EP0435029A2 - Datenträger mit einem Flüssigkristall-Sicherheitselement - Google Patents

Datenträger mit einem Flüssigkristall-Sicherheitselement Download PDF

Info

Publication number
EP0435029A2
EP0435029A2 EP90123341A EP90123341A EP0435029A2 EP 0435029 A2 EP0435029 A2 EP 0435029A2 EP 90123341 A EP90123341 A EP 90123341A EP 90123341 A EP90123341 A EP 90123341A EP 0435029 A2 EP0435029 A2 EP 0435029A2
Authority
EP
European Patent Office
Prior art keywords
liquid crystal
data carrier
security element
layer
security
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123341A
Other languages
English (en)
French (fr)
Other versions
EP0435029B1 (de
EP0435029B2 (de
EP0435029A3 (en
Inventor
Christoph Heckenkamp
Gerhard Schwenk
Jürgen Moll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAO Gesellschaft fuer Automation und Organisation mbH
Original Assignee
GAO Gesellschaft fuer Automation und Organisation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6396250&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0435029(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GAO Gesellschaft fuer Automation und Organisation mbH filed Critical GAO Gesellschaft fuer Automation und Organisation mbH
Publication of EP0435029A2 publication Critical patent/EP0435029A2/de
Publication of EP0435029A3 publication Critical patent/EP0435029A3/de
Publication of EP0435029B1 publication Critical patent/EP0435029B1/de
Application granted granted Critical
Publication of EP0435029B2 publication Critical patent/EP0435029B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/086Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/355Security threads
    • B42D2033/26

Definitions

  • the invention relates to data carriers, in particular securities, documents, identity cards or the like.
  • an optically variable security element that contains a liquid crystal material. Because of the easier readability, the abbreviation FK for liquid crystal is often used in the following.
  • optically variable elements as security elements is increasingly being propagated for data carriers. Such elements have in common that they have different color or brightness renditions depending on the lighting and viewing conditions.
  • the most common optically variable elements include diffraction gratings, holograms, interference coatings, metameric colors and polarizing coatings.
  • Interference coatings usually consist of several superimposed layers, the layer thicknesses being the size of the wavelength of the light.
  • Metameric printing inks usually consist of mixtures of pigments with different reflectance bands. This composition causes the metameric colors to change their visual color impression when the type of lighting is changed.
  • Dichroic dyes have the property of absorbing white light in different wavelength ranges depending on the direction of polarization. The result is a polarization-dependent color impression.
  • a disadvantage of the known optically variable authenticity features is that they are either very expensive to manufacture, cannot be processed with conventional manufacturing processes, or are only compatible to a limited extent with other authenticity features or card elements.
  • the object of the invention is to propose a feature which is effective as a copy protection and which has viewing angle-dependent effects, which can be produced inexpensively and by conventional methods and is compatible or combinable with other features.
  • the invention is based on the use of liquid crystal polymers as security elements. After suitable oriented production at room temperature, these polymers represent a plastic-like solid with a pronounced interplay of colors. Such a suitable production process consists, for example, of doctoring the still liquid material onto a base and then curing it by UV radiation. Liquid crystal polymers and cholesteric organopolysiloxanes are particularly suitable as liquid crystal polymers. Suitable liquid crystal polymers, their chemical structure and their preparation are described in the published patent applications EP-OS 0 136 501, EP-OS 0 060 335 and EP-PS 0 066 137. Reference is expressly made to the disclosure content of these publications.
  • liquid crystals In spite of structural anisotropy, liquid crystals usually behave like a liquid, which is why it is necessary to enclose these materials in capsules or cavities. This results in a complicated manufacturing technique. In addition to the complex encapsulation of the LC materials, it is not possible due to the risk of injury to the cavities or capsules to embed the proposed security elements in the conventional manner under pressure and heat (classic laminating technology) in foils or identity papers. Encapsulated liquid crystals are also unsuitable as security elements on banknotes or securities with steel intaglio printing, since the high pressure loads required in this manufacturing process lead to the destruction of the capsules and cavities.
  • liquid crystals can also be in solid form after appropriate processing and, depending on the processing method, have a high-grade alignment of their molecules, as a result of which the optically variable properties emerge in full and in full brilliance.
  • the color purity of the reflected light rarely exceeds a range of 100 nm, the color change effects with the change in the viewing angle are very pronounced, and the reflected and transmitted light has a pronounced circular polarization.
  • the fully trained Optically variable properties make such LC polymers particularly suitable for use as a security element on data carriers, securities and ID cards. The color changing games are easy to observe even for laypeople.
  • the wavelength-selective reflectivity and the polarization effects make the material highly suitable for automated testing.
  • the FK elements can also be used both as machine-readable authenticity features and together with other machine features. Due to the IR permeability of the LC polymers, the other machine features can also be arranged under the LC polymers under certain circumstances.
  • the solid state properties of the FK polymers make it considerably easier to manufacture security elements from them. Firstly, there is no need to enclose the liquid crystals in a hollow body, and secondly there is no risk of the liquid crystals bursting open and escaping during subsequent processing steps and during the lifetime of the data carrier. The manufacturing processes and the application are extremely easy.
  • the plastic-like properties of the liquid crystal polymers enable easy processing into semi-finished or finished products.
  • the starting material is generally in the form of granules and can be shaped and further processed using the methods and machines known from plastics production. This makes it possible in the field of security technology to manufacture completely different types of security elements on the basis of LC polymers and to cover different applications.
  • Carrier webs made of a tear-resistant plastic can be coated with a layer of LC polymers. The resulting web of material can then be cut into narrow webs or threads that can be embedded as security threads in paper or other materials.
  • multilayer film webs can also be produced which contain an embedded layer made of an LC polymer.
  • Such webs can be designed as adhesive tapes or transfer tapes, which are suitable for gluing or stamping transfer elements on paper or plastic surfaces.
  • LC polymers can also be produced as self-supporting films.
  • These foils can be used, for example, as foil layers for multi-layer ID cards.
  • LC polymers are a special variant of liquid crystals, in which the liquid crystalline state is "frozen" in a polymer matrix, whereby the optical properties are particularly significant.
  • liquid crystal polymers normally do not absorb light, and their color is created by multiple interference of light at the individual crystal planes. The color impression in reflected and transmitted light is accordingly different.
  • the reflected color spectrum contains only a narrow frequency range around a central wavelength and therefore shows a high color saturation.
  • the transmitted spectrum is complementary to the reflected spectrum and has a dip in the region around the central wavelength.
  • the lattice constants of oriented LC polymers according to the invention can be set in the range from 300 nm to 1000 nm or defined in the synthesis, so that the reflected central wavelength is in the near infrared or in the visible in the case of perpendicular incidence. As the observation angle becomes flatter, the central wavelength of the reflection band shifts in the direction of shorter wavelengths. For example, the wavelength reflected in the top view is about 20% larger than the reflection at 60 °.
  • the color impression can accordingly for special LC polymers from green to violet, from yellow to blue, from light red to change green or, in the case of an IR reflection band, from black to red.
  • the lattice constant and thus the basic color of the liquid crystal polymer depends on the exact chemical structure of the liquid crystal and can be set in a defined manner in the range between 300 and 1000 nm by the synthesis conditions.
  • Fig. 2 shows an application of an FK polymer for a window security thread.
  • a security thread 13 has been embedded in a bank note 11 with a security print image 12 during the paper production in such a way that it comes to rest on the surface of the paper in the windows 14 and is thus visually recognizable.
  • the width of such security threads fluctuates between 0.5 and a few millimeters.
  • the security thread 13 is formed in such a way that it contains one or more layers of an LC polymer. Variants for the production and for the construction of security threads are shown in FIGS. 3-7.
  • a security thread 13a shows in cross section a first variant for a security thread 13a; it consists of a plastic carrier 20, preferably a polyester film with a typical thickness of 20-100 micrometers is used for this.
  • the carrier 20 is coated on one side with a layer 21 made of an LC polymer that is several micrometers thick.
  • the film 20 is preferred colored black.
  • the thread is oriented during papermaking so that the liquid crystal layer is on the visible outer surface.
  • the thread 13b shows in cross section as a further variant a security thread 13b with a symmetrical layer structure.
  • Symmetrically constructed security threads have the advantage that one does not have to pay attention to the orientation of the thread during embedding in the paper.
  • the thread 13b consists of two carrier films 20, both of which are coated on one side from a layer 21 of LC polymers.
  • the carrier films 20 are connected to one another by a laminating agent 22 in such a way that a symmetrical layer structure with external LC layers is produced.
  • the carrier webs 20 and / or the lamination mediator 22 can optionally be colored with transparent or pigment colors.
  • a solution that is simple in terms of production technology is to color only the lamination mediator 22, preferably an opaque black is used for this.
  • FIG. 5 shows a further variant of a symmetrically constructed security thread 13c in cross section.
  • the carrier films 20 now lie on the outer sides of the thread 13c and thus protect the internal LC layers 21 from damage.
  • the laminating agent is colored with a dye. Since the outer carrier layers 20 must remain transparent, they are either not colored at all or only weakly.
  • FIG. 6a and 6b show a further variant of a security thread 13d in cross section (FIG. 6a) and in supervision (FIG. 6b).
  • the thread 13d has a symmetrical layer structure consisting of two carrier films 20, two LC layers 21 and an adhesive layer 22.
  • the thread was assembled from two coated pairs of foils 30, 31.
  • the surface 33 of one of the two pairs of foils was provided with a printed image 34 made of black color, and alphanumeric characters were applied to the surface of an LC polymer layer in a conventional printing process in micro script.
  • a transparent laminating agent 22 was used. In transmitted light, the characters appear black in the window areas of the paper against the optically variable color background of the polymer layer. In contrast, only the micro characters show a color change in reflected light.
  • the characters 34 are applied in green microprint on one of the LC layers, while the lamination agent 22 is colored black.
  • the LC material is selected so that it appears green under a certain viewing angle, for example under vertical incidence on the black background. When observing the security thread at this angle, the entire area appears green. When the viewing angle changes, the color of the FK polymer layer changes, while in the font the green color remains dominant. The result is a security thread, the writing of which only becomes visible when the thread is tilted.
  • the security thread consists of a carrier film 20 and a layer 21 made of LC polymers.
  • the polymer layer was printed in a conventional printing process with a pattern of differently colored, diagonally extending strips 40. In the example shown, red 41, yellow 42, green 43, blue 44 was selected as a special color sequence for the pattern 40, the pattern changing as often as desired repeated over the thread length.
  • the colored surface areas 40 each appear with different color effects through the LC layer.
  • the color spectrum of the individual areas is made up of the reflection band of the printed dyes.
  • the colors of the liquid crystal layer are mixed in additively.
  • this embodiment variant can also be expanded to form a security thread with a symmetrical layer structure.
  • the variants shown in FIGS. 3-7 can be varied in many ways depending on the desired appearance.
  • the optically variable effects of the FK polymers can be combined by coloring any layers with "classic" colors, whereby both transparent dyes and pigment dyes can be used as dyes.
  • the dyes themselves can be incorporated in any layer (also in the LC layer, but then only in low concentrations) of the security thread and / or can be applied as a printed image on any layer of the thread.
  • the variants of security threads shown in FIGS. 3-7 can be produced on the basis of a single semi-finished product.
  • a film web 20 made of a carrier material such as polyester plastic is coated with a layer 21 made of LC polymers.
  • LC polymers Depending on the color design of the security thread, printed, transparent or colored carrier foils are used.
  • the thickness of the film web is preferably in the range of less than a tenth of a millimeter, and a film thickness of approximately 10 micrometers is usually sufficient for the LC coating. Due to the manufacturing process, the typical web widths of the semi-finished product are in the range of one meter.
  • the carrier web and / or the LC layer are printed with the desired patterns or characters on known printing machines in a suitable manufacturing process.
  • the coated and possibly printed film webs are placed on top of one another and connected with a laminating agent.
  • the final thread width is between 0.5 and 5.0 mm, depending on the intended use.
  • the threads thus obtained are particularly suitable for embedding in paper, but can also be embedded between the plastic layers of an identification card.
  • Another class of security elements are the transfer elements, they are often applied to credit cards, ID cards, banknotes, securities and the like in order to protect them against counterfeiting and in particular against copying. Security elements on the basis are also suitable for these purposes of FK polymers due to their optically variable properties.
  • the transfer elements are transferred from carrier tapes to the surface of the objects to be protected using the transfer method.
  • the 8a and 8b show an identification card 50 with a symbolically indicated data record 49 and with a transfer security element 51 in supervision and as a sectional view.
  • the security element 51 contains a layer made of an FK polymer, which is why it has the color change interactions typical of these materials.
  • FIG. 8b shows a section through the identification card along the line I / I. In the figure, the height of the element is shown exaggerated, usually it is only a few 10 micrometers.
  • An adhesive layer 54, a protective lacquer layer 55, an LC layer 56 and a protective lacquer layer 57 that closes off on the outside lie one after the other on the substrate 53.
  • This security element which is shown here in a very simple embodiment, can be varied in many different ways.
  • the possibilities for the color design of the FK elements are analogous to the security threads. If you attach importance to visually clearly recognizable color changes, then you prefer to color the surface black.
  • the element 51 was applied to a printed background 60.
  • the printed image can be varied in many ways, a simple design is a single-colored background, an improved optical effect has a multi-color printed background with contrasting alphanumeric characters or patterns such as diagonally running colored stripes, nested colored circles, etc. Particularly interesting effects if the background 60 contains a black and white or color photograph, a signature, and the like.
  • the transfer principle enables the optical element to be given any external outline.
  • the coat of arms shape 61 shown in FIG. 8 therefore represents a stripe, a seal, a company logo, an alphanumeric character, a number, guilloche pattern, etc.
  • the shape of the outline 61 gives the optically variable element an individual expression.
  • FIG. 9a and 9b show a top view and a sectional view of an application variant in which map data are concealed with an FK element and are concealed and protected from falsification.
  • FK polymers with visually visible color change interactions are mostly transparent in the infrared and can therefore be effortlessly combined with codes that can be read in the infrared range.
  • a code 72 was applied to the surface of a card 70 with an IR-absorbing ink 71.
  • this IR coding 72 was overprinted with an IR-transparent opaque color 73, but opaque in the visible spectral range.
  • an LC security element 74 was then sealed onto the covering color 73 in this area.
  • the transfer principle is preferred for applying security elements made of LC polymer to the surface of a substrate.
  • a transfer belt is produced in a first process step, then in a second process step the security element is detached from the transfer belt and connected to the substrate.
  • FIG. 10 shows the structure of a transfer belt 100 in cross section, as is suitable for applying security elements with an LC layer to a substrate surface.
  • a carrier film 101 On a carrier film 101 there are successively a wax layer 102, a protective lacquer layer 103, a layer made of an FK polymer 104, a color layer 105 and a hot glue layer 106.
  • the carrier film preferably consists of a tear-resistant plastic polyester with a thickness in the range of less than one tenths of a millimeter.
  • the remaining layers of a transfer belt usually have a thickness of a few micrometers to a few tens of micrometers.
  • the layers 103-106 lying on the wax layer form the later security element.
  • the transfer ribbon can be colored or printed in different layers during its manufacture.
  • the transfer tape 100 is placed with the hot-melt adhesive layer 106 on the substrate 111 and pressed.
  • the pressing takes place with a heated transfer stamp 112 or alternatively also with a transfer roller.
  • the hot-melt adhesive layer bonds to the substrate under the influence of pressure and heat.
  • the separating layer 102 melts and enables the carrier material 101 to be pulled off.
  • the security element is only connected to the substrate in the surface areas in which the separating layer has become liquid, ie only in the surface areas heated by the transfer stamp. In the other surface areas, the layer structure and the carrier material remain firmly connected.
  • the layer structure tears along the contour edges 113 of the transfer stamp, whereby the contour 113 of the transferred security element always corresponds to the contour of the embossing stamp. In this way, even complicated outline structures such as company logos, block letters and the like can be realized.
  • the process of heat sealing as such is known and is described for example in DE-OS 33 08 831.
  • FK polymers can also be processed into films. In this form, they are particularly suitable as large or full-surface security elements for multi-layer ID cards.
  • a laminated identification card 120 which consists of a paper insert 121 and two external thermoplastic cover foils 122 and 123. The layers are pressed into a compact ID card under pressure and heat.
  • the card information is usually printed on the ticker, which in the example shown has an image of the holder 124, card data 125 and a company logo 126.
  • a film made of FK polymer 127 was inserted into the card structure between the ticking and the top cover film in the left half of the card. The color change interactions of the liquid crystal film can be observed through the transparent cover film, with the colored printed company logo 126 additionally adding color effects.
  • Some LC compounds cross-link under the influence of high-energy (e.g. UV) radiation and only then form a chemically stable film.
  • Unexposed, ie uncured areas can be removed with solvents.
  • a defined area of an LC film can be produced in this way exposed through a mask and then the coating is chemically removed in the unexposed areas, so that patterns, letters, numbers etc. are formed.
  • a further variant consists in replacing one or both cover foils 122, 123 as a whole in the usual construction of laminated cards with an FK foil.
  • Films made of Fk materials are suitable as large or full-surface security elements. Such films are preferably made from a liquid crystal substance. In order to obtain a film suitable for security purposes, the LC substance is processed on a roller mill. The alignment of the liquid crystal molecules necessary for the optical effects takes place through shear forces that occur during rolling. The film material produced in this way is particularly suitable for the production of identity cards, but can also be processed into other authenticity indicators, such as a security thread.
  • the polarization properties and their wavelength selectivity are particularly suitable for machine testing of authenticity indicators on the basis of the liquid crystal polymers according to the invention.
  • the reflected light is initially narrowed spectrally over a range around the central wavelength, furthermore unpolarized light is broken down into liquid-crystal components into right and left rotating components. Depending on the chemical composition of the polymer, only one of the two parts is reflected, while the complementary part is transmitted.
  • the element 130 is illuminated at a predetermined angle with an unpolarized light beam 131, for example an incandescent lamp 129. After the reflection, the light beam 132 strikes the detector system 133 shown in FIG. 14, with which the detection of the spectral filtering and the circular polarization is carried out.
  • the reflected beam 132 first passes through a color filter 141 which only allows light of the expected central wavelength to pass.
  • the light beam then strikes a lambda / 4 plate 142, which converts the circular polarization into a linear polarization.
  • the light then falls on a 1: 1 beam splitter 143, from where the two partial beams 144, 145 reach two detectors 146, 147 with polarization filters 148, 149 arranged in front of them.
  • the polarization planes 150, 151 of the two filters are perpendicular to one another, at the same time they are aligned at 45 ° to the two optical axes of the lambda / 4 plate.
  • detector systems can also be used to test a single element; which are arranged at different angles, for example, and react accordingly to different central wavelengths.
  • the detector system can be implemented in many ways.
  • 15 shows an arrangement underneath as a maintenance-friendly alternative Use of optical fibers.
  • the basis of the optical arrangement is again FIG. 13.
  • the reflected light beam 132 first passes through a color filter 161 for checking the central wavelength.
  • Lambda / 4 plate 162 the circular polarization is converted into a linear one.
  • a coupling optic 153 couples the light beam 132 into a light guide system 154, known beam switches separate the beam into equivalent partial bundles.
  • At the end of each sub-bundle there is a pair of polarizer-detectors 155/156 and 157/158 for the two different directions of polarization.
  • one of the two detectors 156/158 receives 50% of the input intensity (in the case of lossless optics), the second receives no light.
  • each of the two detectors receives 50% of the input intensity. In this way, counterfeit and original can be distinguished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Credit Cards Or The Like (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

