EP0446762B1 - Verfahren zum Herstellen von gravierten Walzen oder Platten - Google Patents

Verfahren zum Herstellen von gravierten Walzen oder Platten Download PDF

Info

Publication number
EP0446762B1
EP0446762B1 EP91103288A EP91103288A EP0446762B1 EP 0446762 B1 EP0446762 B1 EP 0446762B1 EP 91103288 A EP91103288 A EP 91103288A EP 91103288 A EP91103288 A EP 91103288A EP 0446762 B1 EP0446762 B1 EP 0446762B1
Authority
EP
European Patent Office
Prior art keywords
layer
wear
base body
approximately
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103288A
Other languages
English (en)
French (fr)
Other versions
EP0446762A3 (en
EP0446762A2 (de
Inventor
Wolfgang Hüttl
Alois Vester
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0446762A2 publication Critical patent/EP0446762A2/de
Publication of EP0446762A3 publication Critical patent/EP0446762A3/de
Application granted granted Critical
Publication of EP0446762B1 publication Critical patent/EP0446762B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/003Preparing for use and conserving printing surfaces of intaglio formes, e.g. application of a wear-resistant coating, such as chrome, on the already-engraved plate or cylinder; Preparing for reuse, e.g. removing of the Ballard shell; Correction of the engraving

