EP0441908A1 - Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres. - Google Patents

Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres.

Info

Publication number
EP0441908A1
EP0441908A1 EP19900910552 EP90910552A EP0441908A1 EP 0441908 A1 EP0441908 A1 EP 0441908A1 EP 19900910552 EP19900910552 EP 19900910552 EP 90910552 A EP90910552 A EP 90910552A EP 0441908 A1 EP0441908 A1 EP 0441908A1
Authority
EP
European Patent Office
Prior art keywords
fuel
air
throttle valve
accelerator pedal
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19900910552
Other languages
German (de)
English (en)
Other versions
EP0441908B1 (fr
Inventor
Eberhard Schnaibel
Erich Schneider
Martin Klenk
Winfried Moser
Christian Klinke
Lutz Reuschenbach
Klaus Benninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0441908A1 publication Critical patent/EP0441908A1/fr
Application granted granted Critical
Publication of EP0441908B1 publication Critical patent/EP0441908B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Definitions

  • the invention relates to a method for setting air and fuel quantities for a multi-cylinder internal combustion engine with as individual an injection as possible for each cylinder and with an electronically controlled actuator for the air actuator.
  • the air regulator is generally designed as a throttle valve, which is why in the following, for the sake of clarity, a throttle valve instead of one.
  • Air actuator is generally spoken. However, it is pointed out that the air actuator can be of any design.
  • the air quantities must also be set.
  • the amount of air is set by the throttle valve being adjusted directly by actuating the accelerator pedal.
  • the throttle valve is also adjusted directly by actuating the accelerator pedal, but the extent of the adjustment of the throttle valve depends not only on the accelerator pedal angle, but also on the WO 88/06235 A1 has further proposed that an offset be additionally provided between the actuation of the accelerator pedal and the adjustment of the throttle valve. This method is based on the finding that a Internal combustion engine with central injection too Favorable driving behavior leads if the throttle valve is adjusted during an intake stroke.
  • Adjusting the accelerator pedal therefore does not immediately lead to an adjustment of the throttle valve, but after a determined change in the accelerator pedal position, the beginning of the next next intake stroke is waited for, in order to then adjust the throttle valve to that caused by the accelerator pedal position, taking into account the current position Operational parameters to set predetermined value.
  • EP 0 281 152 A2 Another method, in which the adjustment of an air actuator is delayed compared to the time when a request for more fuel occurs, is known from EP 0 281 152 A2. It is a method for metering additional fuel masses for operating additional units, e.g. B an air conditioner.
  • additional units e.g. B an air conditioner.
  • a fuel quantity which is increased by a fixed predetermined value compared to the case without additional load is first injected, and only then is the idle bypass valve 1 opened a little further.
  • the clutch for the air conditioning system is only engaged when these measures increase the torque that can be output.
  • the teaching according to the invention is based on the knowledge that all known methods without exception suffer from the fact that it is assumed that fuel masses to be drawn in in the future will be calculated with the current values of operating parameters, in particular with the current intake manifold pressure, instead of on Basis of those values that are likely to be available at the time at which the previously injected fuel is drawn in.
  • the invention is based on the knowledge that the intake manifold pressure does not change suddenly after an essentially sudden change in position of the throttle valve, but after a transition function, essentially a first-order transition function, the time constant of which is generally dependent on the operating point. If this fact is taken into account when calculating the fuel mass drawn in in the future, the result is a considerably improved driving and polluting gas behavior. At this point, a comparison is made with the document known from WO 88/06235 A1 already mentioned. In this known method, the fuel mass is the current intake manifold pressure is determined and the throttle valve is changed at the start of the intake stroke following a change in the pedal position. This procedure for two problems at the same time.
