EP0441908B1 - Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres - Google Patents
Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres Download PDFInfo
- Publication number
- EP0441908B1 EP0441908B1 EP90910552A EP90910552A EP0441908B1 EP 0441908 B1 EP0441908 B1 EP 0441908B1 EP 90910552 A EP90910552 A EP 90910552A EP 90910552 A EP90910552 A EP 90910552A EP 0441908 B1 EP0441908 B1 EP 0441908B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- air
- throttle valve
- mass
- account
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 13
- 230000008569 process Effects 0.000 title claims abstract description 8
- 238000002347 injection Methods 0.000 claims abstract description 57
- 239000007924 injection Substances 0.000 claims abstract description 57
- 230000008859 change Effects 0.000 claims abstract description 25
- 230000004913 activation Effects 0.000 claims description 4
- 230000003111 delayed effect Effects 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims 5
- 238000001914 filtration Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 10
- 230000010354 integration Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002277 temperature effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001279 elastic incoherent neutron scattering Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/045—Detection of accelerating or decelerating state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D43/00—Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
Definitions
- the invention relates to a method for setting air and fuel quantities for a multi-cylinder internal combustion engine with as individual as possible injection for each cylinder and with an electronically controlled actuator for the air actuator. Part (see EP-A-142856).
- the air regulator is generally designed as a throttle valve, which is why in the following, for the sake of clarity, a throttle valve instead of one.
- Air plate is generally spoken. However, it is pointed out that the air plate can be of any design.
- a very precise individual metering of fuel quantities to individual cylinders is possible with sequential injection.
- An injection valve is assigned to each cylinder, which is controlled separately.
- the air quantities In addition to the fuel quantities, the air quantities must also be set.
- the amount of air is adjusted by directly adjusting the throttle valve by pressing the accelerator pedal.
- the accelerator pedal signal is converted into an actuating signal for an actuator for the throttle valve.
- the throttle valve is likewise adjusted directly by actuating the accelerator pedal, but the extent of the adjustment of the throttle valve depends not only on the accelerator pedal angle, but also on the current values of predetermined operating parameters.
- This method is based on the knowledge that it is unfavorable in an internal combustion engine with central injection Driving behavior leads if the throttle valve is adjusted during an intake stroke. Adjusting the accelerator pedal therefore does not immediately lead to an adjustment of the throttle valve, but after the change in the accelerator pedal position has been ascertained, the start of the immediately next intake stroke is waited in order to then use this to adjust the position of the throttle valve to the value specified by the accelerator pedal position taking into account the current operating parameters put.
- EP 0 281 152 A2 Another method in which the adjustment of an air actuator is delayed compared to the time when a request for more fuel occurs is known from EP 0 281 152 A2. It is a method for metering additional fuel masses to operate additional units, e.g. B. an air conditioner. When the air conditioner is turned on, more air and more fuel must be added to avoid a drop in engine speed when idling. A quantity of fuel increased by a fixed, predetermined value compared to the case without additional load is then first injected and only then is the idling bypass valve opened a little further. The clutch for the air conditioning system is only engaged when these measures increase the torque that can be output.
- additional units e.g. B. an air conditioner.
- EP-A 142 856 describes a so-called fuel-guided engine control system.
- a value for the amount of air to be supplied is selected from a map and the amount of fuel to be metered is calculated using this value and the speed.
- the position of the throttle valve is determined on the basis of the calculated quantity of fuel to be metered.
- a throttle valve change speed is calculated depending on the change speed of the accelerator pedal position, the speed and an additive correction. Notes on delayed activation of the air regulator for the synchronization of fuel and air metering are not described.
- US-A 4 711 218 describes measures for acceleration enrichment which are determined at low speeds depending on the unfiltered change in the throttle valve position, at higher speeds depending on the filtered change in the throttle valve position. A correction of the amount of fuel to be metered depending on the change in the throttle valve position is described, but measures regarding the air intervention and regarding the delayed activation of the air actuator are not described.
- the teaching according to the invention is based on the knowledge that all known methods without exception suffer from the fact that it is assumed that fuel masses to be drawn in in the future will be calculated with the current values of operating parameters, in particular with the current intake manifold pressure, instead of on the basis of those values, that are likely to be present at the point in time at which the previously injected fuel is drawn in.
- the invention is based on the knowledge that the intake manifold pressure does not change suddenly after an essentially sudden change in position of the throttle valve, but after a transition function, essentially a transition function of the first order, the time constant of which is generally dependent on the operating point. If this fact is taken into account when calculating the future fuel mass drawn in, the driving behavior and harmful gas behavior are significantly improved. At this point, a comparison is made with the document known from WO 88/06235 A1 already mentioned. In this known method, the fuel mass is below Consideration of the current intake manifold pressure is determined and the throttle valve is changed at the beginning of the intake stroke following a change in the pedal position. This procedure leads to two problems.