Definitions

  • the invention relates to a method for producing engraved rollers and plates for flexographic printing, gravure printing and coating with a base body made of metal, on the surface of which an engraving is produced mechanically, electromechanically or by means of etching in accordance with a desired embossing pattern and then at least one layer of a Metal or a metal compound to increase the wear resistance and corrosion resistance is applied to the engraved surface of the base body.
  • metal objects with a protective layer to increase corrosion resistance and hardness and wear resistance has long been known.
  • metallic objects are usually plated with a metallic coating of, for example, nickel or chromium by galvanic means or by chemical reduction. These galvanic processes can be used to achieve wear-resistant surfaces with nickel or chrome on metallic base bodies with Vickers hardness up to about 950 HV for nickel or 1200 HV for chrome.
  • the metal vapor is generated directly and reacts with the gas on the surface of the body to be coated to form the desired wear layer.
  • the PVD process enables hard materials to be separated for the wear layer at temperatures between 200 ° C and 650 ° C.
  • a special area for the manufacture of products with wear-resistant surfaces are engraved rollers or plates, which are also used as embossing tools.
  • Such engraved rollers and plates have so far been realized with wear-resistant surfaces with a high hardness above 1700 HV only on the basis of ceramic base bodies, the engraving being worked into the surface with the aid of laser beams in accordance with the desired embossing pattern.
  • the engravings are not 100% reproducible, so that each engraved roller or plate turns out slightly different when the same engraving is presented.
  • the object of the invention is to provide engravings on metallic base bodies, such as rollers and plates, with wear layers of high hardness of at least 2000 HV according to Vickers, which can be reproduced with high precision.
  • the method according to the invention it is possible to equip engraved rollers and engraved plates, for example for carrying out printing processes or coatings or for embossing tools, with a wear-resistant surface with a hardness of at least 2000 HV.
  • the process is reproducible, i.e. the base body with the same engraving can be equipped with a wear layer using the process according to the invention, the embossing pattern of the engraved rolls or plates equipped in this way without any deviations from one another, i.e. be produced reproducibly.
  • the engravings on rollers and plates can be produced reproducibly, so that identical engraved rollers or plates can be produced, which are equipped with a wear layer for a long service life and a high Vickers hardness of over 2000, preferably over 2500 HV .
  • the intermediate layer takes on the function of corrosion protection for the metallic base body, the Interlayer should be as dense and homogeneous as possible and should already have a relatively high hardness.
  • the subsequent heat treatment in a vacuum brings about cleaning and degassing of the intermediate layer and also annealing, ie further hardening of the nickel-phosphorus alloy, so that hardening of this layer of at least 900 HV is achieved.
  • An intermediate layer made of a nickel-phosphorus alloy is preferably annealed at temperatures above 240 ° C up to about 420 ° C under vacuum for a period of one to three hours.
  • Another intermediate layer which has a high surface hardness right from the start, is made of ceramic based on silicon carbides, which is sprayed on the engraved surface of the base body as a thin layer.
  • high hardnesses of the wear layers to be subsequently applied can also be achieved in that the intermediate layer already has a high hardness.
  • the precision of the embossing pattern, i.e. of the engraving, the thickness of the intermediate layer and the thickness of the wear layer are capped.
  • the thickness of these layers should in no case be greater than 15 ⁇ m, since otherwise the geometry of the embossing patterns and engravings will be changed in an unacceptable way and the reproducibility will be questioned.
  • the thickness of the intermediate layer and the wear layer is limited at the bottom in order to obtain a sufficiently dense layer.
  • an intermediate layer made of nickel can also be minimally porous, for example, but this porosity is eliminated by the wear layer to be subsequently evaporated, since the material of the wear layer diffuses into the intermediate layer and then forms a closed and corrosion-resistant layer with it Coating forms. Since the wear layer is applied by vacuum deposition at elevated temperatures, the intermediate layer must be selected from a material that can withstand these temperatures, with nickel or ceramic having proven itself as the base material for the intermediate layer.
  • Such a two-layer intermediate layer has the advantage that the nickel layer forms a homogeneous, dense layer, while the chrome layer applied thereon is not as dense, i.e. has a higher microporosity, but has a higher Vickers hardness up to about 1200 HV than nickel. The higher the hardness of the intermediate layer, the higher the achievable hardness of the wear layer to be evaporated thereon.
  • metal borides, carbides, nitrides, oxides, and silicides of the elements of the fourth to sixth subgroup of the periodic table are preferably titanium, zirconium, hafnium or vanadium, niobium, tantalum or chromium, molybdenum, tungsten individually or in combinations used.
  • the carbides, nitrides and oxides of the elements of the fourth subgroup of the periodic table are preferably used for the wear layer, which are characterized by particularly hardness and wear resistance.
  • titanium nitride or titanium aluminum carbonitride or titanium aluminum nitride or titanium carbonitride or titanium carbide are used for the wear layer.
  • Hardnesses of 2500 to 3000 HV can be achieved with these so-called hard materials for the wear layer, which are applied to the engraving or embossed pattern of a base body provided with the intermediate layer using the PVD method.
