EP0443175B1 - Zündanlage für Brennkraftmaschinen - Google Patents

Zündanlage für Brennkraftmaschinen Download PDF

Info

Publication number
EP0443175B1
EP0443175B1 EP90124794A EP90124794A EP0443175B1 EP 0443175 B1 EP0443175 B1 EP 0443175B1 EP 90124794 A EP90124794 A EP 90124794A EP 90124794 A EP90124794 A EP 90124794A EP 0443175 B1 EP0443175 B1 EP 0443175B1
Authority
EP
European Patent Office
Prior art keywords
signal
phase
ignition system
ignition
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124794A
Other languages
English (en)
French (fr)
Other versions
EP0443175A3 (en
EP0443175A2 (de
Inventor
Karl Ing.(Grad.) Ott
Helmut Dipl.-Ing. Denz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0443175A2 publication Critical patent/EP0443175A2/de
Publication of EP0443175A3 publication Critical patent/EP0443175A3/de
Application granted granted Critical
Publication of EP0443175B1 publication Critical patent/EP0443175B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/008Reserve ignition systems; Redundancy of some ignition devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • F02P7/0775Electronical verniers

Definitions

  • the invention relates to an ignition system for internal combustion engines, with a reference mark transmitter, in particular a crankshaft transmitter (KW transmitter), which supplies a reference mark assigned to a specific crankshaft angular position per crankshaft revolution, and with a phase transmitter, which in particular as a camshaft transmitter interacting with the camshaft of the internal combustion engine (NW- Encoder) is formed and which generates a number of phase signals assigned to the number of cylinders of the internal combustion engine from the camshaft position within two crankshaft revolutions, one of the phase signals being used to form a cycle signal which indicates the start of an ignition cycle.
  • a reference mark transmitter in particular a crankshaft transmitter (KW transmitter)
  • KW transmitter crankshaft transmitter
  • NW- Encoder camshaft transmitter interacting with the camshaft of the internal combustion engine
  • emergency operation can take place on the basis of the phase signals of the Hall sensor provided with a Hall diaphragm, since a control unit of the internal combustion engine can recognize the start of an ignition cycle on the basis of the broader phase signal.
  • a fixed emergency running ignition angle is defined, the ignition coil being charged when the leading edge of each phase signal occurs and the ignition being triggered when the respective trailing edge of the phase signals occurs.
  • the detection of the phase signal characterizing the start of the ignition cycle at certain operating points with the above-mentioned method is not always possible with certainty, so that incorrect control and thus damage to the internal combustion engine and / or overloading operating conditions can occur.
  • the publication WO-A-88/01692 describes a device for controlling an internal combustion engine of a motor vehicle with a sensor system with an encoder disk rotating with a shaft of the internal combustion engine, which is opposed by a fixed receiving element.
  • the circumference of the encoder disk is provided with a number of segments proportional to the number of cylinders. At least one of the segments is assigned a permanent magnet as a marking.
  • the signals generated by the segments or by the permanent magnet in the receiving element are fed to a control circuit for the ignition, injection and the like of the motor vehicle. It is therefore possible to precisely assign the ignition pulses for a high-voltage distribution without a distributor using a single transmitter.
  • the ignition system according to the invention has the advantage that in the event of a failure of the KW transmitter in systems with a stationary or rotating ignition distribution, emergency operation is possible at any operating point, since the start of an ignition cycle is flawless, even with dynamic changes in state. is recognized by the computer of a control unit of the internal combustion engine.
  • an identification signal is arranged between a first phase signal assigned to a specific cylinder and the adjacent phase signal following it, which together with the associated first phase signal forms the cycle signal.
  • the phase encoder delivers a cycle signal every 720 ° crankshaft angle, which consists of a phase signal and an identification signal, which enables absolutely reliable detection of the start of the ignition cycle. Even taking dynamic changes into account, the start of the ignition cycle can be reliably detected since, as in the prior art, it does not indicate an increased signal width, but is switched to a "double signal" during emergency operation.
  • cylinder detection is possible after a crankshaft revolution at the latest if the phase signal assigned to the cycle signal has a larger signal width than the other phase signals.
  • the reference mark then coincides in time with the broader phase signal. This occurs every 720 °, so that in the event of a collapse within a 360 ° period, either the cylinder starting the ignition cycle (e.g. cylinder 1) is recognized or is not recognized due to non-collapse, which means that a cylinder definition is also perfectly possible in the latter case.
  • the identification signal is preferably an identification pulse which immediately follows the assigned phase signal.
  • the phase signals are preferably formed by negative pulses. This means that an existing signal amplitude reduces its value in the area of the phase signals.
  • the identification pulse has a pulse width which corresponds to 10 ° crankshaft rotation (crankshaft angle).
  • a pulse pause follows this.
  • the pulse pause preferably corresponds to 10 ° crankshaft rotation.
  • the signal width of the phase signals preferably decreases as the number of cylinders increases.
  • the signal width of the phase signal assigned to the identification signal corresponds to approximately 90 ° and the other phase signals to approximately 40 ° crankshaft angle.
  • the signal width of the phase signal associated with the identification signal corresponds to approximately 80 ° and the other phase signals to approximately 30 ° crankshaft angle.
  • the signal width of the phase signal associated with the identification signal corresponds to approximately 70 ° and the other phase signals to approximately 40 °.
  • An eight-cylinder internal combustion engine provides that the signal width of the phase signal assigned to the identification signal corresponds to approximately 70 ° and the other phase signals to approximately 30 ° crankshaft angle.
  • the leading edges of the phase signals start the charging time for the ignition coil, the trailing edges of the phase signals triggering the ignition.
  • the charging time can begin with the trailing edges of the phase signals and the ignition can take place after a fixed charging time. This avoids excessive charging times, which could lead to the destruction of the ignition coil or output stage.
  • the identification signal is masked out by the control unit of the internal combustion engine after cylinder identification (cylinder 1 detection) has been carried out using the cycle signal.
  • This blanking that is to say non-processing, is necessary so that the edges of the identification signal do not lead to the ignition coil being charged here or the ignition pulse being emitted.
  • FIG. 1 shows various diagrams for four, six, eight and five-cylinder internal combustion engines and in FIG. 2 a block diagram of a circuit arrangement.
  • an ignition system for internal combustion engines which has a crankshaft sensor (KW sensor) and a phase sensor.
