EP0445503B1 - Pompe cryogénique à deux étages - Google Patents

Pompe cryogénique à deux étages Download PDF

Info

Publication number
EP0445503B1
EP0445503B1 EP91100181A EP91100181A EP0445503B1 EP 0445503 B1 EP0445503 B1 EP 0445503B1 EP 91100181 A EP91100181 A EP 91100181A EP 91100181 A EP91100181 A EP 91100181A EP 0445503 B1 EP0445503 B1 EP 0445503B1
Authority
EP
European Patent Office
Prior art keywords
stage
faces
adsorption
cryogenic pump
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91100181A
Other languages
German (de)
English (en)
Other versions
EP0445503A1 (fr
Inventor
Hans-Ulrich Dr. Häfner
Hans-Hermann Prof. Dr. Klein
Uwe Prof. Dr. Timm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of EP0445503A1 publication Critical patent/EP0445503A1/fr
Application granted granted Critical
Publication of EP0445503B1 publication Critical patent/EP0445503B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/901Cryogenic pumps

Definitions

  • the invention relates to a two-stage cryopump with condensation and adsorption surfaces arranged on the second (colder) stage.
  • Two-stage cryopumps of this type are known, for example, from DE-A-35 12 614 and from FR-A-25 99 789.
  • Two-stage cryopumps are usually operated with a two-stage refrigerator as the cooling source.
  • the first stage of the refrigerator takes on a temperature of 60 to 100 K during operation.
  • the pump surfaces (baffle, radiation shield for the second stage) which have a good heat-conducting connection with this first stage of the refrigerator are preferably used for the accumulation of gases such as water vapor, carbon dioxide or the like by condensation.
  • the immediately accessible area is preferably used to remove gases such as nitrogen, argon or the like by condensation.
  • the indirectly accessible area is designed to remove light gases, such as hydrogen or helium, by adsorption.
  • This pump surface area is usually covered with an adsorption material, preferably activated carbon.
  • cryopumps In the previously known cryopumps, the capacity of the adsorbing pump surfaces of the second stage is relatively small compared to the capacity of the condensing pump surfaces of the second stage.
  • a heater arranged on the second stage is switched on and the stage itself and the pump surfaces are thereby heated.
  • a temperature increase to at least 70 K, preferably 90 K, is necessary in order to achieve complete regeneration of the adsorption surfaces. Since the condensation surfaces of the second stage also assume this temperature, it cannot be avoided that condensable gases, e.g. B.
  • condensable gases e.g. Ar
  • a cryopump of the type concerned here in which the pump surfaces attached to the second stage of the refrigerator with good heat conduction are formed by two concentrically arranged pipe sections, the sides of which are covered with an adsorption material and so that the absorbent pumping surfaces form.
  • the outer surfaces not covered with the adsorption material form the condensation surfaces.
  • Inside the annular space formed by the pipe sections there is also a concentrically arranged copper cylinder to which an electrical resistance heater is applied. If the resistance heater has current flowing through it, radiation is emitted, with which the adsorbent layers can be heated for the purpose of their regeneration. However, it cannot be avoided that the condensation surfaces of the second stage also heat up.
  • the problems described above with regard to the regeneration of the adsorbing pump surfaces therefore also exist with the cryopump known from FR-A-25 99 789.
  • the present invention has for its object to provide a two-stage cryopump of the type mentioned, which enables a partial regeneration of the pumping surfaces for light gases such as hydrogen, helium or the like, without the problems described.
  • this object is achieved by the measures according to claim 1.
  • the regeneration of the adsorption surfaces can be carried out when the adsorption surfaces have no thermal contact with the second stage of the refrigerator.
  • the regeneration of the adsorption surfaces there is no annoying temperature increase in the area of the condensation surfaces. Evaporation of already condensed gases and thus the undesired rearrangements are avoided.
  • there are mechanical adjustment devices or thermal switches are required for the adsorption surfaces, which must be operable from outside the pump.
  • the cryopump shown in FIG. 1 has a housing 1 with an inlet opening 2 for the gases to be pumped out.
  • the recipient 30 to be evacuated is connected to the flange 3, specifically via a shut-off device 31.
  • a two-stage refrigerator 4 projects into the housing 1 from below.
  • a pot-shaped shield 6 is fastened in a heat-conducting manner, the opening 7 of which is approximately parallel to the inlet opening 2 of the housing 1 and is equipped with a baffle consisting of a metal strip 8.
  • the shield 5 and also the baffle strips 8 serve as pump surfaces for gases such as water vapor, carbon dioxide or the like.
  • the second stage 9 of the refrigerator 4 projects into the shield 6 inside. This stage 9 bears the pumping surfaces of the second stage, denoted overall by 10.
  • These comprise a total of four sheet metal sections arranged essentially parallel to one another and extending perpendicular to the inlet opening 2, of which the outer sections are designated 11 and the inner sections 12.
