EP0417081A1 - Verfahren zum heissisostatischen pressen von carbidfaser- und carbidhwisker-verstärkten siliziumnitridkörpern - Google Patents
Verfahren zum heissisostatischen pressen von carbidfaser- und carbidhwisker-verstärkten siliziumnitridkörpernInfo
- Publication number
- EP0417081A1 EP0417081A1 EP88902464A EP88902464A EP0417081A1 EP 0417081 A1 EP0417081 A1 EP 0417081A1 EP 88902464 A EP88902464 A EP 88902464A EP 88902464 A EP88902464 A EP 88902464A EP 0417081 A1 EP0417081 A1 EP 0417081A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbide
- nitrogen
- partial pressure
- silicon nitride
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
- C04B35/5935—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5276—Whiskers, spindles, needles or pins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the invention relates to a method for hot isostatic pressing (HIPen) of carbide fiber and carbide whisker-reinforced silicon nitride bodies.
- silicon nitride ceramics are of great importance as materials in engine construction, e.g. B. for use in heat engines, and as a forming and cutting tool in metalworking.
- the electrical and mechanical properties can be significantly improved by introducing carbide fibers or carbide whiskers (US-A-4 507 224).
- the manufacture of silicon nitride ceramics reinforced with carbide fibers or carbide whiskers is therefore of great importance.
- the high sintering temperatures require increased nitrogen pressures to prevent decomposition of the Si 3 N 4 matrix in silicon and nitrogen. It is therefore necessary to use temperatures below 1900 ° C. in the case of pressure-less sintering in order to decompose the Si 3 N 4 material during sintering in accordance with the reaction
- silicon nitride remains stable up to very high temperatures (e.g. up to over 2700 ° C at 100 MPa) .
- the object of the present invention was therefore to provide a process for the hot isostatic pressing of carbide-fiber and carbide-whisker-reinforced silicon nitride bodies, with which the disadvantages mentioned above can be avoided and with which carbide-fiber and whisker-reinforced silicon nitride bodies can be produced in a simple and economical manner, which because of their mechanical, chemical and electrical properties and because of their. Stability fully meets the high requirements.
- the invention therefore relates to a process for hot isostatic pressing (HIPen) of silicon nitride shaped bodies reinforced with carbide fiber or carbide whiskers from the group SiC, HfC, NbC, TaC, TiC, VC or ZrC, which is characterized in that the non-pressurized Pre-sintered molded bodies in a nitrogenous atmosphere without encapsulation at temperatures between 1000 and 3000 ° C in a nitrogen protective gas atmosphere under a nitrogen partial pressure which is the equation
- Nitrogen as a gas cannot be dispensed with during sintering, since when the nitrogen partial pressure is reduced, the upper limit of the sintering temperature drops drastically due to equation (1).
- the nitrogen partial pressure which must be set for the hot isostatic pressing of carbide fiber or whisker reinforced Si 3 N 4 composite materials without destroying the matrix or fiber / whisker, must therefore be between an upper and a lower limit for the respective carbide. It has now been found that the respective limit is determined by the equation
- T s is the sintering or HIP temperature in ° K (K).
- the upper limit of the nitrogen partial pressure that can be used is determined by the reaction reactions (equations 3 to 9) 2 HfC + N 2 ⁇ 2 HfN + 2 C (3)
- Table 1 shows the parameters a, b and c from which the upper limit of the nitrogen partial pressure (P N2 ) can be calculated for the carbide used according to equation (2). These values are known from the literature (see Chase et al. (1975), JANAF thermochemical tables; Storms, EK (1967) The refractory carbides, Refractory materials 3, Academic Press, NY, USA; Toth, LE (1971) Transition metal carbides and nitrides, Refractory materials 7, Academic Press, NY, USA).
- Parameters a, b and c to calculate the upper limit of the applicable nitrogen partial pressure.
- the lower temperature limit is determined by the stability in the presence of nitrogen of the carbide to be used as fiber or whisker. This means that the reactions according to equations (3) to (9) must be avoided.
- FIGS. 1a to 1g graphically represent the nitrogen partial pressures (P N2 ) and temperature (T) conditions which are possible for the carbides used according to the invention and at which one can work according to the invention.
- the hatched area illustrates the possible area.
- 1a shows the P N2 -T region for the HIPen of NbC fiber / - whisker-reinforced Si 3 N 4 ;
- 1b shows the P N2 -T region for the HIPen of TaC fiber / - whisker-reinforced Si 3 N 4 ;
- 1c shows the P N2 -T region for the HIPen of SiC fiber / - whisker-reinforced Si 3 N 4
- 1d shows the P N2 -T region for the HIPen of HfC fiber / - whisker-reinforced Si 3 N 4 ;
- 1e shows the P N2 -T region for the HIPen of TiC fiber / - whisker-reinforced Si 3 N 4 ;
- Fig. 1g the P N2 -T area for the HIPen of VC fiber / - Whisker reinforced Si 3 N 4 .