  • the ignition of this internal combustion engine is controlled by means of an engine control unit, taking engine and operating data into account.
  • the KW transmitter preferably works together with a ring gear of the crankshaft of the internal combustion engine, the individual teeth of the ring gear causing a change in the electrical signal supplied by the KW generator. Since teeth and tooth gaps of the ring gear alternate when the engine rotates, the KW transmitter emits a type of alternating voltage, from which, for. B. the speed of the internal combustion engine can be determined by the control unit.
  • the ring gear has a particularly large tooth gap (e.g.
  • the reference mark BM thus occurs for each crankshaft revolution of the internal combustion engine. It is preferably before the top dead center TDC of a specific cylinder (e.g. cylinder 1). In particular, it is provided that in four-cylinder internal combustion engines, the reference mark approximately 80 ° before top dead center TDC, in six-cylinder internal combustion engines about 70 ° before top dead center TDC, in eight-cylinder internal combustion engines approximately 60 ° before top dead center TDC and in five-cylinder internal combustion engines is approximately 60 ° before top dead center TDC of cylinder 1. This is indicated in FIG. 1 and can be seen from the diagrams shown there.
  • the reference mark BM (in ° crankshaft angle (KW)) is shown at the top on the abscissa of the diagram. Below this, the course of the t R pulses is shown in area I for a four-cylinder internal combustion engine. Below that, the top dead center OT is shown with the associated cylinder number. The phase signal curve then follows. Finally, the start of the ignition on the trailing edge 10 ° before top dead center is shown below.
  • the reference mark BM is approximately 80 ° before top dead center.
  • a corresponding structure is shown in area II of the diagram, which applies to a six-cylinder internal combustion engine.
  • the reference mark BM is approximately 70 ° before top dead center OT.
  • area III there follows the representation for an eight-cylinder internal combustion engine and in area IV a corresponding signal curve for a five-cylinder internal combustion engine.
  • the reference mark is approximately 60 ° before top dead center OT; in the five-cylinder internal combustion engine, the reference mark is approximately 60 ° before top dead center OT.
  • the ignition starts on the trailing edge 10 ° before top dead center.
  • phase signal curve shown in the diagram for each engine version, of a phase transmitter which interacts with the camshaft of the associated internal combustion engine has phase signals assigned to each cylinder, which are formed by negative pulses. Negative pulses mean that there is an amplitude reduction in the area of each phase signal. Since the crankshaft of the internal combustion engine runs twice as fast as the camshaft, the phase generator supplies the phase signals within an ignition cycle of 720 °.
  • the beginning of an ignition cycle is formed by a cycle signal Z which is assigned to the specific cylinder (eg cylinder 1) already mentioned.
  • the cycle signal Z is composed of a first phase signal assigned to the specific cylinder and an identification signal.
  • the phase signals are denoted by P and the identification signal by K.
  • the identification signal K is designed as an identification pulse, which immediately follows the assigned, first phase signal PE. It is followed by an impulse pause L.
  • FIG. 1 also shows t R pulses. These are synchronous pulses generated by the computer of the control unit as a reference. The basis for this is the AC signal from the KW encoder.
  • the arrangement is such that the reference mark BM is at 0 ° crankshaft position (KW), 360 ° crankshaft position (KW), 720 ° crankshaft position (KW) etc.
  • the first phase signal PE belonging to the respective cycle signal Z is located in relation to the reference mark BM assigned to the 0 ° and 720 ° crankshaft position (KW) such that the latter lies in time within the length of the corresponding first phase signals PE.
  • the first phase signal PE is therefore wider than the other phase signals P.
  • the reference mark BM assigned to the 360 ° crankshaft position (KW) does not fall into a phase signal P. This enables a clear cylinder assignment.
  • the signal width of the first phase signal PE corresponds to 90 ° crankshaft angle.
  • the identification signal K which has a pulse width of 10 ° crankshaft angle (crankshaft rotation).
  • the subsequent pulse pause L corresponds to 10 ° crankshaft angle.
  • the individual phase signals P have a width of 40 ° crankshaft rotation.
  • the distance between the reference mark BM assigned to the 360 ° crankshaft position (KW) and the leading edge of the following phase signal P is 30 ° crankshaft rotation.
  • a first phase signal with a width of 80 ° crankshaft angle is provided for an internal combustion engine with six cylinders.
  • this signal width is 70 ° crankshaft angle in each case.
  • identification signal K and pulse pause L are formed in the same way as in a four-cylinder internal combustion engine.
  • the six-cylinder internal combustion engine has phase signals P with a width of 30 ° crankshaft angle. This also applies to an eight-cylinder internal combustion engine.
  • the signal width mentioned is 40 ° crankshaft angle.
  • the distance from the reference mark belonging to the 360 ° crankshaft position (KW) to the leading edge of the following phase signal is 20 ° crankshaft angle in each case for the six-cylinder and eight-cylinder internal combustion engines. In the five-cylinder internal combustion engine, this distance is 22 ° crankshaft angle.
  • a clear cylinder assignment / identification is possible even after a crankshaft angle of 360 °, since either a reference mark BM is detected within a first phase signal PE or a reference mark BM which lies outside a phase signal P.
  • the t R pulse output is carried out by the control unit using the signal supplied by the KW encoder. The t R pulses serve to determine the injection times of the fuel (Ti signals).
  • cylinder identification is possible on the basis of the identification signal K.
  • the cycle signal Z which characterizes the beginning of an ignition cycle, can always be found unambiguously — also in dynamic operating cases.
  • the cylinder 1 can therefore be correctly recognized within 720 ° crankshaft angle.
  • the ignition output is controlled via the phase signals of the phase generator in emergency operation.
  • the t R pulses can no longer be used because they depend on the failed KW transmitter.
  • the procedure is such that the ignition coil current is switched on at each leading edge of a phase signal PE, P and the ignition occurs with the trailing edge of each phase signal PE, P.
  • a fixed switch-on time of the ignition coil starting from the trailing edge can be output, which is preferably dependent on the battery voltage. This is shown in the figure by the high-voltage arrow.
  • a cylinder identification is not necessary for the rotating distribution, since there is a fixed assignment between the distributor finger and the cylinder.
  • the ignition output is also via the phase signals PE, P controlled.
  • the position of the start of the charging time of the ignition coil and the delivery of the ignition pulses take place in the same way as in the rotating distribution described above.
  • cylinder identification (cylinder 1 detection) is required.
  • a cylinder-1 identification is carried out on the basis of the detection signal K according to the invention and then the ignition is carried out, as already described.