  • Hafnium boride which has a Vickers hardness of around 3200, is also suitable distinguished.
  • the wear layer is evaporated to a thickness of approximately 4 to 8 ⁇ m, preferably approximately 5 to 7 ⁇ m.
  • the intermediate layer is formed from a nickel and chrome layer, these should not together exceed a thickness of approximately 15 ⁇ m.
  • Chromium has a higher hardness than nickel, but has the disadvantage that it already dissolves and becomes porous at the temperatures to be used for the vapor deposition of the wear layer.
  • this nickel-phosphorus alloy can absorb the effects of temperature on the chrome and stabilize the chrome layer.
  • the chrome layer gives this intermediate layer an overall higher hardness and wear resistance than a nickel-phosphor alloy layer alone.
  • rollers and plates which can be produced with the engraving or embossed pattern by the method according to the invention can be produced reproducibly and have high wear resistance, i.e. significantly longer service life and a hardness of at least about 2000 HV depending on the type of vapor-deposited metal-hard material connection.
  • engraved rollers or plates for printing processes or the like can be produced with very high resolution of the embossing patterns and engravings with high accuracy wear resistant.
  • the base body 1 for example for an embossing tool made of metal, such as steel and non-ferrous metal, for example brass, bronze, has the basic shape of a cube for an engraving plate or a tube with very large wall thicknesses or cylinders for an engraving roller.
  • the surface of the base body 1 is provided with the engraving 2 in the desired areas in accordance with the desired embossing pattern by mechanical, electromechanical means or by means of etching. After cleaning, the base body 1 provided with the engraving 2 is then covered at least in the area of the engraved surface with an autocatalytically deposited nickel-phosphorus alloy layer 3 in a thickness of approximately 12 to 15 ⁇ m.
  • the base body 1 thus provided with the intermediate layer 3 is heated in a vacuum and annealed at a temperature of about 400 ° C. for 2.5 hours and then cooled to room temperature. Then the base body is polished and cleaned in the area of the engraved and coated surface.
  • the wear layer 4 can then be applied as the outermost layer by vapor deposition of a corresponding metallic hard material compound, for example titanium nitride, in a high vacuum at temperatures up to 480 ° C. using the PVD process.
  • the base body 1, which is at room temperature, is slowly heated in a vacuum to the corresponding temperature.
  • the wear layer 4 should have a thickness of approximately 5 to 7 ⁇ m.
  • the evaporated layer is also polished on the surface.
  • the engraved plate or roller is equipped with a wear-resistant layer of approx. 3000 HV. This engraved roller or plate can be reproducibly produced using this method.
  • the base body 1 is also equipped with the engraved surface 2.
  • a first intermediate layer 3a made of a nickel-phosphorus alloy is then autocatalytically deposited in a layer thickness of approximately 5 ⁇ m.
  • a chrome layer 3b is then electrolytically applied in a thickness of 5 ⁇ m and then cleaned, degassed and annealed by heat treatment in a vacuum at temperatures up to 400 ° C.
  • the engraved coated surface is polished and then, as described in the example according to FIG. 1, a wear-resistant layer 4, for example made of titanium nitride or titanium carbide, is evaporated.
  • engraved rollers and plates with the finest engraving patterns for example 40,000 holes on 1 cm 2, each about 16 ⁇ m deep, can be reproducibly produced with a surface hardness of 2000 HV or more depending on the hard material for the wear layer.
  • Such engravings are required for printing processes, for example for engraving and coating rollers.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von gravierten Walzen und Platten für den Flexodruck, Tiefdruck und Coating mit einem Grundkörper aus Metall, auf dessen Oberfläche mechanisch, elektromechanisch oder mittels Ätzung eine Gravur entsprechend einem gewünschten Prägemuster erzeugt wird und dann mindestens eine Schicht eines Metalles bzw. einer Metallverbindung zur Erhöhung der Verschleißfestigkeit und der Korrosionsbeständigkeit auf die gravierte Oberfläche des Grundkörpers aufgebracht wird.
  • Das Überziehen von Gegenständen von Metall mit einer Schutzschicht zur Erhöhung der Korrosionsbeständigkeit und der Härte und der Verschleißfestigkeit ist seit langem bekannt. Insbesondere werden metallische Gegenstände meist auf galvanischem Wege oder durch chemische Reduktion mit einem metallischen Überzug aus beispielsweise Nickel oder Chrom überzogen. Nach diesen galvanischen Verfahren können mit Nickel bzw. Chrom verschleißfeste Oberflächen auf metallischen Grundkörpern mit Vickershärten bis zu etwa 950 HV für Nickel bzw. 1200 HV für Chrom erzielt werden.
  • Des weiteren ist es bekannt, Hartstoffschichten in einem Vakuumverfahren auf metallische oder nichtmetallische Oberflächen von Körpern aufzudampfen, um diese verschleißfest auszurüsten. Bei dem CVD-Verfahren - chemische Abscheidung aus der Dampfphase - muß der metallische Anteil erst aus einem gasförmigen Ausgangsstoff durch Cracken freigesetzt werden, bevor das Metall mit dem Gas reagiert. Das CVD-Verfahren benötigt hohe Reaktionstemperaturen von etwa 800 bis 1100°C.
  • Beim PVD-Verfahren - physikalische Abscheidung aus der Dampfphase - wird der Metalldampf direkt erzeugt und reagiert auf der Oberfläche des zu beschichtenden Körpers mit dem Gas zu der gewünschten Verschleißschicht. Das PVD-Verfahren ermöglicht das Abscheiden der Hartstoffe für die Verschleißschicht bei Temperaturen zwischen 200°C und 650°C.