- the first is that the fuel mass that is drawn in during an intake stroke following a change in pedal position has already been injected before the change in pedal position. It is therefore a fuel mass that does not match the throttle valve position newly set at the start of the new intake stroke.
- the second problem is that a fuel mass that was calculated immediately after a pedal position change takes into account the new pedal position, but not the intake manifold pressure as it is when this fuel mass is finally injected.
- the accelerator pedal position can be converted into a throttle valve position in a conventional manner and the fuel mass can be changed in adaptation to operating parameters so that an essentially constant lambda value results.
- the procedure is preferably such that the desired fuel mass is directly predetermined by the accelerator pedal position.
- the throttle valve position then becomes more current, taking into account the current situation Values of operating parameters are adjusted so that a given lambda value is essentially retained.
- each position of the accelerator pedal corresponds to a certain torque, while in the aforementioned method the torque changes with the speed.
- the torque is determined by the accelerator pedal position, it is possible in a simple manner to take into account additional requirements with regard to torque processes. As already explained above, z. B.
- an accelerator pedal potentiometer 10 forms a voltage which is a measure of the accelerator pedal angle ⁇ .
- a throttle valve angle map 11 is controlled with the accelerator pedal angle signal. From this, throttle valve angles ⁇ ( ⁇ , n) can be read out in an addressable manner via values of the accelerator pedal angle and also the speed n of an internal combustion engine.
- the signal for the throttle valve angle on the one hand determines the voltage with which a throttle valve actuator 13 is to be actuated in order to achieve the desired throttle valve angle ⁇ , but on the other hand also the injection time TI.
- a map value TI_KF is first read from a map that can be addressed via values of the throttle valve angle and the speed n. After reading out the map value TI_KF, there follows the process step which brings about the decisive improvement compared to previously conventional processes. Namely, the injection time value read out from the injection time map 14 at a throttle valve angle ⁇ and the present speed n is not used directly, but is subjected to a first-order transition function in a filtering step 15, which has a time constant ⁇ , which depends on the throttle valve position and the speed depends.
- injection time value TI achieved up to that point is determined and subjected to the transition function with the current time constant ⁇ ( ⁇ , n), which may still depend on the sign of the throttle valve change.
- the filtering step 15 output injection time TI is the one with which an injection valve is actually controlled.
- the amount of fuel to be injected depends on the intake manifold pressure at the time of the intake stroke for which the amount of fuel is calculated.
- the intake manifold pressure in turn depends on the throttle valve angle, the speed and, which is crucial, on the time of changing the throttle valve position.
- Cylinder 1 draws in every fourth intake stroke.
- the accelerator pedal angle ⁇ is increased.
- the spraying of fuel for cylinder 1 has already started.
- the fuel mass to be injected was still calculated taking into account the old accelerator pedal angle, more precisely, taking into account the throttle valve angle assigned to the old pedal angle and thus the air mass per stroke assigned to this angle. Also at this point in time the fuel injection processes for other cylinders that have not yet drawn in, or have already been completed.
- the throttle valve position is adapted to the new accelerator pedal position and cylinder 3 is now the first cylinder to draw fuel at the new throttle valve position, with a quantity that was calculated for the first time for this new position.
- the throttle valve is only opened to its new value at the beginning of the intake stroke now under consideration, that is to say that the intake manifold pressure has not yet reached the end value for steady state with the new throttle valve position.
- the offset just discussed between the time the accelerator pedal is adjusted and the time the throttle valve is adjusted is calculated in an offset step 16.
- the offset time TV depends in particular on how long fuel has already been injected for this intake stroke before a specific intake stroke. In the example given above it is the time of three intake cycles. Only at the beginning of the sixth cycle can the throttle valve be adapted to the changed accelerator pedal position. If the throttle valve actuator 13 had no dead time, it would ideally be controlled at such an angle mark at which an inlet valve opens. However, since the throttle valve actuator 13 has a dead time of a few milliseconds, it must be controlled by the appropriate time in front of an angle mark of the type mentioned so that the start of a new throttle valve movement actually coincides with the start of an intake stroke.
- the offset period of three suction strokes mentioned in the above example is a relatively long period of the periods used in practice. It guarantees that all fuel can be sprayed out within a cycle time, even at the highest speed and maximum load.