Gegen Fälschungsversuche durch Farbkopierer geschützter Datenträger wie eine Ausweiskarte oder ein Wertpapier, welche ein optisch variables Sicherheitselement aus einem Flüssigkristallmaterial enthalten. Das Sicherheitselement wie z.B. ein Sicherheitsfaden weist eine kunststoffähnliche Schicht aus einem Flüssigkristallpolymer auf, die bei Raumtemperatur ein ausgeprägtes Farbwechselspiel zeigt. Die kunststoffähnlichen Eigenschaften der Flüssigkristallpolymere ermöglichen eine leichte Verarbeitung zu Halbzeug oder zum fertigen Produkt, so daß sich ganz unterschiedliche Arten von Sicherheitselementen herstellen lassen. <IMAGE>

Description

  • Die Erfindung betrifft Datenträger, insbesondere Wertpapiere, Dokumente, Ausweiskarten oder dgl. mit einem optisch variablen Sicherheitselement, das ein Flüssigkristallmaterial enthält. Wegen der leichteren Lesbarkeit wird im folgenden häufig die Abkürzung FK für Flüssigkristall verwendet.
  • Die zunehmende technische Reife von Farbkopierern führt zu Kopien, die in Farbe, Auflösung und Qualität immer weniger von den Originalen zu unterscheiden sind. Als Schutz vor Fälschung mit Hilfe von Farbkopierern oder Scannern wird für Datenträger mehr und mehr die Verwendung von optisch variablen Elementen als Sicherheitselemente propagiert. Solche Elemente haben gemeinsam, daß sie je nach Beleuchtungs- und Betrachtungsbedingungen unterschiedliche Farb- oder Helligkeitswiedergaben aufweisen. Zu den gebräuchlichsten optisch variablen Elementen zählen Beugungsgitter, Hologramme, Interferenzbeschichtungen, metamere Farben und polarisierenden Beschichtungen.
  • Hologramme und Gitter basieren auf Beugungswirkungen. Interferenzbeschichtungen bestehen meist aus mehreren übereinanderliegenden Schichten, wobei die Schichtdicken in der Größe der Wellenlänge des Lichts liegen.
  • Metamere Druckfarben bestehen üblicherweise aus Mischungen von Pigmenten mit unterschiedlichen Remissionsbanden. Diese Zusammensetzung bewirkt, daß bei einem Wechsel der Beleuchtungsart die metameren Farben ihren visuellen Farbeindruck verändern.
  • Dichroitische Farbstoffe haben die Eigenschaft, weißes Licht je nach Polarisationsrichtung in unterschiedlichen Wellenlängenbereichen zu absorbieren. Die Folge ist ein polarisationsabhängiger Farbeindruck.
  • Nachteilig ist bei den bekannten optisch variablen Echtheitsmerkmalen, daß diese entweder in der Herstellung sehr teuer, mit herkömmlichen Herstellverfahren nicht verarbeitbar oder mit anderen Echheitsmerkmalen oder Kartenelementen nur begrenzt kompatibel sind.
  • Aufgabe der Erfindung ist es, ein als kopierschutzwirksames Merkmal vorzuschlagen, das betrachtungswinkelabhängige Effekte aufweist, das kostengünstig und mit konventionellen Verfahren herstellbar und mit anderen Merkmalen verträglich bzw. kombinierbar ist.
  • Die Aufgabe wird durch die im Kennzeichen des Hauptanspruchs genannten Merkmale gelöst. Weiterbildungen sind in den neben- und untergeordneten Ansprüchen genannt.
  • Die Erfindung beruht auf der Verwendung von Flüssigkristall-Polymeren als Sicherheitselemente. Diese Polymere stellen nach geeigneter orientierter Herstellung bei Raumtemperatur einen kunststoffähnlichen Festkörper mit einem ausgeprägten Farbwechselspiel dar. Ein derart geeignetes Herstellverfahren besteht beispielsweise im Aufrakeln des noch flüssigen Materials auf eine Unterlage und das anschließende Aushärten durch UV-Bestrahlung. Als Flüssigkristall-Polymere eignen sich insbesondere Flüssigkristall-Silikonpolymere und cholesterinische Organopolysiloxane. Geeignete Flüssigkristallpolymere, deren chemische Struktur und deren Herstellung sind in den veröffentlichten Patentanmeldungen EP-OS 0 136 501, EP-OS 0 060 335 und EP-PS 0 066 137 beschrieben. Auf den Offenbarungsgehalt dieser Druckschriften wird ausdrücklich Bezug genommen.
  • Die Verwendung von konventionellen Flüssigkristallen als Sicherheitselement ist bereits bekannt und wird beispielsweise in der AU-PS 488 652 (Commonwealth) vorgeschlagen. Diese Druckschrift beschreibt eine laminierte Banknote mit einer Zwischenschicht, in der ein Sicherheitselement in Form eines Flüssigkristallmaterials eingelagert ist. Das FK-Material wird drucktechnisch auf ein Inlett aufgetragen. Die Flüssigkristalle befinden sich in einem flüssigen Aggregatzustand und werden, eingebettet in allseits geschlossene Mikrokapseln, einer Druckfarbe zugemischt. Die Prüfung auf Echtheit erfolgt durch Farbwechsel des Sicherheitselements infolge einer Temperaturänderung.
  • Flüssigkristalle verhalten sich trotz einer strukturellen Anisotropie üblicherweise wie eine Flüssigkeit, weshalb es erforderlich ist, diese Materialien in Kapseln oder Hohlräume einzuschließen. Hieraus resultiert eine komplizierte Fertigungstechnik. Neben der aufwendigen Einkapselung der FK-Materialien ist es wegen der Verletzungsgefahr der Hohlräume oder Kapseln nicht möglich, die vorgeschlagenen Sicherheitselemente in der herkömmlichen Art und Weise unter Druck- und Wärmeanwendung (klassische Kaschiertechnik) in Folien oder Ausweispapiere einzubetten. Ebenso ungeeignet sind gekapselte Flüssigkristalle als Sicherheitselement auf Banknoten oder Wertpapieren mit Stahltiefdruck, da die in diesem Herstellverfahren notwendigen hohen Druckbelastungen zur Zerstörung der Kapseln und Hohlräume führen.
  • Flüssigkristalle können aber auch nach entsprechender Verarbeitung in fester Form vorliegen und vom Verarbeitungsverfahren abhängig eine hochgradige Ausrichtung ihrer Moleküle aufweisen, wodurch die optisch variablen Eigenschaften in vollem Umfang und in voller Brillanz hervortreten. Bei den erfindungsgemäßen FK-Systemen überschreitet die Farbreinheit des reflektierten Lichts nur selten einen Bereich von 100 nm, die Farbwechseleffekte mit der Änderung des Betrachtungswinkels sind sehr ausgeprägt, das reflektierte und transmittierte Licht weist eine ausgeprägte zirkulare Polarisation auf. Die vollausgebildeten optisch variablen Eigenschaften machen derartige FK-Polymere in besonderer Weise geeignet für die Verwendung als Sicherheitselement auf Datenträger, Wertpapieren und Ausweisen. Die Farbwechselspiele sind selbst für Laien leicht beobachtbar. Die wellenlängenselektive Reflektivität und die Polarisationseffekte machen das Material in hohem Maß geeignet für eine automatisierte Prüfung. Die Vielfalt und Ausgeprägtheit der optischen Effekte erschwert die Anfertigung von Eindrucksfälschungen. In praktisch allen Ausführungsformen lassen sich die FK-Elemente zusätzlich sowohl als maschinenlesbare Echtheitsmerkmale als auch zusammen mit anderen Maschinenmerkmalen verwenden. Aufgrund der IR-Durchlässigkeit der FK-Polymere können die weiteren Maschinenmerkmale unter Umständen auch unter den FK-Polymeren angeordnet sein.
  • Die Festkörpereigenschaften der FK-Polymere erleichtern es in beträchtlichem Maß, aus ihnen Sicherheitselemente herzustellen. Zum ersten entfällt das Einschließen der Flüssigkristalle in einen Hohlkörper, zum zweiten besteht keine Gefahr des Aufplatzens und des Austritts der Flüssigkristalle während nachfolgender Bearbeitungsschritte und während der Lebensdauer des Datenträgers. Die Fertigungsprozesse und die Anwendung gestalten sich dadurch äußerst problemlos.
  • Die kunststoffähnlichen Eigenschaften der Flüssigkristallpolymere ermöglichen eine leichte Verarbeitung zu Halbzeug oder zum fertigen Produkt. Das Ausgangsmaterial liegt im allgemeinen als Granulat vor und kann mit den aus der Kunststoffertigung bekannten Verfahren und Maschinen geformt und weiterverarbeitet werden. Dadurch wird es auf dem Gebiet der Sicherheitstechnik möglich, auf der Basis von FK-Polymeren ganz unterschiedliche Arten von Sicherheitselementen herzustellen und verschiedene Anwendungsfälle abzudecken.
  • So können Trägerbahnen aus einem reißfesten Kunststoff mit einer Schicht aus FK-Polymeren beschichtet werden. Die resultierende Materialbahn kann anschließend zu schmalen Bahnen oder Fäden geschnitten werden, die als Sicherheitsfäden in Papier oder anderen Stoffen eingebettet werden können.
  • Alternativ dazu können auch mehrschichtige Folienbahnen hergestellt werden, die eine eingebettete Schicht aus einem FK-Polymer enthalten. Solche Bahnen können als Klebe- oder Transferbänder gestaltet werden, die sich zum Aufkleben oder Aufstempeln von Transferelementen auf Papier- oder Kunststoffoberflächen eignen.
  • Schließlich lassen sich FK-Polymere auch als selbsttragende Folien herstellen. Diese Folien können beispielsweise als Folienlagen für mehrschichtige Ausweiskarten verwendet werden.
  • Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den neben- und untergeordneten Ansprüchen sowie den nachfolgenden Figuren und Ausführungsbeispielen.
  • Es zeigen:
  • Fig. 1
    die spektralen Transmissions- und Reflexionseigenschaften von FK-Polymeren unter verschiedenen Betrachtungswinkeln,
    Fig. 2
    eine Banknote mit einem Fenster-Sicherheitsfaden mit einer oder mehreren Schichten aus FK-Polymeren,
    Fig. 3
    einen Sicherheitsfaden mit einer Schicht aus einem FK-Polymer,
    Fig. 4
    einen symmetrisch aufgebauten Sicherheitsfaden mit außenliegenden Schichten aus FK-Polymeren,
    Fig. 5
    einen symmetrisch aufgebauten Sicherheitsfaden mit innenliegenden Schichten aus FK-Polymeren,
    Fig. 6a, b
    einen bedruckten, symmetrischen Fenster-Sicherheitsfaden im Querschnitt und Aufsicht,
    Fig. 7a, b
    einen bedruckten Sicherheitsfaden mit Bewegungseffekten im Querschnitt und Aufsicht,
    Fig. 8a, b
    eine Ausweiskarte mit einem Transferelement mit einer FK-Schicht in Aufsicht und als Schnittbild,
    Fig. 9a, b
    eine Ausweiskarte mit einer visuell nicht lesbaren, durch das Sicherheitselement abgedeckten Kodierung,
    Fig. 10
    einen Querschnitt durch ein Transferband,
    Fig. 11
    den Transfer eines FK-Sicherheitselements auf ein Substrat,
    Fig. 12
    eine Ausweiskarte mit einer einkaschierten Schicht aus FK-Polymer,
    Fig. 13
    eine Prüfanordnung für FK-Sicherheitselemente,
    Fig. 14, 15
    Detektoranordnungen zum Nachweis von FK-Sicherheitselementen.
  • Um die in den Figuren und Ausführungsbeispielen erläuterten Anwendungen und Effekte der Flüssigkristallpolymere leicht verständlich zu machen, werden vorab einige wichtige Eigenschaften dieser Stoffe erläutert.
  • FK-Polymere sind eine spezielle Variante von Flüssigkristallen, bei denen der flüssigkristalline Zustand in einer Polymermatrix "eingefroren" ist, wodurch die optischen Eigenschaften besonders signifikant hervortreten. So absorbieren Flüssigkristallpolymere normalerweise kein Licht, ihre Färbung entsteht durch Mehrfach-Interferenz von Licht an den einzelnen Kristallebenen. Der Farbeindruck im Auf- und Durchlicht ist dementsprechend unterschiedlich. Das reflektierte Farbspektrum enthält nur einen schmalen Frequenzbereich um eine zentrale Wellenlänge und zeigt dadurch eine hohe Farbsättigung. Das transmittierte Spektrum ist komplementär zum reflektierten und weist einen Einbruch im Bereich um die Zentralwellenlänge auf.
  • Bei einer Anwendung der FK-Polymere auf opaken Substraten wird eine besonders hohe Farbreinheit für alle Betrachtungswinkel erzielt, wenn die Flüssigkristallschicht auf einem schwarzen Untergrund aufgebracht wird. Das reflektierte Spektrum ist dann ungestört von Sekundärreflexionen am Untergrund.