  • the outer sheet metal sections are attached directly to the second stage 9 of the refrigerator 4, that is to say with the best possible thermal contact, and form the condensation pumping surfaces of the second stage.
  • the inner sheet metal sections 12 are provided on their inner sides with activated carbon layers 13, which form the adsorption pumping surfaces of the second stage. These pumping surfaces are connected to the second stage 9 of the refrigerator 4 via schematically illustrated heat flow resistors 14. The adsorption surfaces can also be heated. You are z. B. equipped with foil heating elements 15. In addition, the two stages 5 and 9 of the refrigerator 4 are provided with heaters 16, 17. These heaters can be used to regenerate the entire pump.
  • the housing 1 of the cryopump shown is equipped with two connecting pieces 18 and 19.
  • a forevacuum pump 21 is connected to the connection 18.
  • the connecting piece 19 is used to carry out power supply lines to the heaters 15, 16 and 17.
  • the connecting piece 19 is also used to hold a control 22 via which the heaters 15, 16, 17 are put into operation.
  • FIG. 2 shows the principle of the present invention. It is essential that there is good thermal contact (strong coupling) between the condensation pumping surfaces 11 and the second stage 9 of the refrigerator, while the adsorption pumping surfaces are in contact with the second cold stage 9 via heat flow resistors 14 (weak coupling).
  • the size of the heat flow resistors is such that the relatively short-term regeneration of the adsorption surfaces 12 with their Adsorption material 13 can be made by heating with the help of the heater 15, without the temperature increase of the adsorption surfaces having a significant influence on the second stage 9 and thus on the condensation surfaces 11.
  • the regeneration process of the adsorption surfaces must be completed before condensable gases evaporate on the condensation surfaces 11.
  • the upper limit value it is decisive that adequate and reliable cooling of the adsorption surfaces 12 must be ensured during normal operation of the cryopump. Since the adsorption surfaces 12 are not subjected to high thermal loads during normal operation, the existence of heat flux resistances 14 that are not too high does not interfere. The presence of the heat flow resistors 14 only has the consequence that the adsorption surfaces 12 reach their operating temperature after the start-up or after a total regeneration process. However, this delay is generally desirable, since it avoids an early occupancy of the adsorption surfaces 12 with undesired gases.
  • the angled sections 24 of the condensation surfaces 11 are contacted with the second stage 9 of the refrigerator 4 via a block 26 made of a material which is a good heat conductor (for example copper, which can also be used as a material for the pump surfaces 11, 12).
  • the pump surfaces 11 and the copper block 26 are fastened to the second stage 9 in the central region thereof by means of a screw 27 which is also made of a good heat-conducting material.
  • the adsorption surfaces are attached laterally next to the copper sheet 26 on the second stage 9, with the help of poorly heat-conducting components (screws 28, rings 29, for example made of stainless steel). This provides a sufficiently large heat flow resistance.
  • FIG. 4 shows an embodiment in which the heater 16 of the second stage 9 is designed as a heating plate.
  • the copper block 26 lies directly on this heating plate.
  • Thermal resistance 14 two further alternatives are shown.
  • the thickness of the sheet metal section forming this pump surface between the adsorbing region and the second cold stage 9 is reduced.
  • the cross-section relevant for heat conduction is thereby considerably smaller, so that there is a sufficiently large heat flow resistance.
  • the cross-sectional reduction between the angled section 25 and the actual pump surface is achieved in that only two webs 31 are present (cf. also FIG. 5).
  • the heaters 15 assigned to the adsorption surfaces 12 are designed as foil heating elements and that the remaining areas facing the condensation surfaces 11 are also covered with layers 13 of adsorption material. This increases the capacity of the adsorption surfaces.
  • the condensation surfaces 11 are again strongly coupled to the cold stage 9 with the aid of the copper block 26.
  • this also applies to the adsorption surfaces 12 with their angled sections 25.
  • bolts 33 with spiral springs 34 are screwed into the cold stage 9 and press the adsorption surfaces 12 against the cold stage 9.
  • a linkage 35 is fastened to the adsorption surfaces 12, which is guided through the shield 6 and - with the aid of a bellows 36 - in a vacuum-tight manner through the pump housing 1 to the outside.
  • drive 37 instead of the drive 37 shown, other drives - motor-driven eccentric, electromagnetic drive, bimetal switch, pneumatic device, which may be self-controlling by the vapor pressure of a suitable liquid (e.g. LH2), can be used. With a suitable choice of material, the drive 37 can also be installed in the pump. A prerequisite for a bimetallic drive, for example, is that the desired changes in shape causing the coupling and uncoupling occur at the temperatures which occur in the area of the adsorption surfaces 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (13)

