EP0423796A1 - Matériaux donneurs de colorants pour le transfert thermique - Google Patents

Matériaux donneurs de colorants pour le transfert thermique Download PDF

Info

Publication number
EP0423796A1
EP0423796A1 EP90120011A EP90120011A EP0423796A1 EP 0423796 A1 EP0423796 A1 EP 0423796A1 EP 90120011 A EP90120011 A EP 90120011A EP 90120011 A EP90120011 A EP 90120011A EP 0423796 A1 EP0423796 A1 EP 0423796A1
Authority
EP
European Patent Office
Prior art keywords
groups
group
dye
thermal transfer
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90120011A
Other languages
German (de)
English (en)
Other versions
EP0423796B1 (fr
Inventor
Hisashi Fuji Photo Film Co. Ltd. Mikoshiba
Mitsugu Fuji Photo Film Co. Ltd. Tanaka
Masakazu Fuji Photo Film Co. Ltd. Morigaki
Seiti Fuji Photo Film Co. Ltd. Kubodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of EP0423796A1 publication Critical patent/EP0423796A1/fr
Application granted granted Critical
Publication of EP0423796B1 publication Critical patent/EP0423796B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • B41M5/3852Anthraquinone or naphthoquinone dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • B41M5/3854Dyes containing one or more acyclic carbon-to-carbon double bonds, e.g., di- or tri-cyanovinyl, methine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • B41M5/388Azo dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments
    • B41M5/39Dyes containing one or more carbon-to-nitrogen double bonds, e.g. azomethine