- the protective gas is preferably an inert gas, such as Ar, He, Ne, Xe, or a mixture thereof.
- composition of the nitrogen protective gas atmosphere is as follows:
- Total pressure necessary for hot isostatic pressing is the reason. Size lies in the usual pressure range used for the hot isostatic pressing (HIP) process.
- a total gas pressure P Hip of at least 1000 bar is preferably used.
- the proportion of carbide fibers and / or carbide whiskers can be up to 50% by weight, based on the starting mixture.
- the lower limit of the carbide content is in generally around 0.1% by weight, preferably 0.5% by weight, and in particular 1% by weight.
- the upper limit of the carbide content is preferably 30% by weight, and in particular 15% by weight.
- the starting mixture (powder body) for the process according to the invention can also contain customary additives or melting phases for such processes for the production of silicon nitride moldings, such as, for. B. usual sintering aids (sintering additives).
- sintering additives Y 2 O 3 , Al 2 O 3 and AlN, and in particular powder mixtures thereof, are preferably used as sintering aids, or Y 3 Al 5 O 12 .
- the proportion of sinter additives preferably increases with increasing carbide content. In particular, the proportion of sintering additives is 5 to 15% by weight (based on the starting mixture), the lower limit of 5% by weight preferably being used for the lower limit of the carbide content, and the upper limit of 15% by weight.
- the ratio of the sintering additive powder is preferably within the limits: Y 2 O 3 80 to 40% by weight; Al 2 O 3 10 to 30% by weight and AlN 10 to 30% by weight.
- the method according to the invention is combined for hot isostatic pressing (HIPen) with a previous pressure-free presintering in a nitrogen atmosphere, preferably until a closed porosity (greater than 95%) is reached.
- the pre-sintering can be done on known and. take place in the usual way and using additives customary for this, such as sintering aids (sintering additives).
- sintering additives sintering additives
- sintering additives sintering additives
- sintering additives sintering additives
- sintering additives are used as sintering aids, and in particular powder mixtures of Y 2 O 3 , Al 2 O 3 and AlN, or Y 3 Al 5 O 12 .
- the preferred proportion of sintering additives also corresponds to the preferred proportion ranges mentioned above.
- Sintering additives greatly reduce the mechanical properties of the ceramic, especially at high temperatures.
- fewer additives are required in order to achieve a maximum density of a ceramic body.
- Another advantage of the method according to the invention is that with low nitrogen partial pressure but high total gas pressure, maximum compression can be achieved even at relatively low temperatures.
- a powder mixture consisting of 85 to 70% by weight of Si 3 N 4 , 0 to 15% by weight of ⁇ -SiC whisker, and 9.8% by weight of Y 2 O 3 , 1.7% by weight Al 2 O 3 and 3.5% by weight of AlN are mixed homogeneously by attrition in an organic liquid.
- the whisker-containing powder suspension is then dried in a rotary evaporator and cold isostatically pressed into test specimens.
- the green density is 2 - 2.1 g / cm 3 (60 - 63% th.D.).
- the composite ceramic is pre-sintered at 1850 ° C under an N 2 pressure of 1 bar (0.1 MPa) to the closed porosity for 30 minutes.
- the density after presintering reaches 3.3 to 3.15 g / cm 3 for whisker contents from 0 to 15% by weight (99 to 95% th.D.).
- the presintered specimen is then hot-isostatically compressed in a gas mixture of 1% by volume of N 2 and 99% by volume of Ar without capsules at a temperature of 1900 ° C. for 10 minutes (HIP method).
- the total isostatic pressure is 1000 bar (100 MPa), the N 2 partial pressure reaching 10 bar (1 MPa).
- the density also increases in the samples with up to 15% by weight SiC whisker content up to over 3.3 g / cm 3 (99% th.D.), without the SiC whiskers being destroyed in the test specimen .
- FIG. 2 graphically shows the absolute density and relative density (fractional density; in%) in relation to the part of the whisker.
- Figure 3 shows the K Ic values in relation to the Whiskerantexl. Maximum values of the K Ic of over 8.5 MPa m 1/2 are achieved with a ⁇ -SiC whisker content of 10% by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Description
Verfahren zum heißisostatischen Pressen von Carbidfaser- und Carbidwhisker verstärkten Siliziumnitridkörpern
Die Erfindung betrifft ein Verfahren zum heißisostatischen Pressen (HIPen) von Carbidfaser- und Carbidwhisker-verstärkten Siliziumnitridkörpern.
Wegen ihrer hervorragend guten Eigenschaften in Bezug auf Hitze- und Oxidationsbeständigkeit haben Siliziumnitridkeramiken große Bedeutung als Werkstoffe im Motorenbau, z. B. für den Einsatz in Wärmekraftmaschinen, sowie als Umform- und Schneidwerkzeug bei der Metallbearbeitung. Die elektrischen und mechanischen Eigenschaften können dabei noch wesentlich verbessert werden durch die Einbringung von Carbidfasern oder Carbidwhiskern (US-A-4 507 224). Der Herstellung von mit Carbidfasern oder Carbidwhiskern verstärkten Siliziumnitridkeramiken kommt deshalb eine hohe Bedeutung zu.