  • the first is that the fuel mass which is drawn in during an intake stroke following a change in the pedal position has already been injected before the change in the pedal position. It is therefore a fuel mass that does not match the newly set throttle valve position at the start of the new intake.
  • the second problem is that a fuel mass that was calculated directly after a change in the pedal position already takes into account the new pedal position, but not yet the intake manifold pressure as it exists when this fuel mass is finally injected.
  • the accelerator pedal position can be converted into a throttle valve position in a conventional manner and the fuel mass can be changed in adaptation to operating parameters so that an essentially constant lambda value results.
  • the procedure is preferably such that the desired fuel mass is directly predetermined by the accelerator pedal position.
  • the throttle valve position is then taken into account
  • the current values of operating parameters are adjusted so that a given load value is essentially retained.
  • a certain torque corresponds to each position of the accelerator pedal, while in the aforementioned method the torque changes with the speed.
  • the torque is determined by the accelerator pedal position, it is possible in a simple manner to take into account additional requirements with regard to torque processes. As already explained above, z. B.
  • FIG. 1 shows a block diagram of a method for calculating fuel masses to be drawn in in the future when the desired throttle valve angle is specified
  • FIG. 2 block diagram corresponding to that of Figure 1, but with ' specification of the desired fuel mass.
  • FIG. 3 shows a block diagram of a partial method in which the wall film behavior is also taken into account when calculating future fuel masses to be drawn in;
  • FIG. 4 shows a block diagram of a partial method according to which air density changes are adapted for the calculation of future inducted fuel masses; and 5 block diagram of a partial method according to which a load control is included in the calculation process for fuel quantities to be drawn in in the future.
  • a voltage is generated by an accelerator pedal potentiometer 10, which is a measure of the accelerator pedal angle.
  • a throttle valve angle map 11 is controlled with the accelerator pedal angle signal. From this, 12 throttle valve angles ⁇ (n) can be read out in an addressable manner via values of the accelerator pedal angle and also the speed n of an internal combustion engine.
  • the signal for the throttle valve angle on the one hand determines the voltage with which a throttle valve actuator 13 is to be actuated in order to achieve the desired throttle valve angle ⁇ * -, but on the other hand also the injection time T1.
  • a map value TI_KF is first read from a map that can be addressed via values of the throttle valve angle and the speed n. After reading out the map value TI_KF, there follows the process step which brings about the decisive improvement compared to previously conventional processes. It is namely the angle to a throttle valve **. and the currently existing speed n ' injection time value read out from the injection time map 14 is not used directly, but is subjected in a filtering step 15 to a first order transition function which has a time constant which depends on the throttle valve position and the Speed depends.
  • injection time t ⁇ value TI achieved up to that point is determined and subjected to the transition function with the current time constant r (o ⁇ , n), which may still be depends on the sign of the throttle clap change.
  • the filtering step 15 output injection time TI is the one with which an injection valve is actually controlled.
  • the amount of fuel to be injected depends on the intake manifold pressure at the time of the intake stroke for which the amount of fuel is calculated.
  • the intake manifold pressure in turn depends on the throttle valve angle, the speed and, which is crucial, on the time at which the throttle valve position was changed.
  • Cylinder 1 draws in every fourth intake stroke.
  • three intake cycles already begin before the intake cycle of this cylinder There are now three intake cycles before the intake cycle for cylinder 1, the accelerator pedal angle 3 is increased.
