EP0445516B1 - Procédé et dispositif pour la production de nitrate d'argent - Google Patents

Procédé et dispositif pour la production de nitrate d'argent Download PDF

Info

Publication number
EP0445516B1
EP0445516B1 EP91100949A EP91100949A EP0445516B1 EP 0445516 B1 EP0445516 B1 EP 0445516B1 EP 91100949 A EP91100949 A EP 91100949A EP 91100949 A EP91100949 A EP 91100949A EP 0445516 B1 EP0445516 B1 EP 0445516B1
Authority
EP
European Patent Office
Prior art keywords
nitric acid
chamber
silver
concentration
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91100949A
Other languages
German (de)
English (en)
Other versions
EP0445516A1 (fr
Inventor
Alexander Przybilla
Hans Horst Joachim Dr. Dipl.-Chem. Schoberth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doduco Solutions GmbH
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of EP0445516A1 publication Critical patent/EP0445516A1/fr
Application granted granted Critical
Publication of EP0445516B1 publication Critical patent/EP0445516B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the subject of the invention is a method for producing silver nitrate by dissolving silver in nitric acid.
  • the formation of the nitrogen oxides makes it necessary to post-treat the exhaust gas, the nitrogen oxides being broken down into nitrogen and oxygen by thermal decomposition or being converted into nitric acid in gas scrubbers with the addition of oxygen.
  • the nitric acid formed can be fed back into the process.
  • the silver nitrate is obtained by evaporation from the nitric acid solution, during which it crystallizes out.
  • the silver nitrate is obtained by evaporation from the nitric acid solution, during which it crystallizes out.
  • the invention is based on the object of specifying a method for producing silver nitrate in which fewer nitrogen oxides are produced than previously.
  • the silver nitrate is produced by an electrodialytic process: two are produced by one Anion exchange membrane separate chambers formed; in one chamber there is dilute nitric acid in which anodically polarized silver is immersed, for example in the form of a silver plate; In the other chamber there is more concentrated nitric acid, into which a silver-free cathode, which is made of V2A steel, for example, is immersed.
  • a cold, highly dilute nitric acid is used, which merely has the task of ensuring a certain electrolytic conductivity.
  • concentration of silver nitrate in the dilute nitric acid increases, the anion exchange membrane being an obstacle for the silver ions which want to migrate into the more concentrated nitric acid.
  • a small proportion of the silver ions migrate into the through osmosis more concentrated nitric acid and is deposited as sludge on the cathode. This process reduces the silver nitrate yield of the process and can lead to the formation of nitrogen oxides which are undesirable per se, but the amount of which is less by one to three orders of magnitude than in the known process.
  • Electrodialysis is ended when the yield drops below a predetermined value, which is associated with the consumption of the silver anode.
  • the dilute nitric acid is then treated in a manner known per se to obtain the silver nitrate enriched therein, e.g. evaporated.
  • the deposition of silver on the cathode and its subsequent conversion with nitric acid to silver nitrate can be drastically reduced again with the formation of nitrogen oxides by providing a third chamber between the chamber containing the anode and the chamber containing the cathode (Hereinafter also referred to as the bipolar chamber in which nitric acid is present in a higher concentration than in the chamber in which the anode is contained.
  • the third chamber is separated from both neighboring chambers by an anion exchange membrane.
  • the nitric acid can be present in a higher concentration than in the chamber with the anode, but this does not have to be the case; rather, a low nitric acid concentration in the catholyte is sufficient to maintain the necessary ionic conductivity nitric acid concentration, in particular from a concentration that begins with the If the nitric acid concentration in the third chamber matches, then the nitric acid concentration in the catholyte gradually decreases by electrodialysis in favor of the nitric acid concentration in the third chamber.
  • nitrate ions from the more concentrated nitric acid migrate through the anion exchange membrane into the anolyte (this is the electrolyte in the chamber containing the anode), where they form silver nitrate with the anodically dissolved silver.
  • the silver ions migrate through osmosis into the concentrated nitric acid in the third chamber, but cannot be converted there with the formation of nitrogen oxides; on the contrary, this could only happen in the nitric acid in which the cathode is immersed.
  • the silver ions would have to overcome a further anion exchange membrane, but this would only be possible after the electrolyte had been enriched with silver ions.
  • the losses in yield of this improved method which is the subject of claims 2 and 3, are only low, nitrogen oxides are only produced in very small amounts.
  • the concentration of the initially higher concentrated nitric acid gradually decreases. If the anolyte is removed in order to obtain the silver nitrate by evaporation, the initially more concentrated nitric acid, which has now decreased in concentration, can be used as anolyte for the next process run and replaced by fresh, concentrated nitric acid. This double use has a beneficial effect on the cost of the process.
  • Electrodialysis is preferably carried out with current densities of 5 to 50 A / dm2 at a temperature between 5 ° C. and 60 ° C. If the current density remains below 5 A / dm2, the yield is low and the process is not particularly economical . However, the yield cannot be increased arbitrarily by increasing the current density. Above a current density of 50 A / dm2, one has to reckon with the fact that the anion exchange membrane is damaged and becomes porous.