  • the pulse pause L which follows the identification signal K is then masked out, so that due to the pulse edges no counting error occurs which would lead to the delivery of ignition pulses at wrong times.
  • the emergency operation described is possible for internal combustion engines of any number of cylinders.
  • SEFI injection sequential fuel injection
  • certain variables e.g. speed, pre-storage, injection time, etc.
  • SEFI- ⁇ C slave microcontroller
  • this transmission takes place synchronously with the tR pulses.
  • t R pulses are missing in emergency operation, replacement t R pulses are output on the positive edges of the phase signals PE, P, which are used as the basis for the injection pulses (Ti pulses).
  • PE, P which are used as the basis for the injection pulses
  • it is necessary that the edges of the pulse pause are suppressed after the identification signal K so that they do not erroneously serve as a replacement t R pulse edge.
  • the change in angle (crankshaft angle) of the t R pulses compared to normal operation in emergency mode must be accepted.
  • the start of injection (Ti pulses) is also placed on the positive segment edge after each (number of cylinders / 2) phase signals. An exact cylinder assignment of the Ti position cannot be maintained if there is no cylinder detection.
  • group injection In the case of group injection, if there is no cylinder assignment in emergency operation, the system switches to simultaneous injection or the wrong cylinder assignment is used, which is permissible for emergency operation. If cylinder detection can take place, group injection can be maintained. It then makes sense to assign the Ti start for the first group to the phase signal p, which follows the phase signal PE at a distance (number of cylinders / 2) -1. This assignment is useful for four, six and eight-cylinder internal combustion engines.
  • This speed threshold can preferably be dependent on the battery voltage.
  • counting a time from the trailing edge of the previous cylinder the duty cycle of the coil can be extended to the necessary time (quasi segment system).
  • FIG. 2 shows a block diagram of the arrangement described.
  • the internal combustion engine 10 has a camshaft NW and a crankshaft KW.
  • Crankshaft KW and camshaft NW are coupled to one another via a toothed belt transmission 11.
  • On the camshaft NW there is a sensor element 12 which interacts with the camshaft sensor (NW sensor) 13.
  • NW sensor camshaft sensor
  • On the crankshaft KW a further encoder element 14 is fastened in a rotationally fixed manner, which works together with a crankshaft encoder 15 (KW encoder).
  • the KW sensor 15, which supplies a crankshaft signal, is connected to an interface circuit 16; the NW transmitter 13 is connected to a further interface circuit 17.
  • the output of the interface circuit 16 is connected to an input of a reference mark detection circuit 18 and to a further input of a KW sensor failure detection circuit 19. Furthermore, said output leads to a first evaluation circuit 20.
  • the latter carries out a closing time and ignition angle calculation and is responsible for a quiescent distribution in normal operation, if necessary.
  • the aforementioned output of the interface circuit 16 is also connected via a first changeover switch 21 to an input of a second evaluation circuit 22 which carries out the injection time calculation and is optionally used for an SEFI injection.
  • the output of the interface circuit 17 also leads to the KW sensor failure detection circuit 19 and to a further pole of the first switch 21 and to an input of a third evaluation circuit 23 which performs a closing time and ignition angle calculation and, if necessary, a quiescent distribution in emergency operation.
  • the output of the interface circuit 17 is also connected to an input of a cylinder 1 detection circuit 24 for normal operation and to an input of a cylinder 1 detection circuit 25 for emergency operation.
  • the cycle signal Z is obtained by comparing the pulse durations of phase signal PE; Identification pulse K and possibly the pulse pause L.
  • the output of the reference mark detection circuit 18 is also connected to an input of the cylinder 1 detection circuit 24.
  • the output of the cylinder 1 detection circuit 24 leads to an input of the first evaluation circuit and to a second changeover switch 26 which, in the position shown in FIG. 2, establishes a connection to an input of the second evaluation circuit 22.
  • the output of the cylinder 1 detection circuit 25 leads to a further pole of the second switch 26 and further to a further input of the third evaluation circuit 23.
  • the output of the first evaluation circuit 20 leads to a third switch 27, the position shown in FIG connects the first evaluation circuit 20 to the ignition coil or the ignition coils 28 (not shown in detail).
  • a signal is provided at the output of the second evaluation circuit 22 Control of the injection valves 29 (not shown in detail) of the internal combustion engine 10 is available.
  • the output of the third evaluation circuit 23 is connected to a further pole of the third switch 27.
  • An active connection 30 originates from the KW sensor failure detection circuit 19 and acts on the first, second and third changeover switches 21, 26, 27. In the position of the changeover switches 21, 26 and 27 shown in FIG. 2, normal operation of the internal combustion engine 10 is present. The switchover position that is carried out in emergency operation mode is entered with a dashed line; it is brought about by means of the KW sensor failure detection circuit 19.
  • the internal combustion engine 10 also has a load transmitter 31, which supplies a corresponding load signal to an input of the first evaluation circuit 20 and an input of the second evaluation circuit 22.
  • the reference mark detection circuit 18, the KW sensor failure detection circuit 19, the first evaluation circuit 20, the second evaluation circuit 22 and the third evaluation circuit 23, the cylinder 1 detection circuit 24 and the cylinder 1 detection circuit 25 are in a micro- Controller ⁇ C summarized.
  • both the KW signal and the NW signal of the internal combustion engine are correspondingly evaluated and processed in accordance with the circuit arrangement in FIG. If the KW transmitter failure detection circuit 19 detects a malfunction of the KW transmitter 15, the changeover switches 21, 26 and 27 are brought into the position shown in dashed lines in FIG. 2 and the emergency operation mode - as already stated above - is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft eine Zündanlage für Brennkraftmaschinen, mit einem Bezugsmarkengeber, insbesondere Kurbelwellengeber (KW-Geber), der je Kurbelwellenumdrehung eine einer bestimmten Kurbelwellen-Winkelstellung zugeordnete Bezugsmarke liefert und mit einem Phasengeber, der insbesondere als mit der Nockenwelle der Brennkraftmaschine zusammenwirkender Nockenwellengeber (NW-Geber) ausgebildet ist und der innerhalb zweier Kurbelwellenumdrehungen eine der Zahl der Zylinder der Brennkraftmaschine entsprechende Anzahl von der Nockenwellenstellung zugeordneten Phasensignalen erzeugt, wobei eines der Phasensignale zur Bildung eines Zyklussignals herangezogen ist, das den Beginn eines Zündzyklus' kennzeichnet.