  • the fuel mass to be injected was still calculated taking into account the old accelerator pedal angle, more precisely, taking into account the throttle valve angle assigned to the old pedal angle and thus the air mass per stroke assigned to this angle. Also at this time- point, the fuel injection processes for other cylinders that have not yet taken in, are in progress or have already been completed.
  • the throttle valve angle OL is immediately increased to the value read out from the throttle valve angle map 11, it would come to an end in all cylinders for which fuel was already injected starting from the old air flow conditions. With the adjustment of the throttle valve, it is therefore waited until there is an amount of fuel for intake that has already been calculated taking into account the new throttle valve angle.
  • the fuel quantity for cylinder 3 can already be calculated taking into account the new throttle valve position, which, however, has not yet been set. This amount of fuel is also injected immediately.
  • the throttle valve position is adapted to the new accelerator pedal position and cylinder 3 is now the first cylinder to draw fuel at the new throttle valve position, with a quantity that was calculated for the first time for this new position .
  • the throttle valve is opened to its new value only at the beginning of the intake stroke under consideration, that is to say that the intake manifold pressure has not yet reached the final value for the stationary state in the new throttle valve position.
  • the offset just discussed between the time the accelerator pedal is adjusted and the time the throttle valve is adjusted is calculated in an offset step 16.
  • the offset time TV depends in particular on how long fuel has already been injected for this intake stroke before a specific intake stroke. With the above given game it is the time of three intake cycles. Only at the beginning of the sixth cycle can the throttle valve be adapted to the changed accelerator pedal position. If the throttle valve actuator 13 had no dead time, it would ideally be controlled at such an angle mark at which an inlet valve opens. However, since the throttle valve actuator 13 has a dead time of a few milliseconds, it must be controlled by the appropriate time in front of an angle mark of the type mentioned so that the start of a new throttle valve movement actually coincides with the start of an intake stroke.
  • the offset period of three suction cycles mentioned in the above example is a relatively long period of the periods which are used in practice. It guarantees that all fuel can also be sprayed out within a cycle time at the highest speed and maximum load.
  • the offset time span can decrease to the value zero, namely if, in the case of sequential injection, injection takes place at the same time as the opening of an inlet valve associated with an injection valve and / or the rotational speed and the reading are low.
  • the fuel quantity could then already be calculated for a new throttle valve position, but this can no longer be set because of the dead time.
  • the throttle valve is then left in its old position and the fuel mass calculated for the old conditions is injected.
  • the actuator is actuated and the fuel mass for the next intake stroke is calculated taking into account the intake manifold pressure which arises with the new throttle valve position.
  • a throttle valve does not change its position abruptly if the associated throttle valve actuator is actuated with a position-changing voltage. If the sensor caused by this behavior is to be avoided, the time constant f (# -, n) in the filtering step 15 is determined taking into account the throttle valve angle actually present at a particular point in time instead of starting from the desired throttle valve angle .
  • To calculate the actual throttle valve angle can be used as a model, for. B. a delay element of the first order or a ramp with limitation can be used.
  • the exemplary embodiment according to FIG. 2 differs from all previously known methods not only by the filtering step 15, which is also used here, but also in that a throttle valve angle c ⁇ is not calculated from the accelerator pedal angle / 3, but that the desired amount of fuel is specified immediately. This measure can also be used without the filtering step 15.
  • the specification of the fuel quantity corresponds to the specification of a torque. Each accelerator pedal position therefore essentially has a certain torque. If, on the other hand, the throttle valve angle is determined by the accelerator pedal position, more and more fuel is injected with increasing speed, which increases the torque.