  • Die Gitterkonstanten von erfindungsgemäßen, orientierten FK-Polymeren können im Bereich von 300 nm bis 1 000 nm eingestellt bzw. bei der Synthese definiert werden, so daß die reflektierte Zentralwellenlänge bei senkrechtem Einfall im nahen Infrarot oder im Sichtbaren liegt. Mit flacher werdenden Beobachtungswinkel verschiebt sich die Zentralwellenlänge des Reflexionsbandes in Richtung kürzerer Wellenlängen. So ist beispielsweise die in Aufsicht reflektierte Wellenlänge im Vergleich zur Reflexion bei 60° um ca. 20 % größer.
  • Fig. 1 zeigt die spektrale Reflexion R einer FKSchicht bei senkrecht einfallender Beleuchtung in Kurve 1 sowie bei einer Beleuchtungsrichtung von 60° in Kurve 2. Der Farbeindruck kann demnach für spezielle FK-Polymere von grün nach violett, von gelb nach blau, von hellrot nach grün oder bei einer IR-Reflexionsbande von schwarz nach rot wechseln. Die Gitterkonstante und damit die Grundfarbe des Flüssigkristallpolymers hängt von der genauen chemischen Struktur des Flüssigkristalls ab und kann durch die Synthesebedingungen im Bereich zwischen 300 und 1 000 nm definiert eingestellt werden.
  • Fig. 2 zeigt eine Anwendung eines FK-Polymers für einen Fenstersicherheitsfaden. In eine Banknote 11 mit einem Sicherheitsdruckbild 12 ist ein Sicherheitsfaden 13 während der Papierherstellung in der Weise eingebettet worden, daß er in den Fenstern 14 an der Oberfläche des Papiers zu liegen kommt und somit visuell erkennbar ist. Je nach Ausführungsform schwankt die Breite solcher Sicherheitsfäden zwischen 0,5 und einigen wenigen Millimetern.
  • Um durch optisch variable Effekte der Banknote einen Kopierschutz zu verleihen, wird der Sicherheitsfaden 13 so ausgebildet, daß er einen oder mehrere Schichten aus einem FK-Polymer enthält. Varianten für die Herstellung und für den Aufbau von Sicherheitsfäden werden in den Fig. 3 - 7 wiedergegeben.
  • Fig. 3 zeigt im Querschnitt eine erste Variante für einen Sicherheitsfaden 13a; er besteht aus einem Kunststoffträger 20, vorzugsweise wird hierfür eine Polyesterfolie mit einer typischen Dicke von 20 - 100 Mikrometer verwendet. Der Träger 20 ist auf einer Seite mit einer mehrere Mikrometer dicken Schicht 21 aus einem FK-Polymer beschichtet. Um die Farbwechselspiele der Flüssigkristalle optisch hervorzuheben, wird die Folie 20 vorzugsweise schwarz eingefärbt. Der Faden wird während der Papierherstellung so orientiert, daß die Flüssigkristallschicht an der sichtbaren Außenfläche vorliegt.
  • Fig. 4 zeigt im Querschnitt als weitere Variante einen Sicherheitsfaden 13b mit einem symetrischen Lagenaufbau. Symetrisch aufgebaute Sicherheitsfäden haben den Vorteil, daß man während der Einbettung in das Papier nicht auf die Orientierung des Fadens achten muß. Der Faden 13b besteht aus zwei Trägerfolien 20, die beide einseitig aus einer Schicht 21 aus FK-Polymeren beschichtet sind. Die Trägerfolien 20 sind mit einem Kaschiervermittler 22 so miteinander verbunden, daß ein symmetrischer Lagenaufbau mit außenliegenden FK-Schichten entsteht. Um den Farbreichtum zu erhöhen, kann man wahlweise die Trägerbahnen 20 und/oder den Kaschiervermittler 22 mit Transparent- oder Pigmentfarben einfärben. Eine fertigungstechnisch einfache Lösung ist es, nur den Kaschiervermittler 22 einzufärben, vorzugsweise wird hierfür ein deckendes Schwarz verwendet.
  • Fig. 5 zeigt eine weitere Variante eines symmetrisch aufgebauten Sicherheitsfadens 13c im Querschnitt. Im Gegensatz zur Fig. 3 liegen jetzt die-Trägerfolien 20 auf den Außenseiten des Fadens 13c und schützen so die innenliegenden FK-Schichten 21 vor Beschädigung. In dieser Variante wird vorzugsweise nur der Kaschiervermittler mit einem Farbstoff eingefärbt. Da die außenliegenden Trägerschichten 20 transparent bleiben müssen, werden sie entweder gar nicht oder nur schwach gefärbt.
  • Die Fig. 6a und 6b zeigen eine weitere Variante eines Sicherheitsfadens 13d im Querschnitt (Fig. 6a) und in Aufsicht (Fig. 6b). Der Faden 13d besitzt analog zur Fig. 5 einen symmetrischen Lagenaufbau aus zwei Trägerfolien 20, zwei FK-Schichten 21 und einer Klebeschicht 22. Im Rahmen eines Fertigungsprozesses wurde der Faden aus zwei beschichteten Folienpaaren 30, 31 zusammengefügt. Vor dem Zusammenfügen wurde die Oberfläche 33 eines der beiden Folienpaare mit einem Druckbild 34 aus schwarzer Farbe versehen und zwar wurden auf die Oberfläche einer FK-Polymerschicht in einem konventionellen Druckverfahren alphanumerische Zeichen in Mikroschrift aufgebracht. Zusätzlich wurde ein transparenter Kaschiervermittler 22 verwendet. Im Durchlicht erscheinen jetzt in den Fensterbereichen des Papiers die Schriftzeichen schwarz vor dem optisch variablen Farbhintergrund der Polymerschicht. Im Auflicht dagegen zeigen nur die Mikroschriftzeichen einen Farbwechsel.
  • In einer anderen Variante des Sicherheitsfadens der Fig. 6a und 6b werden die Schriftzeichen 34 in grünem Mikrodruck auf einer der FK-Schichten aufgetragen, während der Kaschiervermittler 22 schwarz eingefärbt wird. Gleichzeitig wird das FK-Material so gewählt, daß es unter einem bestimmten Betrachtungswinkel, beispielsweise unter senkrechtem Einfall auf dem schwarzen Untergrund grün erscheint. Bei Beobachtung des Sicherheitsfadens unter diesem Winkel erscheint dann die Gesamtfläche grün. Bei einer Änderung des Betrachtungswinkels wechselt der Farbton der FK-Polymerschicht, während in der Schrift der grüne Farbton dominant bleibt. Das Resultat ist ein Sicherheitsfaden, dessen Schrift erst beim Verkippen des Fadens sichtbar wird.
  • Die Fig. 7a und 7b zeigen eine weitere Variante 13e im Querschnitt (Fig. 7a) und in Aufsicht (Fig. 7b). Der Sicherheitsfaden besteht aus einer Trägerfolie 20 und einer Schicht 21 aus FK-Polymeren. Die Polymerschicht wurde in einem konventionellen Druckverfahren mit einem Muster aus verschiedenfarbigen, diagonal verlaufenden Streifen 40 bedruckt. Als spezielle Farbfolge für das Muster 40 wurde am dargestellten Beispiel rot 41, gelb 42 , grün 43 , blau 44 ausgewählt, wobei sich das Muster beliebig oft über die Fadenlänge wiederholt. Beim Betrachten dieses Sicherheitsfadens 13e erscheinen die farbigen Flächenbereiche 40 durch die FK-Schicht hindurch jeweils mit unterschiedlichen Farbeffekten. Das Farbspektrum der einzelnen Bereiche setzt sich zusammen aus dem Reflexionsband der aufgedruckten Farbstoffe. Zusätzlich werden die Farben der Flüssigkristallschicht additiv zugemischt. Aufgrund der winkelabhängigen Reflexionscharakteristik der FK-Polymere kann bei entsprechender farblicher Abstimmung des FK-Polymers mit den Farbstreifen mit der dargestellten Anordnung bei einer Verkippung des Fadens die Illusion eines sich längs des Fadens bewegenden farbigen Streifens hervorgerufen werden. Analog zur Fig. 5 läßt sich auch diese Ausführungsvariante zu einem Sicherheitsfaden mit einem symmetrischen Schichtaufbau erweitern.
  • Die in den Fig. 3 - 7 gezeigten Varianten können je nach gewünschtem Erscheinungsbild auf vielfältige Weise variiert werden. Die optisch variablen Effekte der FK-Polymere lassen sich durch Einfärben beliebiger Schichten mit "klassischen" Farben kombinieren, wobei als Farbstoffe sowohl transparente Farbstoffe als auch PigmentFarbstoffe verwendet werden können. Die Farbstoffe selbst können in einer beliebigen Schicht (auch in der FK-Schicht, dann allerdings nur in geringen Konzentrationen) des Sicherheitsfadens eingebracht sein und/oder als Druckbild auf einer ebenfalls beliebigen Schicht des Fadens aufgebracht sein.
  • Die in den Figurenbeschreibungen angegebenen Einfärbungen sind lediglich als Vorschlag zu verstehen, die angegebenen Farben können beliebig durch andere Farbstoffe ersetzt werden. Diese Kombinationsmöglichkeiten ergeben eine enorme Vielfalt an möglichen Farbvariationen, Farbillusionen und kinetischen Effekten.
  • Die in den Fig. 3 - 7 gezeigten Varianten von Sicherheitsfäden lassen sich auf der Basis eines einzigen Halbzeugs produzieren. Zur Herstellung des Halbzeugs wird eine Folienbahn 20 aus einem Trägermaterial wie Polyesterkunststoff mit einer Schicht 21 aus FK-Polymeren beschichtet. Je nach Farbdesign des Sicherheitsfadens verwendet man bedruckte, transparente oder eingefärbte Trägerfolien. Die Dicke der Folienbahn liegt vorzugsweise im Bereich von weniger als einem zehntel Millimeter, für die FKBeschichtung ist meist eine Filmdicke von ca. 10 Mikrometer ausreichend. Fertigungsbedingt liegen die typischen Bahnbreiten des Halbzeugs im Bereich von einem Meter.
  • Zur Herstellung bedruckter Sicherheitsfäden werden die Trägerbahn und/oder die FK-Schicht in einem geeigneten Fertigungsverfahren mit den gewünschten Mustern oder Zeichen auf bekannten Druckmaschinen bedruckt. Zur Fertigung mehrschichtiger, vor allem symetrisch aufgebauter Sicherheitsfäden werden die beschichteten und eventuell bedruckten Folienbahnen aufeinandergelegt und mit einem Kaschiervermittler verbunden.
  • Erst nachdem die Bahnen den gewünschten Lagenaufbau besitzen, werden sie auf bekannten Schneidvorrichtungen zu den Fäden geschnitten. Die endgültige Fadenbreite liegt dabei je nach dem gewünschten Einsatzzweck zwischen einem Bereich von 0,5 - 5,0 mm. Die so erhaltenen Fäden eignen sich insbesondere zur Einbettung in Papier, können aber auch zwischen den Kunststoffschichten einer Ausweiskarte eingebettet werden.
  • Eine andere Klasse von Sicherheitselementen bilden die Transferelemente, sie werden häufig auf Kreditkarten, Ausweiskarten, Banknoten, Wertpapiere und dergleichen aufgebracht, um sie vor Fälschung und insbesondere vor Vervielfältigung durch Kopieren zu schützen. Für diese Zwecke eignen sich auch Sicherheitselemente auf der Basis von FK-Polymeren aufgrund ihrer optisch variablen Eigenschaften. Die Transferelemente werden nach dem Transferverfahren von Trägerbändern auf die Oberfläche der zu schützenden Objekte übertragen.
  • Die Fig. 8a und 8b zeigen eine Ausweiskarte 50 mit einem symbolisch angedeuteten Datensatz 49 und mit einem Transfer-Sicherheitselement 51 in Aufsicht und als Schnittbild. Das Sicherheitselement 51 enthält eine Schicht aus einem FK-Polymer, weshalb es die für diese Materialien typischen Farbwechselspiele aufweist.
  • Transferelemente bestehen üblicherweise aus mehreren Schichten, die Fig. 8b zeigt einen Schnitt durch die Ausweiskarte entlang der Linie I/I. In der Figur ist die Höhe des Elementes stark übertrieben dargestellt, gewöhnlich beträgt sie nur wenige 10 Mikrometer. Auf dem Substrat 53 liegen nacheinander eine Klebeschicht 54, eine Schutzlackschicht 55, eine FK-Schicht 56 und nach außen abschließende Schutzlackschicht 57. Dieses Sicherheitselement, das hier in einer sehr einfachen Ausführungsform dargestellt ist, läßt sich in vielfältiger Weise variieren.
  • Die Möglichkeiten zur Farbgestaltung der FK-Elemente sind analog zu den Sicherheitsfäden. Wenn man Wert auf visuell deutlich erkennbare Farbwechselspiele legt, dann färbt man den Untergrund vorzugsweise schwarz. Zum Zumischen einer Farbe zum reflektierten Spektrum wurde, wie in Fig. 8a gezeigt, das Element 51 auf einem bedruckten Untergrund 60 aufgebracht. Das Druckbild kann dabei vielfach variiert werden, eine einfache Gestaltung ist ein einfarbiger Untergrund, eine verbesserte optische Wirkung hat ein mehrfabrig bedruckter Untergrund mit kontrastierenden alphanumerischen Zeichen oder Mustern wie diagonal verlaufenden bunten Streifen, ineinandergeschachtelten farbigen Kreisen usw.. Besonders interessante Effekte ergeben sich, wenn der Untergrund 60 eine schwarzweiße oder farbige Fotografie, eine Unterschrift und dergleichen enthält.