- the offset period can decrease to the value zero, that is to say, in the case of sequential injection, injection occurs only when an inlet valve associated with an injection valve is opened and / or the speed and load are low.
- An offset occurs only in special cases, namely when the accelerator pedal is very close to the start of an intake stroke is adjusted by a period of time that is shorter than the dead time of the actuator. Under certain circumstances, the fuel quantity could then already be calculated for a new throttle valve position, but this can no longer be set because of the dead time.
- the throttle valve is then left in its old position and the fuel mass calculated for the old conditions is sprayed off.
- the actuator is actuated and the fuel mass for the next intake stroke is calculated taking into account the intake manifold pressure that arises with the new throttle valve position.
- a throttle valve does not change its position abruptly if the associated throttle valve member is actuated with a position-changing voltage. If the error caused by this behavior is to be avoided, the time constant ⁇ ( ⁇ , n) is determined in the filtering step 15 taking into account the throttle valve angle actually present at a particular point in time instead of on the basis of the desired throttle valve angle.
- ⁇ ⁇ , n
- To calculate the actual throttle valve angle can be used as a model, for. B. a delay element of the first order or a ramp with limitation can be used.
- FIG. 2 differs from all previously known methods not only by the filtering step 15, which is also used here, but also in that not a throttle valve angle ⁇ is calculated from the accelerator pedal angle ⁇ , but that directly desired amount of fuel is specified. This measure can also be used without filtering step 15.
- the specification of the fuel quantity corresponds to the specification of a torque. Each accelerator pedal position therefore essentially has a certain torque. However, if the throttle valve angle is determined by the accelerator pedal position, more and more fuel is injected with increasing speed, which increases the torque. An example of how the torque request can be implemented is given in FIG. 2.
- the output signal from the accelerator pedal potentiometer 10 is given to a characteristic table 17 which establishes a nonlinear relationship between the pedal angle and an injection time ratio TI / TI_MAX.
- the ratio indicates what percentage of the maximum possible amount of fuel is desired under the current operating conditions.
- the characteristic is non-linear, with increasing incline towards larger pedal angles in order to improve the starting behavior of a vehicle.
- the ratio number output by the characteristic curve table 17 is linked in a logical linking step 18 with torque specifications as entered by special functions. It is initially assumed that the ratio number output by the characteristic table 17 goes through the logical linking step 18 unchanged.
- To set the throttle valve in accordance with the ratio it is first passed to a modified throttle valve map 11. M, from which, depending on the values of the speed n and the ratio, a desired throttle valve angle ⁇ is read.
- the control voltage associated with this setpoint angle for the throttle valve actuator 13 is again not supplied directly to the latter, but rather via the offset step 16. Its function is identical to the function described above, which is why the setting of the throttle valve is not discussed in more detail here.
- An injection time TI_FP predetermined by the accelerator pedal is obtained from the injection time ratio TI / TI_MAX by multiplying the ratio in an multiplication step 19 by an injection time TI_MAX, which corresponds to the injection time which gives the highest torque at the present speed n.
- TI_MAX it is assumed that the internal combustion engine 12 has a maximum charge at a very specific speed n_O and thereby delivers its maximum torque and that fuel is injected while maintaining the injection time TI_MAX_O. The air charge is lower for all other speeds.
- a charge correction factor FK is therefore read out from a torque characteristic table 20 and has the value one at the speed n_O.
- the filling decreases with higher and also lower speeds, which is why the filling correction factor FK falls to values less than one.
- the injection time TI_FP assigned to the accelerator pedal position is calculated from this maximum injection time TI_MAX, which applies to a respective speed n, by multiplying it with the ratio number from the characteristic table 17.
- This predetermined injection time is subjected to the filtering step 15 explained in detail above, as a result of which the actual injection time TI is obtained.
- Ratios TI / TI_MAX of special functions are fed to this logic combination step 18.
- Is z. B. the air conditioner is switched on at idle, this means increased torque requirement.
- the idle charge control accordingly outputs a relatively high value for the desired ratio TI / TI_MAX.
- This ratio from the idle charge control is then in the logical link step 18 selected for maximum value selection.
- z. B. from a traction control system, a low ratio TI / TI_MAX is entered in order to prevent the drive wheels from spinning by providing a low torque, this value is passed through in the sense of a lowest value selection by the logic combination step 18. If the logical linking step 18 reaches several ratio numbers, it only allows one ratio in the sense of a priority selection.