  • Ein Spezialgebiet zum Herstellen von Produkten mit verschleißfesten Oberflächen stellen mit Gravuren versehene Walzen oder Platten dar, die auch als Prägewerkzeuge Anwendung finden. Derartige gravierte Walzen und Platten sind bisher mit verschleißfesten Oberflächen mit hoher Härte über 1700 HV lediglich auf Basis keramischer Grundkörper realisiert worden, wobei die Gravur mit Hilfe von Laserstrahlen entsprechend dem gewünschten Prägemuster in die Oberfläche eingearbeitet wird. Wegen der zahlreichen bei der Bearbeitung von Keramikkörpern zu berücksichtigenden Parameter sind jedoch die Gravuren nicht 100 %-ig reproduzierbar, so daß jede gravierte Walze oder Platte bei Vorlage derselben Gravur geringfügig anders ausfällt.
  • Der Erfindung liegt die Aufgabe zugrunde, Gravuren auf metallischen Grundkörpern, wie Walzen und Platten, mit Verschleißschichten hoher Härte von mindestens 2000 HV nach Vickers auszurüsten, die mit hoher Präzision reproduzierbar sind.
  • Erfindungsgemäß wird zur Lösung der gestellten Aufgabe ein Verfahren zum Herstellen von gravierten Walzen oder Platten mit hoher Verschleißfestigkeit der gattungsgemäßen Art vorgeschlagen, bei dem
    • a) auf die mit der Gravur versehene Oberfläche des Grundkörpers eine dichte Zwischenschicht einer Dicke von etwa 10 bis 15 µm und einer Härte von mindestens 850 HV nach Vickers aufgebracht wird,
    • b) dann der mit der Zwischenschicht versehene gravierte Grundkörper im Vakuum auf eine Temperatur von mindestens 200°C zum Reinigen erwärmt wird
    • c) und nach der Abkühlung auf Raumtemperatur die beschichtete gravierte Oberfläche des Grundkörpers poliert und gereinigt wird,
    • d) dann auf die beschichtete mit der Gravur versehene Oberfläche des Grundkörpers eine Verschleißschicht aus einer Metallverbindung mit einer Härte nach Vickers von mindestens 2000 durch Aufdampfen im Vakuum nach dem PVD-Verfahren bei Temperaturen von 200 bis zu etwa 480°C in einer Dicke von etwa 4 bis 8 µm aufgebracht wird,
    • e) und nach Abkühlen die mit der aufgedampften Verschleißschicht versehene Oberfläche des Grundkörpers poliert wird.
  • Mit dem erfindungsgemäßen Verfahren ist es möglich, gravierte Walzen und gravierte Platten zum Beispiel für die Durchführung von Druckverfahren oder Beschichtungen oder für Prägewerkzeuge mit einer verschleißfesten Oberfläche mit einer Härte von mindestens 2000 HV auszurüsten. Das Verfahren ist reproduzierbar, d.h., daß Grundkörper mit gleicher Gravur nach dem erfindungsgemäßen Verfahren mit einer Verschleißschicht ausgerüstet werden können, wobei die Prägemuster der so ausgerüsteten gravierten Walzen oder Platten ohne Abweichungen voneinander, d.h. reproduzierbar hergestellt werden. Mit dem erfindungsgemäßen Verfahren lassen sich die Gravuren an Walzen und Platten reproduzierbar herstellen, so daß identische gravierte Walzen bzw. Platten herstellbar sind, die mit einer Verschleißschicht für hohe Standzeiten und einer hohen Härte nach Vickers von über 2000, vorzugsweise über 2500 HV, ausgerüstet sind.
  • Die Zwischenschicht übernimmt hierbei die Funktion eines Korrosionsschutzes für den metallischen Grundkörper, wobei die Zwischenschicht möglichst dicht und homogen und schon eine relativ hohe Härte aufweisen sollte. Als Zwischenschicht wird bevorzugt eine autokatalytisch abgeschiedene Nickel-Phosphor-Legierung mit einem Phosphorgehalt von 5 bis 13 Gew.-%, vorzugsweise 8 bis 13 Gew.-%. Die nachfolgende Wärmebehandlung im Vakuum bewirkt ein Reinigen und Entgasen der Zwischenschicht und auch ein Tempern, d.h. eine weitere Aushärtung der Nickel-Phosphor-Legierung, so daß Härten dieser Schicht von etwa mindestens 900 HV erreicht werden. Eine Zwischenschicht aus einer Nickel-Phosphor-Legierung wird bevorzugt bei Temperaturen über 240°C bis zu etwa 420°C unter Vakuum während einer Dauer von ein bis drei Stunden getempert.
  • Eine weitere Zwischenschicht, die bereits von vornherein eine hohe Oberflächenhärte aufweist, ist aus Keramik auf Basis von Siliziumcarbiden aufgebaut, die als Dünnschicht auf die gravierte Oberfläche des Grundkörpers aufgespritzt wird.
  • Mit dem erfindungsgemäßen Verfahren können insbesondere hohe Härten der nachträglich aufzutragenden Verschleißschichten auch dadurch erreicht werden, daß bereits die Zwischenschicht eine hohe Härte aufweist. Um die Präzision des Prägemusters, d.h. der Gravur, zu erhalten, sind die Dicke der Zwischenschicht als auch die Dicke der Verschleißschicht nach oben begrenzt. Die Dicke dieser Schichten sollte in keinem Fall größer als 15 µm sein, da sonst die Geometrie der Prägemuster und Gravuren in unzulässiger Weise verändert wird und damit die Reproduzierbarkeit in Frage gestellt wird.
  • Die Dicke der Zwischenschicht und der Verschleißschicht ist nach unten begrenzt, um noch eine ausreichende dichte Schicht zu erhalten. Bei Schichtdicken von etwa 10 µm kann auch eine Zwischenschicht aus Nickel beispielsweise noch minimal porös sein, jedoch wird diese Porösität durch die nachfolgend aufzudampfende Verschleißschicht beseitigt, da das Material der Verschleißschicht in die Zwischenschicht eindiffundiert und mit dieser dann eine geschlossene und korrosionsbeständige Beschichtung bildet. Da die Verschleißschicht durch Aufdampfen im Vakuum bei erhöhten Temperaturen aufgebracht wird, ist die Zwischenschicht aus einem Material zu wählen, das auch diesen Temperaturen standhält, wobei sich Nickel oder Keramik als Basismaterial für die Zwischenschicht bewährt haben.
  • Es ist auch möglich, eine Zwischenschicht aus einer ersten auf den Grundkörper autokatalytisch abgeschiedenen Schicht einer Nickel-Phosphor-Legierung mit einem Phosphorgehalt von 3 bis 13 Gew.-% in einer Schichtdicke von etwa 4 bis 8 µm und einer zweiten hierauf elektrolytisch abgeschiedenen Schicht von Chrom mit einer Schichtdicke von etwa 4 bis 8 µm zu bilden. Eine derartige zweischichtige Zwischenschicht hat den Vorteil, daß die Nickelschicht eine homogene dichte Schicht bildet, während die hierauf aufgebrachte Chromschicht zwar nicht so dicht ist, also eine höhere Mikroporösität aufweist, jedoch eine höhere Härte nach Vickers bis zu etwa 1200 HV aufweist als Nickel. Je höher die Härte der Zwischenschicht ist, desto höher wird auch die erzielbare Härte der hierauf aufzudampfenden Verschleißschicht.