  • Ähnliche Farbwirkungen wie beim Bedrucken des Untergrunds kann man erreichen durch Färben, Bedrucken oder Beschriften geeigneter optisch wirksamer Schichten des Transferelements, die sich beim Transfer nicht verändern.
  • Wie später noch erläutert wird, ermöglicht es das Transferprinzip dem optischen Element einen beliebigen äußeren Umriß zu geben. Die in der Fig. 8 dargestellte Wappenform 61 steht deshalb stellvertretend für einen Streifen, ein Siegel, ein Firmenlogo, ein alphanumerischen Zeichen, eine Zifferung, Guillochenmuster usw.. Durch die Form des Umrisses 61 erhält das optisch variable Element einen individuellen Ausdruck.
  • Die Fig. 9a und 9b zeigen in Aufsicht und als Schnittbild eine Anwendungsvariante, in der Kartendaten mit einem FK-Element zugleich unauffällig getarnt und vor Verfälschung geschützt werden. FK-Polymere mit visuell sichtbaren Farbwechselspielen sind im Infraroten meist transparent und können somit mühelos mit im infraroten Bereich lesbaren Kodierungen kombiniert werden. In einem ersten Druckprozeß wurde hierzu auf die Oberfläche einer Karte 70 mit einer IR-absorbierenden Druckfarbe 71 eine Kodierung 72 aufgetragen. Im nächsten Schritt wurde diese IR-Kodierung 72 mit einer IR-transparenten, im sichtbaren Spektralbereich aber undurchlässigen Deckfarbe 73 überdruckt. Im letzten Schritt wurde dann ein FK-Sicherheitselement 74 auf diesen Bereich auf die Deckfarbe 73 aufgesiegelt.
  • Aus fertigungstechnischen Gründen bevorzugt man zum Aufbringen von Sicherheitselementen aus FK-Polymer auf die Oberfläche eines Substrats das Transferprinzip. Bei diesem Prinzip wird in einem ersten Verfahrensschritt ein Transferband hergestellt, anschließend wird in einem zweiten Verfahrensschritt das Sicherheitselement vom Transferband gelöst und mit dem Substrat verbunden.
  • Fig. 10 zeigt den Aufbau eines Transferbandes 100 im Querschnitt, wie es zum Aufbringen von Sicherheitselementen mit einer FK-Schicht auf eine Substratoberfläche geeignet ist. Auf eine Trägerfolie 101 befinden sich nacheinander eine Wachsschicht 102, eine Schutzlackschicht 103, eine Schicht aus einem FK-Polymer 104, eine Farbschicht 105 und eine Heißklebeschicht 106. Die Trägerfolie besteht vorzugsweise aus einem reißfesten Kunststoff Polyester mit einer Dicke im Bereich von weniger als einem zehntel Millimeter. Die übrigen Schichten eines Transferbandes weisen üblicherweise eine Dicke von wenigen Mikrometern bis einigen 10 Mikrometern auf. Die auf der Wachsschicht liegenden Schichten 103 - 106 bilden das spätere Sicherheitselement. Zur Erzielung von Farbeffekten kann das Transferband während seiner Herstellung in verschiedenen Schichten eingefärbt oder bedruckt werden.
  • Zum Aufbringen des Sicherheitselements auf das Substrat wird das Transferband 100, wie in Fig. 11 gezeigt, mit der Heißklebeschicht 106 auf das Substrat 111 aufgelegt und angepreßt. Das Anpressen erfolgt mit einem beheizten Transferstempel 112 oder alternativ auch mit einer Transferrolle. Unter Druck- und Wärmeeinwirkung verbindet sich die Heißklebeschicht mit dem Substrat. Gleichzeitig schmilzt die Trennschicht 102 und ermöglicht das Abziehen des Trägermaterials 101. Die Verbindung des Sicherheitselements mit dem Substrat erfolgt nur in den Flächenbereichen, in denen die Trennschicht flüssig geworden ist, d. h. nur in den vom Transferstempel erhitzten Flächenbereichen. In den anderen Flächenbereichen bleibt der Schichtaufbau und das Trägermaterial fest miteinander verbunden. Beim Abziehen des Trägerfilms vom Substrat reißt der Schichtaufbau entlang der Konturkanten 113 des Transferstempels, wodurch die Kontur 113 des transferierten Sicherheitselements stets der Kontur des Prägestempels entspricht. Auf diese Weise sind auch komplizierte Umrißstrukturen realisierbar wie beispielsweise Firmenlogos, Blockbuchstaben und ähnliches. Der Prozeß des Heißsiegelns als solches ist bekannt und wird beispielsweise in der DE-OS 33 08 831 beschrieben.
  • FK-Polymere lassen sich auch zu Folien verarbeiten. In dieser Form eignen sie sich insbesondere als groß- oder vollflächige Sicherheitselemente für mehrschichtige Ausweiskarten.
  • Die Fig. 12a und 12b zeigen beispielsweise eine kaschierte Ausweiskarte 120, die aus einem Papierinlett 121 und zwei außenliegenden thermoplastischen Deckfolien 122 und 123 besteht. Die Schichten werden unter Druck und Wärmeanwendung zu einer kompakten Ausweiskarte verpreßt. Die Karteninformationen sind üblicherweise auf dem Inlett aufgedruckt, das im gezeigten Beispiel ein Bild des Inhabers 124, Kartendaten 125 und ein Firmenlogo 126 aufweist. Zur Erhöhung der Fälschungssicherheit wurde in den Kartenaufbau zwischen dem Inlett und der oberen Deckfolie in der linken Kartenhälfte eine Folie aus FK-Polymer 127 eingefügt. Die Farbwechselspiele der Flüssigkristallfolie lassen sich durch die transparente Deckfolie beobachten, wobei das farbige gedruckte Firmenlogo 126 zusätzlich Farbeffekte hinzufügt.
  • Manche FK-Verbindungen vernetzen unter Einwirkung energiereicher (z. B. UV-) Strahlung und bilden erst dadurch einen chemisch stabilen Film. Unbelichtete, d. h. nicht ausgehärtete Bereiche können mit Lösungsmitteln entfernt werden. Analog zu den bekannten phototechnischen Verfahren der Halbleiter- und Druckplattenherstellungstechnik kann auf diese Weise eine definierte Fläche eines FK-Filmes durch eine Maske belichtet und anschließend in den unbelichteten Bereichen die Beschichtung chemisch entfernt werden, so daß Muster, Buchstaben, Ziffern etc. entstehen.
  • Selbstverständlich ist es auch möglich, die gesamte Kartenfläche mit der Folie aus Flüssigkristallpolymer abzudecken. Als Alternative zum Beifügen einer Folie in den Kartenaufbau bietet sich an, vor dem Kaschieren das Flüssigkristallelement nach dem Transferprinzip auf das Inlett zu übertragen. Eine weitere Variante besteht darin, im gewöhnlichen Aufbau von kaschierten Karten eine oder beide Deckfolien 122, 123 als Gesamtes durch eine FK-Folie zu ersetzen.
  • Als groß- oder vollflächige Sicherheitselemente eignen sich Folien aus Fk-Materialien. Solche Folien werden vorzugsweise aus einer Flüssigkristall-Substanz hergestellt. Um eine für die Sicherheitszwecke geeignete Folie zu erhalten, wird die FK-Substanz auf einem Walzenstuhl verarbeitet. Die für die optischen Effekte notwendige Ausrichtung der Flüssigkristallmoleküle erfolgt durch Scherkräfte, die beim Walzen auftreten. Das so hergestellte Folienmaterial eignet sich so insbesondere zur Herstellung von Ausweiskarten, läßt sich aber auch zu anderen Echtheitskennzeichen, wie beispielsweise einem Sicherheitsfaden, verarbeiten.
  • Zur maschinellen Prüfung von Echtheitskennzeichen auf der Basis der erfindungsgemäßen Flüssigkristall-Polymeren eignen sich in besonderer Weise deren Polariationseigenschaften und deren Wellenlängenselektivität. Das reflektierte Licht ist zunächst spektral auf einem Bereich um die Zentralwellenlänge eingeengt, darüber hinaus wird unpolarisiertes Licht in Flüssigkristallploymeren in rechts- und linksdrehende Komponenten zerlegt. Je nach chemischer Zusammensetzung des Polymers wird nur einer der beiden Anteile reflektiert, während der komplementäre Anteil transmittiert wird.
  • Eine Möglichkeit der maschinellen Prüfung wird am folgenden an einem Film aus FK-Polymer dargestellt, der sich auf einem schwarzen, vollständig absorbierenden Träger 128 befindet. Wie in Fig. 13 gezeigt, wird das Element 130 unter einem vorbestimmten Winkel mit einem unpolarisierten Lichtstrahl 131, beispielsweise einer Glühlampe 129 beleuchtet. Nach der Reflexion trifft der Lichtstrahl 132 auf das in Fig. 14 dargestellte Detektorsystem 133, mit dem der Nachweis der spektralen Filterung und der zirkularen Polarisation durchgeführt wird.
  • Den Aufbau des Detektorsystems 133 zeigt Fig. 14. Innerhalb des Detektorsystems 133 durchläuft der reflektierte Strahl 132 zunächst ein Farbfilter 141, der nur Licht der erwarteten Zentralwellenlänge passieren läßt. Dann trifft der Lichtstrahl auf eine Lambda/4-Platte 142, die die zirkulare Polarisation in eine lineare Polarisation umwandelt. Anschließend fällt das Licht auf einen 1 : 1 Strahlteiler 143, von wo die beiden Teilstrahlen 144, 145 auf zwei Detektoren 146, 147 mit davor angeordneten Polarisationsfiltern 148, 149 gelangen. Die Polarisationsebenen 150, 151 der beiden Filter stehen senkrecht aufeinander, gleichzeitig sind sie zu den beiden optischen Achsen der Lambda/4-Platte unter 45° ausgerichtet.
  • Die maschinelle Echtheitsprüfung stützt sich auf eine Analyse der beiden Detektorsignale. Die Funktionsweise des Detektorsystems wird im folgenden anhand mehrerer Fälle aufgezeigt.
    • A) Echtes Element
      Das reflektierte Licht passiert ungehindert den Farbfilter. In der Lambda/4-Platte wird aus der zirkularen eine lineare, entweder horizontal oder vertikal stehende Polarisation erzeugt. Die lineare Polarisation führt dazu, daß einer der beiden Detektoren 146, 147 die volle Intensität empfängt, während der zweite Detektor kein Licht erhält.
    • B) Gefälschtes, unpolarisiert reflektierendes Element
      Das spektral korrekte, aber unpolarisiert reflektierte Licht weist auch nach dem Passieren der Lambda/4-Platte keine bevorzugte Polarisationsrichtung auf. Beide Detektoren empfangen je 50 % des reflektierten Lichts.
    • C) Gefälschtes Element mit Spektralfehler
      Das reflektierte Licht wird im Farbfilter 142 absorbiert, entsprechend empfängt keiner der beiden Detektoren ein Signal.
    • D) Gefälschtes linear polarisierendes Element
      Die 45°-Anordnung von Lambda/4-Platte und den beiden Polaristoren führt dazu, daß unabhängig von der ursprünglichen Polarisationsrichtung des reflektierten Lichts beide Detektoren das gleiche Signal empfangen.
  • Um die Fehlersignifikanz zu erhöhen, lassen sich auch zur Prüfung eines einzigen Elements mehrere Detektorsysteme verwenden; die beispielsweise unter unterschiedlichen Winkeln angeordnet sind und dementsprechend auf unterschiedliche Zentralwellenlängen reagieren.
  • Dem Fachmann ist klar, daß das Detektorsystem auf vielfache Weise realisiert werden kann. Fig. 15 zeigt als eine wartungsfreundliche Alternative eine Anordnung unter Verwendung von Lichtleitfasern. Basis der optischen Anordnung ist wiederum Fig. 13. Im Detektorsystem 133 durchläuft der reflektierte Lichtstrahl 132 zunächst einen Farbfilter 161 zur Überprüfung der Zentralwellenlänge. In der folgenden Lambda/4-Platte 162 wird die zirkulare Polarisation in eine lineare umgewandelt. Eine Einkoppeloptik 153 koppelt den Lichtstrahl 132 in ein Lichtleitersystem 154 ein, bekannte Strahlweichen trennen den Strahl in äquivalente Teilbündel auf. Am Ende jedes Teilbündels befindet sich ein Polarisator-Detektor-Paar 155/156 und 157/158 für die beiden unterschiedlichen Polarisationsrichtungen.
  • Bei Licht der korrekten Wellenlänge und Polarisation empfängt (im Fall verlustfreier Optiken) einer der beiden Detektoren 156/158 50 % der Eingangsintensität, der zweite erhält kein Licht. Im Fall eines gefälschten Elements mit unpolarisiertem reflektiertem Licht empfängt jeder der beiden Detektoren 50 % der Eingangsintensität. Auf diese Weise lassen sich Fälschung und Original unterscheiden.