- the importance of filtering step 15 has been pointed out several times, ie the importance of calculating a fuel mass drawn in in the future, taking into account the conditions expected for the future. 1 and 2, only the intake manifold pressure was taken into account as a measure of the cylinder charge (air mass per stroke) as a condition lying in the future. However, it is the case that the intake manifold pressure not only influences the air mass that can be drawn in, but also determines the behavior of the fuel wall film. If the pressure and the fuel mass flow increase, some of the injected fuel goes into the wall film, while conversely fuel is released from the wall film when the suction pressure drops. The injected fuel mass must be corrected accordingly in order to actually draw in the fuel mass that is required to set a specific lambda value with an air mass that is drawn in.
- FIG. 3 only the part of the block diagrams according to FIGS. 1 and 2 between the filtering step 15 and the output of the injection time TI to the internal combustion engine 12 is shown.
- An input injection time TI_EIN is supplied to the filtering step 15, be it the map injection time TI_KF according to FIG. 1 or the accelerator pedal injection time TI_FP according to FIG. 2.
- the filtering step 15 outputs an output injection time TI_AUS which does not yet correspond directly to the injection time TI. with which an injection valve in the internal combustion engine 12 is controlled. Rather, the output injection time TI-AUS is additively linked in a wall film correction step 20 with a wall film correction quantity K_WF, as a result of which the actual injection time TI is only formed.
- the wall film correction quantity K_WF is made up of two parts, namely a thermal correction quantity K_ ⁇ and a pressure correction quantity K_P.
- the current value for the thermal correction variable is calculated in a temperature effect correction step 21, while the value for the pressure correction variable is calculated in a pressure effect correction step 22.
- the values of the correction variables are calculated on the basis of a decaying function, the time constant for the temperature effect being slower than that for the pressure effect. Each time the input variable for the correction steps changes, the decaying behavior is recalculated.
- FIG. 4 is an illustration for explaining a correction method which can be used both in the method in accordance with FIG. 1 and in the method in accordance with FIG. 2.
- the methods according to FIGS. 3 and 4 can also be used together.
- the method according to FIG. 4 is used to take into account changes in the intake air mass compared to the value that applies under calibration conditions.
- the speed n and the injection time TI become in a fuel flow determination step 23 calculates the fuel flow ⁇ K.
- the value obtained is multiplied by the predetermined lambda value in a target air flow determination step 24. It is then known which air mass flow would have to be present in order to achieve the predetermined lambda value for the fuel flow set by the injections.
- the current value for the desired air flow ⁇ L_SOLL is subtracted in an air flow comparison step 25 from the current value of the actual air flow ⁇ L_IST as it is output by an air mass meter.
- the difference value is further processed in an integration step 26, in which integration is carried out around the value one.
- the integration value is the current value for an air mass correction variable K_ ⁇ L, with which the input value for the injection time TI_EINS explained with reference to FIG. 3 is linked multiplicatively in an air mass correction step 27. If the target and actual air flows continuously coincide with one another, the multiplicative air mass correction value has the value one.
- the method according to FIG. 5 is similar to that of FIG. 4, with an integration step 26 and an air mass correction step 27.
- the integration step 26 In the integration step 26, however, it is not an air flow difference signal but a lambda value difference signal processed.
- An actual lambda value LAMBDA_IST is measured in the exhaust gas of the internal combustion engine 12.
- the target lambda value LAMBDA_SOLL is subtracted from this value in a lambda value comparison step 28. If the difference deviates from zero, the integration step 26 is carried out, corresponding to the method according to FIG. 4.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Claims (8)
- Procédé pour régler la masse d'air et de carburant alimentant un moteur thermique à plusieurs cylindres à injection électronique et organes de réglage à commande électronique pour un moyen de réglage de l'air, procédé selon lequel- après une modification de la position de la pédale d'accélération, on commande un organe de réglage d'un moyen de réglage de l'air pour influencer celui-ci dans le sens d'une modification de réglage et,- on calcule de manière répétée des quantités de carburant à injecter en tenant compte des paramètres du moteur, ce calcul des quantités de carburant à injecter et leur injection se faisant chronologiquement avant leur aspiration,procédé caractérisé en ce que- les quantités ou masses de carburant pour chaque futur temps d'aspiration sont calculées en tenant compte de la masse d'air respective aspirée dans le futur temps d'aspiration lorsque le moyen de réglage de l'air aura alors sa position de réglage,- le réglage du moyen de réglage de l'air étant retardé dans le temps lorsqu'il y a une variation de la position de la pédale d'accélérateur, par rapport à cette variation pour que le réglage du moyen de réglage de l'air se fasse à un instant auquel sera aspirée la masse de carburant calculée sur la base du réglage du moyen de réglage de l'air.