  • Für die Verschleißschicht werden bevorzugt Metallboride, -carbide, -nitride, -oxyde, -silicide der Elemente der vierten bis sechsten Nebengruppe des Periodensystems Titan, Zirkon, Hafnium bzw. Vanadium, Niob, Tantal bzw. Chrom, Molybdän, Wolfram einzeln oder in Kombinationen eingesetzt. Bevorzugt werden für die Verschleißschicht die Carbide, Nitride und Oxyde der Elemente der vierten Nebengruppe des Periodensystems eingesetzt, die sich durch besonders Härte und Verschleißbeständigkeit auszeichnen. Beispielsweise werden für die Verschleißschicht Titan-Nitrid oder Titan-Aluminium-Carbonitrid oder Titan-Aluminium-Nitrid oder Titan-Carbonitrid oder Titancarbid eingesetzt. Mit diesen sogenannten Hartstoffen für die Verschleißschicht, die nach dem PVD-Verfahren auf die mit der Zwischenschicht versehene Gravur oder Prägemusters eines Grundkörpers aufgebracht werden, sind Härten von 2500 bis 3000 HV erzielbar. Geeignet ist auch Hafniumborid, das sich durch eine Vickershärte von etwa 3200 auszeichnet.
  • Die Verschleißschicht wird in einer Dicke von etwa 4 bis 8 µm, bevorzugt etwa 5 bis 7 µm, aufgedampft. Bei Ausbildung der Zwischenschicht aus einer Nickel- und Chromschicht sollten diese gemeinsam eine Dicke von etwa 15 µm nicht überschreiten. Chrom weist eine höhere Härte auf als Nickel, hat jedoch den Nachteil, daß es bei den verfahrensmäßig zum Aufdampfen der Verschleißschicht anzuwendenden Temperaturen sich bereits auflöst und porös wird. Da es erfindungsgemäß jedoch auf einer Unterlage aus Nickel, d.h. Nickel-Phosphor-Legierung eingesetzt wird, kann diese Nickel-Phosphor-Legierung die Temperatureinwirkung auf das Chrom auffangen und die Chromschicht stabilisieren. Gleichzeitig erhält jedoch diese Zwischenschicht durch die Chromauflage eine insgesamt höhere Härte und Verschleißfestigkeit als eine Nickel-Phosphor-Legierungsschicht allein.
  • Die nach dem erfindungsgemäßen Verfahren herstellbaren mit einer Gravur bzw. Prägemuster versehenen Walzen und Platten sind reproduzierbar herstellbar und weisen eine hohe Verschleißfestigkeit, d.h. wesentlich verlängerte Standzeit und eine Härte von mindestens etwa 2000 HV je nach Art der aufgedampften Metall-Hartstoffverbindung auf.
  • Mit der erfindungsgemäß vorgeschlagenen Abscheidung einer Zwischenschicht aus einer Nickel-Phosphor-Legierung wird eine sehr homogene dichte Schicht erreicht. Hierbei handelt es sich um ein bekanntes Verfahren der autokatalytischen oder außenstromlosen Nickel-Phosphor-Legierungsabscheidung. In dem chemischen Nickelbad befinden sich neben Nickelionen Reduktionsmittel, meistens wird Natriumhypophosphit verwendet. Aus diesem Bad werden dann Nickel-Phosphor-Legierungen mit Phosphorgehalten zwischen etwa 3 bis 13 Gew.-% abgeschieden.
  • Nach dem erfindungsgemäßen Verfahren können gravierte Walzen oder Platten für Druckverfahren oder dergleichen mit sehr hoher Auflösung der Prägemuster und Gravuren mit hoher Genauigkeit verschleißfest ausgerüstet werden.
  • Die Erfindung wird nachfolgend in der Zeichnung beispielhaft erläutert. Es zeigen
  • Figur 1
    schematisch im Querschnitt den Aufbau einer gravierten Platte mit Zwischenschicht und Verschleißschicht
    Figur 2
    schematisch im Querschnitt den Aufbau einer gravierten Platte mit zweischichtiger Zwischenschicht und Verschleißschicht.
  • Der Grundkörper 1 zum Beispiel für ein Prägewerkzeug aus Metall, wie Stahl und Buntmetall, beispielsweise Messing, Bronze, weist die Grundform eines Kubus für eine Gravurplatte oder eines Rohres mit sehr großen Wanddicken oder Zylinders für eine Gravurwalze auf. Die Oberfläche des Grundkörpers 1 wird in den gewünschten Bereichen entsprechend dem gewünschten Prägemuster mit der Gravur 2 auf mechanischem, elektromechanischem Wege oder mittels Ätzung versehen. Der so mit der Gravur 2 versehene Grundkörper 1 wird nach Reinigung anschließend zumindest im Bereich der gravierten Oberfläche mit einer autokatalytisch abgeschiedenen Nickel-Phosphor-Legierungsschicht 3 in einer Dicke von etwa 12 bis 15 µm überzogen. Danach wird der so mit der Zwischenschicht 3 versehene Grundkörper 1 im Vakuum erwärmt und getempert bei einer Temperatur von etwa 400°C während 2,5 Stunden und danach auf Raumtemperatur abgekühlt. Dann wird der Grundkörper im Bereich der gravierten und beschichteten Oberfläche poliert und gereinigt. Danach kann die Verschleißschicht 4 als äußerste Schicht durch Aufdampfen einer entsprechenden metallischen Hartstoffverbindung, beispielsweise Titan-Nitrid im Hochvakuum bei Temperaturen bis zu 480°C nach dem PVD-Verfahren aufgebracht werden. Hierbei wird der sich auf Raumtemperatur befindende Grundkörper 1 langsam im Vakuum aufgeheizt bis auf die entsprechende Temperatur. Die Verschleißschicht 4 sollte eine Dicke von etwa 5 bis 7 µm aufweisen. Nach dem Abkühlen des so mit den Schichten 3 und 4 ausgestatteten Grundkörpers 1 nach dem Aufdampfen der Schicht 4 wird auch die aufgedampfte Schicht oberflächlich poliert. Damit ist die gravierte Platte oder Walze mit einer verschleißfesten Schicht von ca. 3000 HV ausgerüstet. Diese gravierte Walze oder Platte ist nach diesem Verfahren reproduzierbar herstellbar.
  • Bei dem in der Figur 2 dargestellten ausschnittweise schematischen Aufbau einer gravierten Platte oder Walze ist der Grundkörper 1 ebenfalls mit der gravierten Oberfläche 2 ausgestattet. Hierauf ist eine erste Zwischenschicht 3a aus einer Nickel-Phosphor-Legierung autokatalytisch abgeschieden in einer Schichtdicke von etwa 5 µm. Gegebenenfalls nach erforderlichen Reinigungsprozessen wird hierauf elektrolytisch eine Chromschicht 3b in einer Dicke von 5 µm aufgetragen und anschließend durch Wärmebehandlung im Vakuum bei Temperaturen bis 400°C gereinigt, entgast und getempert. Dann wird die gravierte beschichtete Oberfläche poliert und danach, wie in dem Beispiel nach Figur 1 beschrieben, eine verschleißfeste Schicht 4 zum Beispiel aus Titan-Nitrid oder Titan-Carbid aufgedampft.
  • Mit dem erfindungsgemäßen Verfahren können gravierte Walzen und Platten mit feinsten Gravurmustern, zum Beispiel 40.000 Löcher auf 1 cm² je ca. 16 µm tief, reproduzierbar mit einer Oberflächenhärte ab 2000 HV je nach Hartstoff für die Verschleißschicht hergestellt werden. Derartige Gravuren werden zum Beispiel für Gravur- und Beschichtungswalzen vielfältig für Druckverfahren benötigt.