Die Herstellung von whiskerverstärkten Si3N4-Keramiken zu dichten Werkstoffen mit verbesserten mechanischen Eigenschaften, wie sie insbesondere für den Motorenbau angestrebt werden, gelang bisher nur durch Heißpressen oder heißisostatisches Pressen von eingekapselten Pulverkörpern. Das Heißpressen ist aber auf Körper mit einfacher, gleichmäßiger Geometrie beschränkt.
P.D. Shalek et al. Am. Ceram. Soc. Bull. 65 (1986), 351-365 beschreiben die Herstellung von mit SiC-Whisker verstärktem Si3N4 ohne Heißpressen bei 1600 bis 1850°C, wobei dichte Körper mit bis zu 40 Vol-% Whiskeranteil erreicht wurden. Dieses heißisostatische Pressen erfordert aber eine Einkapselung und deren Entfernung nach der Verdichtung.
Ohne Einkapselung der Pulverkörper tritt beim Verfahren des heißisostatischen Pressens (HIP-Verfahren) eine Zersetzung der Carbidfasern und -whisker nach der Reaktion
Metallcarbid + Stickstoff →Metallnitrid + Kohlenstoff
auf (Metall = Si, Hf, Nb, Zr, Ta, Ti, V), die zu einem Verlust der eigenschaftsverbessernden Wirkung der Faser- und Whiskereinlagerungen führt.
Die hohen Sintertemperaturen erfordern andererseits aber erhöhte Stickstoffdrucke, um eine Zersetzung der Si3N4-Matrix in Silizium und Stickstoff zu verhindern. Es ist deshalb notwendig, beim drucklosen Sintern Temperaturen unterhalb von 1900°C zu verwenden, um eine Zersetzung des Si3N4-Materials beim Sintern gemäß der Reaktion
Si3N4(s) → 3 Si (1) + 2 N2 (g) (1)
zu vermeiden. Beim Gasdrucksintern (Drücke im Bereich bis zu einigen 10 MPa) und mehr noch beim heißisostatischen Pressen (bis zu einigen 100 MPa) in Stickstoffatmosphäre bleibt Siliziumnitrid hingegen bis zu sehr hohen Temperaturen stabil (z. B. bis über 2700°C bei 100 MPa).
Durch Gasdrucksintern bei 1700 bis 2000 °C mit einem N2-Druck von 10 bar konnten zwar auch Körper mit variabler Geometrie mit bis zu 20 Gew.-% SiC-Whisker hergestellt werden, jedoch ist dann für eine vollständige Verdichtung ein Anteil von bis zu 35 Mol-% an Sinterhilfsmitteln notwendig (Tamari et al, YogYo-Kyokai-Shi 94 (1986), 1177-1179). Dieser hohe Anteil an Sinterhilfsmitteln besitzt aber den Nachteil, daß er zur Entstehung
eines entsprechend hohen Glasanteils im gesinterten Werkstoff führt, der sich in einer drastischen Verschlechterung der mechanischen Hochtemperatureigenschaften äußert.
Beim Carbidfaser- oder Carbidwhisker-verstärkten Siliziumnitrid muß beim heißisostatischen Pressen jedoch auch die Zersetzung der Carbidfasern bzw. -whisker nach der vorstehend bereits angegebenen Gleichung "Metallcarbid + Stickstoff → Metallnitrid + Kohlenstoff" berücksichtigt werden. Für die Gesamtstabilität des Keramikkörpers sind deshalb die Zersetzungsreaktion des Si-N. und die Zersetzungsreaktion der Carbidfasern zu berücksichtigen, wobei diese beiden Reaktionen in einem gegenseitigen Zusammenhang stehen und die Stabilität der jeweilig anderen Komponente (Si3N4 oder Carbidfaser) nachteilig beeinflussen.
Aufgabe der vorliegenden Erfindung war deshalb die Bereitstellung eines Verfahrens zum heißisostatischen Pressen von Carbidfaser- und Carbidwhisker-verstärkten Siliziumnitridkörpern, mit dem die vorstehend genannten Nachteile vermieden werden können und mit dem auf einfache und wirtschaftliche Weise Carbidfaser- und whisker-verstärkte Siliziumnitridkörper hergestellt werden können, die aufgrund ihrer mechanischen, chemischen und elektrischen Eigenschaften und aufgrund ihrer. Stabilität den hohen Anforderungen voll gerecht werden.
Es wurde nun gefunden, daß man die Nachteile der bisherigen Verfahren, und insbesondere die Zersetzung der Komponenten (Si3N4 und Carbidfasern) vermeiden kann, wenn man in einer Stickstoff-Schutzgas-Atmosphäre bei einem hohen Gesamtgasdruck und einem bestimmten Stickstoff-Partialdruck arbeitet.
