlagringe (23, 28) und des zugehörigen Zwischenanschlagringes (35.5) in der Anschlagposition auf einer gegen die Achse (18) des Kolben-Zylinder-Aggregates (10) nur wenig geneigten Geraden (50) liegen.
EP91104945A 1990-04-06 1991-03-28 Kolben-Zylinder-Aggregat Expired - Lifetime EP0450501B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4011119 1990-04-06
DE4011119A DE4011119A1 (de) 1990-04-06 1990-04-06 Kolben-zylinder-aggregat

Publications (2)

Publication Number Publication Date
EP0450501A1 true EP0450501A1 (de) 1991-10-09
EP0450501B1 EP0450501B1 (de) 1993-05-19

Family

ID=6403880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91104945A Expired - Lifetime EP0450501B1 (de) 1990-04-06 1991-03-28 Kolben-Zylinder-Aggregat

Country Status (7)

Country Link
EP (1) EP0450501B1 (de)
AT (1) ATE89650T1 (de)
CZ (1) CZ282174B6 (de)
DE (2) DE4011119A1 (de)
DK (1) DK0450501T3 (de)
ES (1) ES2042320T3 (de)
FI (1) FI92348C (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834318A1 (fr) * 2002-01-03 2003-07-04 Gerard Leray Verin telescopique
EP1947351A1 (de) * 2007-01-17 2008-07-23 Carl Freudenberg KG Hydraulikzylinderanordnung
EP2466157A1 (de) 2010-12-16 2012-06-20 Hyva Holding BV Teleskopischer Hydraulikzylinder
CN103122890A (zh) * 2011-10-20 2013-05-29 海瓦控股有限公司 伸缩液压缸
GB2511745A (en) * 2013-03-11 2014-09-17 Jonic Engineering Ltd Telescopic hydraulic piston arrangement
EP3786462A1 (de) * 2019-09-02 2021-03-03 Hyva Holding BV Teleskopzylinder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812313A (en) * 1956-04-18 1959-04-22 Bendix Aviat Corp Fluid pressure motor
GB1001045A (en) * 1962-03-02 1965-08-11 Heinz Teves Improvements in or relating to piston and cylinder devices
DE2004117A1 (de) * 1969-02-14 1970-09-03 Nummi Oy Anordnung an einem Teleskopzylinder
CH519111A (de) * 1969-02-15 1972-02-15 Neumeister Otto Hydraulikzylinder mit Verdrehsicherung
FR2290613A2 (fr) * 1974-11-08 1976-06-04 Protomatic Perfectionnements aux verins telescopiques
WO1981003528A1 (fr) * 1980-06-05 1981-12-10 J Leray Verin telescopique
FR2505943A1 (fr) * 1981-02-10 1982-11-19 Faucheux Butee de fin de course amovible pour piston plongeur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2308028A1 (fr) * 1975-04-14 1976-11-12 Luchaire Sa Procede pour assurer la lubrification des pistons de verins pneumatiques
GB1590773A (en) * 1976-08-20 1981-06-10 Telehoist Ltd Telescoping mechanisms
DE3320464A1 (de) * 1983-06-07 1984-12-13 Otto 7106 Neuenstadt Neumeister Ein- oder mehrstufiger hydraulikzylinder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812313A (en) * 1956-04-18 1959-04-22 Bendix Aviat Corp Fluid pressure motor
GB1001045A (en) * 1962-03-02 1965-08-11 Heinz Teves Improvements in or relating to piston and cylinder devices
DE2004117A1 (de) * 1969-02-14 1970-09-03 Nummi Oy Anordnung an einem Teleskopzylinder
CH519111A (de) * 1969-02-15 1972-02-15 Neumeister Otto Hydraulikzylinder mit Verdrehsicherung
FR2290613A2 (fr) * 1974-11-08 1976-06-04 Protomatic Perfectionnements aux verins telescopiques
WO1981003528A1 (fr) * 1980-06-05 1981-12-10 J Leray Verin telescopique
FR2505943A1 (fr) * 1981-02-10 1982-11-19 Faucheux Butee de fin de course amovible pour piston plongeur