Claims (33)

  1. Datenträger, insbesondere Wertpapier, Dokument, Ausweiskarte oder dgl. mit einem optisch variablen Sicherheitselement, das ein Flüssigkristall-Material enthält, dadurch gekennzeichnet, daß das Material ein Flüssigkristall-Polymer ist, welches in orientierter Form und bei Raumtemperatur als Festkörper vorliegt.
  2. Datenträger nach Anspruch 1, dadurch gekennzeichnet, daß das Material ein vernetzbares Flüssigkristall-Silikon-Polymer ist.
  3. Datenträger nach Anspruch 1, dadurch gekennzeichnet, daß das Material ein Organopolysiloxan oder ein Organooxysilan ist oder eine Verbindung mit einem Organopolysiloxan oder einem Organooxysilan darstellt.
  4. Datenträger nach Anspruch 1, dadurch gekennzeichnet, z daß das Flüssigkristall-Polymer als Schicht oder Film im Sicherheitselement oder im Datenträger vorliegt.
  5. Datenträger nach Anspruch 4, dadurch gekennzeichnet, daß die mit Flüssigkristall-Polymer beschichteten Trägerfolien (20) paarweise mit einem Kaschiervermittler (22) so aneinander gefügt sind, daß ein symmetrischer Schichtaufbau (13c, 13d) entsteht.
  6. Datenträger nach Anspruch 4, dadurch gekennzeichnet, daß zumindest eine Fläche des Sicherheitselements mit transparenten absorbierenden und/oder reflektierenden Farben (34, 40) bedruckt oder eine Schicht des Sicherheitselements mit derartigen Farben eingefärbt ist.
  7. Datenträger nach Anspruch 6, dadurch gekennzeichnet, daß das Sicherheitselement in einem bedruckten und/oder beschrifteten Bereich (60) des Datenträgers aufgebracht ist.
  8. Datenträger nach Anspruch 7, dadurch gekennzeichnet, daß auf dem Datenträger im Bereich des Sicherheitselements eine visuell nicht sichtbare Kodierung (72) aufgebracht ist.
  9. Datenträger nach mindestens einem der Ansprüche 1 - 8, dadurch gekennzeichnet, daß das Flüssigkristall-Polymer als Folie (127) verarbeitet ist.
  10. Datenträger nach Anspruch 9, dadurch gekennzeichnet, daß die Folie (127) als Sicherheitselement in den Aufbau eines mehrschichtigen Datenträgers (120) eingefügt ist.
  11. Datenträger nach Anspruch 10, dadurch gekennzeichnet, daß die Folie die Deckfolie (122, 123) des Datenträgers ist.
  12. Optisch variables Sicherheitselement für die Ausstattung von Datenträgern mit Flüssigkristall-Material, dadurch gekennzeichnet, daß das Sicherheitselement als mehrschichtiges Transferelement mit mindestens einer Schicht (56) aus Flüssigkristall-Polymeren ausgebildet ist.
  13. Sicherheitselement nach Anspruch 12, dadurch gekennzeichnet, daß Schichten oder Flächen des Transferelements mit transparenten absorbierenden und/oder reflektierenden Farbstoffen bedruckt oder eingefärbt sind.
  14. Sicherheitselement nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß der Umriß (61) des Transferelements eine vorbestimmte Form in Form eines Logos, eines Siegels, eines Wappens, alphanumerischer Schriftzeichen, Guillochenmuster oder dgl. aufweist.
  15. Halbzeug zur Herstellung eines Sicherheitselements nach mindestens einem der Ansprüche 12 - 14 , dadurch gekennzeichnet, daß auf eine Trägerfolie (20) eine Schicht (21) oder ein Film (21) aus einem Flüssigkristall-Polymer aufgebracht ist.
  16. Halbzeug zur Herstellung eines Sicherheitselements nach Anspruch 15, dadurch gekennzeichnet, daß zwei beschichtete Trägerfolien (20) mit einem Kaschiervermittler (22) so aufeinandergefügt sind, daß ein symmetrischer Schichtaufbau vorliegt.
  17. Halbzeug nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, daß eine Schicht oder Fläche des Halbzeugs mit Farbstoffen bedruckt und/oder eingefärbt sind.
  18. Halbzeug nach mindestens einem der Ansprüche 12 - 14, dadurch gekennzeichnet, daß es aus mindestens einem Trägerband und einer Trennschicht, einer Schicht mit Flüssigkristall-Polymer besteht.
  19. Verfahren zur Herstellung eines Datenträgers nach mindestens einem der vorangehenden Ansprüche gekennzeichnet durch folgende Schritte:
    - Aufbringen des noch flüssigen Flüssigkristall-Materials auf eine Trägerfläche,
    - Orientierung des Flüssigkristall-Materials durch mechanisches Einwirken von Scherkräften,
    - Aushärten des orientierten Materials zum Festkörper,
    - Ein- oder Aufbringen des Flüssigkristall-Festkörpermaterials in oder auf den Schichtaufbau des Datenträgers.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Trägerfläche eine separate Trägerfolie ist.
  21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die Orientierung durch Aufrakeln des Flüssigkristall-Materials erfolgt.
  22. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Trägerfläche eine Druckwalze ist, auf die das Flüssigkristall-Material direkt aufgerakelt oder aufgewalzt wird und von der das Flüssigkristall-Material durch einen Druckvorgang auf eine Fläche des Datenträgers übertragen wird.
  23. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß das Aushärten durch definierte Energiezufuhr erfolgt.
  24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß die Energiezufuhr durch Bestrahlung mit UV- oder IR-Licht erfolgt.
  25. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß die Energiezufuhr durch Einwirkung eines Elektronenstrahls erfolgt.
  26. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß das Flüssigkristall-Material auf der Trägerfläche einen selbsttragenden Film bildet, der nach dem Aushärten abgelöst wird.
  27. Verfahren zur Herstellung eines Datenträgers nach mindestens einem der Ansprüche 1 - 18, dadurch gekennzeichnet, daß das Flüssigkristall-Material in orientierter und ausgehärteter Form auf einen Trägerfilm angeordnet wird und von diesem Trägerfilm auf den Datenträger oder eine Schicht des Datenträgers im Transferverfahren übertragen wird.
  28. Verfahren nach mindestens einem der Ansprüche 19 - 27, dadurch gekennzeichnet, daß das Aushärten des Flüssigkristall-Materials nicht ganzflächig, sondern in Form von Mustern, Zeichen oder dgl. erfolgt und die nicht ausgehärteten Bereiche nach dem Aushärtungsschritt entfernt werden.
  29. Verwendung eines Flüssigkristall-Polymers zur Absicherung und/oder Echtheitsidentifizierung von Datenträgern wie Wertpapier, Ausweiskarte oder dgl..
  30. Verfahren zur maschinellen Prüfung eines Datenträgers nach Anspruch 1, dadurch gekennzeichnet, daß das Sicherheitselement mit einer Lichtquelle unter wenigstens einem vorbestimmten Winkel beleuchtet wird und die Polarisationseigenschaften und/oder die spektralen Eigenschaften des reflektierten Lichts mit geeigneten Detektoranordnungen überprüft werden.
  31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die Eigenschaften des reflektierten Lichts unter mehreren Beleuchtungs- und/oder Beobachtungswinkeln geprüft werden.
  32. Anordnung zur Durchführung des Verfahrens nach Anspruch 30 oder 31, gekennzeichnet, durch
    - eine Lichtquelle (129), die das Sicherheitselement (130) unter mindestens einem vorbestimmten Winkel beleuchtet,
    - eine oder mehrere Farbfilter (141, 161) zur Prüfung der spektralen Eigenschaften des reflektierten Lichts,
    - eine polarisationsoptische Komponente (152, 162),
    - einen Strahlteiler (143) zur Aufspaltung des reflektierten Lichts in Teilstrahlen unterschiedlicher Polarisation und
    - polarisierende optische Komponenten (148, 149, 155, 157) und Detektoren (146, 147, 156, 158) zur Messung der Intensität der Teilstrahlen.
  33. Anordnung nach Anspruch 32, dadurch gekennzeichnet, daß der reflektierte Strahl (132) in ein faseroptisches System (154) mit einer Optik (153) eingekoppelt wird, wobei die Strahlteiler und polarisierenden Komponenten (155, 157) in dem System integriert sind.
EP90123341A 1989-12-22 1990-12-05 Datenträger mit einem Flüssigkristall-Sicherheitselement Expired - Lifetime EP0435029B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3942663 1989-12-22
DE3942663A DE3942663A1 (de) 1989-12-22 1989-12-22 Datentraeger mit einem fluessigkristall-sicherheitselement

