EP0411372B1 - Verformbares textiles Flächengebilde und daraus hergestellte Netzwerkstoffe - Google Patents

Verformbares textiles Flächengebilde und daraus hergestellte Netzwerkstoffe Download PDF

Info

Publication number
EP0411372B1
EP0411372B1 EP90113530A EP90113530A EP0411372B1 EP 0411372 B1 EP0411372 B1 EP 0411372B1 EP 90113530 A EP90113530 A EP 90113530A EP 90113530 A EP90113530 A EP 90113530A EP 0411372 B1 EP0411372 B1 EP 0411372B1
Authority
EP
European Patent Office
Prior art keywords
yarn
textile
textile material
formable
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113530A
Other languages
English (en)
French (fr)
Other versions
EP0411372A3 (en
EP0411372A2 (de
Inventor
Elke Gebauer
Karlheinz Blaschke
Hermann Mildenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies SARL Switzerland
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0411372A2 publication Critical patent/EP0411372A2/de
Publication of EP0411372A3 publication Critical patent/EP0411372A3/de
Application granted granted Critical
Publication of EP0411372B1 publication Critical patent/EP0411372B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/14Processes for the fixation or treatment of textile materials in three-dimensional forms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24636Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24636Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
    • Y10T428/24645Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.] with folds in parallel planes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24661Forming, or cooperating to form cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a thermoformable sheet-like textile material and network materials produced therefrom.
  • EP-A-158 234 describes an example of the use of such network materials in the form of a sandwich molding made of two solid cover layers and a core of knitted fabric deformed by thermoforming to give a cup structure and provided with synthetic resin.
  • DE-A-38 44 458 proposes a wrapping yarn made from a core yarn of low stability and a high-strength enveloping yarn for producing such deep-drawable flat structures.
  • the mechanism described can be further supported by using core threads that have a lower stability than the sheath filaments, i. H. the core thread is wrapped with a yarn that becomes the actual reinforcement, but has a much greater length in the wrapping yarn.
  • the core thread is destroyed by the mechanical load, possibly also by a thermal load and / or by the influence of chemicals, the previous wrapping yarn is stretched and then takes on the supporting function in the fabric.
  • An object of the present invention is to provide a deformable, e.g. to provide deep-drawable textile material that can be produced with little effort.
  • the deformable textile material according to the invention from a textile fabric, such as e.g. a woven or preferably knitted fabric made from a uniform mixture of at least two different types of yarn, at least one of the yarns having a thermal shrinkage at cooking temperature of at least 45%, preferably at least 60%, and at least one of the yarns having a thermal shrinkage of at most 10%, preferably at most 5%, and the quantitative ratio of the first and second types of yarn is in the range from 80:20 to 20:80.
  • a textile fabric such as e.g. a woven or preferably knitted fabric made from a uniform mixture of at least two different types of yarn, at least one of the yarns having a thermal shrinkage at cooking temperature of at least 45%, preferably at least 60%, and at least one of the yarns having a thermal shrinkage of at most 10%, preferably at most 5%, and the quantitative ratio of the first and second types of yarn is in the range from 80:20 to 20:80.
  • multi-thread textile material which is produced from at least two types of yarn, will be referred to in the following as "multi-thread textile material", “multi-thread fabric” or “multi-thread knitwear”.
  • the yarns of the first type and the second type are preferably present in the deformable textile materials in a quantity ratio of 60:40 to 40:60.
  • Yarns of the first type usually have a maximum tensile elongation of 80 to 200%.
  • Preferred as the first type of yarn with a thermal shrinkage of at least 45% is a partially oriented, undrawn, so-called fast spinning yarn.
  • Such yarns are usually at a high spinning take-off speed, that of polyesters at about 2,000 to 4,000 m / min. lies.
  • Yarns of high strength are preferably used as yarns of the second type.
  • High-strength polyester yarns such as e.g. ®TREVIRA HOCHFEST from HOECHST AG.
  • both types of yarn consist of polyester, in particular of polyethylene terephthalate.
  • Deformable fabrics to be used according to the invention can be produced by uniformly mixing warp threads and / or weft threads from yarns of the two types mentioned in the quantitative ratio indicated above. If fabrics are to be used, then those which have the highest possible resistance to displacement are advantageous.
  • deformable knitted fabrics, knitted fabrics and knitted fabrics are equally suitable, but especially warp knitted fabrics.