Gegenstand der Erfindung ist deshalb ein Verfahren zum heißisostatischen Pressen (HIPen) von mit Carbidfaser oder Carbidwhisker aus der Gruppe SiC, HfC, NbC, TaC, TiC, VC oder ZrC verstärkten Siliziumnitrid- Formkörpern in stickstoffhaltiger Atmosphäre, das dadurch gekennzeichnet ist, daß der drucklos in einer stickstoffhaltigen Atmosphäre vorgesinterte Formkörper ohne Einkapselung bei Temperaturen zwischen 1000 und 3000°C in einer Stickstoff-Schutzgas-Atmosphäre unter einem Stickstoffpartialdruck geHIPt wird, welcher der Gleichung
entspricht, in der PN2 den N2-Partialdruck und Ts
die Temperatur in °K bedeuten, wobei die Partialdruckuntergrenze durch die Werte a = 872 213, b = 405,6 und c = -16,6, und die Partialdruck-Obergrenze je nach dem verwendeten Carbid durch folgende Werte gegeben ist:
a b c
SiC: 505444 295,2 -16,6
HfC: 159842 83,2 -4,2
NbC: 95814 73,4 -4,2
TaC: 106274 81,2 -4,2
TiC: 143782 76,1 -4,2
VC: 114641 67,9 -4,2
ZrC: 160552 80,9 -4,2
Zweckmäßige Ausgestaltungen dieses Verfahrens sind Gegenstand der Ansprüche 2 bis 8.
Auf Stickstoff als Gas kann beim Sintern nicht verzichtet werden, da bei einer Verringerung des Stickstoff- Partialdrucks die obere Grenze der Sintertemperatur aufgrund der Gleichung (1) drastisch sinkt.
Der Stickstoff-Partialdruck, der für das heißisostatische Pressen von Carbidfaser- oder whisker verstärkten Si3N4-Verbundwerkstoffen einzustellen ist, ohne Matrix oder Faser/Whisker zu zerstören, muß sich deshalb für das jeweilige Carbid zwischen einer Ober- und einer Untergrenze bewegen. Es wurde nun gefunden, daß die jeweilige Grenze durch die Gleichung
Angegeben werd
en Kann, wobei Ts die Sinter- bzw. HIP- Temperatur in °K (K) ist.
Die Werte für die Parameter a, b und c der Gleichung (2) für die Untergrenze des Stickstoff-Partialdrucks, bei dem Si3N4 bei einer gegebenen Sintertemperatur noch stabil ist und die daher nicht unterschritten werden darf, ergeben sich aus der nachfolgenden Gleichung (10). Die Untergrenze des Stickstoff-Partialdrucks ist daher für alle Werkstoffe des beschriebenen Typs gleich und hat die Parameter
a = 872 213; b = 405,6; c = -16,6.
Die Obergrenze des Stickstoff-Partialdrucks, der verwendet werden kann,- wird durch die Umsetzungsreaktionen (Gleichungen 3 bis 9) bedingt
2 HfC + N2 → 2 HfN + 2 C (3)
2 NbC + N2 → 2 NbN + 2 C (4)
3 SiC + 2 N2 → Si3N4 + 3 C (5)
2 TaC + N2 → 2 TaN + 2 C (6)
2 TiC + N2 → 2 TiN + 2 C (7)
2 VC + N2 → 2 VN + 2 C (8)
2 ZrC + N2 → 2 ZrN + 2 C (9)
und muß daher für jedes Carbid einzeln bestimmt werden.
In der Tabelle 1 sind die Parameter a, b und c angegeben, aus denen sich für das verwendete Carbid gemäß Gleichung (2) die Obergrenze des Stickstoff-Partialdrucks (PN2) berechnen läßt. Diese Werte sind aus der Literatur bekannt (vgl. Chase et al. (1975), JANAF thermochemical tables; Storms, E.K. (1967) The refractory carbides, Refractory materials 3, Academic Press, NY, USA; Toth, L.E. (1971) Transition metal carbides and nitrides, Refractory materials 7, Academic Press, NY, USA).
T a b e l l e 1
Parameter a, b und c zur Berechnung der Obergrenze des anwendbaren Stickstoff-Partialdrucks.
a b c
SiC: 505444 295,2 -16,6
HfC: 159842 83,2 -4,2
NbC: 95814 73,4 -4,2
TaC: 106274 81,2 -4,2
TiC: 143782 76,1 -4,2
VC: 114641 67,9 -4,2
ZrC: 160552 80,9 -4,2
Nach dem erfindungsgemäßen Verfahren wird im Temperaturbereich von 1000 bis 3000°C gearbeitet. Die obere Temperaturgrenze für die Herstellung der Verbundkeramik wird durch die Stabilität des Siliziumnitrids gemäß der Reaktionsgleichung (1) bestimmt. Sie läßt sich durch die Gleichung (10) ( )
T (°C) = (872 213 / (405,6 - 16,6 In (PN2)) -273 (10)
ausdrücken, wobei der Stickstoff-Partialdruck PN2 in bar angegeben ist.