  • Aus der DE-A- 36 34 587 ist ein Zündsystem für Verbrennungsmotoren bekannt, das eine synchron mit der Nockenwelle des Motors angetriebene Hallblende aufweist, wobei die Hallblende eine jeweils jedem Zylinder zugeordnete Aussparung hat, wodurch eine entsprechende Anzahl von Phasenimpulsen erzeugt wird. Eine der Aussparungen ist gegenüber den anderen breiter ausgebildet, wodurch ein Phasenimpuls erzeugt wird, der den Beginn eines Zündzyklus' in Zusammenwirken mit einer Bezugsmarke kennzeichnet. Diese stammt von einem KW-Geber, der je Kurbelwellenumdrehung ein einer bestimmten Kurbelwellen-Winkelstellung zugeordnetes Signal liefert. Fällt der KW-Geber aus, so kann aufgrund der Phasensignale des mit einer Hallblende versehenen Hallsensors ein Notlaufbetrieb erfolgen, da ein Steuergerät der Brennkraftmaschine aufgrund des einen, breiter ausgebildeten Phasensignals den Beginn eines Zündzyklus' erkennen kann. Es wird dabei ein fester Notlaufzündwinkel definiert, wobei beim Auftreten der Vorderflanke jedes Phasensignals die Zündspule geladen und beim Auftreten der jeweiligen Rückflanke der Phasensignale die Zündung ausgelöst wird. Bei rotierender Zündverteilung ist die Erkennung des Zündzyklus' nicht wichtig, da die Verteilung durch einen Hochspannungsverteiler erfolgt. Bei ruhender Verteilung muß dagegen der Beginn des Zündzyklus' sicher erkannt werden. Da die laufende Brennkraftmaschine ein dynamisches System darstellt, ist die Erkennung des den Zündzyklusbeginn kennzeichnenden Phasensignals in bestimmten Betriebspunkten mit oben genanntem Verfahren nicht immer sicher möglich, so daß es zu Fehlansteuerungen und damit zu die Brennkraftmaschine beschädigenden und/oder überlastenden Betriebszuständen kommen kann.
  • Aus der Literaturstelle "SAE Technical Paper Series, 820256, "A Low Cost Electronic Ignition Control System With A 4-Bit Microcontroller", Richard W. Kovener, 1982, ist es bekannt, an der Kurbelwelle einer Brennkraftmaschine eine mit über dem Umfang verteilten Aussparungen versehene Sensorscheibe zu befestigen, wobei eine Doppelaussparung vorgesehen ist, um die Position der Kurbelwelle von einem Detektor erfassen zu können. Die Anordnung hat somit die Funktion eines an sich bekannten Bezugsmarkengebers.
  • Die Druckschrift WO-A-88/01692 beschreibt eine Vorrichtung zum Steuern einer Brennkraftmaschine eines Kraftfahrzeugs mit einem Sensorsystem mit einer mit einer Welle der Brennkraftmaschine umlaufenden Geberscheibe , der ein raumfestes Aufnahmeelement gegenübersteht. Die Geberscheibe ist an ihrem Umfang mit einer zur Anzahl der Zylinder proportionalen Anzahl von Segmenten versehen. Mindestens einem der Segmente ist dabei ein Permanentmagnet als Markierung zugeordnet. Die von den Segmenten bzw. von dem Permanentmagneten im Aufnahmeelement erzeugten Signale werden einer Steuerschaltung für die Zündung, Einspritzung und dergleichen des Kraftfahrzeugs zugeführt. Es ist somit eine genaue Zuordnung der Zündimpulse für eine verteilerlose Hochspannungsverteilung mit einem einzigen Geber möglich.
  • Die erfindungsgemäße Zündanlage mit den im Hauptanspruch genannten Merkmalen hat demgegenüber den Vorteil, daß beim Ausfall des KW-Gebers bei Anlagen mit ruhender oder rotierender Zündverteilung ein Notlaufbetrieb sicher in jedem Betriebspunkt möglich ist, da -auch bei dynamischen Zustandsänderungen- einwandfrei der Beginn eines Zündzyklus' vom Rechner eines Steuergeräts der Brennkraftmaschine erkannt wird. Hierzu ist zwischen einem ersten, einem bestimmten Zylinder zugeordneten Phasensignal und dem diesem folgenden, benachbarten Phasensignal ein Kennungssignal angeordnet, das zusammen mit dem zugehörigen ersten Phasensignal das Zyklussignal bildet. Mithin liefert der Phasengeber alle 720° Kurbelwellenwinkel ein Zyklussignal, das aus einem Phasensignal und einem Kennungssignal besteht, wodurch eine absolut sichere Erkennung des Zündzyklusbeginns ermöglicht ist. Selbst unter Berücksichtigung dynamischer Veränderungen läßt sich der Beginn des Zündzyklus' sicher detektieren, da nicht -wie im Stand der Technik- auf eine vergrößerte Signalbreite, sondern auf ein "Doppelsignal" beim Notbetrieb abgestellt wird.
  • Im Normalbetrieb, also bei einwandfrei arbeitendem KW-Geber, ist eine Zylindererkennung nach spätestens einer Kurbelwellenumdrehung möglich, wenn das dem Zyklussignal zugeordnete Phasensignal eine größere Signalbreite als die übrigen Phasensignale aufweist. Die Bezugsmarke fällt dann zeitlich mit dem breiter ausgebildeten Phasensignal zusammen. Dies erfolgt alle 720°, so daß bei einem Zusammenfall innerhalb einer 360°-Periode entweder der den Zündzyklus beginnende Zylinder (z. B. Zylinder 1) erkannt oder -wegen Nichtzusammenfallsnicht erkannt wird, wodurch im letzteren Falle ebenfalls eine Zylinderdefinition einwandfrei möglich ist.
  • Vorzugsweise ist das Kennungssignal ein Kennungsimpuls, der sich an das zugeordnete Phasensignal unmittelbar anschließt.
  • Die Phasensignale werden vorzugsweise von Negativ-Impulsen gebildet. Dies bedeutet, daß eine vorhandene Signalamplitude ihren Wert im Bereich der Phasensignale verkleinert.
  • Nach einem bevorzugtem Ausführungsbeispiel weist der Kennungsimpuls eine Impulsbreite auf, die 10° Kurbelwellendrehung (Kurbelwellenwinkel) entspricht. Um das Ende des Kennungsimpuls' deutlich erfassen zu können, schließt sich an diesen eine Impulspause an. Die Impulspause entspricht vorzugsweise 10° Kurbelwellendrehung.
  • Vorzugsweise verkleinert sich mit steigernder Zahl der Zylinder die Signalbreite der Phasensignale. Insbesondere entspricht bei einer Brennkraftmaschine mit vier Zylindern die Signalbreite des dem Kennungssignal zugeordneten Phasensignals etwa 90° und der übrigen Phasensignale etwa 40° Kurbelwellenwinkel. Bei einer Brennkraftmaschine mit sechs Zylindern entspricht die Signalbreite des dem Kennungssignal zugeordneten Phasensignals etwa 80° und der übrigen Phasensignale etwa 30° Kurbelwellenwinkel. Bei einer Brennkraftmaschine mit fünf Zylindern entspricht die Signalbreite des dem Kennungssignal zugeordneten Phasensignals etwa 70° und der übrigen Phasensignale etwa 40°. Eine Acht-Zylinder-Brennkraftmaschine sieht vor, daß die Signalbreite des dem Kennungssignal zugeordneten Phasensignals etwa 70° und der übrigen Phasensignale etwa 30° Kurbelwellenwinkel entspricht.
  • Es ist vorgesehen, daß im Notbetrieb -also bei Ausfall des KW-Gebers- die Vorderflanken der Phasensignale die Ladezeit für die Zündspule starten, wobei die Rückflanken der Phasensignale die Zündung auslösen. Bei kleinen Drehzahlen kann abweichend davon die Ladezeit mit den Rückflanken der Phasensignale beginnen und die Zündung nach einer festen Ladezeit erfolgen. Dadurch werden zu große Ladezeiten vermieden, die zur Zerstörung von Zündspule oder Endstufe führen könnten.
  • Schließlich wird im Notbetrieb nach der mittels des Zyklussignals erfolgten Zylinderidentifizierung (Zylinder-1-Erkennung) vom Steuergerät der Brennkraftmaschine das Kennungssignal ausgeblendet.
  • Diese Ausblendung, das heißt Nichtverarbeitung, ist erforderlich, damit die Flanken des Kennungssignals nicht dazu führen, hier die Zündspule aufzuladen bzw. den Zündimpuls abzugeben.
  • Zeichnung
  • Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Diese zeigt in Figur 1 verschiedene Diagramme für Vier-, Sechs-, Acht- und Fünf-Zylinder-Brennkraftmaschinen und in Figur 2 ein Blockschaltbild einer Schaltungsanordnung.
  • Beschreibung von Ausführungsbeispielen
  • Im nachfolgenden wird auf eine Zündanlage für Brennkraftmaschinen eingegangen, die einen Kurbelwellengeber (KW-Geber) und einen Phasengeber aufweist. Die Zündung dieser Brennkraftmaschine wird mittels eines Motorsteuergeräts unter Berücksichtigung von Motor- und Betriebsdaten gesteuert. Der KW-Geber arbeitet vorzugsweise mit einem Zahnkranz der Kurbelwelle der Brennkraftmaschine zusammen, wobei die einzelnen Zähne des Zahnkranzes eine Änderung des vom KW-Geber gelieferten elektrischen Signals bewirken. Da sich Zähne und Zahnlücken des Zahnkranzes bei der Motordrehung abwechseln, wird vom KW-Geber eine Art Wechselspannung abgegeben, aus der z. B. die Drehzahl der Brennkraftmaschine vom Steuergerät ermittelt werden kann. An einer Stelle seines Umfangs weist der Zahnkranz eine besonders große Zahnlücke (z. B. durch Fehlen eines Zahns) auf, so daß die KW-Geber-Wechselspannung ebenfalls eine entsprechende Lücke zeigt, die eine Bezugsmarke BM bildet. Die Bezugsmarke BM tritt somit je Kurbelwellenumdrehung der Brennkraftmaschine auf. Sie liegt vorzugsweise vor dem oberen Totpunkt OT eines bestimmten Zylinders (z. B. des Zylinder 1). Insbesondere ist vorgesehen, daß bei Vier-Zylinder-Brennkraftmaschinen die Bezugsmarke ungefähr 80° vor dem oberen Totpunkt OT, bei Sechs-Zylinder-Brennkraftmaschinen etwa 70° vor dem oberen Totpunkt OT, bei Acht-Zylinder-Brennkraftmaschinen ungefähr 60° vor dem oberen Totpunkt OT und bei Fünf-Zylinder-Brennkraftmaschinen etwa 60° vor dem oberen Totpunkt OT des Zylinders 1 liegt. Dies ist in der Figur 1 angegeben und aus den dort wiedergegebenen Diagrammen ersichtlich.