Publications (4)

Publication Number Publication Date
EP0435029A2 true EP0435029A2 (de) 1991-07-03
EP0435029A3 EP0435029A3 (en) 1991-09-18
EP0435029B1 EP0435029B1 (de) 1995-08-09
EP0435029B2 EP0435029B2 (de) 2003-01-02

Family

ID=6396250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123341A Expired - Lifetime EP0435029B2 (de) 1989-12-22 1990-12-05 Datenträger mit einem Flüssigkristall-Sicherheitselement

Country Status (6)

Country Link
EP (1) EP0435029B2 (de)
JP (1) JP3244278B2 (de)
AT (1) ATE126135T1 (de)
CA (1) CA2032587C (de)
DE (2) DE3942663A1 (de)
ES (1) ES2075871T5 (de)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002329A1 (en) * 1992-07-24 1994-02-03 Portals Limited Improvements in or relating to high value documents
FR2698390A1 (fr) * 1992-11-20 1994-05-27 Arjo Wiggins Sa Document de sécurité authentifiable par effet piezooptique.
GB2283455A (en) * 1993-11-03 1995-05-10 Willett Int Ltd Authenticating articles
US5447335A (en) * 1990-11-22 1995-09-05 Thomas De La Rue Limited Security device and authenticatable item
EP0689065A1 (de) 1994-06-24 1995-12-27 F. Hoffmann-La Roche AG Optisches Bauelement
DE19639229A1 (de) * 1996-09-24 1997-06-05 Wacker Chemie Gmbh Zusammensetzung enthaltend Pigmente mit vom Betrachtungswinkel abhängiger Farbigkeit
FR2764314A1 (fr) * 1997-06-09 1998-12-11 Arjo Wiggins Sa Document de securite comportant un moyen d'authentification comprenant une fenetre transparente et un element de securite
EP0911758A2 (de) * 1997-07-29 1999-04-28 Nhk Spring Co.Ltd. Optisches Identifizierungssystem mit cholesterischen Flüssigkristallen
EP1003126A2 (de) * 1998-11-17 2000-05-24 Nhk Spring Co.Ltd. Optisches Gegenstand-Identifizierungssystem
WO2000050249A1 (de) * 1999-02-23 2000-08-31 Giesecke & Devrient Gmbh Wertdokument
WO2000065383A1 (en) * 1999-04-21 2000-11-02 Nippon Mitsubishi Oil Corporation Optical laminate
WO2000072056A1 (en) * 1999-05-24 2000-11-30 Toppan Printing Co., Ltd. Laminated composite body, information recording medium, and member for imparting counterfeit preventive function
WO2001023918A1 (fr) * 1999-09-27 2001-04-05 Nippon Mitsubishi Oil Corporation Dispositif optique et dispositif de securite
EP1147912A2 (de) * 1996-10-10 2001-10-24 Securency Pty. Ltd. Sicherheitsdokumente mit eingebauten Echtheitsprüfungsmitteln
WO2002010807A1 (fr) * 2000-07-27 2002-02-07 Shiseido Co., Ltd. Feuilles optiques contenant une couche de cristaux liquides cholesteriques, support d'enregistrement de donnees, procede d'enregistrement de donnees et procede de discrimination de donnees utilisant ces feuilles optiques
WO2002033453A1 (en) * 2000-10-19 2002-04-25 Nhk Spring Co., Ltd. Medium for identifying matter to be identified and method for production thereof
EP1281538A2 (de) 2001-07-02 2003-02-05 MERCK PATENT GmbH Optisch variable Markierung
WO2002085642A3 (en) * 2001-04-24 2003-05-01 Merck Patent Gmbh Birefringent marking
WO2003061980A1 (en) 2002-01-25 2003-07-31 De La Rue International Limited Improvements in methods of manufacturing substrates
DE10222433A1 (de) * 2002-05-22 2003-12-11 Kurz Leonhard Fa Streifenförmiges Sicherheitselement
WO2004028824A2 (de) * 2002-09-19 2004-04-08 Giesecke & Devrient Gmbh Sicherheitselement
WO2005005727A1 (de) * 2003-07-14 2005-01-20 Giesecke & Devrient Gmbh Sicherheitselement
WO2005037570A2 (de) 2003-09-19 2005-04-28 Giesecke & Devrient Gmbh Sicherheitselement mit flüssigkristallinem material
WO2005049703A1 (de) * 2003-11-21 2005-06-02 Merck Patent Gmbh Verfahren zur modifikation von chiralen flüssigkristallfilmen mit hilfe von extraktionsmitteln
WO2005028211A3 (de) * 2003-09-17 2005-10-20 Hueck Folien Gmbh Passives aktivierbares sicherheitsmerkmal
WO2005105474A2 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
WO2005105473A1 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
WO2005105475A1 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Folienmaterial und verfahren zu seiner herstellung
WO2005108107A1 (de) 2004-04-30 2005-11-17 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
WO2005120855A1 (en) 2004-06-10 2005-12-22 De La Rue International Limited Improvements in security devices
EP1630285A2 (de) 2004-08-27 2006-03-01 De La Rue International Limited Verfahren zur Herstellung eines Streifen enthaltenden Faserstoffsubstrats
FR2877609A1 (fr) * 2004-11-08 2006-05-12 Arjowiggins Security Soc Par A Structure de securite et article incorporant une telle structure
US7081282B2 (en) 2001-07-02 2006-07-25 Merck Patent Gmbh Optically variable marking
WO2007003405A1 (de) * 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Mehrschichtkörper mit elektrisch steuerbaren, optisch wirksamen schichtsystemen
WO2007051529A1 (de) 2005-11-03 2007-05-10 Giesecke & Devrient Gmbh Durchsichtssicherheitselement und verfahren zu seiner herstellung
WO2007059853A1 (en) 2005-11-22 2007-05-31 Merck Patent Gmbh Process for a thermal transfer of a liquid crystal film using a transfer element
CN100343703C (zh) * 2002-10-10 2007-10-17 新日本石油株式会社 转印性液晶层压体
EP1857985A1 (de) * 2000-10-13 2007-11-21 The Governor and Company of the Bank of England Detektion von Druck- und Beschichtungsmitteln
WO2007138255A1 (en) * 2006-05-26 2007-12-06 De La Rue International Limited Improvements in forming security devices
WO2007138293A2 (en) 2006-05-26 2007-12-06 De La Rue International Limited Improvements in substrates
EP1894737A2 (de) 2006-08-29 2008-03-05 JDS Uniphase Corporation Druckartikel mit Spezialeffektbeschichtung
WO2008043981A1 (en) 2006-10-10 2008-04-17 De La Rue International Limited Improvements in security devices
DE112006003410T5 (de) 2005-12-20 2009-01-02 De La Rue International Ltd., Basingstoke Verbesserungen in Verfahren zur Herstellung von Sicherheitssubstraten
WO2008138512A3 (de) * 2007-05-10 2009-01-08 Leonhard Kurz Stiftung & Co Kg Verfahren zur herstellung einer vernetzten flüssigkristallschicht sowie vorrichtung zur durchführung des verfahrens
EP1491358A3 (de) * 1995-06-06 2009-04-01 JDS Uniphase Corporation Zweiteilige optisch variable Vorrichtung
DE102009010770A1 (de) 2008-02-27 2009-09-10 De La Rue International Ltd. Verbessertes Verfahren zur Herstellung einer optisch variablen Sicherheitsvorrichtung
WO2010001060A2 (fr) * 2008-07-03 2010-01-07 Arjowiggins Security Element de securite a effet optique variable et feuille ou document de securite ou article le comprenant
US7812937B2 (en) 2006-09-01 2010-10-12 Nhk Spring Co., Ltd. Identification medium, article, identification device, and method of identifying identification medium
EP2269837A1 (de) 2004-08-12 2011-01-05 Giesecke&Devrient Sicherheitselement und Verfahren zu seiner Herstellung
EP2287399A1 (de) 2003-07-14 2011-02-23 Flex Products, Inc. a JDS Uniphase Company Sicherheitsfaden enthaltend eine optisch variable Struktur
WO2010115803A3 (de) * 2009-04-06 2011-03-24 Giesecke & Devrient Gmbh Piezochromes sicherheitselement auf flüssigkristallbasis
WO2011051682A1 (en) 2009-10-30 2011-05-05 De La Rue International Limited Improvements in security devices
WO2011061495A1 (en) 2009-11-19 2011-05-26 De La Rue International Limited Improvements in security devices
EP1833034A4 (de) * 2004-12-24 2011-06-29 Nhk Spring Co Ltd Identifikationsmedium, mit identifikationsmedium ausgestatteter artikel, identifizierungsverfahren und einrichtung
US8158239B2 (en) 2005-12-28 2012-04-17 Nhk Spring Co., Ltd. Identification medium
US8350259B2 (en) 2008-05-30 2013-01-08 Polyic Gmbh & Co. Kg Electronic circuit
US8432589B2 (en) 2007-05-21 2013-04-30 Ovd Kinegram Ag Multi-layer body having optical-action elements for producing an optical effect
WO2013124059A1 (de) 2012-02-21 2013-08-29 Giesecke & Devrient Gmbh Verfahren mit passer zwischen druckelement und wasserzeichen
US8883273B2 (en) 2006-08-10 2014-11-11 De La Rue International Limited Photonic crystal security device
US8927072B2 (en) 2006-08-10 2015-01-06 De La Rue International Limited Photonic crystal security device
US8968856B2 (en) 2006-03-31 2015-03-03 Giesecke & Devrient Gmbh Security element and method for its production
US9272564B2 (en) 2007-10-19 2016-03-01 De La Rue International Limited Photonic crystal security device and method
EP0772069B1 (de) * 1995-10-31 2016-05-18 Rolic AG Optisches Bauelement
EP1744900B1 (de) 2004-04-30 2016-07-20 Giesecke & Devrient GmbH Sicherheitselement und verfahren zu seiner herstellung
US9411074B2 (en) 2009-04-14 2016-08-09 De La Rue International Limited Security device
EP3075561A1 (de) 2015-03-30 2016-10-05 Giesecke & Devrient GmbH Mehrfarbiges sicherheitselement mit effektfarben
EP2196322B1 (de) 2008-12-11 2017-10-25 Giesecke+Devrient Currency Technology GmbH Sicherheitselement
US10061065B2 (en) 2013-11-18 2018-08-28 Viavi Solutions Inc. Interference pigments or foils as separate structures having color match or mismatch depending on viewing angle
WO2020217254A1 (en) * 2019-04-20 2020-10-29 Shilpan Patel Robust colour shift security film with wide spectrum complex spectral values and security thread made therefrom