- Procédé selon la revendication 1, caractérisé en ce que l'instant de la commande pour régler le moyen de réglage de l'air est choisi en tenant compte du temps mort du moyen de réglage, la commande du moyen de réglage étant avancée par rapport à l'aspiration de la masse de carburant, d'un temps égal à son temps mort.
- Procédé selon la revendication 1, caractérisé en ce que chaque masse d'air calculée pour un futur temps d'aspiration est calculée en tenant compte du comportement en film de paroi prévisible pour le temps d'aspiration futur.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que, par la position de la pédale d'accélération, on forme un signal de masse de carburant qui détermine directement la masse de carburant future, souhaitée.
- Procédé selon la revendication 4, caractérisé en ce que la position de la pédale d'accélération définit le rapport entre la masse de carburant effectivement à injecter et la masse de carburant maximale à injecter pour les conditions de fonctionnement existant à ce moment.
- Procédé selon la revendication 5, caractérisé en ce que la masse de carburant maximale à injecter découle d'une courbe caractéristique qui représente le remplissage maximum d'air en fonction de la vitesse de rotation instantanée.
- Procédé selon l'une des revendications 4 - 6, caractérisé en ce que les signaux de la masse d'air tels que fournis par des régulations de cas particuliers comme par exemple une régulation de remplissage de ralenti ou une régulation anti-patinage, sont combinés au signal de la masse de carburant obtenu à partir de la position de la pédale d'accélération.
- Procédé selon la revendication 7, caractérisé en ce que la combinaison se fait par une sélection logique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3930396 | 1989-09-12 | ||
DE3930396A DE3930396C2 (de) | 1989-09-12 | 1989-09-12 | Verfahren zum einstellen von luft- und kraftstoffmengen fuer eine mehrzylindrige brennkraftmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0441908A1 EP0441908A1 (fr) | 1991-08-21 |
EP0441908B1 true EP0441908B1 (fr) | 1994-01-19 |
Family
ID=6389237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90910552A Expired - Lifetime EP0441908B1 (fr) | 1989-09-12 | 1990-07-24 | Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres |
Country Status (10)
Country | Link |
---|---|
US (1) | US5095874A (fr) |
EP (1) | EP0441908B1 (fr) |
JP (1) | JP2877511B2 (fr) |
KR (1) | KR0151707B1 (fr) |
AU (1) | AU630994B2 (fr) |
BR (1) | BR9006916A (fr) |
DE (2) | DE3930396C2 (fr) |
ES (1) | ES2049478T3 (fr) |
RU (1) | RU2027051C1 (fr) |
WO (1) | WO1991004401A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10109395B4 (de) * | 2000-02-28 | 2011-04-07 | DENSO CORPORATION, Kariya-shi | Drehmomentanforderungs-basierte Motorregeltechnik, die ein konstantes Luft-/Kraftstoffverhältnis liefert |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3923479A1 (de) * | 1989-07-15 | 1991-01-24 | Bosch Gmbh Robert | Sequentielles kraftstoffeinspritzverfahren |
US5086744A (en) * | 1990-01-12 | 1992-02-11 | Mazda Motor Corporation | Fuel control system for internal combustion engine |
FR2672086B1 (fr) * | 1991-01-29 | 1995-02-03 | Siements Automotive Sa | Procede et dispositif de commande en boucle fermee de la puissance d'un moteur a combustion interne propulsant un vehicule automobile. |
JPH0565845A (ja) * | 1991-03-06 | 1993-03-19 | Hitachi Ltd | エンジン制御方法及びシステム |
JP2917600B2 (ja) * | 1991-07-31 | 1999-07-12 | トヨタ自動車株式会社 | 内燃機関の燃料噴射制御装置 |
DE4133268A1 (de) * | 1991-10-08 | 1993-04-15 | Bosch Gmbh Robert | Vorrichtung zur steuerung der antriebsleistung eines fahrzeuges |
EP0959236B1 (fr) * | 1992-07-03 | 2004-04-07 | Honda Giken Kogyo Kabushiki Kaisha | Système de commande de dosage du combustible et méthode d'évaluation du débit d'air par cylindre dans un moteur à combustion interne |
DE4321333A1 (de) * | 1993-06-26 | 1995-01-05 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs |