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834318A1 (fr) * 2002-01-03 2003-07-04 Gerard Leray Verin telescopique
EP1947351A1 (de) * 2007-01-17 2008-07-23 Carl Freudenberg KG Hydraulikzylinderanordnung
EP2466157A1 (de) 2010-12-16 2012-06-20 Hyva Holding BV Teleskopischer Hydraulikzylinder
EP2466156A1 (de) * 2010-12-16 2012-06-20 Hyva Holding BV Teleskopischer Hydraulikzylinder
CN102588381A (zh) * 2010-12-16 2012-07-18 海瓦控股有限公司 可伸缩液压缸
CN102588381B (zh) * 2010-12-16 2016-01-20 海瓦控股有限公司 可伸缩液压缸
CN103122890A (zh) * 2011-10-20 2013-05-29 海瓦控股有限公司 伸缩液压缸
GB2511745A (en) * 2013-03-11 2014-09-17 Jonic Engineering Ltd Telescopic hydraulic piston arrangement
GB2511745B (en) * 2013-03-11 2017-05-03 Jonic Eng Ltd Telescopic hydraulic piston arrangement
EP3786462A1 (de) * 2019-09-02 2021-03-03 Hyva Holding BV Teleskopzylinder

Also Published As

Publication number Publication date
FI911451A (fi) 1991-10-07
FI92348C (fi) 1994-10-25
CZ282174B6 (cs) 1997-05-14
DK0450501T3 (da) 1993-11-08
CS9100942A2 (en) 1991-11-12
FI911451A0 (fi) 1991-03-26
EP0450501B1 (de) 1993-05-19
DE59100116D1 (de) 1993-06-24
ES2042320T3 (es) 1993-12-01
FI92348B (fi) 1994-07-15
ATE89650T1 (de) 1993-06-15
DE4011119A1 (de) 1991-10-10

Similar Documents

Publication Publication Date Title
DE19639548C2 (de) Fluidbetätigter Arbeitszylinder
DE3218751A1 (de) Dichtungseinrichtung
DE2055881A1 (de) Ringdichtung
WO1987006991A1 (en) Seal arrangement
DE2422786A1 (de) Lager
DE1907689C2 (de) Ein- oder mehrstufiger Hydraulikzylinder mit Verdrehsicherung
DE3606886A1 (de) Hydraulikdichtung
EP0450501B1 (de) Kolben-Zylinder-Aggregat
EP1110017A1 (de) REIBUNGSARME DICHTUNG und hydraulikzylinder
DE1231979B (de) Arbeitszylinder fuer Druckmittelanlagen
DE102008031853B4 (de) Spannstift
DE1750801A1 (de) Kolbendichtung
DE2832763C3 (de) Innere Stützwendel für einen Schlauch und Schlauchanordnung mit Stützspirale
EP3491254B1 (de) Kolbeneinheit eines hydraulikzylinders
DE19631547B4 (de) Teleskopausleger, insbesondere für stationäre oder fahrbare Krane
EP0004067A1 (de) Wickelträger mit parallel zu seiner Achse verlaufenden Tragelementen
DE2004117A1 (de) Anordnung an einem Teleskopzylinder
DE112004001454B4 (de) Kolbenbolzenlager
DE8136101U1 (de) &#34;kupplung zur reibschluessigen drehverbindung von maschinenteilen, wie z.b. nabe und welle&#34;
DE3145494A1 (de) Einrichtung zur fuehrung des kolbens eines arbeitszylinders
EP2513389A1 (de) Teleskopierbare baustütze
AT404290B (de) Kolben für einen pneumatischen oder hydraulischen arbeitszylinder
EP0380749A2 (de) Gleitringdichtung
DE3939463A1 (de) Druckabdichtungsvorrichtung fuer den abstand zwischen zwei koaxialen zylindrischen flaechen
DE4242213A1 (de) Dichtungsanordnung für einen Hochdruckzylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19911221

17Q First examination report despatched

Effective date: 19920724

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 89650

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59100116

Country of ref document: DE

Date of ref document: 19930624

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930816

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042320

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 91104945.0

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020225

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020327

Year of fee payment: 12

Ref country code: ES

Payment date: 20020327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020607

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030328

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030329

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: *NEUMEISTER WALTER

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050303

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003