Definitions

  • This invention relates to thermal transfer dye donating materials in which thermo-mobile dyes are used, and more precisely it relates to thermal transfer dye donating materials (i.e., dye providing material) with which dye images which hardly cause to color fading can be formed.
  • Thermal transfer recording which is one such recording method, involves the use of equipment which is light in weight and compact and which runs without noise, and which also has excellent operating and maintenance characteristics. Moreover, color recording can be achieved easily and the use of this type of equipment has become widespread in recent times.
  • the thermal transfer recording method includes systems in which a thermal transfer dye donating material comprising a thermo-fusible ink layer which is carried on a support is heated by means of a thermal head and the ink is fused and transferred to an image receiving material (fusion transfer systems) and systems in which a thermal transfer dye donating material which has a dye donating layer which contains a thermo-mobile dye and a binder is heated with a thermal head and recording is achieved by the thermal migration of just the dye to the image receiving layer of an image receiving material (thermo-mobile systems), generally referred to as sublimation type heat sensitive transfer systems.
  • thermo-mobile dyes which are transferred from a thermal transfer dye donating material to a thermal transfer image receiving material by sublimation or diffusion in a medium
  • thermo-mobile dyes which have been used in this type of system in the past and there are very few thermo-mobile dyes which satisfy the conditions required.
  • the conditions required are that the dye should have the preferred spectral characteristics with respect to color reproduction, that the dye should not change color or fade as a result of the action of light or heat, that there should be little denaturation due to the action of various chemicals, that there should be little or no loss of sharpness after image formation, that the image should not be liable to re-transferrence, and that the thermal transfer dye donating material should be simple to produce.
  • the light fastness of the color image may particularly decrease in an area where dyes having a different absorption wavelength are present together, resulting in a problem.
  • the decrease of the light fastness of a cyan dye or a magenta dye, which is caused by the 10-presence of a cyan dye was particularly serious. This has not yet been made clear in detail, though it may be considered to be caused by mutual action between the different dyes, and improvements thereof have been keenly demanded.
  • thermo-mobile transfer mode involved a phenomenon that the light fastness remarkably decreases in a low-density area, resulting in a problem. This has not yet been made clear in detail, though it may be considered to be caused by the matter that a heat energy applied from a thermal head is not sufficient so that the dye is not thoroughly dyed into the image receiving layer. Thus, an improvement of the light fastness of the color image in a low-density area has been keenly demanded.
  • thermo-mobile dyes which have been used conventionally have been unsatisfactory in this respect, changes in color or fading have inevitably occurred in a short period of time and there has been a strong demand for improvement from the image storage point of view.
  • various additives which have an anti-fading action are included in the image receiving layer.
  • Such additives include ultraviolet absorbers, auto-antioxidants, singlet oxygen quenchers, super-oxide quenchers, peroxide degrading agents and other types of stabilizers.
  • ultraviolet absorbers in the image receiving layer has been disclosed in JP-A-62-260152 and JP-A-63-145089.
  • JP-A as used herein signifies an "unexamined published Japanese patent application”.
  • metal complexes has been disclosed in JP-A-1-105789 and JP-A-1-146787.
  • the use of other light stabilizers has been disclosed, for example, in JP-A-63-74686, JP-A-63-122596, JP-A-1-127387 and JP-A-1-171887.
  • the couplers which are used in silver salt color photography mentioned above are designed in such a way as not to diffuse from the film of the photosensitive material during the course of the operations of development processing.
  • the dyes which are used in the thermo-type of thermal transfer are such that the dyes are transferred directly by sublimation or thermal diffusion on the application of heat. Hence, unless the thermo-mobility of a dye is very high it is impossible to obtain satisfactory image densities and it cannot be used to form thermal transfer images.
  • the design concept for couplers which are to be used in silver salt color photography and the dyes originating therefrom are incompatible with the design concept for the dyes which are used in thermal migration type thermal transfer materials. It is to be expected that the couplers which are used in silver salt color photography and the dyes derived therefrom will not be usable in thermo-mobile dye type thermal transfer recording.
  • a color image formed from the thermal dye donating material of this invention exhibits extremely high fastness even in a gray area or hardly causes a reduction of the fastness even in a low-density area.
  • JP-A-63-246285, JP-A-63-246286 and JP-A-64-77584 disclose anthraquinone dyes substituted with an alkoxyphenoxy group.
  • the subject matter of this invention is to suppress the fading more effectively by bonding an atomic grouping which inherently has the effect of suppressing the fading to a dye moiety via a connecting group.
  • the effects which are brought by suppressing the fading include ultraviolet light absorption action, automatic anti-oxidant action, singlet oxygen extinction action, superoxide extinction action, peroxide decomposition action, and radical trapping action as well as light stabilization action (e.g., extinction action in the dye excited state by electron transfer or energy transfer).
  • the atomic groupings are required to have a special structure meeting the respecting actions. However, if any unnecessary substituent group is introduced, its effect disappears.
  • the above-described alkoxyphenoxy group of the anthraquinone dye is directly conjugated with a dye--;r conjugation system and, therefore, an ability of the alkoxyphenoxy group to cause the electron transfer or energy transfer disappears. This is evident from a phenomenon that the electron transfer or energy transfer takes place between at least two independent systems.
  • an object of this invention is to provide thermal transfer dye donating materials in which thermo- mobile dyes of which the fastness has been improved without destroying the characteristics required of a thermo-mobile dye, such as its hue and transfer properties, are used.
  • Another object of this invention is to provide thermal transfer dye donating materials which are improved in the reduction of light fastness of color images in an area where different dyes are present together.
  • a still another object of this invention is to provide thermal transfer dye donating materials which are improved in the reduction of light fastness of color images in a low-density area.
  • thermo-mobile dye is a dye which can be represented by the general formula (I) indicated below.
  • A represents a dye residue which has an absorbance in the visible region and/or infrared region
  • L represents a divalent linking group or a simple bond
  • B represents an atomic grouping which has the effect of suppressing the fading of the dye.
  • q is 1 or 2 and when q is 2, L and B may be the same or different.
  • thermo-mobile dyes of this invention have an increased molecular weight due to the presence of an atomic grouping which has an anti-fading effect, there is no loss of thermo-mobility when compared with dyes which do not have this atomic groupings.
  • Thermo-mobile dyes are best for the dye residue represented by A in general formula (I), and azo dyes, azomethine dyes, indoaniline dyes, anthraquinone dyes, naphthoquinone dyes, styryl dyes, quinoph- thalone dyes, bisazo dyes and merocyanine dyes can be used.
  • Y 1 , Y 2 , Y 3 , Y 4 and Y 5 represent the atomic groupings which are required to provide the dye residues represented by the general formulae (II) and (III) with absorbance in the visible and/or infrared region.
  • y1 and Y 2 may be joined together to form a ring.
  • Y 3 is a structure which can be represented by general formula (XI)
  • R 37, R 3 8 , R3 9 , R 40 and R 41 represent hydrogen atoms or substituent groups which can be substituted on a benzene ring.
  • R 37 and R 39 must be or -OH.
  • R 42 and R 43 represent hydrogen atoms, alkyl groups, aryl groups or heterocyclic groups.
  • R 42 and R 43 can be joined together to form a ring structure.
  • R 42 and R 43 may also be bonded to any of R 37 to R 41 to form a ring.
  • R 35 represents a hydrogen atom or a non-metal substituent group, and of these, a hydrogen atom, a halogen atom, alkyl groups, cycloalkyl groups, alkoxy groups, aryl groups, aryloxy groups, aralkyl groups, cyano groups, acylamino groups, alkoxycarbonylamino groups, sulfonylamino groups, ureido groups, alkylthio groups, arylthio groups, alkoxycarbonyl groups, carbamoyl groups, sulfamoyl groups, sulfonyl groups, acyl groups, amino groups and anilino groups are preferred.
  • R 35 represents a hydrogen atom, a halogen atom (for example, chlorine, bromine), an alkyl group (which has from 1 to 12 carbon atoms, for example, methyl, ethyl butyl, isopropyl, tert-butyl, hydroxyethyl, methoxyethyl, cyanoethyl, trifluoromethyl), a cycloalkyl group (for example, cyclopentyl, cyclohexyl), an alkoxy group (which has from 1 to 12 carbon atoms, for example, methoxy, ethoxy, isopropoxy, methoxyethoxy, hydroethoxy), an aryl group (for example, phenyl, p-tolyl, p-methoxyphenyl, p-chlorophenyl, o-methoxyphenyl), an aryloxy group (for example, phenoxy, p-methyl-
  • R 36 represents a hydrogen atom or a non-metal substituent group, and from among these, a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group or an alkoxycarbonyl group is preferred. Those described for R 35 can be cited as actual examples of these substituent groups.
  • R 36 All of the groups represented by R 36 are desirable for R 36 ', and acyl groups, cyano groups, carbamoyl groups and formyl groups are also desirable for R 36 '. Those described for R 35 can be cited as actual examples of these groups.
  • R 44 , R 44' , R 44'' and R 44''' are all represented by R 35 are preferred.
  • the hydrogen atom is the most desirable.