  • the working temperature should not be below 5 ° C, otherwise the electrical conductivity in the electrolytes will be too low.
  • the working temperature should also not exceed 60 ° C to avoid that the silver is chemically dissolved by the hot nitric acid.
  • the electrodialysis is expediently ended when the concentration of the silver ions in the catholyte exceeds 2 g / l. Since the concentration of the silver ions in the catholyte increases with the concentration of the silver ions in the anolyte, a criterion for the termination of the electrodialysis can also be formed from the concentration of the silver ions in the anolyte; in the event of the method, as stated in claim 2 or 3, in which the silver ions have to pass through two anion exchange membranes before they can reach the cathode, the electrodialysis is preferably ended when the concentration of the silver ions in the anolyte is 400 g / l exceeds.
  • anolyte is dilute nitric acid; a certain minimum concentration is required to ensure the necessary ion conductivity and to prevent hydrolysis.
  • an anolyte is used which contains 25 to 100 g HNO3 / l.
  • the catholyte in the case of the process variant according to claim 2 or 3:
  • the catholyte preferably contains 10 to 100 g HNO3 / l; the nitric acid in the catholyte only serves to maintain the conductivity.
  • nitric acid is used to store nitrate ions for the process; their concentration is not critical; it should be greater than the concentration in the anolyte and is preferably between 40 and 300 g HNO3 / l.
  • a device can be used which is known in a similar structure from US-A-3,795,595 for the production of tin and lead salts and an anode chamber filled with an acid with a tin or lead anode and one with an acid Has filled cathode chamber with a cathode, for example made of stainless steel, the chambers being separated by an anion exchange membrane.
  • a device with a corresponding structure is used for the purposes of the invention, with the proviso that the Anode consists of silver, the cathode contains no silver and nitric acid is filled in as acid.
  • the concentration of nitric acid in the anode chamber is lower than in the adjacent chamber, which can be the cathode chamber, but which is preferably a chamber free of electrodes, which is arranged between the cathode chamber and the anode chamber and is separated from both by an anion exchange membrane (claims 11 and 12). With such a structure, particularly little nitrogen oxides are formed.
  • An advantageous further development of the invention is characterized in that several such modular devices are combined to form larger systems. This can be done by arranging several anode chambers and cathode chambers in an alternating sequence and separating them from each other by an anion exchanger membrane, but preferably by arranging several anode chambers and cathode chambers in an alternating sequence, each with the interposition of a chamber free of electrodes (bipolar chamber) and the chambers are separated from each other by an anion exchange membrane.
  • a vessel 1 is divided into three chambers 3, 4 and 5 by two mutually parallel anion exchange membranes.
  • the middle chamber 4 contains a silver anode 8 and nitric acid concentrated as anolyte.
  • the chambers 3 and 5 arranged on both sides of the middle chamber 4 each contain a cathode 9 made of V2A steel and nitric acid diluted as a catholyte.
  • silver is anodically dissolved in the chamber 4 and an equivalent amount of nitrate ions migrates from the chambers 3 and 5 through the two anion exchange membranes 2 into the middle chamber 4.
  • the device shown in Figure 2 differs from that shown in Figure 1 in that between the anode chamber 4 and the cathode chambers 3 and 5 of electrodes-free chambers 10 and 11 (bipolar chambers) are arranged, which contain the concentrated nitric acid, while the cathode chambers 9 and the anode chamber 8 each contain dilute nitric acid.
  • a direct voltage is applied between the anode 8 and the cathodes 9, silver anodically dissolves in the anode chamber 4.
  • An equivalent amount of nitrate ions migrates from the bipolar chambers 10 and 11 through the anion exchange membranes 2 into the anode chamber 4 and an equivalent amount of hydrogen ions is discharged at the cathodes 9 and escapes as molecular hydrogen.
  • the anode chamber 4 contains 8 15 l of dilute nitric acid in a concentration of 35 g HNO3 / l in addition to the silver anode.
  • the two cathode chambers 3 and 5 each contain 20 l of dilute nitric acid in a concentration of 20 g HNO3 / l in addition to the cathodes 9.
  • the two bipolar chambers 10 and 11 each contain 20 l of concentrated nitric acid in a concentration of 220 g HNO3 / l. Electrodialysis is carried out at a temperature of 30 ° C and a current density of 30 A / dm2 and is terminated when the concentration of silver ions in the anolyte reaches 400 g / l.
  • the concentration of silver ions in the catholyte is then less than 2 g / l.
  • the amount of nitrogen oxides released is less than 1/100 of the amount that would result from working with the conventional method (dissolving silver in hot nitric acid).
  • the anolyte is removed in order to obtain the silver nitrate.
  • the silver nitrate can be obtained in a conventional manner, e.g. by evaporation.
  • the device shown in FIG. 3 differs from that in FIG. 2 in that it additionally contains a further anode chamber 14, a further cathode chamber 13 and two further bipolar chambers 20, 21, so that double the amount of silver nitrate can be produced with this arrangement in the device according to FIG. 2.
  • FIG. 3 shows that by inserting further modules formed from an anode chamber, a cathode chamber and two bipolar chambers, larger systems can be built up according to the desired production capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Claims (14)