Die untere Temperaturgrenze wird durch die Stabilität in Gegenwart von Stickstoff des jeweiligen Carbids, welches als Faser oder Whisker verwendet werden soll, bestimmt. Dies bedeutet, daß die Reaktionen gemäß den Gleichungen (3) bis (9) vermieden werden müssen.
In den Figuren la bis lg sind die für die erfindungsgemäß verwendeten Carbide jeweils möglichen Stickstoff- Partialdrucke (PN2) und Temperatur (T)-Bedingungen, bei denen man erfindungsgemäß arbeiten kann, graphisch dargestellt. Die schraffierte Fläche veranschaulicht den möglichen Bereich.
Es zeigen:
Fig. 1a den PN2-T-Bereich für das HIPen von NbC-Faser/- Whisker verstärktem Si3N4;
Fig. 1b den PN2-T-Bereich für das HIPen von TaC-Faser/- Whisker verstärktem Si3N4;
Fig. 1c den PN2-T-Bereich für das HIPen von SiC-Faser/- Whisker verstärktem Si3N4;
Fig. 1d den PN2-T-Bereich für das HIPen von HfC-Faser/- Whisker verstärktem Si3N4;
Fig. 1e den PN2-T-Bereich für das HIPen von TiC-Faser/- Whisker verstärktem Si3N4;
Fig. 1f den PN2-T-Bereich für das HIPen von ZrC-Faser/- Whisker verstärktem Si3N4; und
Fig. 1g den PN2-T-Bereich für das HIPen von VC-Faser/- Whisker verstärktem Si3N4.
Als Schutzgas für die Stickstoff-Schutzgas-Atmosphäre kann jedes unter den angewendeten Bedingungen inerte Gas oder Gasgemisch eingesetzt werden. Bevorzugt ist das Schutzgas ein Edelgas, wie Ar, He, Ne, Xe, oder ein Gemisch davon.
Die Zusammensetzung der Stickstoff-Schutzgas-Atmosphäre ergibt sich wie folgt:
% Stickstoff = 100 x PN2/PHip ; und % Edelgas = 100 - 100 x PN2/PHip ,
wobei PHip (bar) der gewünschte oder aus technischen
Gründen notwendige Gesamtdruck beim heißisostatischen Pressen ist, dessen. Größe in dem für das Verfahren zum heißisostatischen Pressen (HIP) angewendeten üblichen Druckbereich liegt. Bevorzugt wird beim erfindungsgemäßen Verfahren mit einem Gesamtgasdruck PHip von mindestens 1000 bar gearbeitet.
Der Anteil an Carbidfasern und/oder Carbidwhiskern kann bis zu 50 Gew.-%, bezogen auf die Ausgangsmischung, betragen. Die untere Grenze des Carbidanteils liegt in
der Regel bei ca. 0,1 Gew.-%, vorzugsweise bei 0,5 Gew.-%, und insbesondere bei 1 Gew.-%. Die obere Grenze des Carbidanteils liegt vorzugsweise bei 30 Gew.-%, und insbesondere bei 15 Gew.-%.
Die Ausgangsmischung (Pulverkörper) für das erfindungsgemäße Verfahren kann auch noch für solche Verfahren zur Herstellung von Siliziumnitridformkörpern übliche Zusatzstoffe oder Schmelzphasen enthalten, wie z. B. übliche Sinterhilfsmittel (Sinterzusätze). Als Sinterhilfsmittel werden vorzugsweise Y2O3, Al2O3 und AlN, und insbesondere Pulvermischungen daraus, eingesetzt, oder aber Y3Al5O12. Der Anteil an Sinterzusätzen nimmt vorzugsweise mit steigendem Carbidgehalt zu. Insbesondere beträgt der Anteil an Sinterzusätzen 5 bis 15 Gew.-% (bezogen auf die Ausgangsmischung), wobei die untere Grenze von 5 Gew.-% vorzugsweise für die untere Grenze des Carbidanteils angewendet wird, und die obere Grenze von 15 Gew.-% vorzugsweise für die obere Grenze des Carbidanteils. Bei Verwendung von Y2O3, Al2O3 und AlN als Pulvermischung liegt das Verhältnis der Sinterzusatzpulver vorzugsweise in den Grenzen: Y2O3 80 bis 40 Gew.-%; Al2O3 10 bis 30 Gew.-% und AlN 10 bis 30 Gew.-%.