  1. Pompe cryogénique à deux étages, comportant des surfaces de condensation 11 et des surfaces d'adsorption (13) agencées sur le second étage (plus froid) (9), dans laquelle les surfaces d'adsorption (13) peuvent être thermiquement basculées entre deux positions, de telle manière qu'elles ont un contact thermique avec le second étage (9) du réfrigérateur dans la première position (fonctionnement de la pompe), et en ce qu'elles sont isolées par rapport au second étage du réfrigérateur dans la seconde position (fonctionnement en régénération), caractérisée en ce que les surfaces d'adsorption (13) se trouvent sur un composant séparé qui peut être chauffé (12).
  2. Pompe cryogénique selon la revendication, caractérisée en ce que les surfaces d'adsorption (12, 13) sont pressées contre le second étage de réfrigération (9) à l'aide d'au moins un ressort spiralé (34), et en ce qu'il est prévu un entraînement (37) pour produire une force opposée à la force du ressort spiralé.
  3. Pompe cryogénique selon la revendication 2, caractérisée en ce que l'entraînement (37) est situé à l'extérieur du boîtier (1) de la pompe, et en ce que l'entraînement et les surfaces d'adsorption sont accouplés mutuellement par l'intermédiaire d'un embiellage (35).
  4. Pompe cryogénique à deux étages comprenant des surfaces de condensation (11) et des surfaces d'adsorption (13) agencées sur le second étage (plus froid) (9), dans laquelle une résistance (14) au flux thermique est disposée entre le second étage (9) et les surfaces d'adsorption (13), caractérisée en ce que les surfaces d'adsorption (13) sont situées sur un composant séparé qui peut être chauffé (12).
  5. Pompe cryogénique selon la revendication 4, caractérisée en ce que les surfaces de pompage du second étage sont formées par quatre éléments en tôle sensiblement parallèles les uns aux autres et s'étendant perpendiculairement à l'ouverture d'entrée (2) de la pompe cryogénique (1), parmi lesquels les éléments de tôle extérieurs (11) forment les surfaces de pompage par condensation et les éléments de tôle intérieurs (12) portent les surfaces de pompage à adsorption (13).
  6. Pompe cryogénique selon la revendication 5, caractérisée en ce que seules les faces intérieures des éléments en tôle intérieurs (12) sont recouvertes de matériau absorbant (13).
  7. Pompe cryogénique selon la revendication 5, caractérisée en ce que tant les faces intérieures que les faces extérieures des éléments en tôle (12) sont recouvertes de matériau adsorbant (13).
  8. Pompe cryogénique selon l'une quelconque des revendications 4 à 7, caractérisée en ce que les éléments de tôle (11, 12) qui forment les surfaces de pompage comportent des secteurs repliés (24, 25), au moyen desquels ils sont fixés sur le second étage (9) du réfrigérateur (4).
  9. Pompe cryogénique selon la revendication 8, caractérisée en ce que, afin de former un couplage fort des surfaces de pompage par condensation sur le second étage (9) du réfrigérateur (4), on prévoit des organes de fixation (bloc 26, vis 27) réalisés en matériau bon conducteur de la chaleur, par exemple du cuivre.
  10. Pompe cryogénique selon l'une ou l'autre des revendications 8 et 9, caractérisée en ce que, afin de former un couplage faible entre les surfaces d'adsorption (12) et le second étage (9) du réfrigérateur (4), on prévoit des organes de fixation (vis 28, anneaux 29) réalisés en matériau mauvais conducteur de la chaleur, par exemple de l'acier inoxydable.
  11. Pompe cryogénique selon l'une quelconque des revendications 4 à 10, caractérisée en ce que les éléments de tôle (12) qui portent les surfaces d'adsorption présentent une section transversale réduite entre leurs régions adsorbantes et le lieu de fixation sur le second étage de réfrigération (9).
  12. Pompe cryogénique selon la revendication 11, caractérisée en ce que l'épaisseur de l'élément de tôle est réduite.
  13. Pompe cryogénique selon la revendication 11, caractérisée en ce que des barrettes (31) sont réalisées entre les régions adsorbantes des éléments de tôle (12) et le lieu de fixation sur le second étage (9).
EP91100181A 1990-03-03 1991-01-08 Pompe cryogénique à deux étages Expired - Lifetime EP0445503B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4006755 1990-03-03
DE4006755A DE4006755A1 (de) 1990-03-03 1990-03-03 Zweistufige kryopumpe