Claims (10)

  1. Verfahren zum Herstellen von gravierten Walzen und Platten für den Flexodruck, Tiefdruck und Coating mit einem Grundkörper aus Metall, auf dessen Oberfläche mechanisch, elektromechanisch oder mittels Ätzung eine Gravur entsprechend einem gewünschten Prägemuster erzeugt wird und dann mindestens eine Schicht eines Metalles bzw. einer Metallverbindung zur Erhöhung der Verschleißfestigkeit und der Korrosionsbeständigkeit auf die gravierte Oberfläche des Grundkörpers aufgebracht wird, dadurch gekennzeichnet, daß
    a) auf die mit der Gravur versehene Oberfläche des Grundkörpers eine dichte Zwischenschicht einer Dicke von etwa 10 bis 15 µm und einer Härte von mindestens 850 HV nach Vickers aufgebracht wird,
    b) dann der mit der Zwischenschicht versehene gravierte Grundkörper im Vakuum auf eine Temperatur von mindestens 200°C zum Reinigen erwärmt wird
    c) und nach der Abkühlung auf Raumtemperatur die beschichtete gravierte Oberfläche des Grundkörpers poliert und gereinigt wird,
    d) dann auf die beschichtete mit der Gravur versehene Oberfläche des Grundkörpers eine Verschleißschicht aus einer Metallverbindung mit einer Härte nach Vickers von mindestens 2000 durch Aufdampfen im Vakuum nach dem PVD-Verfahren bei Temperaturen von 200 bis zu etwa 480°C in einer Dicke von etwa 4 bis 8 µm aufgebracht wird,
    e) und nach Abkühlen die mit der aufgedampften Verschleißschicht versehene Oberfläche des Grundkörpers poliert wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß als Zwischenschicht eine autokatalytisch abgeschiedene Nickel-Phosphor-Legierung mit einem Phosphorgehalt von 5 bis 13 Gew.-%, vorzugsweise 8 bis 13 Gew.-%, erzeugt wird und der mit der Nickelschicht versehene Grundkörper im Vakuum auf eine Temperatur von mindestens 240°C, vorzugsweise bis 420°C, während einer Dauer von etwa 1 bis 3 Stunden erwärmt wird.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß eine Zwischenschicht aus Keramik aufgespritzt wird.
  4. Verfahren nach Anspruche 1,
    dadurch gekennzeichnet, daß eine Zwischenschicht aus einer ersten auf den Grundkörper autokatalytisch abgeschiedenen Schicht einer Nickel-Phosphor-Legierung mit einem Phosphorgehalt von 3 bis 13 Gew.-% in einer Schichtdicke von etwa 4 bis 8 µm und einer zweiten hierauf elektrolytisch abgeschiedenen Schicht von Chrom mit einer Schichtdicke von etwa 4 bis 8 mm gebildet wird, und die nachfolgende Erwärmung im Vakuum des mit der Zwischenschicht versehenen Grundkörpers bei einer Temperatur von mindestens 240 bis etwa 420°C während einer Dauer von etwa 1 bis 2 Stunden durchgeführt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß für die Verschleißschicht Metallboride, -carbide, -nitride, -oxyde, -silicide der Elemente der vierten bis sechsten Nebengruppe des Periodensystems Titan, Zirkon, Hafnium bzw. Vanadium, Niob, Tantal bzw. Chrom, Molybdän, Wolfram einzeln oder in Kombinationen eingesetzt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß für die Verschleißschicht Carbide, Nitride und Oxyde der Elemente der vierten Nebengruppe des Periodensystems eingesetzt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß für die Verschleißschicht Titan-Nitrid eingesetzt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß für die Verschleißschicht Titan-Aluminium-Nitrid oder Titan-Aluminium-Carbonitrid eingesetzt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß für die Verschleißschicht Titan-Carbonitrid eingesetzt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß für die Verschleißschicht Titan-Carbid eingesetzt wird.
EP91103288A 1990-03-15 1991-03-05 Verfahren zum Herstellen von gravierten Walzen oder Platten Expired - Lifetime EP0446762B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4008254 1990-03-15
DE4008254A DE4008254A1 (de) 1990-03-15 1990-03-15 Verfahren zum herstellen von gravierten walzen oder platten