Das erfindungsgemäße Verfahren wird zum heißisostatischen Pressen (HIPen) mit einem vorausgehenden drucklosen Vorsintern in einer Stickstoffatmosphäre, vorzugsweise bis zum Erreichen einer geschlossenen Porosität (größer 95 %), kombiniert. Das Vorsintern kann dabei auf an sich bekannte und. übliche Weise erfolgen und unter Verwendung hierfür üblicher Zusatzstoffe, wie Sinterhilfsmittel (Sinterzusätze). Vorzugsweise werden
als Sinterhilfsmittel die vorstehend genannten Sinterzusätze verwendet, und insbesondere Pulvermischungen aus Y2O3, Al2O3 und AlN, oder Y3Al5O12. Der bevorzugt verwendete Anteil an Sinterzusätzen entspricht ebenfalls den vorstehend genannten bevorzugten Anteilsbereichen.
Sinterzusätze setzen die mechanischen Eigenschaften der Keramik, insbesondere bei hohen Temperaturen, stark herab. Beim Sintern unter erhöhtem Gasdruck bzw. bei Verfahren, die eine Nachbehandlung durch heißisostatisches Pressen vorsehen, sind weniger Zusatzstoffe erforderlich, um eine maximale Dichte eines Keramikkörpers zu erzielen. Mit dem erfindungsgemäßen Verfahren ist es nun möglich, die Menge an Zusatzstoffen, wie Sinterhilfsmittel, niedrig zu halten. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht auch darin, daß bei niedrigem Stickstoffpartialdruck, aber hohem Gesamtgasdruck eine maximale Verdichtung bereits bei relativ niedrigen Temperaturen erreicht werden kann.
Das nachfolgende Beispiel erläutert die Erfindung näher, ohne sie darauf zu beschränken.
B e i s p i e l
Eine Pulvermischung, bestehend aus 85 bis 70 Gew.-% Si3N4, 0 bis 15 Gew.-% ß-SiC-Whisker, und 9,8 Gew.-% Y2O3, 1,7 Gew.-% Al2O3 und 3,5 Gew.-% AlN wird durch Attritieren in einer organischen Flüssigkeit homogen vermischt. Die whiskerhaltige Pulversuspension wird anschließend in einem Rotationsverdampfer getrocknet und kaltisostatisch zu Probekörpern verpreßt. Die Gründichte beträgt 2 - 2,1 g/cm3 (60 - 63 % th.D.).
Die Compositkeramik wird bei 1850°C unter einem N2-Druck von 1 bar (0,1 MPa) bis zur geschlossenen Porosität 30 Minuten vorgesintert. Die Dichte nach dem Vorsintern erreicht 3,3 bis 3,15 g/cm3 für Whiskergehalte von 0 bis 15 Gew.-% (99 bis 95 % th.D.).
Anschließend wird der vorgesinterte Probekörper in einer Gasmischung aus 1 Vol-% N2 und 99 Vol-% Ar kapsellos bei einer Temperatur von 1900°C für 10 Minuten heißisostatisch nachverdichtet (HIP-Verfahren). Der isostatische Gesamtdruck beträgt 1000 bar (100 MPa), wobei der N2-Partialdruck 10 bar (1 MPa) erreicht. Hierbei steigt die Dichte auch bei den Proben mit bis zu 15 Gew.-% SiC-Whisker-Gehalt bis über 3,3 g/cm3 (99 % th.D.), ohne daß eine Zerstörung der SiC-Whisker im Probekörper eintritt. Die Figur 2 zeigt graphisch die absolute Dichte und relative Dichte (Bruchdichte; fractional density; in %) in Relation zum Whiskerariteil.
Wird hingegen mit einem N2-Partialdruck von 1000 bar (100 MPa) (der dem obigen Gesamtdruck entspricht) nachverdichtet, ist eine starke Kohlenstoffbildung bei gleichzeitiger Zerstörung der SiC-Whisker an der Probenoberfläche zu beobachten.
Nach dem heißisostatischen Nachverdichten ist eine deutliche Steigerung des Bruchwiderstandes zu erkennen.
Die Figur 3 zeigt die KIc-Werte in Relation zum Whiskerantexl. Maxxmalwerte des KIc von über 8,5 MPa m1/2 werden mit einem ß-SiC-Whiskergehalt von 10 Gew.-% erreicht.
In den Figuren 2 und 3 bedeutet die Kurve (S) die Vorsinterung, die Kurve (HIP) die heißisostatische Nachverdichtung.
Bei Ersatz der SiC-Whisker durch HfC-, NbC-, TaC-, TiC-, VC- oder ZrC-Whisker wurden nach der vorstehend angegebenen Arbeitsweise und bei gleichen Mengenanteilen ähnliche Ergebnisse erhalten.