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9106128D0 (en) * 1991-03-22 1991-05-08 Amblehurst Ltd Article
GB2276883A (en) * 1993-04-05 1994-10-12 Central Research Lab Ltd Optical material containing a liquid crystal
US5629055A (en) * 1994-02-14 1997-05-13 Pulp And Paper Research Institute Of Canada Solidified liquid crystals of cellulose with optically variable properties
DE4416191A1 (de) * 1994-05-06 1995-11-09 Consortium Elektrochem Ind Interferenzpigmente aus in cholesterischer Anordnung fixierten Molekülen sowie deren Verwendung
KR20000029828A (ko) 1996-08-05 2000-05-25 마츠시타 덴끼 산교 가부시키가이샤 데이터송신장치,데이터수신장치,처리장치,기기관리장치,기기관리시스템,데이터송수신시스템및매체
DE19645084A1 (de) * 1996-11-01 1998-05-07 Austria Card Gmbh Identifikationskarte mit zusätzlichen Sicherheitsmerkmalen und Verfahren zu deren Herstellung
DE19735628C2 (de) * 1997-08-18 1999-10-14 Johannes Puff Verfahren zur Fälschungssicherung eines nicht personengebundenen Zugangsberechtigungsmittels
DE19737618A1 (de) 1997-08-28 1999-03-04 Consortium Elektrochem Ind Maschinendetektierbare Sicherheitsmarkierung mit erhöhter Fälschungssicherheit, Herstellung der Sicherheitsmarkierung und Sicherheitssystem umfassend diese Sicherheitsmarkierung
DE19737612A1 (de) * 1997-08-28 1999-03-04 Consortium Elektrochem Ind Mit dem Auge nicht erkennbare, maschinendetektierbare Sicherheitsmarkierung, Herstellung der Sicherheitsmarkierung und Sicherheitssystem umfassend diese Sicherheitsmarkierung
DE19743722A1 (de) * 1997-10-02 1999-04-08 Wacker Chemie Gmbh Polysiloxane mit heterocyclischen Funktionen, deren Herstellung und Verwendung
US20020117845A1 (en) 2000-01-03 2002-08-29 Bundesdruckerei Gmbh Security and/or valve document
DE19833746A1 (de) * 1998-07-27 2000-02-03 Joergen Brosow Sicherheitspapier und Verfahren zur Prüfung der Echtheit darauf aufgezeichneter Urkunden
DE19904282C2 (de) * 1999-02-03 2002-05-29 Xetos Ag Informationsträger
DE19909471A1 (de) * 1999-03-04 2000-09-07 Bayerische Motoren Werke Ag Dekorelement
DE50002540D1 (de) 1999-04-07 2003-07-17 Trueb Ag Aarau Aufzeichnungsträger und verfahren zu seiner herstellung
DE19941295A1 (de) 1999-08-31 2001-03-01 Giesecke & Devrient Gmbh Sicherheitselement
DE10007916A1 (de) 2000-02-21 2001-08-23 Giesecke & Devrient Gmbh Mehrschichtige, laminierte Karte mit eingelagertem, Reliefstrukturen aufweisenden Sicherheitselement
DE10008851A1 (de) 2000-02-25 2001-08-30 Giesecke & Devrient Gmbh Verfahren zur Herstellung laserbeschriftbarer Datenträger und damit hergestellte Datenträger
JP4565591B2 (ja) * 2000-11-29 2010-10-20 トッパン・フォームズ株式会社 コレステリック液晶性化合物を保持したカード
EP1227347A1 (de) * 2001-01-29 2002-07-31 Rolic AG Optische Vorrichtung und Verfahren zu deren Herstellung
JP2003231380A (ja) 2002-02-12 2003-08-19 Nhk Spring Co Ltd 対象物の識別媒体及び識別方法
JP2003337218A (ja) * 2002-05-21 2003-11-28 Nippon Oil Corp 転写用積層体
US7590239B2 (en) 2002-09-13 2009-09-15 Nhk Spring Co., Ltd. Object identifying medium using multi-layer thin-film
US7386125B2 (en) 2002-10-28 2008-06-10 Qdesign Usa, Inc. Techniques of imperceptibly altering the spectrum of a displayed image in a manner that discourages copying
DE10342674B4 (de) * 2003-09-16 2007-07-19 Leonhard Kurz Gmbh & Co. Kg Verfahren und Foliensystem zur Herstellung eines individualisierten optisch variablen Elements
JP4257903B2 (ja) 2003-10-28 2009-04-30 日本発條株式会社 識別媒体、識別媒体の識別方法、識別対象物品および識別装置
US7818782B2 (en) * 2004-04-14 2010-10-19 Dai Nippon Printing Co., Ltd. Authentication medium, authenticable substrate, authentication medium label, authentication medium transfer sheet, authenticable sheet, and authenticable information recording medium
DE102004018702B4 (de) * 2004-04-17 2006-05-24 Leonhard Kurz Gmbh & Co. Kg Folie mit Polymerschicht
JP4549119B2 (ja) 2004-07-15 2010-09-22 日本発條株式会社 識別媒体および識別媒体を備えた物品
JP4539909B2 (ja) 2004-10-01 2010-09-08 日本発條株式会社 識別媒体およびその識別方法
DE102005017655B4 (de) 2005-04-15 2008-12-11 Polyic Gmbh & Co. Kg Mehrschichtiger Verbundkörper mit elektronischer Funktion
DE102005035589A1 (de) 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Verfahren zur Herstellung eines elektronischen Bauelements
DE102005044306A1 (de) 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Elektronische Schaltung und Verfahren zur Herstellung einer solchen
JP4959304B2 (ja) 2006-11-22 2012-06-20 日本発條株式会社 識別媒体、識別方法および識別装置
DE102007034716A1 (de) 2007-07-23 2009-01-29 Giesecke & Devrient Gmbh Sicherheitselement
CN102759441A (zh) * 2012-07-20 2012-10-31 西北工业大学 多波段偏振成像防伪元件辨识系统
GB2547236B (en) * 2016-02-11 2019-09-11 De La Rue Int Ltd Improvements in security devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982002445A1 (en) * 1981-01-08 1982-07-22 Lucy Ann Boutaleb Identification of articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU488652B2 (en) * 1973-09-26 1976-04-01 Commonwealth Scientific And Industrial Research Organisation Improvements in or relating to security tokens
DE3110048A1 (de) * 1981-03-16 1982-09-30 Consortium für elektrochemische Industrie GmbH, 8000 München "fluessigkristalline phasen aufweisende zusammensetzungen auf basis cyclischer organopolysiloxane, ihre herstellung und deren verwendung"
DE3119459A1 (de) * 1981-05-15 1982-12-09 Consortium für elektrochemische Industrie GmbH, 8000 München Fluessig-kristalline eigenschaften aufweisende, vernetzte organopolysiloxane
CH653161A5 (de) * 1981-10-27 1985-12-13 Landis & Gyr Ag Dokument mit einem sicherheitsmerkmal und verfahren zur echtheitspruefung des dokumentes.
JPS5988780A (ja) * 1982-11-08 1984-05-22 アメリカン・バンク・ノ−ト・カムパニ− 光回折記録体及び光回折パタ−ンを作る方法
DE3331515A1 (de) * 1983-09-01 1985-03-21 Merck Patent Gmbh, 6100 Darmstadt Trialkanoyloxysilane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982002445A1 (en) * 1981-01-08 1982-07-22 Lucy Ann Boutaleb Identification of articles