EP0724686B1 (fr) * | 1993-10-21 | 2001-04-04 | Orbital Engine Company (Australia) Pty. Ltd. | Regulation de l'alimentation en carburant d'un moteur |
DE19501299B4 (de) * | 1995-01-18 | 2006-04-13 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs |
DE19515855A1 (de) * | 1995-04-29 | 1996-10-31 | Volkswagen Ag | Verfahren zum Einstellen der Bewegung eines leistungsverändernden Regelorgans |
DE19537465B4 (de) * | 1995-10-07 | 2007-07-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE19612150A1 (de) * | 1996-03-27 | 1997-10-02 | Bosch Gmbh Robert | Steuereinrichtung für eine Benzin-Brennkraftmaschine mit Direkteinspritzung |
DE19616620A1 (de) * | 1996-04-25 | 1997-10-30 | Agentur Droege Gmbh | Regeleinrichtung für den ökonomischen Betrieb energieverbrauchender Fahrzeuge |
US6014955A (en) * | 1996-09-19 | 2000-01-18 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine using air-amount-first fuel-amount-second control method |
DE19728112A1 (de) * | 1997-07-02 | 1999-01-07 | Bosch Gmbh Robert | System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs |
DE19751887A1 (de) * | 1997-11-22 | 1999-07-29 | Bosch Gmbh Robert | Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs |
JP3341665B2 (ja) * | 1997-12-22 | 2002-11-05 | トヨタ自動車株式会社 | ディーゼルエンジンの過渡時噴射量制御装置 |
US6273060B1 (en) * | 2000-01-11 | 2001-08-14 | Ford Global Technologies, Inc. | Method for improved air-fuel ratio control |
DE10025128B4 (de) * | 2000-05-20 | 2005-11-17 | Bayerische Motoren Werke Ag | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine in einem Kraftfahrzeug |
DE10037569B4 (de) * | 2000-08-02 | 2014-02-13 | Robert Bosch Gmbh | Verfahren, Computerprogramm sowie Steuereinrichtung zur Ermittlung der Luftmasse, die einer Brennkraftmaschine über ein Ansaugrohr zugeführt wird |
DE10206030B4 (de) * | 2002-02-14 | 2005-11-24 | Bayerische Motoren Werke Ag | Verfahren zum Anpassen eines Einspritzparameters eines Verbrennungsmotors an instationäre bzw. dynamische Vorgänge |
US7412588B2 (en) | 2003-07-25 | 2008-08-12 | International Business Machines Corporation | Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus |
US7467614B2 (en) * | 2004-12-29 | 2008-12-23 | Honeywell International Inc. | Pedal position and/or pedal change rate for use in control of an engine |
US7389773B2 (en) | 2005-08-18 | 2008-06-24 | Honeywell International Inc. | Emissions sensors for fuel control in engines |
US8060290B2 (en) | 2008-07-17 | 2011-11-15 | Honeywell International Inc. | Configurable automotive controller |
US8620461B2 (en) | 2009-09-24 | 2013-12-31 | Honeywell International, Inc. | Method and system for updating tuning parameters of a controller |
ES2689729T3 (es) * | 2010-05-06 | 2018-11-15 | Fpt Motorenforschung Ag | Método y dispositivo para controlar un sensor de humedad en un motor de combustión, usando medición de oxígeno de otros sensores en el motor, tales como sensores de NOx, lambda y/o de oxígeno |
US8504175B2 (en) | 2010-06-02 | 2013-08-06 | Honeywell International Inc. | Using model predictive control to optimize variable trajectories and system control |
JP5362660B2 (ja) * | 2010-07-14 | 2013-12-11 | 本田技研工業株式会社 | 燃料噴射制御装置 |
DE102010045083A1 (de) | 2010-09-13 | 2012-03-15 | Volkswagen Ag | Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors |
DE102010064344A1 (de) | 2010-12-29 | 2012-07-05 | Volkswagen Ag | Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors |
US8977470B2 (en) * | 2011-09-13 | 2015-03-10 | Ford Global Technologies, Llc | Method and system for sampling intake manifold pressure |
US9677493B2 (en) | 2011-09-19 | 2017-06-13 | Honeywell Spol, S.R.O. | Coordinated engine and emissions control system |
US20130111905A1 (en) | 2011-11-04 | 2013-05-09 | Honeywell Spol. S.R.O. | Integrated optimization and control of an engine and aftertreatment system |
US9650934B2 (en) | 2011-11-04 | 2017-05-16 | Honeywell spol.s.r.o. | Engine and aftertreatment optimization system |
RU2540397C2 (ru) * | 2012-08-28 | 2015-02-10 | Дмитрий Владимирович Григоренко | Способ оптимизации работы двигателя внутреннего сгорания |