  • R 37 , R 38 , R4-0 and R 41 represent hydrogen atoms, alkyl groups (which preferably have from 1 to 12 carbon atoms, for example, methyl, ethyl, propyl, butyl), alkoxy groups (which preferably have from 1 to 12 carbon atoms, for example, methoxy, ethoxy, methoxyethoxy, isopropoxy), halogen atoms (bromine, fluorine, chlorine), acylamino groups (preferably alkylcarbonylamino groups which have from 2 to 12 carbon atoms, for example, acetylamino, propionylamino and cyanoacetylamino, and arylcarbonylamino groups which have from 7 to 15 carbon atoms, for example, benzoylamino, p-toluylamino, pentafluorobenzoylamino and m-methoxybenzoylamino), alkyloxycarbonyl groups (which preferably have from 2 to
  • a hydrogen atom is preferred for R 38 , R 40 and R 4-1 .
  • R 37 The preferred groups for R 37 are a hydrogen atom, alkyl groups which have from 1 to 4 carbon atoms, alkoxy groups which have from 1 to 3 carbon atoms, halogen atoms (fluorine, chlorine, bromine), acylamino groups which have from 1 to 4 carbon atoms, sulfonylamino groups which have from 0 to 4 carbon atoms, aminocarbonylamino groups which have from 1 to 4 carbon atoms and alkoxycarbonylamino groups which have from 1 to 4 carbon atoms.
  • alkyl groups which have from 1 to 4 carbon atoms
  • alkoxy groups which have from 1 to 3 carbon atoms
  • halogen atoms fluorine, chlorine, bromine
  • acylamino groups which have from 1 to 4 carbon atoms
  • sulfonylamino groups which have from 0 to 4 carbon atoms
  • aminocarbonylamino groups which have from 1 to 4 carbon atoms
  • R4-2 and R 43 represent hydrogen atoms, alkyl groups (which preferably have from 1 to 12 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, butyl, 2-methoxyethyl, 3-methoxypropyl, ethoxyethyl, 2-phenylethyl, 2-cyanoethyl, cyanomethyl, 2-chloroethyl, 3- bromopropyl, 2-methoxycarbonylethyl, 3-ethoxycarbonylpropyl, 2-(N-methylaminocarbonyl)ethyl, 3-(N,N-dimethylaminocarbonyl)propyl, 2-acetylaminoethyl, 3-(ethylcarbonylamino)propyl, 2-acetyloxyethyl), or aryl groups (which preferably have from 6 to 14 carbon atoms, for example, phenyl, p-tolyl, p
  • Alkyl groups (for example, methyl, ethyl, propyl, 2-cyanoethyl, 2-acetyloxyethyl, 2-ethoxycarbonylethyl, 2-methoxyethyl) are preferred for R 42 and R 43 .
  • Formula (XIX) is also a suitable structure for the dye residues represented by formula (II)
  • R 35 has the same significance as R 35 in formula (X).
  • Y 3 is a structure represented by formula (XI).
  • R 45 has the same significance as R 42 .
  • the substituents described for the aforementioned R 35 and R 42 can be cited as actual examples of these substituents.
  • R 35 is preferably an acylamino group (for example, acetylamino, benzoylamino), an anilino group (for example, methylamino, anilino, o-chloroanilino) or an alkyl group (for example, methyl).
  • an acylamino group for example, acetylamino, benzoylamino
  • an anilino group for example, methylamino, anilino, o-chloroanilino
  • an alkyl group for example, methyl
  • R 45 is preferably a hydrogen atom, an alkyl group (which preferably has from 1 to 12 carbon atoms, for example, methyl, ethyl methoxyethyl, benzyl, 2,4,6-trichlorophenylmethyl, 2-phenethyl) or an aryl group (for example, phenyl, trichlorophenyl, dichlorophenyl, 4-chlorophenyl, 4-aminophenyl).
  • an alkyl group which preferably has from 1 to 12 carbon atoms, for example, methyl, ethyl methoxyethyl, benzyl, 2,4,6-trichlorophenylmethyl, 2-phenethyl
  • an aryl group for example, phenyl, trichlorophenyl, dichlorophenyl, 4-chlorophenyl, 4-aminophenyl.
  • Formulae (XX) and (XXI) are other preferred structures for the dye residue represented by formula (II).
  • R 35 is the same as the represented by R 35 in formula (XII).
  • the substituent groups described for R 35 can be cited as actual examples of this substituent group.
  • y3 has a structure represented by formula (XI).
  • R 4-5 , R 47 , R 48 and R 49 represent groups the same as those represented by R 36 described earlier.
  • R 35 in formula (XX) and formula (XXI) is preferably an alkyl group (for example, methyl, ethyl, t-butyl) or an aryl group (for example, phenyl).
  • R 46 to R 49 are preferably hydrogen atoms or alkyl groups (for example, methyl, ethyl) or joined together to form aromatic rings.
  • G and J represent hydrogen atoms or non-metal substituent groups or G and J may be joined together to form a ring structure.
  • G is preferably a heterocyclic group, an aryl group, or a group, wherein R 50 is an alkyl group, an aryl group, or a heterocyclic group.
  • J is preferably an alkyl group, an amino group (including substituted amino groups such as an alkylamino group and an anilino group), an aryl group, or a heterocyclic group.
  • R 50 is an alkyl group or an aryl group.
  • R 51 is a hydrogen atom, an alkyl group or an aryl group.
  • Those described for R 35 can be cited as actual examples.
  • Y 3 is a structure as represented by formula (XI).
  • R 50 is most desirably a tert-butyl group and R 51 is most desirably an o-chloroaryl group or an alkyl group (e.g., those having from 1 to 12 carbon atoms, for example, methyl).
  • R 52 is most desirably a hydrogen atom.
  • R 53 to R 61 are groups the same as those represented by R 35 .
  • the groups described for R 35 can be cited as actual examples of these groups.
  • Y 3 is a structure which can be represented by formula (XI).
  • R 53 is most desirably an acylamino group (for example, acetylamino, furoylamino, benzoylamino).
  • R 56 is preferably an acylamino group or an alkyl group (for example, methyl, ethyl).
  • Y 3 is preferably a structure which can be represented by formula (XVIII).
  • R 57 is preferably a carbamoyl group (for example, methylcarbamoyl).
  • R 58 to R 60 are preferably hydrogen atoms.
  • Y 3 is preferably a structure which can be represented by (XVIII).
  • Formula (XXV) is another preferred structure of the dye residue represented by formula (II).
  • R 62 to R 66 and R 62' to R 66' have the same significance as the group represented by R 35 .
  • y3 is a structure which can be represented by formula (XI). Those described for R 35 can be cited as actual examples.
  • R 62 and R 62' are preferably acylamino groups (for example, acetylamino), sulfonylamino groups (for example, methanesulfonylamino), alkyl groups (for example, methyl) or hydrogen atoms.
  • R 63 to R 66 and R 63' to R 66' are preferably hydrogen atoms.
  • Y is preferablfy a structure which can be represented by general formula (XVIII).
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a silyl group or a phosphino group.
  • X 1 represents -0-, -S- or
  • R 31 represents a hydrogen atom, an alkyl group or an aryl group.
  • R 2 , R 3 , R 4 , R 5 and R 6 represent hydrogen atoms or non-metal substituent groups. Any of the groups R 1 to R 6 which are in positions ortho to one another can be joined together to form a five to seven membered ring.
  • R 7 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an acyl group, a sulfonyl group or a sulfinyl group.
  • D represents a group of non-metal atoms which is required to form a five to seven membered ring.
  • R 8 , R 9 , R 10 and R 11 represent hydrogen atoms or non-metal substituent groups.
  • M 1 and M 2 represent copper, cobalt, nickel, palladium or platinum.
  • R 13 , R 13 , R 14 , R 12' , R 13 ' and R 14' represent hydrogen atoms, alkyl groups or aryl groups.
  • R 15 and R 15' represent hydrogen atoms, alkyl groups, aryl groups, hydroxyl groups, alkoxy groups or aryloxy groups.
  • X 2 and X 3 each represent -O- or -S-.
  • R 15 and R 15' may be joined together.
  • adjacent groups from among the substituent groups R 12 to R 14 , R 12 , to R 14' may be joined together to form aromatic rings or five to eight membered rings.
  • E 1 to E 3 represent oxygen atoms, sulfur atoms, hydroxyl groups, mercapto groups, alkoxy groups, alkyl thio groups or
  • R 32 and R 33 represent hydrogen atoms, alkyl groups, aryl groups or hydroxyl groups.
  • E 2 represents -O-, -S- or R 34 represents a hydrogen atom, an alkyl group or an aryl group.
  • R 16 , R 17 , R 18 and R 19 independently represent hydrogen atoms, alkyl groups or aryl groups, and R 16 and R 17 , R 18 and R 19 and/or R 17 and R 18 may be joined together to form an aromatic ring or a five to eight membered ring.
  • F represents a compound which can coordinate with M 2 .
  • the coordination number of this compound is from 1 to 5.
  • R 20 , R 21 , R 22 and R 23 represent hydrogen atoms, alkyl groups, aryl groups or heterocyclic groups.
  • X 4 to X 7 each represent a sulfur atom or an oxygen atom.
  • M 3 represents nickel or cobalt.
  • R 20 and R 21 and/or R 22 and R 23 may be joined together to form a ring structure.
  • R 24 , R 25, R 26, R 27 , R 28, R 29 and R3 0 are non-metal substituent groups which are determined in such a way that the atomic grouping represented by formula (IX) has an ultraviolet absorbing action.
  • Formula (XXVI) is a preferred structure for the dye residues represented by formula (III).
  • R 35 is the same as R 35 in formula (XII).
  • R 68 has the same significance as R 42.
  • R 67 represents an OH group or R 69 and R 70 are the same as R 42 .
  • Y 4 is an aryl group or a heteryl group.
  • R 35 is preferably an alkyl group (which preferably has from 1 to 6 carbon atoms and which may be substituted, for example, methyl, ethyl, b-butyl).
  • R 67 is preferably an amino group (for example, amino, methylamino). Of these, the unsubstituted amino group is the most desirable.
  • R 68 is preferably an aryl group (for example, phenyl, 2,4,6-trichlorophenyl).
  • Y 4 is preferably an aryl group (for example, p-nitrophenyl, 3,4-dicyanophenyl).
  • Formula (XXVII) is another preferred structure of a dye residue represented by formula (III).
  • R 35 is the same as R 35 in formula (X).
  • Y 5 is an aryl group or a heteryl group.
  • the most desirable dye residues represented by formula (XXVII) are those which can be represented by the formula (XXVIII), (XXIX), (XXX) or (XXXI).
  • R 35 , R 36, R 36', R 4 4, R 44' , R44", R 44'' and Y 5 have the same significance as described earlier. Those groups described for R 3s ', R 36 , R 36 ' and R 44 can be cited as actual examples, and the preferred examples are just the same as before.
  • Y 5 is preferably an aryl group (which has from 6 to 10 carbon atoms, for example, p-nitrophenyl, 3,4-dicyanophenyl).
  • Formula (XXXII) is another preferred structure of the dye residues represented by formula (IV).
  • R 73 has the same significance as R 35.
  • R 72 has the same significance as R 42 described earlier.
  • Y 5' represents an aryl group or a heteryl group.
  • R 73 is preferably an alkyl group (which has from 1 to 6 carbon atoms, for example, methyl, ethyl).