Publications (3)

Publication Number Publication Date
EP0446762A2 EP0446762A2 (de) 1991-09-18
EP0446762A3 EP0446762A3 (en) 1992-04-29
EP0446762B1 true EP0446762B1 (de) 1994-10-19

Family

ID=6402248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103288A Expired - Lifetime EP0446762B1 (de) 1990-03-15 1991-03-05 Verfahren zum Herstellen von gravierten Walzen oder Platten

Country Status (2)

Country Link
EP (1) EP0446762B1 (de)
DE (2) DE4008254A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650135A1 (de) 2012-04-12 2013-10-16 KBA-NotaSys SA Intaglio-Druckplattenbeschichtungsvorrichtung
DE102021002867A1 (de) 2021-06-02 2022-12-08 Giesecke+Devrient Currency Technology Gmbh Stichtiefdruckplatte mit verlängerter Haltbarkeitsdauer und Verfahren zu deren Herstellung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9101971A (nl) * 1991-11-25 1993-06-16 Stork Screens Bv Metalen plaat ter vervaardiging van een diepdrukhuls en werkwijze ter vervaardiging daarvan.
DE4212582A1 (de) * 1992-04-15 1993-10-21 Hell Ag Linotype Verfahren zur Gravur von Druckformen sowie Druckform zur Durchführung des Verfahrens
DE4430430C1 (de) * 1994-08-29 1995-12-21 Huettl & Vester Gmbh Verfahren zum Herstellen von gravierten Walzen oder Platten
DE19514538C2 (de) * 1995-04-20 2000-03-02 Huettl & Vester Gmbh Verfahren zum Herstellen von gravierten Walzen und Platten
US7556722B2 (en) 1996-11-22 2009-07-07 Metzger Hubert F Electroplating apparatus
US8298395B2 (en) 1999-06-30 2012-10-30 Chema Technology, Inc. Electroplating apparatus
BE1014623A3 (nl) * 2000-06-17 2004-02-03 Werkwijze voor het vervaardigen van cliche's voor tampondruk met een coating.
EP1410923B1 (de) * 2002-10-17 2006-08-09 Hell Gravure Systems GmbH Verfahren zur Herstellung einer Druckform für den Tiefdruck
DE102005052156A1 (de) * 2005-11-02 2007-05-03 Man Roland Druckmaschinen Ag Verfahren und Vorrichtung für den Tiefdruck mittels einer lösch- und wiederverwendbaren Tiefdruckform
DE102006005120A1 (de) * 2006-02-04 2007-08-09 Man Roland Druckmaschinen Ag Farbduktorwalze einer Rollendruckmaschine
WO2014111616A1 (en) * 2013-01-15 2014-07-24 Savroc Ltd Method for producing a chromium coating on a metal substrate
BR112016016106B1 (pt) * 2014-01-15 2023-04-04 Savroc Ltd Método para produção de um revestimento de cromo sobre um objeto por trivalente cromagem
CN105917030B (zh) * 2014-01-15 2018-04-13 萨夫罗克有限公司 用于生成含有铬的多层涂层的方法和涂覆的物体
CN106661749B (zh) 2014-07-11 2020-06-05 萨夫罗克有限公司 含铬涂层,其制备方法以及涂覆物体
DE102016110403A1 (de) * 2016-06-06 2017-12-07 THB Treuhandholding und Beteiligungsgesellschaft UG (hb) Verfahren zur Herstellung eines Prägewerkzeugs sowie Prägewerkzeug
ES2961568T3 (es) 2020-03-09 2024-03-12 Emea Inor Eood Plancha de impresión calcográfica recubierta
DE102020106254A1 (de) 2020-03-09 2021-09-09 Grohe Ag Verfahren zur Herstellung eines beschichteten Bauteils für eine Wasserarmatur
DE102020205495B4 (de) 2020-04-30 2023-03-09 STOMA Gesellschaft mit beschränkter Haftung Maschinen und Geräte für die graphische Industrie. Druckform, insbesondere Reliefdruckplatte, sowie Verfahren zur Herstellung derselbigen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714327A1 (de) * 1987-04-29 1988-11-17 Boettcher Gmbh & Co Felix Metallkoerper zur farbuebertragung und -dosierung in druckwerken
DE3734768A1 (de) * 1987-10-14 1989-05-03 Battelle Institut E V Armaturteil zum einsatz in einem schwefelsauren medium, das auch abrasiv wirkende feststoffteilchen enthaelt und verfahren zur herstellung eines solchen armaturteiles
DE3809139A1 (de) * 1988-03-18 1989-09-28 Lpw Chemie Gmbh Verwendung einer palladium/nickel-legierungsschicht als zwischenschicht zwischen einem nichtkorrosionsbestaendigen oder wenig korrosionsbestaendigen metallischen grundmaterial und einer nach dem pvd-verfahren aufgebrachten beschichtung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650135A1 (de) 2012-04-12 2013-10-16 KBA-NotaSys SA Intaglio-Druckplattenbeschichtungsvorrichtung
WO2013153536A2 (en) 2012-04-12 2013-10-17 Kba-Notasys Sa Intaglio printing plate coating apparatus
EP3103650A1 (de) 2012-04-12 2016-12-14 KBA-NotaSys SA Beschichtungsvorrichtung für intaglio-druckplatten
DE102021002867A1 (de) 2021-06-02 2022-12-08 Giesecke+Devrient Currency Technology Gmbh Stichtiefdruckplatte mit verlängerter Haltbarkeitsdauer und Verfahren zu deren Herstellung
EP4098769A3 (de) * 2021-06-02 2023-03-01 Giesecke+Devrient Currency Technology GmbH Stichtiefdruckplatte mit verlängerter haltbarkeitsdauer und verfahren zu deren herstellung