  • Auf der Abzisse des Diagramms ist ganz oben die Bezugsmarke BM (in ° Kurbelwellenwinkel (KW)) wiedergegeben. Darunter ist im Bereich I für eine Vierzylinder-Brennkraftmaschine der Verlauf der tR-Impulse gezeigt. Darunter ist der obere Totpunkt OT mit der zugehörigen Zylindernummer wiedergegeben. Es folgt dann der Phasensignalverlauf. Schließlich ist darunter der Start der Zündung an der Rückflanke 10° vor dem oberen Totpunkt wiedergegeben. Die Bezugsmarke BM liegt ungefährt 80° vor dem oberen Totpunkt.
  • Ein entsprechender Aufbau ist im Bereich II des Diagramms dargestellt, der für eine Sechs-Zylinder-Brennkraftmaschine gilt. Die Bezugsmarke BM liegt ungefähr 70° vor dem oberen Totpunkt OT.
  • Im Bereich III folgt die Darstellung für eine Acht-Zylinder-Brennkraftmaschine und im Bereich IV ein entsprechender Signalverlauf für eine Fünf-Zylinder-Brennkraftmaschine. Bei der Acht-Zylinder-Brennkraftmaschine liegt die Bezugsmarke ungefähr 60° vor dem oberen Totpunkt OT; bei der Fünf-Zylinder-Brennkraftmaschine liegt die Bezugsmarke ungefähr 60° vor dem oberen Totpunkt OT. Bei allen Motorausführungen des Diagramms liegt der Start der Zündung an der Rückflanke 10° vor dem oberen Totpunkt.
  • Der im Diagramm für jede Motorausführung wiedergegebene Phasensignalverlauf eines mit der Nockenwelle der zugehörigen Brennkraftmaschine zusammenwirkenden Phasengebers weist jedem Zylinder zugeordnete Phasensignale auf, die von Negativ-Impulsen gebildet werden. Negativ-Impulse bedeutet, daß im Bereich jedes Phasensignals eine Amplitudenabsenkung vorliegt. Da die Kurbelwelle der Brennkraftmaschine doppelt so schnell läuft wie die Nockenwelle, liefert der Phasengeber innerhalb eines Zündzyklus' von 720° die Phasensignale. Der Beginn eines Zündzyklus' wird erfindungsgemäß von einem Zyklussignal Z gebildet, das dem bereits erwähnten bestimmten Zylinder (z. B. Zylinder 1) zugeordnet ist. Das Zyklussignal Z setzt sich aus einem ersten, dem bestimmten Zylinder zugeordneten Phasensignal und einem Kennungssignal zusammen. In der Figur sind die Phasensignale mit P und das Kennungssignal mit K bezeichnet. Zur Unterscheidung des ersten Phasensignals von den übrigen Phasensignalen erhält dieses die Kennzeichnung PE. Das Kennungssignal K ist als Kennungsimpuls ausgebildet, der sich an das zugeordnete, erste Phasensignal PE unmittelbar anschließt. Ihm folgt eine Impulspause L.
  • In der Figur 1 sind ferner tR-Impulse wiedergegeben. Es handelt sich dabei um Kurbelwellenwinkel synchrone Impulse, die der Rechner des Steuergeräts als Referenz erzeugt. Die Grundlage hierfür bildet das Wechselspannungssignal des KW-Gebers.
  • Die Anordnung ist derart ausgebildet, daß bei 0° Kurbelwellenstellung (KW), 360° Kurbelwellenstellung (KW), 720° Kurbelwellenstellung (KW) usw. die Bezugsmarke BM liegt. Das zum jeweiligen Zyklussignal Z gehörende, erste Phasensignal PE ist zu der der 0° und 720° Kurbelwellenstellung (KW) zugeordnete Bezugsmarke BM derart gelegen, daß jeweils letztere zeitlich innerhalb der Länge der entsprechenden ersten Phasensignale PE liegt. Zur Berücksichtigung von Toleranzen ist daher das erste Phasensignal PE gegenüber den übrigen Phasensignalen P breiter ausgebildet. Die der 360° Kurbelwellenstellung (KW) zugeordnete Bezugsmarke BM fällt nicht in ein Phasensignal P. Hierdurch wird eine eindeutige Zylinderzuordnung möglich.
  • Im einzelnen ist für eine 4-Zylinder-Brennkraftmaschine vorgesehen, daß die Signalbreite des ersten Phasensignals PE 90° Kurbelwellenwinkel entspricht. Es schließt sich das Kennungssignal K an, das eine Impulsbreite von 10° Kurbelwellenwinkel (Kurbelwellendrehung) aufweist. Die sich daran anschließende Impulspause L entspricht 10° Kurbelwellenwinkel. Die einzelnen Phasensignale P weisen eine Breite von 40° Kurbelwellendrehung auf. Der Abstand der der 360° Kurbelwellenstellung (KW) zugeordneten Bezugsmarke BM zur Vorderflanke des folgenden Phasensignals P beträgt 30° Kurbelwellendrehung.
  • Für eine Brennkraftmaschine mit sechs Zylindern ist ein erstes Phasensignal mit einer Breite von 80° Kurbelwellenwinkel vorgesehen. Bei einer Acht-Zylinder-Brennkraftmaschine bzw. Fünf-Zylinder-Brennkraftmaschine beträgt diese Signalbreite jeweils 70° Kurbelwellenwinkel. Bei Sechs-, Acht- und Fünf-Zylinder-Brennkraftmaschinen sind Kennungssignal K und Impulspause L ebenso wie bei einer Vier-Zylinder-Brennkraftmaschine ausgebildet. Die Sechs-Zylinder-Brennkraftmaschine weist Phasensignale P mit einer Breite von 30° Kurbelwellenwinkel auf. Diese gilt auch für eine Acht-Zylinder-Brennkraftmaschine. Bei einer Fünf-Zylinder-Brennkraftmaschine beträgt die genannte Signalbreite 40° Kurbelwellenwinkel. Der Abstand zu der der 360° Kurbelwellenstellung (KW) zugehörenden Bezugsmarke zur Vorderflanke des folgenden Phasensignals beträgt bei der Sechs- und bei der Acht-Zylinder-Brennkraftmaschine jeweils 20° Kurbelwellenwinkel. Bei der Fünf-Zylinder-Brennkraftmaschine beträgt dieser Abstand 22° Kurbelwellenwinkel.
  • Im Normalbetrieb der Brennkraftmaschine, das heißt einwandfrei funktionierendem KW- und Phasengeber ist eine eindeutige Zylinderzuordnung/Identifizierung bereits nach 360° Kurbelwellenwinkel möglich, da entweder eine Bezugsmarke BM innerhalb eines ersten Phasensignals PE oder eine Bezugsmarke BM detektiert wird, die außerhalb eines Phasensignals P liegt. Die tR-Impuls-Ausgabe erfolgt durch das Steuergerät unter Heranziehung des vom KW-Geber gelieferten Signals. Die tR-Impulse dienen der Festlegung der Einspritzzeitpunkte des Kraftstoffs (Ti-Signale).
  • Im Notlaufbetrieb, wenn also der KW-Geber ausfällt, ist eine Zylinderidentifizierung aufgrund des Kennungssignals K möglich. Durch Vergleich der Pulsdauern von Phasensignal PE, Kennungssignal K und eventuell zusätzlich von der Impulspause L ist hier stets eindeutig -auch im dynamischen Betriebsfalldas Zyklussignal Z auffindbar, das den Beginn eines Zündzyklus' kennzeichnet. Der Zylinder 1 kann daher innerhalb von 720° Kurbelwellenwinkel einwandfrei erkannt werden.
  • Sofern die Brennkraftmaschine eine rotierende Verteilung aufweist, wird im Notlaufbetrieb die Zündausgabe über die Phasensignale des Phasengebers gesteuert. Die tR-Impulse können nicht mehr herangezogen werden, da diese ja von dem ausgefallenem KW-Geber abhängen. Es wird derart vorgegangen, daß bei jeder Vorderflanke eines Phasensignals PE, P der Zündspulenstrom eingeschaltet und mit der Rückflanke jedes Phasensignals PE, P die Zündung erfolgt. Bei kleinen Drehzahlen kann abweichend davon eine feste Einschaltzeit der Zündspule beginnend mit der Rückflanke ausgegeben werden, die vorzugsweise von der Batteriespannung abhängig ist. Dieses ist in der Figur durch den eingetragenen Hochspannungspfeil wiedergegeben. Eine Zylinderidentifizierung ist bei der rotierenden Verteilung nicht erforderlich, da zwischen Verteilerfinger und Zylinder eine feste Zuordnung besteht.