  1. Procédé pour la production de nitrate d'argent par décomposition d'argent dans de l'acide nitrique caractérisé en ce que de l'acide nitrique dilué et de l'acide nitrique plus concentré sont séparés l'un de l'autre par une membrane échangeuse d'anions, l'argent polarisé comme anode est apporté dans l'acide dilué et une cathode dépourvue d'argent est plongée dans l'acide plus concentré.
  2. Procédé pour la production de nitrate d'argent par décomposition d'argent dans de l'acide nitrique caractérisé en ce que de l'acide nitrique plus concentré est séparé par une première membrane échangeuse d'anions d'un premier volume d'acide nitrique dilué et par une seconde membrane échangeuse d'anions d'un second volume d'acide nitrique, l'argent polarisé en anode est plongé dans l'acide nitrique dilué dans le premier volume et une cathode, dépourvue d'argent, est plongée dans l'acide nitrique dans le second volume, la conduction du courant de la cathode vers l'anode s'effectuant dans tous les cas en totalité à travers l'acide nitrique plus concentré.
  3. Procédé selon la revendication 2 caractérisé en ce que l'acide nitrique dans ce second volume est, depuis le début, un acide dilué (c'est-à-dire en ce que sa concentration est plus faible que celle de l'acide nitrique le plus concentré dans lequel ne plonge aucune électrode).
  4. Procédé selon l'une quelconque des revendications 1, 2 ou 3 caractérisé en ce qu'après un enlèvement de l'acide nitrique dilué enrichi en nitrate d'argent, l'acide nitrique initialement plus concentré et ayant vu sa concentration diminuer entre-temps est réutilisé comme anolyte et est remplacé par du nouvel acide nitrique plus concentré.
  5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on travaille avec une densité de courant de 5 à 50 A/dm² par une température de 5 à 60°C.
  6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on arrête l'électrodialyse quand la concentration en ions argent du catholyte dépasse 2g/l.
  7. Procédé selon l'une quelconque des revendications 2 à 6 caractérisé en ce que l'on arrête l'électrodialyse quand la concentration en ions argent de l'anolyte dépasse 400 g/l.
  8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'on utilise un anolyte qui renferme de 25 à 100 g HNO₃/l.
  9. Procédé selon l'une quelconque des revendications 2 à 8 caractérisé en ce qu'on utilise un catholyte qui renferme de 10 à 100 g HNO₃/l.
  10. Utilisation d'un dispositif pour la production d'un sel métallique par décomposition du métal dans de l'acide comprenant
       une chambre cathodique (3,13) contenant une cathode (9) dépourvue du métal à décomposer,
       une chambre anodique (4,14) contenant une anode (8) constituée du métal à décomposer
       et avec au moins une membrane échangeuse d'anions séparant la chambre cathodique (3,13) de la chambre anodique (4,14)
       dans lequel on utilise comme métal l'argent et comme acide l'acide nitrique, la concentration en acide nitrique dans la chambre anodique (4,14) étant plus faible que dans la chambre voisine (3,4 ; 10,11 ; 20,21).
  11. Utilisation d'un dispositif selon la revendication 10, dans lequel la chambre cathodique (3, 5, 13) et la chambre anodique (4,14) sont séparées par deux membranes échangeuses d'anions (2), lesquelles délimitent entre elles une chambre dépourvue d'électrode (10,11 ; 20,21) (désignée, par la suite, comme chambre bipolaire) dans laquelle la concentration en acide nitrique est plus élevée que dans la chambre anodique (4,14).
  12. Utilisation d'un dispositif selon la revendication 11, dans lequel la concentration en acide nitrique dans la chambre bipolaire (10,11 ; 20,21) est également plus élevée que dans la chambre cathodique (3, 5, 13).
  13. Utilisation d'un dispositif selon la revendication 10, dans laquelle plusieurs chambres anodiques (4,14) et chambres cathodiques (3, 5, 13) se succèdent alternativement et sont à chaque fois séparées les unes des autres par une membrane échangeuse d'anions (2).
  14. Utilisation d'un dispositif selon l'une quelconque des revendications 11 ou 12, dans laquelle plusieurs chambres anodiques (4,14) et chambres cathodiques (3, 5, 13) se succèdent alternativement séparées respectivement par une chambre bipolaire (10,11 ; 20,21), les chambres étant séparées les unes des autres par une membrane échangeuse d'anions (2).
EP91100949A 1990-03-03 1991-01-25 Procédé et dispositif pour la production de nitrate d'argent Expired - Lifetime EP0445516B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4006764 1990-03-03
DE4006764A DE4006764A1 (de) 1990-03-03 1990-03-03 Verfahren und vorrichtung zum erzeugen von silbernitrat