Also Published As

Publication number Publication date
DE4008254C2 (de) 1992-06-17
DE4008254A1 (de) 1991-09-19
EP0446762A3 (en) 1992-04-29
DE59103253D1 (de) 1994-11-24
EP0446762A2 (de) 1991-09-18

Similar Documents

Publication Publication Date Title
EP0446762B1 (de) Verfahren zum Herstellen von gravierten Walzen oder Platten
US5252360A (en) Process for the protection of an engraved roll or plate by coating an engraved surface with an interlayer and thereafter applying a wear-resistant layer to the interlayer by PVD
AT410358B (de) Gleitlagerschale und verfahren zu ihrer herstellung
DE102005063324B4 (de) Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
EP0087836B1 (de) Kohlenstoff enthaltende Gleitschicht
DE102012224124A1 (de) Beschichtungsmaterial für eine Aluminiumdruckgussform und Verfahren zum Herstellen des Beschichtungsmaterials
EP1506326A1 (de) Strukturiertes schichtsystem
EP1011884B1 (de) Strangpresswerkzeug sowie verfahren zu dessen herstellung
DE19824310C1 (de) Gleitlager und Verfahren zu seiner Herstellung
EP0817238B1 (de) Aluminium-Gussteil und Verfahren zu seiner Herstellung
DE19514538C2 (de) Verfahren zum Herstellen von gravierten Walzen und Platten
DE4430430C1 (de) Verfahren zum Herstellen von gravierten Walzen oder Platten
WO1997050108A9 (de) Aluminium-gussteil und verfahren zu seiner herstellung
DE2808106C2 (de) Verfahren zur Herstellung einer festen Verbindung von Teilen aus rostfreiem Stahl oder Superlegierung miteinander
AT521598A4 (de) Gleitlagerelement
EP0643242A1 (de) Bauteil im Bereich von Arbeitsräumen, wie Verbrennungsräumen, von Kraft- oder Arbeitsmaschinen mit einer Beschichtung
DE10034508A1 (de) Verfahren zur Herstellung eines endkonturnahen Formgebungswerkzeug und danach hergestelltes Formgebungswerkzeug
DE3602104A1 (de) Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff sowie verfahren zu seiner herstellung
EP0520022B1 (de) Rasterwalze mit einer gemusterten schicht in einer galvanischen deckschicht und walzkörper für eine derartige walze
DE10317666A1 (de) Gießwalze zum Gießen von Bändern aus Aluminium oder Aluminium-legierungen
WO2019122229A1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
DE102006007552A1 (de) Beschichtungsverfahren und Beschichtung
DE10011583A1 (de) Beschichtung für Werkzeuge, Stempel oder ähnliches, sowie mit einer derartigen Beschichtung versehene Werkzeuge und Stempel
DE19516233C1 (de) Verdampferschiffchen für den Einsatz in der PVD-Beschichtungstechnik
DE102019200247B4 (de) Verfahren zum Beschichten eines Bremskörpers, Bremskörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19921016

17Q First examination report despatched

Effective date: 19940322

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 59103253

Country of ref document: DE

Date of ref document: 19941124

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000327

Year of fee payment: 10

Ref country code: CH

Payment date: 20000327

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000328

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050305