  • Sofern die betrachtete Brennkraftmaschine eine ruhende Verteilung aufweist und ein Notlaufbetrieb wegen Ausfalls des KW-Gebers erfolgt, wird die Zündausgabe ebenfalls über die Phasensignale PE, P gesteuert. Die Lage des Beginns der Ladezeit der Zündspule sowie die Abgabe der Zündimpulse erfolgt ebenso, wie bei der zuvor beschriebenen rotierenden Verteilung. Überdies ist jedoch eine Zylinderidentifizierung (Zylinder-l-Erkennung) erforderlich. Zunächst wird daher aufgrund des erfindungsgemäßen Erkennungssignals K eine Zylinder-1-Identifizierung vorgenommen und anschließend die Zündung -wie bereits beschrieben- durchgeführt. Dabei wird dann die Impulspause L ausgeblendet, die auf das Kennungssignal K folgt, damit aufgrund der Impulsflanken kein Zählfehler auftritt, der zu der Abgabe von Zündimpulsen zu verkehrten Zeitpunkten führen würde. Der beschriebene Notlauf ist für Brennkraftmaschinen beliebiger Zylinderzahl möglich.
  • Da moderne Brennkraftmaschinen mit Einspritzungen ausgerüstet sind, die in Abhängigkeit von dem bereits erwähnten Referenzsignal (tR-Impulse) arbeitet, sind im Notbetrieb (also beim Ausfall des KW-Gebers) besondere Maßnahmen zu treffen, da gleichzeitig auch die tR-Impulse wegfallen.
  • Bei einer sogenannten SEFI-Einspritzung (Sequentielle Fuel Injection) werden vom Master-Microcontroller des Steuergeräts bestimmte Größen (z. B. Drehzahl, Vorlagerung, Einspritzzeit usw.) zu einem Slave-Microcontroller (SEFI-µC) übertragen. Diese Übertragung erfolgt im Normalbetrieb synchron mit den tR-Impulsen. Da im Notbetrieb die tR-Impulse fehlen, werden Ersatz-tR-Impulse an den positiven Flanken der Phasensignale PE, P ausgegeben, die den Einspritzimpulsen (Ti-Impulsen) zugrundegelegt werden. Hierzu ist es erforderlich, daß die Flanken der Impulspause nach dem Kennungssignals K unterdrückt werden, damit diese nicht fälschlich als Ersatz-tR-Impulsflanke dienen. Die gegenüber dem Normalbetrieb im Notbetrieb erfolgende Winkelveränderung (Kurbelwellenwinkel) der tR-Impulse muß akzeptiert werden.
  • Weist die Brennkraftmaschine eine Simultaneinspritzung auf, so wird der Einspritzbeginn (Ti-Impulse) ebenfalls an die positive Segmentflanke nach jeweils (Zylinderzahl/2) Phasensignalen gelegt. Eine genaue Zylinderzuordnung der Ti-Lage kann bei fehlender Zylindererkennung nicht eingehalten werden.
  • Bei Gruppeneinspritzung wird bei fehlender Zylinderzuordnung im Notbetrieb auf Simultaneinspritzung umgeschaltet oder mit falscher Zylinderzuordnung gefahren, was für einen Notlaufbetrieb zulässig ist. Kann eine Zylindererkennung erfolgen, so läßt sich die Gruppeneinspritzung beibehalten. Es ist dann sinnvoll, den Ti-Beginn für die erste Gruppe dem Phasensignal p zuzuordnen, das dem Phasensignal PE im Abstand (Zylinderzahl/2)-1 folgt. Diese Zuordnung ist für Vier-, Sechs- und Acht-Zylinder-Brennkraftmaschinen sinnvoll.
  • Es ist ferner sinnvoll, oberhalb einer Drehzahl, ab der durch die vorgegebene winkelstarre Einschaltdauer der Zündspule ein ausreichendes Aufladen der Spule nicht gesichert ist, eine Drehzahlbegrenzung durch Abschalten der Einspritzung durchzuführen. Diese Drehzahlschwelle kann vorzugsweise von der Batteriespannung abhängig sein. Alternativ kann bei hohen Drehzahlen durch Abzählen einer Zeit ab Rückflanke des vorhergehenden Zylinders die Einschaltdauer der Spule auf die notwendige Zeit verlängert werden (quasi Segmentsystem).
  • Die Figur 2 zeigt ein Blockschaltbild der beschriebenen Anordnung. Die Brennkraftmaschine 10 weist eine Nockenwelle NW sowie eine Kurbelwelle KW auf. Kurbelwelle KW und Nockenwelle NW sind über eine Zahnriemenübersetzung 11 miteinander gekuppelt. Auf der Nockenwelle NW sitzt ein Geberelement 12, das mit dem Nockenwellen-Geber (NW-Geber) 13 zusammenwirkt. Auf der Kurbelwelle KW ist drehfest ein weiteres Geberelement 14 befestigt, das mit einem Kurbelwellengeber 15 (KW-Geber) zusammenarbeitet.
  • Der ein Kurbelwellen-Signal liefernde KW-Geber 15 ist mit einer Interface-Schaltung 16 verbunden; der NW-Geber 13 ist an eine weitere Interface-Schaltung 17 angeschlossen. Der Ausgang der Interface-Schaltung 16 ist mit einem Eingang einer Bezugsmarken-Erkennungsschaltung 18 und mit einem weiteren Eingang einer KW-Geber-Ausfallerkennungsschaltung 19 verbunden. Ferner führt der genannte Ausgang zu einer ersten Auswerteschaltung 20. Letztere führt eine Schließzeit- und Zündwinkelberechnung durch und ist gegebenenfalls für eine ruhende Verteilung im Normalbetrieb zuständig.
  • Der genannte Ausgang der Interface-Schaltung 16 ist ferner über einen ersten Umschalter 21 an einen Eingang einer zweiten Auswerteschaltung 22 angeschlossen, die die Einspritzzeitberechnung durchführt und gegebenenfalls für eine SEFI-Einspritzung herangezogen wird.
  • Der Ausgang der Interface-Schaltung 17 führt ebenfalls zur KW-Geber-Ausfallerkennungsschaltung 19 sowie zu einem weiteren Pol des ersten Umschalters 21 und zu einem Eingang einer dritten Auswerteschaltung 23, die eine Schließzeit- und Zündwinkelberechnung und gegebenenfalls eine ruhende Verteilung im Notlaufbetrieb durchführt. Der Ausgang der Interface-Schaltung 17 ist ferner an einen Eingang einer Zylinder-1-Erkennungsschaltung 24 für den Normalbetrieb und an einen Eingang einer Zylinder-1-Erkennungsschaltung 25 für den Notlaufbetrieb angeschlossen. Im Notlaufbetrieb wird das Zyklussignal Z durch Vergleich der Pulsdauern von Phasensignal PE; Kennungsimpuls K und eventuell der Impulspause L erzeugt. Der Ausgang der Bezugsmarken-Erkennungsschaltung 18 ist ebenfalls an einen Eingang der Zylinder-1-Erkennungsschaltung 24 angeschlossen.
  • Der Ausgang der Zylinder-1-Erkennungsschaltung 24 führt zu einem Eingang der ersten Auswerteschaltung sowie zu einem zweiten Umschalter 26, der in der in der Figur 2 dargestellten Stellung eine Verbindung zu einem Eingang der zweiten Auswerteschaltung 22 herstellt. Der Ausgang der Zylinder-1-Erkennungsschaltung 25 führt zu einem weiteren Pol des zweiten Umschalters 26 und ferner zu einem weiteren Eingang der dritten Auswerteschaltung 23. Der Ausgang der ersten Auswerteschaltung 20 führt zu einem dritten Umschalter 27, der in der Figur 2 dargestellten Stellung die erste Auswerteschaltung 20 mit der Zündspule beziehungsweise den Zündspulen 28 (nicht näher dargestellt) verbindet. Am Ausgang der zweiten Auswerteschaltung 22 stellt ein Signal zur Steuerung der Einspritzventile 29 (nicht näher dargestellt) der Brennkraftmaschine 10 zur Verfügung. Der Ausgang der dritten Auswerteschaltugn 23 ist an einen weiteren Pol des dritten Umschalters 27 angeschlossen.
  • Von der KW-Geber-Ausfallerkennungsschaltung 19 geht eine Wirkverbindung 30 aus, die auf den ersten, zweiten und dritten Umschalter 21, 26, 27 wirkt. In der in der Figur 2 dargestellten Stellung der Umschalter 21, 26 und 27 liegt der Normalbetrieb der Brennkraftmaschine 10 vor. Die Umschaltstellung, die im Notlaufbetrieb vorgenommen wird, ist mit gestrichelter Linie eingetragen; sie wird mittels der KW-Geber-Ausfallerkennungsschaltung 19 herbeigeführt.
  • Die Brennkraftmaschine 10 weist ferner einen Lastgeber 31 auf, der ein entsprechendes Lastsignal einem Eingang der ersten Auswerteschaltung 20 sowie einem Eingang der zweiten Auswerteschaltung 22 zuführt.
  • Schließlich sind die Bezugsmarken-Erkennungsschaltung 18, die KW-Geber-Ausfallerkennungsschaltung 19, die erste Auswerteschaltung 20, die zweite Auswerteschaltung 22 sowie die dritte Auswerteschaltung 23, die Zylinder-1-Erkennungsschaltung 24 und die Zylinder-1-Erkennungsschaltung 25 in einem Mikro-Controller µC zusammengefaßt.
  • Im Normalbetrieb der Brennkraftmaschine wird gemäß der Schaltungsanordnung der Figur 2 sowohl das KW-Signal als auch das NW-Signal der Brennkraftmaschine entsprechend ausgewertet und weiterverarbeitet. Erkennt die KW-Geber-Ausfallerkennungsschaltung 19 eine Funktionsstörung des KW-Gebers 15, so werden die Umschalter 21, 26 und 27 in die in der Figur 2 gestrichelt eingetragene Stellung gebracht und der Notlaufbetrieb -wie vorstehend schon ausgeführt- aufgenommen.