  • An example of how the torque request can be implemented is given in FIG. 2.
  • the output signal from the driving pedal potentiometer 10 is given to a characteristic table 17 which establishes a non-linear relationship between the pedal angle and an injection time ratio TI / TI_MAX.
  • the ratio indicates what percentage of the maximum possible amount of fuel is desired under the operating conditions.
  • the characteristic curve is non-linear, with increasing slope towards larger pedal angles in order to improve the driveability of a vehicle.
  • the ratio number output by the characteristic curve table 17 is linked in a logical linking step 18 with the torque specifications as entered by special functions. It is initially assumed that the ratio number given by the Ken.nl inientable le 17 goes through the logical linking step 18 unchanged.
  • To set the throttle valve in accordance with the ratio number it is first given to a modified throttle valve map 11. M, from which, depending on the values of the speed n and the ratio, a desired throttle valve angle ⁇ is read out.
  • the control voltage associated with this setpoint angle for the throttle valve actuator 13 is again not supplied directly to the latter, but rather via the offset step 16. Its function is with the . Function described above is identical, which is why the setting of the throttle valve is not discussed in more detail here.
  • An injection time TI_FP predetermined by the accelerator pedal is obtained from the injection time ratio TI / TI_MAX by multiplying the ratio in a multiplication step 19 by an injection time TI_MAX, which corresponds to the injection time n at the present speed n gives the highest torque.
  • TI_MAX it is assumed that the internal combustion engine 12 has a maximum charge at a very specific speed n_0 and thereby delivers its maximum torque and that fuel is injected while keeping the injection time TI_MAX_0. The air charge is lower for all other speeds.
  • a filling correction factor FK is therefore read out from a torque characteristic table 20 and has the value one at the speed n_0.
  • the filling decreases with higher and also lower speeds, which is why the filling correction factor FK falls to values less than one.
  • the injection time TI_FP assigned to the accelerator pedal position is calculated from this maximum injection time TI_MAX, which applies to a respective speed n, by multiplicative linking with the ratio number from the characteristic table 17.
  • This predetermined injection time is subjected to the filtering step 15 explained in detail above, as a result of which the actual injection time TI is obtained.
  • Ratios TI / TI_MAX of special functions are fed to this logic combination step 18.
  • Is z. B. the air conditioner is switched on at idle, this means increased torque requirement.
  • the idle charge control accordingly outputs a relatively high value for the desired ratio TI / TI_MAX.
  • This ratio number from the idle charge control is then shown in the logical combination step 18 selected for maximum selection.
  • z. B. from a traction control system ago a low ratio TI / TI_MAX entered in order to prevent spinning of the drive wheels by providing a low torque, this value is passed in the sense of a low value selection by the logic logic step 18. If there are several ratio predefined values at the logical linking step 18, he only leaves. a ratio in terms of priority selection.
  • the injected fuel mass must be corrected accordingly in order to actually draw in the fuel mass that is required to set a certain lambda value with an air mass that is drawn in.
  • FIG. 3 only the part of the block diagrams according to FIGS. 1 and 2 between the filtering step 15 and the output of the injection time TI to the internal combustion engine 12 is shown.
  • An input injection time TI_EIN is supplied to the filtering step 15, be it the map injection time TI_KF according to FIG. 1 or the accelerator pedal injection time TI_FP according to FIG. 2.
  • the filtering step 15 outputs an output injection time TI_AUS that is not yet immediate corresponds to the injection time TI with which an injection valve in the internal combustion engine 12 is controlled.
  • the output injection time TI-OUT is additively linked in a wall film correction step 20 with a wall film correction quantity K_WF, as a result of which the actual injection time TI is formed.