  • R 72 is preferably an alkyl group (which has from 1 to 6 carbon atoms, for example, methyl, ethyl).
  • Y 5' is preferably an aryl group (which has from 6 to 15 carbon atoms, for example, p-nitrophenyl, p-benzyloxycarbonylphenyl, p-chlorophenyl).
  • Formula (XXXIII) is another preferred structure of the dye residues represented by formula (III).
  • R 74 , R 75 , R 76 , R 77 and R 78 each have the same significance as the group represented by R 35 . Those described for R 35 can be cited as actual examples of these groups. However, at least one of R 74 and R 76 must be or -OH.
  • R 79 and R 80 are hydrogen atoms, alkyl groups or aryl groups. R 79 and R 80 may be joined together to form a ring structure. R 79 and R 80 are preferably alkyl groups which have from 1 to 6 carbon atoms.
  • R 77 is preferably an acylamino group (which has from 1 to 6 carbon atoms) or an alkyl group (which as from 1 to 6 carbon atoms).
  • R 75 and R 76 are preferably hydrogen atoms.
  • Y 5'' is an aryl group or a heteryl group.
  • Y 5'' is preferably a substituted benzene ring (for example, 2-cyano-4-methanesulfonylphenyl, 2,4,5-tricyanophenyl, 4-nitrophenyl, 3,4-trichlorophenyl).
  • the structure represented by formula (XXVI) is especially desirable among the structures represented by the formulae (XXVI), (XXVII), (XXVIII), (XXIX), (XXX), (XXI), (XXXII) and (XXXIII) which have been described above.
  • R 1 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a silyl group or a phosphino group, and it is preferably a hydrogen atom, an alkyl group (which has from 1 to 6 carbon atoms, for example, methyl, ethyl, isopropyl) or an aryl group (for example, phenyl).
  • X 1 represents -0-, -S- or R 31 is a hydrogen atom, an alkyl group or an aryl group. X 1 is preferably -0-.
  • R 2 , R 3 , R 4 , R 5 and R 6 represent hydrogen atoms or non-metal substituent groups.
  • they may be hydrogen atoms, -X 1 -R 1 , alkyl groups, alkenyl groups, aryl groups, heterocyclic groups, alkyloxycarbonyl groups, aryloxycarbonyl groups, halogen atoms, acyl groups, sulfonyl groups, carbamoyl groups, sulfamoyl groups, cyano groups, nitro groups, sulfo groups, carboxyl groups or -NR 31 (R 1 ).
  • X 1 represents -O-; R 1 represents an alkyl group; and at least one of R 2 and R 4 represents -0-R', wherein R 1 represents an alkyl group, or wherein R 1 represents an alkyl group.
  • R 3 , R 4 , R 5 and R 6 are the same as defined above; and R 2' is the same as that defined for R 2.
  • R 2 to R 6 are preferably hydrogen atoms, -O-R 1 , -S-R 1 , alkyl groups (which have from 1 to 6 carbon atoms, for example, methyl, ethyl, tert-butyl), halogen atoms (for example, F, CI), acyl groups (for example, acetyl), acylamino groups (for example, acetylamino) or alkoxycarbonyl groups (for example, methoxycarbonyl).
  • alkyl groups which have from 1 to 6 carbon atoms, for example, methyl, ethyl, tert-butyl
  • halogen atoms for example, F, CI
  • acyl groups for example, acetyl
  • acylamino groups for example, acetylamino
  • alkoxycarbonyl groups for example, methoxycarbonyl
  • R 1 to R 6 which are in positions ortho to one another may be joined together to form five to seven membered rings.
  • R 7 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an acyl group, a sulfonyl group or a sulfinyl group.
  • R 7 is preferably a hydrogen atom, an alkyl group (which has from 1 to 6 carbon atoms, for example, methyl, ethyl, tert-butyl) or an acyl group (which has from 1 to 7 carbon atoms, for example, acetyl, propionyl, acryloyl).
  • D represents a group of non-metal atoms which is required to form a five to seven membered ring. From among these, the structures represented by formulae (XXXIV), (XXXV) and (XXXVI) together with the atom to which they are bonded are preferred.
  • R 8 , R 9 , R 10 and R 11 may be the same or different. They are preferably hydrogen atoms or alkyl groups (which have from 1 to 6 carbon atoms, for example, methyl ethyl).
  • R 8/a to R 8/f are preferably hydrogen atoms, alkyl groups, hydroxyl groups, alkoxy groups, acyloxy groups, alkylamino groups, arylamino groups, or sulfonamido groups. Adjacent groups among R 8/a , R 8/b , R 8/c , R 8/d , R 8/e and R 8/f may be joined together to form from five to seven membered rings.
  • R 7 is the same as in R 7 .
  • M 1 represents copper, cobalt, nickel, palladium or platinum.
  • R 12 , R 13 , R 14 , R 12' , R 13' and R 14' represent hydrogen atoms, alkyl groups or aryl groups.
  • R 15 and R15' represent hydrogen atoms, alkyl groups, aryl groups, hydroxyl groups, alkoxy groups or aryloxy groups.
  • X 2 and X 3 each represents -0- or -S-, R 15 and R 15' may be joined together. Furthermore, adjacent groups among the substituent groups R 12 to R 14 , and R 12' to R 14' , may be joined together to form aromatic rings or five to eight membered rings.
  • E 1 and E 3 represent oxygen atoms, sulfur atoms, hydroxyl groups, mercapto groups, alkoxy groups, alkylthio groups or R 32 and R 33 represent hydrogen atoms, alkyl groups, aryl groups or hydroxyl groups.
  • a sulfur atom or an oxygen atom is preferred for E 1 and E 3 .
  • M 2 has the same significance as M 1 described above.
  • E 2 represents -0-, -S- or R 34 represents a hydrogen atom, an alkyl group or an aryl group.
  • E 2 is preferably an oxygen atom or a sulfur atom.
  • R 16 , R 17 , R 18 and R 19 independently represent hydrogen atoms, alkyl groups or aryl groups, and R 16 and R 17 , R 18 and R 19 , and/or R 17 and R 18 may be joined together to form an aromatic ring or a five to eight membered ring. Of these, R 16 and R 17 and/or R 18 and R 19 preferably form an aromatic ring jointly.
  • F represents a compound which can coordinate with M 2 .
  • the coordination number of this compound is from one to five.
  • R 2 °, R 21 , R 22 and R 23 represent hydrogen atoms, alkyl groups or aryl groups.
  • M 3 represents nickel, cobalt or iron.
  • X 4 , X 5 , X 6 and X 7 are oxygen atoms or sulfur atoms. They are preferably sulfur atoms.
  • R 20 and R 21 and/or R 22 and R 23 may be joined together to form a ring structure.
  • R 24 , R 25 , R 26 , R 27 , R 28 , R 29 and R 30 are non-metal substituent groups which are determined in such a way that the atomic group represented by formula (IX) has an ultraviolet absorbing action.
  • R 24 to R 30 are preferably hydrogen atoms, alkyl groups (which have from 1 to 6 carbon atoms, for example, methyl, ethyl) or aryl groups (which have from 6 to 10 carbon atoms, for example, phenyl). From among these groups, R 26 , R 27 and R 28 are preferably hydrogen atoms.
  • R 24 is preferably an aryl group.
  • B may be bonded by L to any of D, R 1 to R 34 , R 12 ' to R 15' and F.
  • the B part of formula (I) is described in more detail below. It has been mentioned before as a structure which can be represented by the general formula (IV), (V), (VI), (VI), (VIII) or (IX) which are preferred for the B part. However, all of these five structures do not have an equal fading suppressing effect.
  • part A in formula (I) is a dye residue which can be represented by general formula (II) a structure represented by formula (IV) or (V) for part B provides especially good fastness and this is desirable.
  • the dye residue is represented by formula (XII), (XIV), (XV) or (XVII)
  • the structures (IV) and (V) are especially appropriate for the B part.
  • the linking group represented by L in general formula (I) is preferably an group (where R 81 represents a hydrogen atom, an alkyl group, an aryl group ⁇ including substituted alkyl groups ⁇ , and -S0 2 - group, an alkylene group (including substituted alkylene groups), a phenylene group (including substituted phenylene groups), a naphthylene group (including substituted naphthylene groups), -0-, -S- or a group comprised of a combination of two or more of these groups.
  • R 81 is preferably a hydrogen atom or an alkyl group which has from 1 to 6 carbon atoms.
  • R 82 and R 83 include alkylene groups which have from 1 to 6 carbon atoms (including those which have alkyl groups, alkoxy groups, hydroxyl groups, halogen atoms and cyano groups, for example, as substituent groups), phenylene groups (including ortho, meta and para phenylene groups, and those which have alkyl groups, alkoxy groups, halogen atoms, hydroxyl groups, carboxyl groups, sulfamoyl groups, alkylsulfonylamino groups and sulfamoyl groups, for example, as substituent groups), and naphtylene groups (including those which have the substituent groups described for phenylene groups as substituent groups).
  • B represents the structure represented by formulae (IV), (VI), (VII), (VIII) or (IX)
  • B must not be conjugated directly with the dye color-forming system ( ⁇ -conjugation system).
  • B may be formally conjugated directly with the dye color-forming system.
  • B in general formula (I) is a structure which can be represented by formula (XXXVII) (R 1' represents a group the same as those represented by R 1 and R 2 , R 3 , R 5 and R 6 represent hydrogen atoms or alkoxy groups) and A is a dye residue which can be represented by general formula (XII), (XIV), (XV) or (XVII).
  • the invention is not limited to these compounds.
  • the position at which the dye residue represented by formula (II) and the atomic grouping represented by formula (XXXVII) are bonded is preferably bonded at the y3 moiety.
  • Y 3 is preferably bonded at R 42 in formula (XVIII).
  • R 43 is more preferably an alkyl group having an electron withdrawing group.
  • Y 3 is most preferably represented by formula (XXXVIII)
  • R 37 , R 38 , R 40 and R 41 are the same as those defined for formula (XVIII).
  • R a and R b represent hydrogen atoms or alkyl groups.
  • R 1 , R 2 , R 3 , R 5 and R 6 are the same as defined above.
  • dye moieties represented by formula (II) are preferred those represented by formulae (XII), (XIV), (XV) and (XVII), with those represented by formula (XIV) being particularly preferred.
  • the dyes of this invention preferably have a total molecular weight of not more than 800. From among these dyes, those which have a molecular weight of not more than 700 are the most desirable.
  • N,N-dimethylformamide (40.0 cc), 20.0 grams of p-methoxyphenol, 44.6 grams of potassium carbonate and 63.0 grams of ethyl y-bromobutyrate were reacted for 3 hours at an internal temperature of 100°C.
  • reaction mixture was poured into 100 cc of water and extracted with ethyl acetate.
  • the extract was washed with a satured salt solution and dried over magnesium sulfate, after which the solvent was removed using a rotary evaporator and a crude product was obtained.