EP3051367B1 (fr) | 2015-01-28 | 2020-11-25 | Honeywell spol s.r.o. | Approche et système de manipulation de contraintes pour des perturbations mesurées avec une prévisualisation incertaine |
EP3056706A1 (fr) | 2015-02-16 | 2016-08-17 | Honeywell International Inc. | Approche de modélisation de système de post-traitement et d'identification de modèle |
EP3091212A1 (fr) | 2015-05-06 | 2016-11-09 | Honeywell International Inc. | Approche d'identification pour modèles de valeurs moyennes de moteurs à combustion interne |
EP3125052B1 (fr) | 2015-07-31 | 2020-09-02 | Garrett Transportation I Inc. | Résolveur de programme quadratique pour mpc utilisant une commande variable |
US10272779B2 (en) | 2015-08-05 | 2019-04-30 | Garrett Transportation I Inc. | System and approach for dynamic vehicle speed optimization |
US10415492B2 (en) | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10036338B2 (en) | 2016-04-26 | 2018-07-31 | Honeywell International Inc. | Condition-based powertrain control system |
US10124750B2 (en) | 2016-04-26 | 2018-11-13 | Honeywell International Inc. | Vehicle security module system |
WO2018101918A1 (fr) | 2016-11-29 | 2018-06-07 | Honeywell International Inc. | Capteur de flux inférentiel |
US11057213B2 (en) | 2017-10-13 | 2021-07-06 | Garrett Transportation I, Inc. | Authentication system for electronic control unit on a bus |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031780A (en) * | 1974-11-29 | 1977-06-28 | Chrysler Corporation | Coupling apparatus for full time four wheel drive |
JPS6024299B2 (ja) * | 1978-07-21 | 1985-06-12 | 株式会社日立製作所 | 最適燃料供給制御装置 |
US4237830A (en) * | 1978-10-18 | 1980-12-09 | General Motors Corporation | Vehicle engine air and fuel mixture controller with engine overrun control |
US4359993A (en) * | 1981-01-26 | 1982-11-23 | General Motors Corporation | Internal combustion engine transient fuel control apparatus |
DE3238190C2 (de) * | 1982-10-15 | 1996-02-22 | Bosch Gmbh Robert | Elektronisches System zum Steuern bzw. Regeln von Betriebskenngrößen einer Brennkraftmaschine |
JPS6040745A (ja) * | 1983-08-17 | 1985-03-04 | Nissan Motor Co Ltd | エンジンの燃料制御装置 |
KR890000500B1 (ko) * | 1983-11-21 | 1989-03-20 | 가부시기가이샤 히다찌세이사꾸쇼 | 내연기관의 공연비 제어장치 |
KR940001010B1 (ko) * | 1984-02-01 | 1994-02-08 | 가부시기가이샤 히다찌세이사꾸쇼 | 엔진의 연료분사 제어방법 |
JPS6183467A (ja) * | 1984-09-29 | 1986-04-28 | Mazda Motor Corp | エンジンの制御装置 |
JP2507315B2 (ja) * | 1986-03-26 | 1996-06-12 | 株式会社日立製作所 | 内燃機関制御装置 |
KR900000145B1 (ko) * | 1986-04-23 | 1990-01-20 | 미쓰비시전기 주식회사 | 내연기관의 연료제어장치 |
US4711218A (en) * | 1987-02-05 | 1987-12-08 | General Motors Corporation | Acceleration enrichment fuel control |
JPS63198742A (ja) * | 1987-02-12 | 1988-08-17 | Mitsubishi Electric Corp | エンジン制御装置 |
JPH0674760B2 (ja) * | 1987-02-12 | 1994-09-21 | 三菱電機株式会社 | エンジン制御装置 |
JPH0689684B2 (ja) * | 1987-03-06 | 1994-11-09 | 株式会社日立製作所 | エンジンの燃料供給制御装置 |
JP2810039B2 (ja) * | 1987-04-08 | 1998-10-15 | 株式会社日立製作所 | フィードフォワード型燃料供給方法 |
JPH01280645A (ja) * | 1988-04-30 | 1989-11-10 | Fuji Heavy Ind Ltd | エンジンの燃料噴射制御装置 |
JP2512787B2 (ja) * | 1988-07-29 | 1996-07-03 | 株式会社日立製作所 | 内燃機関のスロットル開度制御装置 |
JPH0266625A (ja) * | 1988-08-31 | 1990-03-06 | Mitsubishi Electric Corp | データ処理装置 |
-
1989
- 1989-09-12 DE DE3930396A patent/DE3930396C2/de not_active Expired - Lifetime
-
1990
- 1990-07-24 ES ES90910552T patent/ES2049478T3/es not_active Expired - Lifetime
- 1990-07-24 EP EP90910552A patent/EP0441908B1/fr not_active Expired - Lifetime
- 1990-07-24 BR BR909006916A patent/BR9006916A/pt not_active IP Right Cessation
- 1990-07-24 AU AU60376/90A patent/AU630994B2/en not_active Ceased
- 1990-07-24 WO PCT/DE1990/000560 patent/WO1991004401A1/fr active IP Right Grant
- 1990-07-24 KR KR1019910700474A patent/KR0151707B1/ko not_active IP Right Cessation
- 1990-07-24 JP JP2510251A patent/JP2877511B2/ja not_active Expired - Lifetime
- 1990-07-24 DE DE90910552T patent/DE59004343D1/de not_active Expired - Lifetime
- 1990-07-24 US US07/679,044 patent/US5095874A/en not_active Expired - Lifetime
-
1991