Publications (2)

Publication Number Publication Date
EP0445503A1 EP0445503A1 (fr) 1991-09-11
EP0445503B1 true EP0445503B1 (fr) 1993-12-29

Family

ID=6401381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91100181A Expired - Lifetime EP0445503B1 (fr) 1990-03-03 1991-01-08 Pompe cryogénique à deux étages

Country Status (4)

Country Link
US (1) US5111667A (fr)
EP (1) EP0445503B1 (fr)
JP (1) JP2871873B2 (fr)
DE (2) DE4006755A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231840A (en) * 1991-03-28 1993-08-03 Daikin Industries, Ltd. Cryopump
US5301511A (en) * 1992-06-12 1994-04-12 Helix Technology Corporation Cryopump and cryopanel having frost concentrating device
US5305612A (en) * 1992-07-06 1994-04-26 Ebara Technologies Incorporated Cryopump method and apparatus
US5375424A (en) * 1993-02-26 1994-12-27 Helix Technology Corporation Cryopump with electronically controlled regeneration
DE4336035A1 (de) * 1993-10-22 1995-04-27 Leybold Ag Verfahren zum Betrieb einer Kryopumpe sowie Vakuumpumpensystem mit Kryopumpe und Vorpumpe
US5590538A (en) * 1995-11-16 1997-01-07 Lockheed Missiles And Space Company, Inc. Stacked multistage Joule-Thomson cryostat
DE19547030A1 (de) * 1995-12-15 1997-06-19 Leybold Ag Tieftemperatur-Refrigerator mit einem Kaltkopf sowie Verfahren zur Optimierung des Kaltkopfes für einen gewünschten Temperaturbereich
DE19632123A1 (de) * 1996-08-09 1998-02-12 Leybold Vakuum Gmbh Kryopumpe
US6116032A (en) * 1999-01-12 2000-09-12 Applied Materials, Inc. Method for reducing particulate generation from regeneration of cryogenic vacuum pumps
US6122921A (en) * 1999-01-19 2000-09-26 Applied Materials, Inc. Shield to prevent cryopump charcoal array from shedding during cryo-regeneration
KR101045488B1 (ko) * 2007-05-17 2011-06-30 캐논 아네르바 가부시키가이샤 크라이오 트랩 및 크라이오 트랩을 갖는 진공 처리 장치
JP5028142B2 (ja) * 2007-05-17 2012-09-19 キヤノンアネルバ株式会社 クライオトラップ
US20090038319A1 (en) * 2007-08-08 2009-02-12 Sumitomo Heavy Industries, Ltd. Cryopanel and Cryopump Using the Cryopanel
WO2010002884A2 (fr) * 2008-07-01 2010-01-07 Brooks Automation, Inc. Procédé et appareil de régulation thermique d'une pompe cryostatique
US20100011784A1 (en) * 2008-07-17 2010-01-21 Sumitomo Heavy Industries, Ltd. Cryopump louver extension
KR101554866B1 (ko) * 2010-11-24 2015-09-22 브룩스 오토메이션, 인크. 수소 가스 방출을 제어하는 저온 펌프
TWI639769B (zh) * 2011-02-09 2018-11-01 布魯克機械公司 低溫泵及用於低溫泵之第二階段陣列
US10181372B2 (en) 2013-04-24 2019-01-15 Siemens Healthcare Limited Assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