  • Ethyl acetate (45 cc), 45 cc of isopropanol, 45 cc of methylene chloride and 1.5 grams of intermediate F were agitated with water cooling and a solution obtained by dissolving 2.45 grams of sodium carbonate in 45 cc of water was added. Moreover, 1.5 grams of p-amino-N,N-diethylaniline sulfate was added. Subsequently, a solution obtained by dissolving 1.4 grams of ammonium persulfate in 10 cc of water was added and the mixture was agitated for 30 minutes at room temperature.
  • the crude product was refined using silica gel column chromatography (chloroform/methanol based eluant) and a refined target product was obtained. (1.0 gram, 50.9%) Melting point 130-131 ° C.
  • thermo-mobile dyes of this invention are used for image formation in thermal transfer systems where they are included in a colorant layer on a support to provide thermal transfer dye donating materials.
  • thermo-mobile dyes of this invention are used to form an image in a thermal transfer system.
  • Dyes of the three colors, yellow, magenta and cyan, are generally required in order to form a full color image.
  • Full color image formation can be achieved by selecting all of the yellow, magenta and cyan dyes from among the thermo-mobile dyes of this invention.
  • thermo-mobile dyes of this invention for one or two of these colors and a conventionally known dye for the other two or one dye.
  • Mixtures of dyes of this invention and conventionally known dyes can also be used for the same color. Furthermore, two or more types of dye of this invention of the same color can be mixed together for use.
  • the thermal transfer dye donating material can be used in the form of sheets or in the form of a continuous roll or ribbon.
  • the yellow, magenta and cyan dyes of this invention are generally arranged on a support in such a way that they each form a separate region.
  • a yellow dye region, a magenta dye region and a cyan dye region can be arranged in surface order or in line order on a single support.
  • three types of thermal transfer dye donating material which have the above-mentioned yellow dyes, magenta dyes and cyan dyes each established on a separate support can be used, and in this case, thermal transfer of the dye in each thermal transfer dye donating material can be carried out sequentially.
  • the yellow dyes, magenta dyes and cyan dyes of this invention can each be dissolved or dispersed in a suitable solvent, together with a binder resin, and coated onto a support, or they may be printed onto the support using a printing procedure such as gravure printing.
  • the thickness of the dye donating layers which contain these dyes is generally from about 0.2 ⁇ to about 5 ⁇ , and it is preferably set within the range from 0.4 ⁇ to 2 ⁇ .
  • any of the binder resins used for this purpose in the past can be used for the binder resins which are used together with the thermo-mobile dyes of this invention, and a binder which is resistant to heat and which does not impede migration of the dye when it is heated is generally selected.
  • polyamide based resins for example, poly(vinyl alcohol) and partially saponified poly(vinyl alcohol) such as poly(vinyl butyrate)
  • polyacrylic resins for example, poly(methyl methacrylate), polyacrylamide and poly(styrene-acrylonitrile) resins
  • vinyl based resins such as polyvinylpyrrolidone, poly(vinyl chloride) based resins (for example, vinyl chloride/vinyl acetate copolymers), polycarbonate based resins, polystyrene, poly-(phenylene oxide), cellulose based resins (for example, methyl-cellulose, ethylcellulose, carboxymethyl cellulose, cellulose acetate hydrogen phthalate, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose triacetate), poly(vinyl alcohol) based resins (for example, poly(vinyl alcohol) and partially saponified poly(vinyl alcohol) such as poly
  • Binder resins of this type are preferably used at a rate of some 30 to 600 parts by weight per 100 parts by weight of dye in this invention.
  • the conventional ink solvents can be used freely as solvents for the dissolution or dispersion of the above-mentioned dyes and binder resins, and actual examples include alcohols such as methanol, ethanol, isopropyl alcohol, butanol and isobutanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aromatic solvents such as toluene and xylene, dioxane, tetrahydrofuran, and mixtures of these solvents.
  • These solvents must be selected and used in such a way that the binder and the dye can be dissolved or dispersed satisfactorily at the prescribed concentration. For example, the use of an amount of solvent some 5 to 20 times the total weight of dye and binder is preferred.
  • any conventionally known support can be used for the support of the thermal transfer dye donating material.
  • use can be made of poly(ethylene terephthalate), polyamide, polycarbonate, glasine paper, condenser paper, cellulose ester, fluoropolymer, polyether, polyacetal, polyolefin, polyimide, poly- phenylsulfide, polypropylene, polysulfone and cellophane, etc.
  • the thickness of the thermal transfer dye donating material support is generally from 2 to 30 ⁇ . It may be provided with an under-layer as required. Furthermore, a layer comprised of a hydrophilic polymer for preventing diffusion of the dye may be established between the support and the dye donating layer. The transfer density is considerably increased by this means.
  • the aforementioned water soluble polymers can be used as hydrophilic polymers.
  • a slipping layer can be established in order to prevent the thermal head from sticking on the dye donating material.
  • This slipping layer is constructed with a lubricating material which may or may not contain a polymer binder, for example, a surfactant, a solid or liquid lubricant, or a mixture of these materials.
  • the dye donating material may be subjected to an anti-sticking treatment on the side on which the dye donating layer has not been established with a view to preventing sticking due to the heat from the thermal head and improving slip when printing from the rear surface.
  • a heat resistant slip layer of which the main components are (1) the reaction product of a poly(vinyl butyrate) resin and an isocyanate, (2) an alkali metal salt or alkaline earth metal salt of a phosphate ester, and (3) a filler can be established.
  • the poly(vinyl butyrate) resin has a molecular weight of some 60,000 to 200,000 and a glass transition point of 80 C to 110° C, and the isocyanate is used in such a way that the weight% of the vinyl butyrate portion is from 15% to 40% from the viewpoint of providing many reactive sites.
  • Gafack RD720 made by Toa Kagaku for example can be used as the alkali metal salt or alkaline earth metal salt of a phosphate ester, and this is used in an amount of from 1 to 50 wt%, and preferably in an amount of from 10 to 40 wt%, with respect to the poly(vinyl butyrate) resin.
  • the heat resistant slip layer may be established by coating on the under-layer a combination of a synthetic resin and a curing agent which can be cured by heating, for example, a combination of poly(vinyl butyrate) and poly-functional isocyanate, acrylic polyol and a titanium chelating agent, or cellulose acetate and an organic titanium compound, and which is preferably resistant to heat.
  • a hydrophilic barrier layer can also be established in the dye donating material in order to prevent diffusion of the dye towards the support.
  • the hydrophilic dye barrier layer contains hydrophilic substances which are useful for the intended purpose.
  • excellent results can be obtained by using gelatin, polyacrylamide, poly(isopropylacrylamide), butyl methacrylate grafted gelatin, ethyl methacrylate grafted gelatin, cellulose monoacetate, methylcellulose, poly(vinyl alcohol), poly(ethyleneimine), poly(acrylic acid), mixtures of poly(vinyl alcohol) and poly(vinyl acetate), mixtures of poly(vinyl alcohol) and poly(acrylic acid) or mixtures of cellulose mono-acetate and poly(acrylic acid).
  • the most desirable materials are poly(acrylic acid), cellulose monoacetate and poly(vinyl alcohol).
  • An under-layer may be established in the dye donating material. Any under-layer can be used in this invention provided that it has the desired effect, and actual examples of preferred materials include acrylonitrile/vinylidene chloride/acrylic acid copolymer (14:80:6 by weight), butyl acrylate/2-aminoethyl methacrylate/2-propoxyethyl methacrylate copolymer (30:20:50 by weight), and linear/saturated polyesters, for example, Bostic 7650 ((E hart Co., Bostic Chemical Group) and chlorinated high density poly-(ethylene/trichloroethylene) resin. No particular limitation is imposed upon the amount of under-layer which is coated, but it is usually coated in an amount of from 0.1 to 2.0 g/m 2.
  • a thermal transfer dye donating material is laminated with a thermal transfer image receiving material and the dye of the dye donating layer is transferred to the thermal transfer image receiving material in accordance with the magnitude of the thermal energy on applying heat corresponding to an image signal by means of a heating device such as a thermal head from either side, but preferably from the reverse side of the thermal transfer dye donating material, and color images which have excellent sharpness, and gradation of resolution can be obtained in this way.
  • the means of heating is not limited to a thermal head and other known methods of heating with laser light (with a semiconductor laser, for example), infrared flash and thermal pens, for example, can be used for this purpose.
  • thermal printers it is possible to obtain a print and facsimile copies using various types of thermal printers, to form prints of images by means of magnetic recording systems, photomagnetic recording systems, or photorecording systems, and to form prints from television and CRT screens, for example, by combining a thermal transfer dye donating material with a thermal transfer image receiving material in this invention.
  • the thermal transfer image receiving materials which are used together with the thermal transfer dye donating materials of this invention in the execution of the thermal transfer recording procedures are described below.
  • the thermal transfer image receiving material has at least one image receiving layer which can accept a thermomobile dye established on a support.
  • any support which is able to withstand the transfer temperature and which is satisfactory in respect of smoothness, whiteness, slip properties, friction properties, anti-static properties and indentation after transfer can be used for the support which is used for a thermal transfer image receiving material.