  • the wall film correction variable K_WF is composed of two parts, namely a thermal correction variable K_ * ⁇ and a pressure correction variable K_P.
  • the current value for the thermal correction variable is calculated in a temperature effect correction step 21, while the value for the pressure correction variable is calculated in a pressure effect correction step 22.
  • the values of the correction variables are calculated on the basis of a decaying function, the time constant for the temperature effect being slower than that for the pressure effect. The decaying behavior is recalculated with every change in the input variable for the correction steps.
  • FIG. 4 like FIG. 3, is an illustration for explaining a correction method which can be used both in the method according to FIG. 1 and in the method according to FIG. 2.
  • the methods according to FIGS. 3 and 4 can also be used together.
  • the method according to FIG. 4 serves to take into account changes in the intake air mass compared to the value that applies under calibration conditions.
  • the speed n and the injection time TI become in a fuel flow determination step 23 calculates the fuel flow m K.
  • the value obtained is multiplied in a target air flow determination step 24 by the predetermined lambda value. It is then known which air mass flow would have to be present in order to achieve the predetermined load value with the fuel flow set by the injections.
  • the current value for the target air flow m L_S0 is subtracted in an air flow comparison step 25 from the current value of the actual air flow L_IST as it is output by an air mass meter.
  • the difference value is further processed in an integration step 26, in which integration is carried out around the value one.
  • the integration value is the current value for an air assay correction variable K_ ⁇ f ⁇ L, with which the input value for the injection time TI_EINS explained with reference to FIG. 3 is multiplicatively linked in an air mass correction step 27. If the target and actual air flows continuously match, the multiplicative air mass correction value has the value one.
  • FIG. 5 is similar to that of FIG. 4, with an integration step 26 and an air mass correction step 27.
  • the integration step 26 is not an air flow difference signal, but a lambda value difference signal. Signal processed.
  • An actual lambda value LAMBDA_IST is measured in the exhaust gas of the internal combustion engine 12.
  • the target lambda value LAMBDA_SOLL is subtracted from this value in a lambda value comparison step 28. If the difference deviates from zero, the integration step 26 is carried out, corresponding to the method according to FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Dans le procédé décrit, qui est caractérisé par une injection aussi individualisée que possible dans chaque cylindre, la quantité de carburant pour chaque processus d'injection est calculée en fonction de la pression d'aspiration problablement présente pendant le temps d'ouverture de la soupape d'admission. Après modification de position de la pédale, le papillon de l'accélérateur est déplacé seulement lorsque les quantités de carburant réquises pour la nouvelle position du papillon de l'accélérateur ont été calculées et ont pratiquement été injectées. En faisant en sorte que les quantités de carburant à injecter sont calculées non pas en fonction de l'écoulement actuel des mases d'air mais en fonction de la pression dans le tuyau d'admission applicable au moment de l'aspiration, et en faisant en sorte qu'une modification de l'actionnement du papillon, qui pourrait conduire à un changement de pression dans le tuyau d'admission qui ne serait pas inclus dans le calcul des quantités à injecter, n'est autorisée qu'après un nouveau calcul, on obtient, même dans des conditions de moteur instables, un rapport optimal entre la masse de carburant et la masse d'air à chaque remplissage, afin d'obtenir une valeur prédéterminée du rapport air/carburant. En plus de la pression d'aspiration future, le calcul des quantités de carburant à injecter tient compte également de la quantité de carburant transformée en couche de paroi ou liberée par celle-ci.
EP90910552A 1989-09-12 1990-07-24 Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres Expired - Lifetime EP0441908B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3930396A DE3930396C2 (de) 1989-09-12 1989-09-12 Verfahren zum einstellen von luft- und kraftstoffmengen fuer eine mehrzylindrige brennkraftmaschine
DE3930396 1989-09-12