US10352617B2 (en) * 2014-09-25 2019-07-16 University Of Zaragoza Apparatus and method for purifying gases and method of regenerating the same
JP6745880B2 (ja) 2015-12-04 2020-08-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 極低温冷却システム
JP6857046B2 (ja) * 2016-03-29 2021-04-14 住友重機械工業株式会社 クライオポンプ
JP6913049B2 (ja) * 2018-03-02 2021-08-04 住友重機械工業株式会社 クライオポンプ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024009A (en) * 1944-05-08 1962-03-06 Jr Eugene T Booth Condensation can
US2465229A (en) * 1944-09-07 1949-03-22 Westinghouse Electric Corp Vacuum trap
US2985356A (en) * 1958-12-04 1961-05-23 Nat Res Corp Pumping device
DE1253404B (de) * 1962-03-26 1967-11-02 Varian Associates Hochvakuum-Pumpvorrichtung
US3338063A (en) * 1966-01-17 1967-08-29 500 Inc Cryopanels for cryopumps and cryopumps incorporating them
DE2536005A1 (de) * 1975-08-13 1977-02-24 Eckhard Kellner Hochvakuum-pumpensystem
DE2455712A1 (de) * 1974-11-25 1976-08-12 Eckhard Kellner Cryo-sorptionspumpe
DE2620880C2 (de) * 1976-05-11 1984-07-12 Leybold-Heraeus GmbH, 5000 Köln Kryopumpe
DE2949092A1 (de) * 1979-12-06 1981-06-11 Leybold-Heraeus GmbH, 5000 Köln Kryopumpe
CH652804A5 (en) * 1981-03-10 1985-11-29 Balzers Hochvakuum Method for regenerating the low-temperature condensation surfaces of a cryopump and cryopump appliance for implementing the method
US4454722A (en) * 1981-05-22 1984-06-19 Helix Technology Corporation Cryopump
US4438632A (en) * 1982-07-06 1984-03-27 Helix Technology Corporation Means for periodic desorption of a cryopump
US4514204A (en) * 1983-03-21 1985-04-30 Air Products And Chemicals, Inc. Bakeable cryopump
US4910965A (en) * 1984-06-29 1990-03-27 Helix Technology Corporation Means for periodic desorption of a cryopump
DE3512614A1 (de) * 1985-04-06 1986-10-16 Leybold-Heraeus GmbH, 5000 Köln Verfahren zur inbetriebnahme und/oder regenerierung einer kryopumpe und fuer dieses verfahren geeignete kryopumpe
FR2599789B1 (fr) * 1986-06-04 1990-03-23 Air Liquide Procede de regeneration d'un etage de cryopompe ou de cryocondenseur et cryopompe pour sa mise en oeuvre
DE3680335D1 (de) * 1986-06-23 1991-08-22 Leybold Ag Kryopumpe und verfahren zum betrieb dieser kryopumpe.
US4763483A (en) * 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
JPS63124880A (ja) * 1986-11-12 1988-05-28 Hitachi Ltd クライオポンプ再生方法
EP0336992A1 (fr) * 1988-04-13 1989-10-18 Leybold Aktiengesellschaft Procédé et dispositif pour vérifier le fonctionnement d'une pompe de cryogénie
US4918930A (en) * 1988-09-13 1990-04-24 Helix Technology Corporation Electronically controlled cryopump