  • paper supports such as synthetic papers (polyolefin or polystyrene based synthetic papers for example), top quality paper, art paper, cast card paper, wall paper, lining paper, synthetic resin or emulsion impregnated paper, synthetic rubber latex impregnated paper, synthetic resin containing paper, cardboard, cellulose fiber paper and polyolefin coated paper (especially paper of which both sides have been covered with polyethylene), various plastic films or sheets, such as films or sheets of polyolefin, poly(vinyl chloride), poly(ethylene terephthalate), polystyrene, methacrylate or polycarbonate, for example, and films or sheets obtained by carrying out a treatment to provide these plastics with white reflecting properties, and any combination of the above-
  • polyolefin coated papers are preferred since with these materials there is no indentation type deformation due to the heat which is applied during thermal transfer. They have excellent whiteness and they have a further advantage in that they are not liable to curling.
  • An image receiving layer for the dye is established on the thermal transfer image receiving material.
  • This image receiving layer is preferably a film of thickness from about 0.5 m to about 50 m which contains a dye accepting substance which accepts the thermo-mobile dye which has migrated from the thermal transfer dye donating material during printing and is dyed by the thermo-mobile dye either on its own or together with some other binder material.
  • Resins such as those indicated below can be cited as dye accepting polymers which are typical examples of dye accepting materials.
  • a dicarboxylic acid component such as terephthalic acid, isophthalic acid and succinic acid
  • Polyurethane resins for example.
  • Polycarprolactone resins for example, styrene/maleic anhydride resins, poly(vinyl chloride) resins and polyacrylonitrile resins, for example.
  • High boiling point organic solvents or thermal solvents can be included in thermal transfer image receiving materials, and especially in the image receiving layers, as dye accepting substances or as dye diffusion promoter.
  • thermo solvents include the compounds disclosed in JP-A-62-174754, JP-A-62-245253, JP-A-61-209444, JP-A-61-200538, JP-A-62-8145, JP-A-62-9348, JP-A-62-30247 and JP-A-62-136646.
  • the receiving layer of a thermal transfer image receiving material may be constructed by dispersing and loading a dye accepting substance in a water soluble binder.
  • a variety of known water soluble polymers can be used for the water soluble binder which is used in such a case, but the use of water soluble polymers which have groups which can undergo a crosslinking reaction with a film hardening agent is preferred, and of these materials gelatin is the most desirable.
  • any of the known methods which can be used when dispersing a hydrophobic substance in a water soluble polymer can be used for dispersing the dye receiving substance in the water soluble binder.
  • a solution obtained by dissolving the dye accepting substance in an organic solvent which is immiscible with water is mixed with an aqueous solution of the water soluble binder and emulsified and dispersed
  • a latex of a dye accepting substance (polymer) is mixed with an aqueous solution of a water soluble binder.
  • the image receiving layer may consist of a single layer or it may be constructed from two or more layers.
  • a synthetic resin which has a low glass transition point is used for the layer closest to the support to form a structure of which the dying properties with the dye are good, using a high boiling point organic solvent or thermal solvent, and a synthetic resin which has a higher glass transition point is used for the outermost layer and such structures are desirable in that by using the minimum amount of high boiling point solvent or thermal solvent on no such material at all in this layer it is possible to eliminate surface stickiness, adhesion with other materials, re-transfer of the dye to other substances after transfer and blocking with the thermal transfer dye donating material for example.
  • the thickness of the image receiving layer overall is from 0.5 to 50 /1.m, and preferably from 3 to 30 um, and in those cases where there are two layers, the thickness of the outermost layer is from 0.1 to 2 ⁇ m, and preferably within the range from 0.2 to 1 ⁇ m.
  • the thermal transfer image receiving material may have an intermediate layer between the support and the image receiving layer.
  • an intermediate layer may be a cushioning layer, a porous layer or a layer for preventing diffusion of the dye, or a layer which has two or more of these functions and, depending on the particular case, it may also function as an adhesive.
  • a dye diffusion preventing layer is a layer which fulfills the role of preventing the thermo-mobile dye from diffusing into the support in particular.
  • the binders used to form these layers may be soluble in water or in organic solvents, but the use of water soluble binders is preferred, and the use of the water soluble binders, and especially gelatin, which are used as binders for the image receiving layers aforementioned is most desirable.
  • Porous layers are layers which fulfill the roll of preventing the heat which is applied during printing from diffusing from the image receiving layer into the support at the time of thermal transfer and thus ensuring that the printing heat which is applied is used effectively.
  • Fine powders consisting of silica, clay, talc, diatomaceous earth, calcium carbonate, calcium sulfate, barium sulfate, aluminum silicate, synthetic zeolites, zinc oxide, lithophone, titanium oxide or alumina, for example, can be included in the image receiving layers, cushioning layers, porous layers, diffusion preventing layers and adhesive layers etc. from which the thermal transfer image receiving materials of this invention are constructed.
  • Fluorescent whiteners may be used in the thermal transfer image receiving materials.
  • examples of such materials include the compounds disclosed in Chapter 8 of The Chemistry of Synthetic Dyes by K. Veenkataraman, and in JP-A-61-143752.
  • Actual examples of such compounds include stilbene based compounds, coumarin based compounds, biphenyl based compounds, benzoxazolyl based compounds, naphthalimide based compounds, pyrazoline based compounds, carbostyril based compounds and 2,5-dibenzoxazolethiophene based compounds.
  • the fluorescent whiteners can be used in combination with anti-color fading agents.
  • release agents in the layers from which the dye donating materials and/or image receiving materials are formed, and especially in the outermost layers at the surfaces where the two types of material are brought into contact, is desirable for improving the release properties of the thermal transfer dye donating materials and thermal transfer image receiving materials in this invention.
  • release agents for example, solids or waxes such as polyethylene wax, amide wax and teflon powder; fluorine based or phosphate ester based surfactants and paraffin based, silicone based and fluorine based oils, can all be used as release agents, but the use of silicone oils is preferred.
  • Modified silicone oils such as the carboxy modified, amino modified and epoxy modified silicone oils, can be used as well as unmodified silicone oils.
  • modified oils include the various modified silicone oils described on pages 6 to 18B of the Shinetsu Silicon Company's data sheet Modified Silicone Oils .
  • amino modified silicone oils which have groups which can undergo a reaction with the crosslinking agent for the binder for example, groups which can reacr with isocyanates
  • a carboxy modified silicone oil for example, the silicon oil of trade name X-22-3710, made by the Shinetsu Silicone Co.
  • Anti-color fading agents may be used in the thermal transfer dye donating materials and thermal transfer image receiving materials to further increase the fastness of the dyes. Antioxidants, ultraviolet absorbers and certain types of metal complexes can be used, for example, as anti-color fading agents.
  • an anti-color fading agent When an anti-color fading agent is used in a thermal transfer dye donating material it may be included in the dye donating layer or it may be established in a region other than the region in which the dye donating layer has been established on the support.
  • antioxidants include, chroman based compounds, coumarin based compounds, phenol based compounds (hindered phenols for example), hydroquinone derivatives and spiroindane based compounds.
  • the compounds disclosed in JP-A-61-159644 are also effective.
  • Benzotriazole based compounds for example, U.S. Patent 3,533,794
  • 4-thiazolidone based compounds for example, U.S. Patent 3,352,681
  • benzophenone based compounds for example, JP-A-56-2784
  • the other compounds disclosed, for example, in JP-A-54-48535, JP-A-62-136641 and JP-A-61-88256 can be used, for example, as ultraviolet absorbers.
  • the ultraviolet absorbing polymers disclosed in JP-A-62-260152 are also effective.
  • Anti-color fading agents for preventing the fading of dyes which have been transferred to the image receiving material may be included in the image receiving material beforehand, or they may be supplied to the image receiving material from the outside using a method involving transfer from the dye donating material for example.
  • antioxidants ultraviolet absorbers and metal complexes may be used in combination with one another.
  • the layers from which the thermal transfer image receiving materials of this invention and the thermal transfer dye donating materials are constructed may be hardened by means of film hardening agents.
  • the film hardening agents disclosed, for example, in JP-A-61-199997 and JP-A-58-215398 can be used for hardening organic solvent based polymers.
  • the use of isocyanate based film hardening agents is especially desirable for polyester resins.
  • film hardening agents disclosed, for example, in column 41 of U.S. Patent 4,678,739, JP-A-59-116655, JP-A-245261 and JP-A-61-18942 are appropriate for hardening water soluble polymers.
  • aldehyde based film hardening agents for example, formaldehyde
  • aziridine based film hardening agents epoxy based film hardening agents
  • epoxy based film hardening agents for example, vinylsulfone based film hardening agents (for example, N,N -ethylenebis(vinylsulfonylacetamido)ethane), N-methylol based film hardening agents (for example, dimethylolurea) or polymeric film hardening agents (the compounds disclosed, for example, in JP-A-62-234157) can be used for this purpose.
  • Anti-color fading agents such as those described earlier may be included beforehand in the thermal transfer image receiving material.