Claims (20)

  1. Zündanlage für Brennkraftmaschinen, mit einem Bezugsmarkengeber, insbesondere Kurbelwellengeber (KW-Geber), der je Kurbelwellenumdrehung eine einer bestimmten Kurbelwellen-Winkelstellung zugeordnete Bezugsmarke liefert und mit einem Phasengeber, insbesondere Nockenwellengeber (NW-Geber), der innerhalb zweier Kurbelwellenumdrehungen eine der Zahl der Zylinder der Brennkraftmaschine entsprechende Anzahl von der Nockenwellenstellung zugeordneten Phasensignalen erzeugt, wobei eines der Phasensignale zur Bildung eines Zyklussignals herangezogen ist, das den Beginn eines Zündzyklus' kennzeichnet, dadurch gekennzeichnet, daß zwischen einem ersten, einem bestimmten Zylinder (Zylinder 1) zugeordneten Phasensignal (PE) und dem diesem folgenden, benachbarten Phasensignal (P) ein Kennungssignal (K) liegt, das zusammen mit dem zugehörigen ersten Phasensignal (PE) im bei Ausfall des KW-Gebers erfolgenden Notbetrieb das Zyklussignal (Z) bildet.
  2. Zündanlage nach Anspruch 1, dadurch gekennzeichnet, daß das dem Zyklussignal zugeordnete Phasensignal (PE) eine größere Signalbreite als die übrigen Phasensignale (P) aufweist.
  3. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bezugsmarke (BM) zeitlich dem Phasensignal (PE) des Zyklussignals (Z) zugeordnet ist.
  4. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kennungsignal (K) ein Kennungsimpuls ist, der sich an das zugeordnete Phasensignal (PE) unmittelbar anschließt.
  5. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Phasensignale (PE, P) von Negativ-Impulsen gebildet werden.
  6. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kennungsimpuls (K) eine Impulsbreite aufweist, die 10° Kurbelwellendrehung (Kurbelwellenwinkel) entspricht.
  7. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Kennungsimpuls eine Impulspause (L) folgt.
  8. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Impulspause (L) 10° Kurbelwellendrehung entspricht.
  9. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Zyklussignal (Z) durch Vergleich der Pulsdauern von Phasensignal (PE), Kennungsimpuls (K) und eventuell der Impulspause (L) erzeugt wird.
  10. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich mit steigender Zahl der Zylinder die Signalbreite der Phasensignale (PE, P) verkleinert.
  11. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einer Brennkraftmaschine mit vier Zylindern die Signalbreite des dem Kennungssignal (K) zugeordneten Phasensignals (PE) etwa 90° und der übrigen Phasensignale (P) etwa 40° Kurbelwellenwinkel entspricht.
  12. Zündanlage nach einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, daß bei einer Brennkraftmaschine mit sechs Zylindern die Signalbreite des dem Kennungssignal (K) zugeordneten Phasensignals (PE) etwa 80° und der übrigen Phasensignale (PE) etwa 30° Kurbelwellenwinkel entspricht.
  13. Zündanlage nach einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, daß bei einer Brennkraftmaschine mit fünf Zylindern die Signalbreite des dem Kennungssignal (K) zugeordneten Phasensignals (PE) etwa 70° und der übrigen Phasensignale (P) etwa 40° Kurbelwellenwinkel entspricht.
  14. Zündanlage nach einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, daß bei einer Brennkraftmaschine mit acht Zylindern die Signalbreite des dem Kennungssignal (K) zugeordneten Phasensignals (PE) etwa 70° und der übrigen Phasensignale (P) etwa 30° Kurbelwellenwinkel entspricht.
  15. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Notbetrieb bei Ausfall des KW-Gebers durch die Vorderflanken der Phasensignale (PE, P) die Ladezeit für die Zündspule beginnt.
  16. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Notbetrieb durch die Rückflanke der Phasensignale (PE, P) die Zündung ausgelöst wird.
  17. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Notbetrieb bei kleinen Drehzahlen beginnend mit der Rückflanke der Phasensignale (PE,P) jeweils eine feste Ladezeit abhängig von der Batteriespannung für die Zündspule ausgegeben wird, an deren Ende die Zündung erfolgt.
  18. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Notbetrieb nach der mittels des Zyklussignals (Z) erfolgten Zylinderidentifizierung (Zylinder-1-Erkennung) vom Steuergerät der Brennkraftmaschine die Impulspause (L), die auf das Kennungssignal (K) folgt, ausgeblendet wird.
  19. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß oberhalb einer Drehzahl ab der ein sicheres Aufladen der Zündspule nicht mehr gewährleistet ist, eine Drehzahlbegrenzung durch Abschaltung der Einspritzung erfolgt.
  20. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei hohen Drehzahlen eine ausreichende Schließdauer der Zündspule erreicht wird durch Einschalten der Zündspule ab einer bestimmten Zeit nach der Rückflanke des dem vorhergehenden Zylinder zugeordnete Phasensignal, statt mit Vorderflanke des dem aktuellen Zylinders zugeordneten Phasensignal.
EP90124794A 1990-02-17 1990-12-19 Zündanlage für Brennkraftmaschinen Expired - Lifetime EP0443175B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4005123 1990-02-17
DE4005123A DE4005123A1 (de) 1990-02-17 1990-02-17 Zuendanlage fuer brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0443175A2 EP0443175A2 (de) 1991-08-28
EP0443175A3 EP0443175A3 (en) 1993-05-19
EP0443175B1 true EP0443175B1 (de) 1996-04-03