- 1991-05-08 RU SU4895603/06A patent/RU2027051C1/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10109395B4 (de) * | 2000-02-28 | 2011-04-07 | DENSO CORPORATION, Kariya-shi | Drehmomentanforderungs-basierte Motorregeltechnik, die ein konstantes Luft-/Kraftstoffverhältnis liefert |
Also Published As
Publication number | Publication date |
---|---|
RU2027051C1 (ru) | 1995-01-20 |
ES2049478T3 (es) | 1994-04-16 |
AU630994B2 (en) | 1992-11-12 |
KR920701644A (ko) | 1992-08-12 |
WO1991004401A1 (fr) | 1991-04-04 |
EP0441908A1 (fr) | 1991-08-21 |
JP2877511B2 (ja) | 1999-03-31 |
DE59004343D1 (de) | 1994-03-03 |
KR0151707B1 (ko) | 1998-10-01 |
US5095874A (en) | 1992-03-17 |
AU6037690A (en) | 1991-04-18 |
DE3930396A1 (de) | 1991-03-21 |
JPH04501904A (ja) | 1992-04-02 |
DE3930396C2 (de) | 1993-11-04 |
BR9006916A (pt) | 1991-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0441908B1 (fr) | Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres | |
DE3313038C2 (fr) | ||
DE19737375C2 (de) | Steuergerät für einen Motor mit innerer Verbrennung, Direkt-Einspritzung und Funkenzündung | |
EP0433632B1 (fr) | Méthode de commande de moteur à combustion interne sans papillon d'admission | |
DE3901109C2 (de) | Adaptive Regeleinrichtung für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine | |
EP0940571B1 (fr) | Procédé et dispositif pour contrôler l'injection de carburant | |
DE3636810A1 (de) | Kraftstoffeinspritzregelsystem fuer eine brennkraftmaschine | |
DE10157104A1 (de) | Verfahren und Vorrichtung zur Steuerung von Betriebsübergängen bei Brennkraftmaschinen | |
WO1995024550A1 (fr) | Procede et dispositif de commande de vehicules | |
DE4404668A1 (de) | Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine | |
DE19501299B4 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs | |
EP1129279B1 (fr) | Procede pour la determination de grandeurs reglantes pour la commande de moteurs a injection directe d'essence | |
DE3633509C2 (fr) | ||
EP1005609B1 (fr) | Procede permettant de commander le recyclage des gaz d'echappement d'un moteur a combustion interne | |
DE4120062A1 (de) | Brennkraftmaschine mit einem regelkreis fuer die anreicherung des luft-kraftstoffgemischs waehrend des beschleunigens | |
WO2009112108A1 (fr) | Procédé et dispositif d’exploitation d’un moteur à combustion interne comportant une conduite à débit massique | |
DE3048626C2 (fr) | ||
DE4417802A1 (de) | Motorleistung-Regeleinrichtung | |
DE4322270B4 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
EP1045966B1 (fr) | Procede et dispositif pour faire fonctionner et surveiller un moteur a combustion interne | |
DE102008041689B4 (de) | Verfahren und Motorsteuergerät zur Adaption von Verdampfungsparametern eines Kraftstoffs bei einem dualen Einspritzsystem | |
DE102007012340B3 (de) | Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät | |
DE3403392C2 (fr) | ||
DE19742987B4 (de) | Verfahren zur Steuerung der Abgasrückführung bei einer Brennkraftmaschine | |
EP0438433B1 (fr) | Procede et dispositif de regulation d'urgence de l'alimentation en carburant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901221 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
17Q | First examination report despatched |
Effective date: 19920221 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940125 |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59004343 Country of ref document: DE Date of ref document: 19940303 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2049478 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040713 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040726 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050726 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050724 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050726 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090720 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090918 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090727 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100724 |