  • thermal transfer dye donating materials and thermal transfer image receiving materials can be used in the structural layers of the thermal transfer dye donating materials and thermal transfer image receiving materials either as coating promoters or with a view to improving peeling properties, improving slip properties, providing anti-static properties or accelerating development, for example.
  • non-ionic surfactants for example, use can be made of non-ionic surfactants, anionic surfactants, amphoteric surfactants and cationic surfactants. Actual examples have been disclosed, for example, in JP-A-62-173463 and JP-A-62-183457.
  • surfactants as dispersion promoters is desirable in those cases where a substance which can accept a thermo-mobile dye, release agents, anti-fading agents, ultraviolet absorbers, fluorescent whiteners or other hydrophobic compounds are dispersed in a hydrophilic binder.
  • the use of the surfactants disclosed on pages 37-38 of JP-A-59-157636 for this purpose is especially desirable.
  • Organic fluoro compounds can be included in the structural layers of the thermal transfer dye donating materials and thermal transfer image receiving materials with a view to improving slip properties, providing anti-static properties and improving the peeling properties, for example.
  • Typical examples of organic fluoro compounds include the fluorine based surfactants disclosed, for example, in columns 8 to 17 of JP-B-57-9053, JP-A-61-20944 and JP-A-62-135826, and hydrophobic fluorine based compounds such as the oil like fluorine based compounds such as the fluorine oils and the solid fluorine based resins such as the tetrafluoroethylene resins.
  • JP-B as used herein signifies an "examined Japanese patent publication".
  • Matting agents can be used in the thermal transfer dye donating materials and thermal transfer image receiving materials.
  • Compounds such as the benzoguanamine resin beads, polycarbonate resin beads and AS resin beads disclosed in Japanese Patent Application Nos. 62-110064 and 62-110065 can be used for this purpose as well as the compounds such as silicon dioxide, polyolefins and polymethacrylates disclosed on page 29 of JP-A-61-88256.
  • thermal transfer dye donating materials and thermal transfer image receiving materials were prepared in the examples and comparative examples described hereinafter, the printing in which these two materials were used and thermal transfer image receiving material tests were carried out in the ways indicated below.
  • a poly(ethylene terephthalate) film of thickness 6 ⁇ m (made by Teijin) of which the reverse side had been subjected to a heat resistant slip treatment was used as a support and the paint composition (A-1) for a thermal transfer dye donating layer indicated below was coated by wire bar coating so as to provide a film thickness when dry of 1.5 /.Lm on the surface of the film to form the thermal transfer dye donating material (A).
  • thermal transfer dye donating materials (B)-(K) and the comparative materials (L), (M) and (N) shown in Table 1 were prepared by replacing the dye with a different one.
  • Synthetic paper (YUPO-FPG-150, made by Oji Yuka) of thickness 150 ⁇ m was used as a base material and the paint composition (1-1) for image receiving purposes indicated below was coated by wire bar coating onto the surface in such a way that the film thickness when dry was 8 nm to form the thermal transfer image receiving material (1). After preliminary drying in a drier, drying was completed over a period of 30 minutes in an oven at a temperature of 100 C.
  • thermal transfer image receiving material (2) was prepared in the same way using the paint composition (2-1) for image receiving layer purposes.
  • This composition was the same as the paint composition (1) for image receiving layer purposes except that 0.3 gram of hydroquinone dimethyl ether was added. (0.3 gram of hydroquinone dimethyl ether is the amount of this substance to provide more or less the same number of mol per unit area as the number of mol of dye per unit area (D max part) in the image receiving paper after the dye has been transferred).
  • thermal transfer dye donating materials (A)-(N) and the thermal transfer image receiving materials (1) and (2) obtained in the ways described above were laminated together in such a way that the thermal transfer dye donating layers and the image receiving layers were in contact with one another and printing was carried out using a thermal head from the support side of the thermal transfer image receiving material under conditions of thermal head output 0.25 W/dot, pulse width 0.15-15 msec, dot density 6 dot/mm, and on dying with the magenta dyes in the form of an image in the image receiving layer of the image receiving thermal transfer material, clear images with no transfer blurring were obtained.
  • the recorded image receiving materials so obtained were illuminated with a fluorescent lamp at 12,000 lux for a period of 4 days to investigate the stability of the colored image.
  • the status A reflection density was measured before and after irradiation and the stability was evaluated in terms of the ratio between these densities. The results obtained shown in Table 1. (The measurement was made in an area where the density was 1.0.) Comparative Dyes
  • dyes 1, 2 and 3 of this invention had much greater fastness than the corresponding comparative dyes a, b and c (which had no atomic grouping which had the effect of suppressing fading).
  • the high degree of light fastness of the dyes of this invention is a function only of the structure of the dyes of this invention which have an atomic grouping which has the effect of suppressing fading within the dye molecule.
  • Thermo-mobile dye donating materials (O)-(W) were prepared using the dyes indicated in Table 2 by changing the dye 1 in the thermo-mobile dye donating layer paint composition (A-1) of Example 1.
  • Thermal transfer dye donating materials (X), (Y) and (Z) were prepared by changing the poly(vinyl butyrate) resin of the thermal transfer dye donating layer paint composition (A-1) of Example 1 using the resins and dyes shown in Table 3.
  • the paint composition for image receiving purposes indicated below was coated on the surface by wire bar coating so as to provide a thickness when dry of 10 nm and thermal transfer image receiving material (3) was obtained. This was dried provisionally in a drier and then for 30 minutes in an oven at a temperature of 100°C.
  • the thermal transfer image receiving material (4) was prepared by coating the paint composition for image receiving layer purposes of which the composition is indicated below by wire bar coating on the surface laminated with 15 ⁇ of polyethylene in such a way that the dry thickness was 10 ⁇ and drying.
  • a gelatin dispersion of a dye accepting substance was prepared by the emulsification and dispersion in a homogenizer of an organic solvent solution of a dye accepting polymer of composition (B ) in an aqueous gelatin solution of composition (A ) as indicated below.
  • This paint composition was coated using the wire bar coating method onto a synthetic paper of thickness 150 nm (YUPO-SGG-150, made by Oji Yuka) of which the surface had been subjected to a corona discharge in such a way as to provide a wet film thickness of 75 ⁇ m and dried.
  • Image recording was then carried out in the same way as in Example 1 using the thermal transfer dye donating materials (A)-(W) obtained in Examples 1 and 2 and the thermal transfer image receiving material (5).
  • the images obtained had a high density and were sharp, and they also had a high degree of light fastness.
  • Thermal transfer image receiving material (6) was prepared in the same way as in Example 1 using the paint composition (7-1) for image receiving layer purposes.
  • This composition was the same as that of the paint composition (1-1) for image receiving layer purposes of Example 1 except that 7 grams of the ultraviolet absorber indicated below was added.
  • Thermo-mobile donating materials (2-1)-(2-10) were prepared using the dyes indicated in Table 4 by changing the dye 1 in the thermo-mobile dye donating layer paint composition (A-1) of Example 1.
  • the recorded thermal transfer image receiving materials so obtained were illuminated with a fluorescent lamp at 12,000 lux for a period of 7 days to investigate the stability of the colored image.
  • the status A reflection density was measured before and after irradiation and the stability was evaluated in terms of the ratio between these densities.
  • Thermo-mobile dye donating materials (3-1)-(3-8) were prepared using the dyes indicated in Table 5 by changing the dye 1 in the thermo-mobile dye donating layer paint composition (A-1) of Example 1.
  • the recorded thermal transfer image receiving materials so obtained were illuminated with a fluorescent lamp at 12,000 lux for a period of 7 days to investigate the stability of the colored image.
  • the status A reflection density was measured before and after irradiation and the stability was evaluated in terms of the ratio between these densities. The results obtained shown in Table 5. (The measurement was made in an area where the density was 1.0.)
  • Thermo-mobile dye donating materials (4-1)-(4-8) and (4-Y) and (4-M) were prepared using the dyes indicated in Table 6 by changing the dye 1 in the thermo-mobile dye donating layer paint composition (A-1) of Example 1.
  • Each of the image receiving materials so obtained was further subjected to transfer using the dye donating materials (4-Y) and (4-M) to obtain gray color images.
  • the recorded thermal transfer image receiving materials so obtained were illuminated with a fluorescent lamp at 12,000 lux for a period of 7 days to investigate the stability of the colored image. All of the dyes were tested in an area where the density was 1.0. Comparative Dyes
  • Thermo-mobile dye donating materials (5-1)-(5-9) were prepared using the dyes indicated in Table 7 by changing the dye 1 in the thermo-mobile dye donating layer paint composition (A-1) of Example 1. Printing was carried out using the image receiving material (1) prepared in Example 1.
  • the recorded thermal transfer image receiving materials so obtained were illuminated with a fluorescent lamp at 12,000 lux for a period of 7 days to investigate the stability of the colored image.
  • the status A reflection density was measured before and after irradiation and the stability was evaluated in terms of the ratio between these densities. The measurement was made in areas where the density was 0.3, 0.5, 1.0 and 2.0. Comparative Dyes
EP19900120011 1989-10-18 1990-10-18 Matériaux donneurs de colorants pour le transfert thermique Expired - Lifetime EP0423796B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27107889 1989-10-18
JP271078/89 1989-10-18