Publications (2)

Publication Number Publication Date
EP0445516A1 EP0445516A1 (fr) 1991-09-11
EP0445516B1 true EP0445516B1 (fr) 1994-09-21

Family

ID=6401388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91100949A Expired - Lifetime EP0445516B1 (fr) 1990-03-03 1991-01-25 Procédé et dispositif pour la production de nitrate d'argent

Country Status (2)

Country Link
EP (1) EP0445516B1 (fr)
DE (2) DE4006764A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789982A (zh) * 2015-04-09 2015-07-22 上海应用技术学院 一种利用阳离子膜电解法制备钼酸银的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036185A2 (fr) * 1998-12-11 2000-06-22 Combrink, De Wet, Francois Production de sels d'argent
CN114959734A (zh) * 2021-02-24 2022-08-30 中国科学院上海硅酸盐研究所 一种高效制备氢气和银化合物的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554125A (en) * 1967-04-26 1971-01-12 Xerox Corp Method of making a lithographic master and method of printing therewith
US4082835A (en) * 1975-06-27 1978-04-04 Allied Chemical Corporation Removal of SO2 from gases
FR2399457A1 (fr) * 1976-05-24 1979-03-02 Allied Chem Membrane bi-polaire a film unitaire presentant une selectivite ionique elevee
US4219396A (en) * 1979-08-03 1980-08-26 Allied Chemical Corporation Electrodialytic process
EP0081092A1 (fr) * 1981-12-03 1983-06-15 Allied Corporation Préparation d'hydroxides de métaux alcalins par dissociation de l'eau et par hydrolyse

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795595A (en) * 1971-07-29 1974-03-05 Vulcan Materials Co Electrolytic production of tin and lead salts using anion permselective membranes
US4384937A (en) * 1979-05-29 1983-05-24 Diamond Shamrock Corporation Production of chromic acid in a three-compartment cell
EP0242111B1 (fr) * 1986-04-07 1992-07-01 Tosoh Corporation Procédé de production d'un sel métallique par électrolyse
US4755268A (en) * 1986-05-28 1988-07-05 Yoshiaki Matsuo Process and apparatus for producing silver-ionic water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554125A (en) * 1967-04-26 1971-01-12 Xerox Corp Method of making a lithographic master and method of printing therewith
US4082835A (en) * 1975-06-27 1978-04-04 Allied Chemical Corporation Removal of SO2 from gases
FR2399457A1 (fr) * 1976-05-24 1979-03-02 Allied Chem Membrane bi-polaire a film unitaire presentant une selectivite ionique elevee
US4219396A (en) * 1979-08-03 1980-08-26 Allied Chemical Corporation Electrodialytic process
EP0081092A1 (fr) * 1981-12-03 1983-06-15 Allied Corporation Préparation d'hydroxides de métaux alcalins par dissociation de l'eau et par hydrolyse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789982A (zh) * 2015-04-09 2015-07-22 上海应用技术学院 一种利用阳离子膜电解法制备钼酸银的方法