Publications (2)

Publication Number Publication Date
EP0441908A1 true EP0441908A1 (fr) 1991-08-21
EP0441908B1 EP0441908B1 (fr) 1994-01-19

Family

ID=6389237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90910552A Expired - Lifetime EP0441908B1 (fr) 1989-09-12 1990-07-24 Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres

Country Status (10)

Country Link
US (1) US5095874A (fr)
EP (1) EP0441908B1 (fr)
JP (1) JP2877511B2 (fr)
KR (1) KR0151707B1 (fr)
AU (1) AU630994B2 (fr)
BR (1) BR9006916A (fr)
DE (2) DE3930396C2 (fr)
ES (1) ES2049478T3 (fr)
RU (1) RU2027051C1 (fr)
WO (1) WO1991004401A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3923479A1 (de) * 1989-07-15 1991-01-24 Bosch Gmbh Robert Sequentielles kraftstoffeinspritzverfahren
US5086744A (en) * 1990-01-12 1992-02-11 Mazda Motor Corporation Fuel control system for internal combustion engine
FR2672086B1 (fr) * 1991-01-29 1995-02-03 Siements Automotive Sa Procede et dispositif de commande en boucle fermee de la puissance d'un moteur a combustion interne propulsant un vehicule automobile.
JPH0565845A (ja) * 1991-03-06 1993-03-19 Hitachi Ltd エンジン制御方法及びシステム
JP2917600B2 (ja) * 1991-07-31 1999-07-12 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
DE4133268A1 (de) * 1991-10-08 1993-04-15 Bosch Gmbh Robert Vorrichtung zur steuerung der antriebsleistung eines fahrzeuges
EP0959236B1 (fr) * 1992-07-03 2004-04-07 Honda Giken Kogyo Kabushiki Kaisha Système de commande de dosage du combustible et méthode d'évaluation du débit d'air par cylindre dans un moteur à combustion interne
DE4321333A1 (de) * 1993-06-26 1995-01-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
BR9407872A (pt) * 1993-10-21 1996-10-29 Orbital Eng Pty Controle da taxa de abastecimento de um motor
DE19501299B4 (de) * 1995-01-18 2006-04-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs
DE19515855A1 (de) * 1995-04-29 1996-10-31 Volkswagen Ag Verfahren zum Einstellen der Bewegung eines leistungsverändernden Regelorgans
DE19537465B4 (de) * 1995-10-07 2007-07-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19612150A1 (de) * 1996-03-27 1997-10-02 Bosch Gmbh Robert Steuereinrichtung für eine Benzin-Brennkraftmaschine mit Direkteinspritzung
DE19616620A1 (de) * 1996-04-25 1997-10-30 Agentur Droege Gmbh Regeleinrichtung für den ökonomischen Betrieb energieverbrauchender Fahrzeuge
US6014955A (en) * 1996-09-19 2000-01-18 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine using air-amount-first fuel-amount-second control method
DE19728112A1 (de) * 1997-07-02 1999-01-07 Bosch Gmbh Robert System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19750496A1 (de) * 1997-11-14 1999-05-20 Bosch Gmbh Robert Verfahren zur Bestimmung der von einer Brennkraftmaschine angesaugten Luft und Sensor für eine Brennkraftmaschine
DE19751887A1 (de) * 1997-11-22 1999-07-29 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP3341665B2 (ja) * 1997-12-22 2002-11-05 トヨタ自動車株式会社 ディーゼルエンジンの過渡時噴射量制御装置
US6273060B1 (en) * 2000-01-11 2001-08-14 Ford Global Technologies, Inc. Method for improved air-fuel ratio control
JP4378665B2 (ja) * 2000-02-28 2009-12-09 株式会社デンソー 内燃機関の制御装置及び制御方法
DE10017543A1 (de) * 2000-04-08 2001-10-11 Bosch Gmbh Robert Verfahren zur Fehlererkennung und Fehlerheilung
DE10025128B4 (de) * 2000-05-20 2005-11-17 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine in einem Kraftfahrzeug
DE10037569B4 (de) * 2000-08-02 2014-02-13 Robert Bosch Gmbh Verfahren, Computerprogramm sowie Steuereinrichtung zur Ermittlung der Luftmasse, die einer Brennkraftmaschine über ein Ansaugrohr zugeführt wird
DE10206030B4 (de) * 2002-02-14 2005-11-24 Bayerische Motoren Werke Ag Verfahren zum Anpassen eines Einspritzparameters eines Verbrennungsmotors an instationäre bzw. dynamische Vorgänge
US7412588B2 (en) 2003-07-25 2008-08-12 International Business Machines Corporation Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus
JP4364777B2 (ja) * 2004-12-02 2009-11-18 本田技研工業株式会社 内燃機関の空燃比制御装置