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447335A (en) * 1990-11-22 1995-09-05 Thomas De La Rue Limited Security device and authenticatable item
US5678863A (en) * 1992-07-24 1997-10-21 Portals Limited High value documents
WO1994002329A1 (en) * 1992-07-24 1994-02-03 Portals Limited Improvements in or relating to high value documents
FR2698390A1 (fr) * 1992-11-20 1994-05-27 Arjo Wiggins Sa Document de sécurité authentifiable par effet piezooptique.
GB2283455A (en) * 1993-11-03 1995-05-10 Willett Int Ltd Authenticating articles
US6144428A (en) * 1994-06-24 2000-11-07 Rolic Ag Optical component
EP0689065A1 (de) 1994-06-24 1995-12-27 F. Hoffmann-La Roche AG Optisches Bauelement
EP1491358A3 (de) * 1995-06-06 2009-04-01 JDS Uniphase Corporation Zweiteilige optisch variable Vorrichtung
EP0772069B1 (de) * 1995-10-31 2016-05-18 Rolic AG Optisches Bauelement
DE19639229A1 (de) * 1996-09-24 1997-06-05 Wacker Chemie Gmbh Zusammensetzung enthaltend Pigmente mit vom Betrachtungswinkel abhängiger Farbigkeit
EP1147912A2 (de) * 1996-10-10 2001-10-24 Securency Pty. Ltd. Sicherheitsdokumente mit eingebauten Echtheitsprüfungsmitteln
EP1147912A3 (de) * 1996-10-10 2001-11-07 Securency Pty. Ltd. Sicherheitsdokumente mit eingebauten Echtheitsprüfungsmitteln
FR2764314A1 (fr) * 1997-06-09 1998-12-11 Arjo Wiggins Sa Document de securite comportant un moyen d'authentification comprenant une fenetre transparente et un element de securite
EP0911758A3 (de) * 1997-07-29 2003-03-26 Nhk Spring Co.Ltd. Optisches Identifizierungssystem mit cholesterischen Flüssigkristallen
EP0911758A2 (de) * 1997-07-29 1999-04-28 Nhk Spring Co.Ltd. Optisches Identifizierungssystem mit cholesterischen Flüssigkristallen
EP1003126A3 (de) * 1998-11-17 2004-01-07 Nhk Spring Co.Ltd. Optisches Gegenstand-Identifizierungssystem
EP1003126A2 (de) * 1998-11-17 2000-05-24 Nhk Spring Co.Ltd. Optisches Gegenstand-Identifizierungssystem
JP2002537157A (ja) * 1999-02-23 2002-11-05 ギーゼッケ ウント デフリエント ゲーエムベーハー 価値のある文書
WO2000050249A1 (de) * 1999-02-23 2000-08-31 Giesecke & Devrient Gmbh Wertdokument
WO2000065383A1 (en) * 1999-04-21 2000-11-02 Nippon Mitsubishi Oil Corporation Optical laminate
WO2000072056A1 (en) * 1999-05-24 2000-11-30 Toppan Printing Co., Ltd. Laminated composite body, information recording medium, and member for imparting counterfeit preventive function
US6955839B2 (en) 1999-05-24 2005-10-18 Toppan Printing Co., Ltd. Laminated composite, information recording medium, and member of imparting forgery-preventing characteristic
WO2001023918A1 (fr) * 1999-09-27 2001-04-05 Nippon Mitsubishi Oil Corporation Dispositif optique et dispositif de securite
WO2002010807A1 (fr) * 2000-07-27 2002-02-07 Shiseido Co., Ltd. Feuilles optiques contenant une couche de cristaux liquides cholesteriques, support d'enregistrement de donnees, procede d'enregistrement de donnees et procede de discrimination de donnees utilisant ces feuilles optiques
EP1857985A1 (de) * 2000-10-13 2007-11-21 The Governor and Company of the Bank of England Detektion von Druck- und Beschichtungsmitteln
WO2002033453A1 (en) * 2000-10-19 2002-04-25 Nhk Spring Co., Ltd. Medium for identifying matter to be identified and method for production thereof
US6740431B2 (en) 2000-10-19 2004-05-25 Nhk Spring Co., Ltd. Medium for identifying matter to be identified and method for production thereof
CN1306290C (zh) * 2001-04-24 2007-03-21 默克专利股份有限公司 双折射标记
WO2002085642A3 (en) * 2001-04-24 2003-05-01 Merck Patent Gmbh Birefringent marking
EP1681586A1 (de) * 2001-04-24 2006-07-19 Merck Patent GmbH Doppelbrechende Markierung
AU2002304051B2 (en) * 2001-04-24 2007-08-16 Merck Patent Gmbh Birefringent Marking
US7033653B2 (en) 2001-04-24 2006-04-25 Merck Patent Gmbh Birefringent marking
US7081282B2 (en) 2001-07-02 2006-07-25 Merck Patent Gmbh Optically variable marking
EP1281538A2 (de) 2001-07-02 2003-02-05 MERCK PATENT GmbH Optisch variable Markierung
WO2003061980A1 (en) 2002-01-25 2003-07-31 De La Rue International Limited Improvements in methods of manufacturing substrates
DE10222433A1 (de) * 2002-05-22 2003-12-11 Kurz Leonhard Fa Streifenförmiges Sicherheitselement
WO2004028824A3 (de) * 2002-09-19 2004-08-05 Giesecke & Devrient Gmbh Sicherheitselement
JP4750417B2 (ja) * 2002-09-19 2011-08-17 ギーゼッケ ウント デフリエント ゲーエムベーハー セキュリティー素子
WO2004028824A2 (de) * 2002-09-19 2004-04-08 Giesecke & Devrient Gmbh Sicherheitselement
US7054043B2 (en) 2002-09-19 2006-05-30 Giesecke & Devrient Gmbh Security element
CN100343703C (zh) * 2002-10-10 2007-10-17 新日本石油株式会社 转印性液晶层压体
EP2287399A1 (de) 2003-07-14 2011-02-23 Flex Products, Inc. a JDS Uniphase Company Sicherheitsfaden enthaltend eine optisch variable Struktur
WO2005005727A1 (de) * 2003-07-14 2005-01-20 Giesecke & Devrient Gmbh Sicherheitselement
WO2005028211A3 (de) * 2003-09-17 2005-10-20 Hueck Folien Gmbh Passives aktivierbares sicherheitsmerkmal
WO2005037570A3 (de) * 2003-09-19 2006-02-16 Giesecke & Devrient Gmbh Sicherheitselement mit flüssigkristallinem material
WO2005037570A2 (de) 2003-09-19 2005-04-28 Giesecke & Devrient Gmbh Sicherheitselement mit flüssigkristallinem material
WO2005049703A1 (de) * 2003-11-21 2005-06-02 Merck Patent Gmbh Verfahren zur modifikation von chiralen flüssigkristallfilmen mit hilfe von extraktionsmitteln
WO2005105473A1 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
CN1950217B (zh) * 2004-04-30 2010-05-12 捷德有限公司 箔材料及其制造方法
US7808605B2 (en) 2004-04-30 2010-10-05 Giesecke & Devrient Gmbh Sheeting and methods for the production thereof
EP1744900B1 (de) 2004-04-30 2016-07-20 Giesecke & Devrient GmbH Sicherheitselement und verfahren zu seiner herstellung
US7667894B2 (en) 2004-04-30 2010-02-23 Giesecke & Devrient Gmbh Security element and process for producing the same
US7728931B2 (en) 2004-04-30 2010-06-01 Giesecke & Devrient Gmbh Security element and method for producing same
WO2005108107A1 (de) 2004-04-30 2005-11-17 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
WO2005105475A1 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Folienmaterial und verfahren zu seiner herstellung
EP2065215A1 (de) 2004-04-30 2009-06-03 Giesecke &amp; Devrient GmbH Sicherheitselement und Verfahren zu seiner Herstellung
WO2005105474A2 (de) 2004-04-30 2005-11-10 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
WO2005120855A1 (en) 2004-06-10 2005-12-22 De La Rue International Limited Improvements in security devices
US8622435B2 (en) 2004-08-12 2014-01-07 Giesecke & Devrient Gmbh Security element and method for producing the same
EP2269837A1 (de) 2004-08-12 2011-01-05 Giesecke&Devrient Sicherheitselement und Verfahren zu seiner Herstellung
EP1630285A2 (de) 2004-08-27 2006-03-01 De La Rue International Limited Verfahren zur Herstellung eines Streifen enthaltenden Faserstoffsubstrats
US8118231B2 (en) 2004-11-08 2012-02-21 Arjowiggins Security Security structure and article incorporating such a structure
WO2006051231A3 (fr) * 2004-11-08 2006-08-31 Arjowiggins Security Structure de securite et article incorporant une telle structure
FR2877609A1 (fr) * 2004-11-08 2006-05-12 Arjowiggins Security Soc Par A Structure de securite et article incorporant une telle structure
EP1833034A4 (de) * 2004-12-24 2011-06-29 Nhk Spring Co Ltd Identifikationsmedium, mit identifikationsmedium ausgestatteter artikel, identifizierungsverfahren und einrichtung
CN101258516B (zh) * 2005-07-04 2011-05-11 波利Ic有限及两合公司 具有电可控的光学有源层系统的多层体
WO2007003405A1 (de) * 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Mehrschichtkörper mit elektrisch steuerbaren, optisch wirksamen schichtsystemen
WO2007051529A1 (de) 2005-11-03 2007-05-10 Giesecke & Devrient Gmbh Durchsichtssicherheitselement und verfahren zu seiner herstellung
WO2007059853A1 (en) 2005-11-22 2007-05-31 Merck Patent Gmbh Process for a thermal transfer of a liquid crystal film using a transfer element
DE112006003410T5 (de) 2005-12-20 2009-01-02 De La Rue International Ltd., Basingstoke Verbesserungen in Verfahren zur Herstellung von Sicherheitssubstraten
US8158239B2 (en) 2005-12-28 2012-04-17 Nhk Spring Co., Ltd. Identification medium
US8968856B2 (en) 2006-03-31 2015-03-03 Giesecke & Devrient Gmbh Security element and method for its production
WO2007138255A1 (en) * 2006-05-26 2007-12-06 De La Rue International Limited Improvements in forming security devices
WO2007138293A2 (en) 2006-05-26 2007-12-06 De La Rue International Limited Improvements in substrates
US8883273B2 (en) 2006-08-10 2014-11-11 De La Rue International Limited Photonic crystal security device
US8927072B2 (en) 2006-08-10 2015-01-06 De La Rue International Limited Photonic crystal security device
EP1894737A2 (de) 2006-08-29 2008-03-05 JDS Uniphase Corporation Druckartikel mit Spezialeffektbeschichtung
US8439403B2 (en) 2006-08-29 2013-05-14 Jds Uniphase Corporation Printed article with special effect coating
US7812937B2 (en) 2006-09-01 2010-10-12 Nhk Spring Co., Ltd. Identification medium, article, identification device, and method of identifying identification medium
WO2008043981A1 (en) 2006-10-10 2008-04-17 De La Rue International Limited Improvements in security devices
WO2008138512A3 (de) * 2007-05-10 2009-01-08 Leonhard Kurz Stiftung & Co Kg Verfahren zur herstellung einer vernetzten flüssigkristallschicht sowie vorrichtung zur durchführung des verfahrens
US8432589B2 (en) 2007-05-21 2013-04-30 Ovd Kinegram Ag Multi-layer body having optical-action elements for producing an optical effect
US9272564B2 (en) 2007-10-19 2016-03-01 De La Rue International Limited Photonic crystal security device and method
DE102009010770A1 (de) 2008-02-27 2009-09-10 De La Rue International Ltd. Verbessertes Verfahren zur Herstellung einer optisch variablen Sicherheitsvorrichtung
US8350259B2 (en) 2008-05-30 2013-01-08 Polyic Gmbh & Co. Kg Electronic circuit
WO2010001060A2 (fr) * 2008-07-03 2010-01-07 Arjowiggins Security Element de securite a effet optique variable et feuille ou document de securite ou article le comprenant
FR2933428A1 (fr) * 2008-07-03 2010-01-08 Arjowiggins Licensing Sas Element de securite a effet optique variable et feuille ou document de securite ou article le comprenant
WO2010001060A3 (fr) * 2008-07-03 2010-02-25 Arjowiggins Security Element de securite a effet optique variable et feuille ou document de securite ou article le comprenant
EP2196322B1 (de) 2008-12-11 2017-10-25 Giesecke+Devrient Currency Technology GmbH Sicherheitselement
EP2818919A1 (de) * 2009-04-06 2014-12-31 Giesecke & Devrient GmbH Verfahren zur Herstellung einer piezochromen Druckfarbe, piezochrome Druckfarbe, und Verfahren zum Herstellen eines Sicherheitselements
WO2010115803A3 (de) * 2009-04-06 2011-03-24 Giesecke & Devrient Gmbh Piezochromes sicherheitselement auf flüssigkristallbasis
US9411074B2 (en) 2009-04-14 2016-08-09 De La Rue International Limited Security device
WO2011051682A1 (en) 2009-10-30 2011-05-05 De La Rue International Limited Improvements in security devices
US8820793B2 (en) 2009-10-30 2014-09-02 De La Rue International Limited Security devices
WO2011061495A1 (en) 2009-11-19 2011-05-26 De La Rue International Limited Improvements in security devices
WO2013124059A1 (de) 2012-02-21 2013-08-29 Giesecke & Devrient Gmbh Verfahren mit passer zwischen druckelement und wasserzeichen
US10061065B2 (en) 2013-11-18 2018-08-28 Viavi Solutions Inc. Interference pigments or foils as separate structures having color match or mismatch depending on viewing angle
US11079525B2 (en) 2013-11-18 2021-08-03 Viavi Solutions Inc. Matched interference pigments or foils having viewing angle dependent mismatch
EP3075561A1 (de) 2015-03-30 2016-10-05 Giesecke & Devrient GmbH Mehrfarbiges sicherheitselement mit effektfarben
DE102015004072A1 (de) 2015-03-30 2016-10-06 Giesecke & Devrient Gmbh Mehrfarbiges Sicherheitselement mit Effektfarben
WO2020217254A1 (en) * 2019-04-20 2020-10-29 Shilpan Patel Robust colour shift security film with wide spectrum complex spectral values and security thread made therefrom

Also Published As

Publication number Publication date
EP0435029B1 (de) 1995-08-09
CA2032587C (en) 1996-07-09
ES2075871T3 (es) 1995-10-16
JPH04144796A (ja) 1992-05-19
EP0435029B2 (de) 2003-01-02
DE3942663A1 (de) 1991-06-27
DE59009504D1 (de) 1995-09-14
ES2075871T5 (es) 2003-07-16
EP0435029A3 (en) 1991-09-18
ATE126135T1 (de) 1995-08-15
CA2032587A1 (en) 1991-06-23
JP3244278B2 (ja) 2002-01-07

Similar Documents

Publication Publication Date Title
EP0435029B1 (de) Datenträger mit einem Flüssigkristall-Sicherheitselement
EP1156934B1 (de) Wertdokument
EP2310211B1 (de) Sicherheitselement sowie verfahren zu seiner herstellung
EP1744902B1 (de) Sicherheitselement und verfahren zu seiner herstellung
DE60003641T2 (de) Sicherheitselemente
DE69411602T2 (de) Sicherheitsfaden, und ihre Verwendung in Sicherheitspapier
EP0330733B1 (de) Sicherheitselement in Form eines Fadens oder Bandes zur Einbettung in Sicherheitsdokumente sowie Verfahren zur Herstellung desselben
EP2200840B1 (de) Optisch variables sicherheitselement
WO2006040069A1 (de) Sicherheitselement mit einer optisch variablen schicht und verfahren zu seiner herstellung
EP1687482B1 (de) Sicherheitselement
DE10047450A1 (de) Erzeugnis mit einem Sicherheitselement
EP1436774A1 (de) Wertdokument und sicherheitsmarkierung mit markierungsstoff
DE10243650A1 (de) Sicherheitselement
DE102007012042A1 (de) Sicherheitselement
EP2499001A1 (de) Kartenförmiger datenträger
EP2008251B1 (de) Sicherheitselement
EP1826728A2 (de) Lasermerkierbares Sicherheitselement
EP1744901B1 (de) Sicherheitselement und verfahren zu seiner herstellung
DE102009010770A1 (de) Verbessertes Verfahren zur Herstellung einer optisch variablen Sicherheitsvorrichtung
EP2768676B1 (de) Optisch variables sicherheitselement mit mikrokapselnbasierter farbschicht
EP3835075A1 (de) Sicherheitselement mit magnetmerkmal
DE3906695A1 (de) Sicherheitselement in form eines fadens oder bandes zur einbettung in sicherheitsdokumente sowie verfahren zur herstellung desselben
EP1214202B1 (de) Kartenförmiger datenträger und verfahren zu seiner herstellung
EP1523415B1 (de) Sicherheitsmerkmal für wertdokumente
DE102008061608A1 (de) Sicherheitselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19920306

17Q First examination report despatched

Effective date: 19940214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 126135

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950807

REF Corresponds to:

Ref document number: 59009504

Country of ref document: DE

Date of ref document: 19950914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075871

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ARJO WIGGINS S.A.

Effective date: 19960509

Opponent name: BUNDESREPUBLIK DEUTSCHLAND , VERTR.DURCH D. BUND

Effective date: 19960508

NLR1 Nl: opposition has been filed with the epo

Opponent name: ARJO WIGGINS S.A.

Opponent name: BUNDESREPUBLIK DEUTSCHLAND , VERTR.DURCH D. BUNDES

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BUNDESDRUCKEREI GMBH * 960509 ARJO WIGGINS S.A.

Effective date: 19960508

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: ARJO WIGGINS S.A.

Opponent name: BUNDESDRUCKEREI GMBH

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19991220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001205

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20030102

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20030102

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20030401

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070112

Year of fee payment: 17

BERE Be: lapsed

Owner name: G.- FUR AUTOMATION UND ORGANISATION M.B.H. *GAO

Effective date: 20071231

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071205

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20091222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091221

Year of fee payment: 20

Ref country code: FR

Payment date: 20100105

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100226

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101205