Also Published As

Publication number Publication date
US5111667A (en) 1992-05-12
JP2871873B2 (ja) 1999-03-17
DE4006755A1 (de) 1991-09-05
EP0445503A1 (fr) 1991-09-11
JPH04219478A (ja) 1992-08-10
DE59100757D1 (de) 1994-02-10

Similar Documents

Publication Publication Date Title
EP0445503B1 (fr) Pompe cryogénique à deux étages
EP0603180B1 (fr) Cryopompe
EP0558495B1 (fr) Procede pour la regeneration d'une pompe cryogenique, et pompe cryogenique pour la mise en uvre de ce procede
DE69530603T2 (de) In-situ getterpumpensystem unb -verfahren
DE4491062B4 (de) Cryogene Vakuumpumpe mit elektronisch gesteuerter bzw. geregelter Regeneration
DE19932468A1 (de) Überkritischer Kühlzyklus
EP1262772B1 (fr) Injecteur à commande par température pour dispositif d'analyse
EP0384922B1 (fr) Pompe cryogénique fonctionnant avec un réfrigérateur à deux étages
DE2949092A1 (de) Kryopumpe
EP0053784B1 (fr) Cryostat combiné avec une machine frigorifique
DE19835305A1 (de) Selbstauslösender Kryo-Wärmestromschalter
WO1998006943A1 (fr) Cryopompe
CH652804A5 (en) Method for regenerating the low-temperature condensation surfaces of a cryopump and cryopump appliance for implementing the method
DE69214845T2 (de) Kryopumpe mit differenzleistung
DE69409555T2 (de) Turbomolekularpumpe
EP0733190A1 (fr) Dispositif de refroidissement comportant une unite frigorifique a fonctionnement intermittent
EP0338113B1 (fr) Procédé pour adapter une cryopompe à deux étages à un gaz défini
DE9002518U1 (de) Zweistufige Kryopumpe
GB1591917A (en) Refrigeration apparatus
EP0460244A1 (fr) Appareillage et procédé pour désorber du charbon actif
DE2830943C2 (de) Kryopumpenanordnung
EP3011574B1 (fr) Appareil frigorifique pourvu d'un condensateur électrique
DE3852303T2 (de) Optimal gestufte kryopumpe.
DE2640781C3 (de) lonengetterpumpe
DE3216591A1 (de) Kryopumpe mit jalousieartigem baffle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19920215

17Q First examination report despatched

Effective date: 19920729

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 59100757

Country of ref document: DE

Date of ref document: 19940210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940114

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951207

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970131

Ref country code: CH

Effective date: 19970131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981223

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050108