US7467614B2 (en) 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine
US7389773B2 (en) 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
US8620461B2 (en) 2009-09-24 2013-12-31 Honeywell International, Inc. Method and system for updating tuning parameters of a controller
ES2689729T3 (es) * 2010-05-06 2018-11-15 Fpt Motorenforschung Ag Método y dispositivo para controlar un sensor de humedad en un motor de combustión, usando medición de oxígeno de otros sensores en el motor, tales como sensores de NOx, lambda y/o de oxígeno
US8504175B2 (en) 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
JP5362660B2 (ja) * 2010-07-14 2013-12-11 本田技研工業株式会社 燃料噴射制御装置
DE102010045083A1 (de) 2010-09-13 2012-03-15 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
DE102010064344A1 (de) 2010-12-29 2012-07-05 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
US8977470B2 (en) * 2011-09-13 2015-03-10 Ford Global Technologies, Llc Method and system for sampling intake manifold pressure
US9677493B2 (en) 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
US20130111905A1 (en) 2011-11-04 2013-05-09 Honeywell Spol. S.R.O. Integrated optimization and control of an engine and aftertreatment system
US9650934B2 (en) 2011-11-04 2017-05-16 Honeywell spol.s.r.o. Engine and aftertreatment optimization system
RU2540397C2 (ru) * 2012-08-28 2015-02-10 Дмитрий Владимирович Григоренко Способ оптимизации работы двигателя внутреннего сгорания
EP3051367B1 (fr) 2015-01-28 2020-11-25 Honeywell spol s.r.o. Approche et système de manipulation de contraintes pour des perturbations mesurées avec une prévisualisation incertaine
EP3056706A1 (fr) 2015-02-16 2016-08-17 Honeywell International Inc. Approche de modélisation de système de post-traitement et d'identification de modèle
EP3091212A1 (fr) 2015-05-06 2016-11-09 Honeywell International Inc. Approche d'identification pour modèles de valeurs moyennes de moteurs à combustion interne
EP3734375B1 (fr) 2015-07-31 2023-04-05 Garrett Transportation I Inc. Résolveur de programme quadratique pour mpc utilisant une commande variable
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
EP3548729B1 (fr) 2016-11-29 2023-02-22 Garrett Transportation I Inc. Capteur de flux inférentiel
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031780A (en) * 1974-11-29 1977-06-28 Chrysler Corporation Coupling apparatus for full time four wheel drive
JPS6024299B2 (ja) * 1978-07-21 1985-06-12 株式会社日立製作所 最適燃料供給制御装置
US4237830A (en) * 1978-10-18 1980-12-09 General Motors Corporation Vehicle engine air and fuel mixture controller with engine overrun control
US4359993A (en) * 1981-01-26 1982-11-23 General Motors Corporation Internal combustion engine transient fuel control apparatus
DE3238190C2 (de) * 1982-10-15 1996-02-22 Bosch Gmbh Robert Elektronisches System zum Steuern bzw. Regeln von Betriebskenngrößen einer Brennkraftmaschine
JPS6040745A (ja) * 1983-08-17 1985-03-04 Nissan Motor Co Ltd エンジンの燃料制御装置
KR890000500B1 (ko) * 1983-11-21 1989-03-20 가부시기가이샤 히다찌세이사꾸쇼 내연기관의 공연비 제어장치
KR940001010B1 (ko) * 1984-02-01 1994-02-08 가부시기가이샤 히다찌세이사꾸쇼 엔진의 연료분사 제어방법
JPS6183467A (ja) * 1984-09-29 1986-04-28 Mazda Motor Corp エンジンの制御装置
JP2507315B2 (ja) * 1986-03-26 1996-06-12 株式会社日立製作所 内燃機関制御装置
KR900000145B1 (ko) * 1986-04-23 1990-01-20 미쓰비시전기 주식회사 내연기관의 연료제어장치
US4711218A (en) * 1987-02-05 1987-12-08 General Motors Corporation Acceleration enrichment fuel control
JPS63198742A (ja) * 1987-02-12 1988-08-17 Mitsubishi Electric Corp エンジン制御装置
JPH0674760B2 (ja) * 1987-02-12 1994-09-21 三菱電機株式会社 エンジン制御装置
JPH0689684B2 (ja) * 1987-03-06 1994-11-09 株式会社日立製作所 エンジンの燃料供給制御装置
JP2810039B2 (ja) * 1987-04-08 1998-10-15 株式会社日立製作所 フィードフォワード型燃料供給方法
JPH01280645A (ja) * 1988-04-30 1989-11-10 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
JP2512787B2 (ja) * 1988-07-29 1996-07-03 株式会社日立製作所 内燃機関のスロットル開度制御装置
JPH0266625A (ja) * 1988-08-31 1990-03-06 Mitsubishi Electric Corp データ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9104401A1 *