Publications (2)

Publication Number Publication Date
EP0423796A1 true EP0423796A1 (fr) 1991-04-24
EP0423796B1 EP0423796B1 (fr) 1996-05-29

Family

ID=17495069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900120011 Expired - Lifetime EP0423796B1 (fr) 1989-10-18 1990-10-18 Matériaux donneurs de colorants pour le transfert thermique

Country Status (3)

Country Link
EP (1) EP0423796B1 (fr)
JP (1) JP2684447B2 (fr)
DE (1) DE69027175T2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545420A2 (fr) * 1991-12-04 1993-06-09 Fuji Photo Film Co., Ltd. Colorants imidazolazoiques et matériaux donneurs de colorants pour le transfert thermique les contenant
EP0579297A1 (fr) * 1992-07-14 1994-01-19 Agfa-Gevaert N.V. Elément donneur de colorant pour le transfert thermique de colorants par sublimation
EP0616898A2 (fr) * 1993-03-22 1994-09-28 Konica Corporation Colorant et matériau sensible à la chaleur comprenant le même colorant
EP0754563A2 (fr) * 1995-07-21 1997-01-22 Dai Nippon Insatsu Kabushiki Kaisha Feuille pour transfert thermique
EP0829376A1 (fr) * 1996-09-13 1998-03-18 Dai Nippon Printing Co., Ltd. Feuille noire pour le transfert thermique
US6011052A (en) * 1996-04-30 2000-01-04 Warner-Lambert Company Pyrazolone derivatives as MCP-1 antagonists
EP1231072A2 (fr) * 2001-02-08 2002-08-14 Konica Corporation Matériau et méthode pour l'enregistrement par transfert thermique
CN111092171A (zh) * 2018-10-23 2020-05-01 宸鸿光电科技股份有限公司 有机发光二极管结构的形成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206751A (ja) * 2004-01-26 2005-08-04 Konica Minolta Holdings Inc インクジェットインク及びインクジェット記録方法
JP5555979B2 (ja) 2008-03-14 2014-07-23 コニカミノルタ株式会社 ピラゾロトリアゾール系化合物
JP5109739B2 (ja) 2008-03-14 2012-12-26 コニカミノルタビジネステクノロジーズ株式会社 電子写真用トナー
EP2618217A4 (fr) 2010-09-14 2015-08-12 Konica Minolta Business Tech Toner pour électrophotographie et procédé de formation d'image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524519A1 (de) * 1984-07-11 1986-01-16 Mitsubishi Chemical Industries Ltd., Tokio/Tokyo Farbstoffe fuer die waermeempfindliche sublimations-transferaufzeichnung
EP0247737A1 (fr) * 1986-05-27 1987-12-02 Imperial Chemical Industries Plc Impression par transfert thermique
FR2609937A1 (fr) * 1987-01-23 1988-07-29 Mitsubishi Chem Ind Feuilles de transfert pour l'enregistrement par transfert thermique, comprenant au moins un colorant de la serie de la quinophtalone
US4833123A (en) * 1987-10-08 1989-05-23 Sumitomo Chemical Company Limited Yellow dye-donor element used in thermal transfer and thermal transfer and thermal transfer sheet using it
EP0323259A2 (fr) * 1987-12-29 1989-07-05 Matsushita Electric Industrial Co., Ltd. Feuilles de colorants pour l'impression par transfert thermique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524519A1 (de) * 1984-07-11 1986-01-16 Mitsubishi Chemical Industries Ltd., Tokio/Tokyo Farbstoffe fuer die waermeempfindliche sublimations-transferaufzeichnung
EP0247737A1 (fr) * 1986-05-27 1987-12-02 Imperial Chemical Industries Plc Impression par transfert thermique
FR2609937A1 (fr) * 1987-01-23 1988-07-29 Mitsubishi Chem Ind Feuilles de transfert pour l'enregistrement par transfert thermique, comprenant au moins un colorant de la serie de la quinophtalone
US4833123A (en) * 1987-10-08 1989-05-23 Sumitomo Chemical Company Limited Yellow dye-donor element used in thermal transfer and thermal transfer and thermal transfer sheet using it
EP0323259A2 (fr) * 1987-12-29 1989-07-05 Matsushita Electric Industrial Co., Ltd. Feuilles de colorants pour l'impression par transfert thermique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 36 (M-790)(3384) 26 January 1989, & JP-A-63 246286 (SUMITOMO CHEMICAL COMPANY LIMITED) 13 October 1988, *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545420A3 (en) * 1991-12-04 1994-05-11 Fuji Photo Film Co Ltd Imidazole azo dyes and thermal transfer dye donating materials containing them
US5391720A (en) * 1991-12-04 1995-02-21 Fuji Photo Film Co., Ltd. Imidazole dyes formed by reaction of imidazoles with diazonium salts
EP0545420A2 (fr) * 1991-12-04 1993-06-09 Fuji Photo Film Co., Ltd. Colorants imidazolazoiques et matériaux donneurs de colorants pour le transfert thermique les contenant
EP0579297A1 (fr) * 1992-07-14 1994-01-19 Agfa-Gevaert N.V. Elément donneur de colorant pour le transfert thermique de colorants par sublimation
US5612282A (en) * 1993-03-22 1997-03-18 Konica Corporation Dye and heat sensitive transfer material comprising the same
EP0616898A2 (fr) * 1993-03-22 1994-09-28 Konica Corporation Colorant et matériau sensible à la chaleur comprenant le même colorant
EP0616898A3 (en) * 1993-03-22 1995-10-25 Konishiroku Photo Ind Dye and heat sensitive transfer material comprising the same.
EP0754563A3 (fr) * 1995-07-21 1998-01-21 Dai Nippon Insatsu Kabushiki Kaisha Feuille pour transfert thermique
EP0754563A2 (fr) * 1995-07-21 1997-01-22 Dai Nippon Insatsu Kabushiki Kaisha Feuille pour transfert thermique
US5804530A (en) * 1995-07-21 1998-09-08 Dai Nippon Printing Co., Ltd. Thermal transfer sheet
US6063729A (en) * 1995-07-21 2000-05-16 Dai Nippon Printing Co., Ltd. Thermal transfer sheet
US6011052A (en) * 1996-04-30 2000-01-04 Warner-Lambert Company Pyrazolone derivatives as MCP-1 antagonists
EP0829376A1 (fr) * 1996-09-13 1998-03-18 Dai Nippon Printing Co., Ltd. Feuille noire pour le transfert thermique
US5858628A (en) * 1996-09-13 1999-01-12 Dai Nippon Printing Co., Ltd. Black thermal transfer sheet
EP1231072A2 (fr) * 2001-02-08 2002-08-14 Konica Corporation Matériau et méthode pour l'enregistrement par transfert thermique
EP1231072A3 (fr) * 2001-02-08 2003-05-02 Konica Corporation Matériau et méthode pour l'enregistrement par transfert thermique
US6713432B2 (en) 2001-02-08 2004-03-30 Konica Corporation Thermal transfer recording material and thermal transfer recording method
CN111092171A (zh) * 2018-10-23 2020-05-01 宸鸿光电科技股份有限公司 有机发光二极管结构的形成方法

Also Published As

Publication number Publication date
JP2684447B2 (ja) 1997-12-03
DE69027175T2 (de) 1996-10-17
JPH03205189A (ja) 1991-09-06
DE69027175D1 (de) 1996-07-04
EP0423796B1 (fr) 1996-05-29

Similar Documents

Publication Publication Date Title
EP0423796A1 (fr) Matériaux donneurs de colorants pour le transfert thermique
JP2747848B2 (ja) 熱転写色素供与材料
US5238903A (en) Heat-transfer dye-donating material
US5344933A (en) Pyrrole ring-or condensed pyrrole ring-containing azomethine dye
JP4034466B2 (ja) 熱転写記録材料
US5210200A (en) Heterocyclic dye compounds
US5403811A (en) Thermal transfer dye donating materials
JP2952545B2 (ja) 熱転写色素供与材料
US5128312A (en) Thermal transfer dye donating material
JP2748210B2 (ja) ピロールアゾメチン色素及びそれを含有する熱転写色素供与材料
JP2893131B2 (ja) 熱転写色素供与材料
JP4092325B2 (ja) アゾ色素
JPH07132685A (ja) 熱転写材料
JPH05286268A (ja) 熱転写色素供与材料
JP2655212B2 (ja) アゾメチン色素
JP2840901B2 (ja) 熱転写色素供与材料
JPH037386A (ja) 熱転写色素供与材料
JP3280730B2 (ja) 熱転写画像形成方法
JPH10203028A (ja) 熱転写記録材料
JP3581380B2 (ja) アゾメチン色素およびそれを含有する熱転写色素供与材料
JP3230875B2 (ja) 熱転写記録方法
JP2623165B2 (ja) 熱転写色素供与材料
JPH0648050A (ja) 熱転写色素供与材料
JPH0381194A (ja) 熱転写色素供与材料
JPH04229294A (ja) 熱転写色素供与材料

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19910605

17Q First examination report despatched

Effective date: 19940429

RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69027175

Country of ref document: DE

Date of ref document: 19960704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081016

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081015

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018