Claims
1. Verfahren zum heißisostatischen Pressen (HIPen) von mit Carbidfaser oder Carbidwhisker aus der Gruppe SiC, HfC, NbC, TaC, TiC, VC oder ZrC verstärkten Siliziumnitridformkörpern in stickstoffhaltiger Atmosphäre, d a d u r c h g e k e n n z e i c h n e t , daß der drucklos in einer stickstoffhaltigen Atmosphäre vorgesinterte Formkörper ohne Einkapselung bei Temperaturen zwischen 1000 und 3000°C in einer Schutzgas-Atmosphäre unter einem Stickstoffpartialdruck geHIPt wird, welcher der Gleichung
entspricht, in der PN2 den N2-Partialdruck und Ts
die Temperatur in °K bedeuten, wobei die Partialdruckuntergrenze durch die Werte a = 872 213, b = 405,6 und c = -16,6, und die Partialdruck-Obergrenze je nach dem verwendeten Carbid durch folgende Werte gegeben ist:
a b c
SiC: 505444 295,2 -16,6
HfC: 159842 83,2 -4,2
NbC: 95814 73,4 -4,2
TaC: 106274 81,2 -4,2
TiC: 143782 76,1 -4,2
VC: 114641 67,9 -4,2
ZrC: 160552 80,9 -4,2
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Schutzgas ein Edelgas oder Edelgasgemisch ist.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß man mit einem Gesamtgasdruck (Stickstoff + Schutzgas) von mindestens 1000 bar (100 MPa) arbeitet.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Menge an Carbidfasern und/oder Carbidwhisker bis zu 50 Gew.-%, bezogen auf die Ausgangsmischung, beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß man die druσklose Vorsinterung in einer Stickstoffatmosphäre bis zur geschlossenen Porosität durchführt.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß man in Gegenwart üblicher Sinterzusätze arbeitet.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß man die Sinterzusätze in einer Menge von 5 bis 15 Gew.-%, bezogen auf die Ausgangsmischung, zusetzt.
8. Das in den Beispielen beschriebene Verfahren zur Herstellung von Carbidfaser- und Carbidwhisker verstärkten Siliziumnitridkörpern.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3708689 | 1987-03-17 | ||
DE19873708689 DE3708689A1 (de) | 1987-03-17 | 1987-03-17 | Verfahren zum heissisostatischen pressen von carbidfaser- und carbidwhisker verstaerkten siliziumnitridkoerpern |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0417081A1 true EP0417081A1 (de) | 1991-03-20 |
Family
ID=6323300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88902464A Ceased EP0417081A1 (de) | 1987-03-17 | 1988-03-15 | Verfahren zum heissisostatischen pressen von carbidfaser- und carbidhwisker-verstärkten siliziumnitridkörpern |
Country Status (5)
Country | Link |
---|---|
US (1) | US5106793A (de) |
EP (1) | EP0417081A1 (de) |
JP (1) | JPH02501382A (de) |
DE (1) | DE3708689A1 (de) |
WO (1) | WO1988007029A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3805641A1 (de) * | 1988-02-24 | 1989-09-07 | Hoechst Ag | Verbundwerkstoff und verfahren zu seiner herstellung |
JP2730245B2 (ja) * | 1990-01-29 | 1998-03-25 | 日産自動車株式会社 | 炭化珪素・窒化珪素質複合焼結体の製造方法 |
KR960012714B1 (ko) * | 1994-06-29 | 1996-09-24 | 한국과학기술연구원 | SiC 휘스커 강화 세라믹스 복합 재료의 제조 방법 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3141590C2 (de) * | 1980-10-20 | 1985-01-03 | Kobe Steel, Ltd., Kobe, Hyogo | Verfahren zur Herstellung von hochdichtem gesintertem Siliziumnitrid |
JPS57209884A (en) * | 1981-06-17 | 1982-12-23 | Kobe Steel Ltd | Manufacture of high strength silicon carbide sintered body |
DE3129633A1 (de) * | 1981-07-28 | 1983-02-17 | Elektroschmelzwerk Kempten GmbH, 8000 München | "praktisch porenfreie formkoerper aus polykristallinem siliciumcarbid, die durch isostatisches heisspressen hergestellt worden sind" |
DE3142058A1 (de) * | 1981-10-23 | 1983-05-05 | Elektroschmelzwerk Kempten GmbH, 8000 München | Praktisch porenfreie formkoerper aus polykristallinem siliciumnitrid und siliciumcarbid und verfahren zu ihrer herstellung durch isostatisches heisspressen |
DE3201563A1 (de) * | 1982-01-20 | 1983-07-28 | Elektroschmelzwerk Kempten GmbH, 8000 München | Dichte formkoerper aus polykristallinem, hexagonalem bornitrid und verfahren zu ihrer herstellung durch isostatisches heisspressen |
US4552711A (en) * | 1983-06-21 | 1985-11-12 | Cornell Research Foundation, Inc. | Use of free silicon in liquid phase sintering of silicon nitrides and sialons |
DE3403917C1 (de) * | 1984-02-04 | 1985-11-28 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Verfahren zum Verdichten poroeser keramischer Bauteile fuer das heissisostatische Pressen |