Also Published As

Publication number Publication date
US5095874A (en) 1992-03-17
DE59004343D1 (de) 1994-03-03
JPH04501904A (ja) 1992-04-02
JP2877511B2 (ja) 1999-03-31
ES2049478T3 (es) 1994-04-16
RU2027051C1 (ru) 1995-01-20
BR9006916A (pt) 1991-11-26
KR920701644A (ko) 1992-08-12
AU6037690A (en) 1991-04-18
EP0441908B1 (fr) 1994-01-19
DE3930396C2 (de) 1993-11-04
KR0151707B1 (ko) 1998-10-01
DE3930396A1 (de) 1991-03-21
AU630994B2 (en) 1992-11-12
WO1991004401A1 (fr) 1991-04-04

Similar Documents

Publication Publication Date Title
EP0441908B1 (fr) Procede de reglage des quantites d'air et de carburant dans un moteur a combustion interne a plusieurs cylindres
DE19737375C2 (de) Steuergerät für einen Motor mit innerer Verbrennung, Direkt-Einspritzung und Funkenzündung
DE3636810A1 (de) Kraftstoffeinspritzregelsystem fuer eine brennkraftmaschine
DE102005018599A1 (de) Vorrichtung und Verfahren zum Steuern der Kraftstoffeinspritzung in einem Verbrennungsmotor
EP1203145B1 (fr) Procede pour faire fonctionner un moteur a combustion interne
DE10157104A1 (de) Verfahren und Vorrichtung zur Steuerung von Betriebsübergängen bei Brennkraftmaschinen
DE102015119925A1 (de) Verfahren und Systeme zum Lernen von Variabilität einer Direkteinspritzdüse
DE19734227C2 (de) Steuergerät für einen Verbrennungsmotor
EP1129279B1 (fr) Procede pour la determination de grandeurs reglantes pour la commande de moteurs a injection directe d'essence
DE10239397B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10137851B4 (de) Kraftstoffeinspritzregelsystem für einen direkt einspritzenden Motor
DE19612453C2 (de) Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse
EP0262351B1 (fr) Moteur à combustion avec au moins deux soupapes d'admission par cylindre
DE19780910C2 (de) Regeleinheit für eine Verbrennungskraftmaschine mit Zylindereinspritzung
DE4417802A1 (de) Motorleistung-Regeleinrichtung
EP2262995A1 (fr) Procédé et dispositif d exploitation d un moteur à combustion interne comportant une conduite à débit massique
DE19522692C2 (de) Steuervorrichtung und -verfahren für eine Verbrennungskraftmaschine
DE4239842A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4036602A1 (de) Mehrzylinderbrennkraftmaschine mit einzelnen oeffnungsdrosseln stromauf von einlassventilen
DE102008041689B4 (de) Verfahren und Motorsteuergerät zur Adaption von Verdampfungsparametern eines Kraftstoffs bei einem dualen Einspritzsystem
DE10156409B4 (de) Brennkraftmaschine und ein Verfahren zur Verbesserung der Laufruhe mehrzylindriger Brennkraftmaschinen
DE10111260A1 (de) Verfahren und Vorrichtung zur Ermittlung von Einspritzventilzeitgaben und Füllungsvorgaben bei einer Brennkraftmaschine
DE3403392C2 (fr)
DE102009008816B4 (de) Verfahren zum Starten einer Brennkraftmaschine
DE3991570C2 (de) Verfahren zur Steuerung der Kraftstoffzufuhr bei Beschleunigung einer Brennkraftmaschine mit elektronischer Einspritzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940125

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59004343

Country of ref document: DE

Date of ref document: 19940303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049478

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040713

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040726

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050726

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050724

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090727

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100724