Family

ID=6400456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124794A Expired - Lifetime EP0443175B1 (de) 1990-02-17 1990-12-19 Zündanlage für Brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP0443175B1 (de)
JP (1) JPH04219468A (de)
DE (2) DE4005123A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1245012B (it) * 1991-01-29 1994-09-13 Weber Srl Sistema di identificazione delle fasi di un motore endotermico
DE4125677A1 (de) * 1991-08-02 1993-02-04 Audi Ag Notlauffaehige steuervorrichtung an einer brennkraftmaschine
DE4141714C2 (de) * 1991-12-18 2002-11-14 Bosch Gmbh Robert Steuersystem für eine Brennkraftmaschine
DE4229773C2 (de) * 1992-09-05 2000-07-27 Bosch Gmbh Robert Verfahren zur Zylindererkennung von Brennkraftmaschinen
DE4313331A1 (de) * 1993-04-23 1994-10-27 Bosch Gmbh Robert Verfahren zur Auslösung von zur Winkellage eines rotierenden Teils abhängigen Vorgängen
GB9309527D0 (en) * 1993-05-08 1993-06-23 Lucas Ind Plc Processing circuit
JP3325153B2 (ja) * 1995-04-17 2002-09-17 三菱電機株式会社 内燃機関制御装置
JP3325155B2 (ja) * 1995-04-21 2002-09-17 三菱電機株式会社 内燃機関制御装置
JP3325154B2 (ja) * 1995-04-21 2002-09-17 三菱電機株式会社 内燃機関制御装置
DE10228147B3 (de) * 2002-06-24 2004-01-22 Siemens Ag Verfahren zum Bestimmen der Start-Winkelposition einer Brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62651A (ja) * 1985-02-06 1987-01-06 Honda Motor Co Ltd 内燃エンジンの制御装置
DE3533529A1 (de) * 1985-09-20 1987-04-02 Audi Ag Verfahren zur zylindererkennung
DE3630271C2 (de) * 1986-09-05 1995-08-10 Bosch Gmbh Robert Vorrichtung zum Steuern einer Brennkraftmaschine
DE3634587A1 (de) * 1986-10-10 1988-04-14 Bosch Gmbh Robert Zuendsystem fuer verbrennungsmotoren

Also Published As

Publication number Publication date
DE59010259D1 (de) 1996-05-09
DE4005123A1 (de) 1991-08-22
JPH04219468A (ja) 1992-08-10
EP0443175A3 (en) 1993-05-19
EP0443175A2 (de) 1991-08-28

Similar Documents

Publication Publication Date Title
DE4141713C2 (de) Geberanordnung zur Zylindererkennung und zum Notlaufbetrieb bei einer Brennkraftmaschine mit n Zylindern
EP0643803B1 (de) Geberanordnung zur schnellen zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
DE4037546C2 (de) Zylinderidentifikationsvorrichtung
DE4440656B4 (de) Variable Nockenwelleneinstellvorrichtung
DE4141714C2 (de) Steuersystem für eine Brennkraftmaschine
DE4434833B4 (de) Einrichtung zur Erkennung des Rückdrehens eines rotierenden Teiles einer Brennkraftmaschine
EP0831224B1 (de) Geberanordnung zur schnellen Zylindererkennung bei einer Brennkraftmaschine
EP0862692A1 (de) Verfahren zur bestimmung der phasenlage bei einer 4-takt brennkraftmaschine mit ungerader zylinderzahl
DE2756279A1 (de) Elektronische zuendanlage
EP0443175B1 (de) Zündanlage für Brennkraftmaschinen
DE3312412C2 (de)
DE4031129C2 (de)
DE3520998A1 (de) Vorrichtung zum regeln einer brennkraftmaschine
DE4031128C2 (de) Verfahren zur Zylindererkennung in einer Mehrzylinder-Brennkraftmaschine
DE19737999A1 (de) Einrichtung zur Winkelerfassung und Winkelzuordnung
EP0638717A2 (de) Einrichtung zur Regelung der Kraftstoffeinspritzung und der Zündung bei einer Brennkraftmaschine
DE19962153A1 (de) Verfahren und Vorrichtung zur Erfassung der Winkellage rotierender Maschinenteile
DE2849473A1 (de) Einrichtung zur erzeugung eines fuer den bewegungsablauf der kurbelwelle einer mehrzylindrigen vier-takt-brennkraftmaschine charakteristischen ausgangssignals
DE3933147C2 (de)
DE4125677A1 (de) Notlauffaehige steuervorrichtung an einer brennkraftmaschine
DE4418578B4 (de) Einrichtung zur Erkennung der Phasenlage bei einer Brennkraftmaschine
WO1988002817A1 (en) Ignition and injection system for internal combustion engines
DE19820817C2 (de) Einrichtung zur Regelung einer mehrzylindrigen Brennkraftmaschine
DE4113249C2 (de) Motorsteuervorrichtung
DE2847522A1 (de) Induktiver geber und auswerteschaltung hierzu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19931028

17Q First examination report despatched

Effective date: 19950608

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59010259

Country of ref document: DE

Date of ref document: 19960509

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991229

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011212

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011219

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219