US4603116A (en) * | 1984-04-09 | 1986-07-29 | Gte Laboratories Incorporated | Silicon nitride based ceramics and method |
DE3445766A1 (de) * | 1984-12-14 | 1986-06-19 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen | Verfahren zur herstellung von kurzfaserverstaerkten keramikformkoerpern |
AU5868386A (en) * | 1985-03-14 | 1986-10-13 | Atlantic Richfield Company | High density reinforced ceramic bodies and method of making same |
JPS6274003A (ja) * | 1985-09-26 | 1987-04-04 | Nippon Kokan Kk <Nkk> | 圧粉体の焼結方法 |
SE456563B (sv) * | 1986-05-13 | 1988-10-17 | Asea Cerama Ab | Sett vid isostatisk pressning av pulver till foremal i en omslutning av glas |
JPS63123868A (ja) * | 1986-11-10 | 1988-05-27 | 日産自動車株式会社 | 窒化珪素質焼結体の製造方法 |
DE3662872D1 (en) * | 1986-11-25 | 1989-05-24 | Battelle Memorial Institute | Pulverulent silicon nitride composition reinforced with silicon carbide whiskers and its use for the manufacturing of sintered parts |
US4840763A (en) * | 1987-08-06 | 1989-06-20 | Ltv Aerospace And Defense Company | Method for the production of reinforced composites |
US4820663A (en) * | 1987-09-02 | 1989-04-11 | Kennametal Inc. | Whisker reinforced ceramic and a method of clad/hot isostatic pressing same |
-
1987
- 1987-03-17 DE DE19873708689 patent/DE3708689A1/de active Granted
-
1988
- 1988-03-15 JP JP63502429A patent/JPH02501382A/ja active Granted
- 1988-03-15 EP EP88902464A patent/EP0417081A1/de not_active Ceased
- 1988-03-15 US US07/399,504 patent/US5106793A/en not_active Expired - Fee Related
- 1988-03-15 WO PCT/EP1988/000205 patent/WO1988007029A1/de not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO8807029A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH0577633B2 (de) | 1993-10-27 |
WO1988007029A1 (en) | 1988-09-22 |
US5106793A (en) | 1992-04-21 |
DE3708689A1 (de) | 1988-10-20 |
JPH02501382A (ja) | 1990-05-17 |
DE3708689C2 (de) | 1989-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3877566T2 (de) | Keramisches verbundmaterial und daraus hergestellte gegenstaende. | |
EP1400499B1 (de) | Faserverstärkte Verbundkeramik und Verfahren zu deren Herstellung | |
DD283368A5 (de) | Verfahren fuer die herstellung eines selbsttragenden koerpers | |
DE3010545C2 (de) | Gesinterte Keramik, insbesondere für Zerspanungswerkzeuge, und Verfahren zur Herstellung derselben | |
EP0433856B1 (de) | Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen | |
DE19850366B4 (de) | Plateletverstärkter Sinterformkörper, dessen Verwendung und Verfahren zu seiner Herstellung | |
DE3141590C2 (de) | Verfahren zur Herstellung von hochdichtem gesintertem Siliziumnitrid | |
DE3027401C2 (de) | ||
DE102006013746A1 (de) | Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung | |
DE19752776C1 (de) | Verfahren zur Herstellung eines Bauteils aus Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff und dessen Verwendung | |
DE69418578T2 (de) | Keramischer Werkstoff auf Aluminiumoxid-Basis und Verfahren zu seiner Herstellung | |
EP0071241B1 (de) | Praktisch porenfreie Formkörper aus polykristallinem Siliciumcarbid, die durch isostatisches Heisspressen hergestellt worden sind | |
DE69212398T2 (de) | Siliciumnitridkeramik mit einer dispergierten Pentamolybdäntrisilicidphase | |
DE2923729C2 (de) | ||
DE68918506T2 (de) | Hochfeste hochzähe TiB2-Keramik. | |
DE2927226A1 (de) | Dichte formkoerper aus polykristallinem beta -siliciumcarbid und verfahren zu ihrer herstellung durch heisspressen | |
DE69120250T2 (de) | Keramisches Verbundgefüge hoher Festigkeit und Verfahren zu seiner Herstellung | |
DE19706925C2 (de) | Verfahren zum Herstellen von Keramik-Metall-Verbundkörpern, Keramik-Metall-Verbundkörper und deren Verwendung | |
EP0064606B1 (de) | Verfahren zur Herstellung eines homogenen Siliciumcarbid-Formkörpers | |
EP0417081A1 (de) | Verfahren zum heissisostatischen pressen von carbidfaser- und carbidhwisker-verstärkten siliziumnitridkörpern | |
DE3529265C2 (de) | ||
DE3840573A1 (de) | Whisker-verstaerkte keramik | |
DE69102892T2 (de) | Sintermaterial auf Basis von Siliziumnitrid und Verfahren zur Herstellung desselben. | |
DE2461741A1 (de) | Verfahren zur herstellung eines gesinterten keramikproduktes | |
DE68919382T2 (de) | Keramisches Schneidwerkzeug und Verfahren zu seiner Herstellung. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19890828 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB SE |
|
17Q | First examination report despatched |
Effective date: 19911008 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19920404 |