Also Published As

Publication number Publication date
DE59102978D1 (de) 1994-10-27
EP0445516A1 (fr) 1991-09-11
DE4006764A1 (de) 1991-09-19

Similar Documents

Publication Publication Date Title
DE69115458T2 (de) Elektrolysezelle und Verfahren zu ihrem Betrieb
AT401739B (de) Vorrichtung zur aufbereitung von metallhaltigen flüssigkeiten durch ionenaustausch und gleichzeitige oder periodische regenerierung des ionenaustauscherharzes durch elektrodialyse
DE69510975T2 (de) Verfahren zur Entsorgung gelöster organischer Komplexbildner aus einer wässerigen Lösung, z.B. radioaktiver Abwässer
DE60017104T2 (de) Wasserreinigungsverfahren
DE2830972C3 (de) Zellenaufbau zum Trennen einer ionisierten Lösung
DE2547101A1 (de) Verfahren zur gewinnung der saeure aus ihrer metallsalzloesung und hierfuer geeignete elektrolysezelle
DE2445412A1 (de) Elektrolytische zelle und verfahren zur elektrochemischen behandlung von abwaessern
DE19856840A1 (de) Verfahren zur Abwasser-Behandlung und Behandlungsvorrichtung hierfür
DE2338434A1 (de) Elektrolytisches verfahren zur entfernung ionischer substanzen aus loesung
DE1667835A1 (de) Verfahren zum elektrolytischen Oxydieren von Thallium(I)- oder Cer(III)-salzloesungen
EP0445516B1 (fr) Procédé et dispositif pour la production de nitrate d'argent
DE2539137A1 (de) Verfahren zur elektrolytischen gewinnung von nickel und zink sowie elektrolysezelle hierfuer
DE69108749T2 (de) Verfahren zur Isolierung von freier Iminodiessigsäure aus ihren Salzen durch Elektrodialyse.
DE60111558T2 (de) Verfahren und vorrichtung zur abtrennung und zerstörung von gelöstem nitrat
DE4407448C2 (de) Elektrolyseverfahren zum Regenerieren einer Eisen-III-Chlorid- oder Eisen-III-Sulfatlösung, insbesondere zum Sprühätzen von Stahl
DE102009004155A1 (de) Verfahren und Vorrichtung zum Regenerieren von Peroxodisulfat-Beizlösungen
DE2456058C2 (de) Verfahren und Anordnung zum mit dem Eisenbeizen verbundenen im Kreislauf oder chargenweise durchgeführten Aufarbeiten von Beizendlösungen
DE2703456C2 (de) Elektrolytische Zelle
EP0426649B1 (fr) Procédé pour la purification étagée de solutions aqueuses contenant du sulfate alcalin et installation pour la mise en oeuvre de ce procédé
DE2441036C2 (de) Verfahren zur elektrochemischen Hydrodimerisation von Acrylnitril
DE3330838C2 (fr)
DE69401552T2 (de) Einrichtung und Verfahren zur Reinigung von Flüssigkeiten
DE1592217C3 (de) Verfahren zur Herstellung von pharmazeutischem Bismuthylnitrat
DE2940741A1 (de) Verfahren zur elektrolytischen gewinnung von nickel
EP0087166A1 (fr) Procédé pour la régénération électrolytique des solutions de décapage usées à base d'acide sulfurique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19910729

17Q First examination report despatched

Effective date: 19930524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940921

Ref country code: GB

Effective date: 19940921

Ref country code: FR

Effective date: 19940921

Ref country code: BE

Effective date: 19940921

REF Corresponds to:

Ref document number: 59102978

Country of ref document: DE

Date of ref document: 19941027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950131

Year of fee payment: 5

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961001