  • the weaves and to be selected for the production of the warp-knit fabric to be used according to the invention Strength settings on the warp knitting machines are primarily based on the later intended use of the network material according to the invention or the desired depth of the three-dimensional formations perpendicular to the base surface of the textile fabric, for example the depth of the cells.
  • needle-drawn patterns are suitable in which the individual components are fed into the system separately or together, the feed being clad or arbitrary for two threads.
  • These are R / L constructions in which stitches and handles can be formed in one row using one or two needles. You can work on circular knitting single and double-surface circular knitting machines.
  • Throwing patterns in which the individual components are fed separately or together to the stitch-forming elements are also suitable. It is a matter of double-surface constructions based on interlock or cross hose. These fabrics are made on double-surface circular knitting machines.
  • a "multi-yarn textile material” for example a multi-yarn fabric or preferably a multi-yarn knitted fabric, is first produced by means of processes known per se.
  • This multi-yarn textile material is then allowed to shrink in a manner known per se by metered heat treatment, preferably in the range from 75 to 100.degree.
  • the linear shrinkage is adjusted by the choice of the shrinking temperature and the heat treatment time in such a way that it leads to the desired degree of deep-drawing ability of the multilayer textile material.
  • This shrunk, multilayer textile fabric is also an object of the present invention.
  • the shrunk multi-yarn textile material obtained preferably the knitted fabric, is subjected to the deformation into the desired three-dimensional structure, preferably by deep drawing in the manner known from EP-A-158 234.
  • the shrinkage permitted in the shrinkage stage of the manufacturing process is essentially pulled out again.
  • the less shrinking, firm component, the mesh of which was pushed on, is stretched again so that the mesh webs are pulled smooth and guarantee good compressive strength.
  • the heat treatment carried out for the targeted shrinkage of the multi-yarn textile material can also be well combined with other, if desired, i.e. combine optional manufacturing steps.
  • a possibly desired finishing of the textile material with z. B. strengthening resins, adhesion promoters for rubber and the like can be carried out under temperature conditions at which the desired shrinkage occurs.
  • the network materials (for example, well structures) obtained after the spatial deformation, preferably by deep drawing, can be used for many purposes without further reinforcement, since they already have excellent dimensional stability.
  • they can be filled with concrete or foam.
  • they can also be additionally strengthened and dimensionally stabilized by resin impregnation of the multilayer textile material.
  • the shape-stabilizing resins contained in the network materials according to the invention can originate from the various known thermoplastic or thermosetting resin groups, provided that their mechanical properties allow the shape stabilization of the network materials according to the invention.
  • suitable thermoplastic resins are polyacrylates or polyvinyl chloride; however, preferred resins are thermosets, e.g. Melamine and especially phenolic resins.
  • the amount of resin contained in the three-dimensionally deformed network materials according to the invention is preferably matched to the weight of the textile material so that when Deep-drawing the sheet-like textile material, opening the stitches into a delicate network.
  • Suitable quantities are in the range from 50 to 500, preferably 100 to 300 g resin / m2 of the undrawn textile material.
  • the amount of resin is expediently adapted to the weight per square meter of the deep-drawable textile material.
  • the decisive criterion is the condition that the meshes of the textile material open into a network during the deep-drawing process. Higher amounts of resin can also be used for special purposes, so that the meshes are closed by resin storage.
  • the three-dimensionally deformed network fabric according to the invention has a large number of deformations which extend at least in a direction which has a component perpendicular to the original plane of the textile fabric from which the network fabric according to the invention was produced.
  • the network material according to the invention has a large number of elevations on a base surface in a regular arrangement.
  • the network material according to the invention has a plurality of elevations and depressions in a regular arrangement on the level of the original base surface.
  • the elevations and depressions can have the shape of cups with a round or angular base surface or, for example, the shape of webs.
  • the plateau surfaces of the elevations or the bottom surfaces of the depressions all lie in one plane and parallel to the base surface.
  • the number, size, shape and spatial arrangement of the deformations per unit area of the fabric are selected such that the arithmetic product of the surface sizes of the original plane and the size the plateau areas of the elevations or the bottom areas of the depressions become as large as possible.
  • FIG. 1 schematically illustrates a section of a network material (3) according to the invention which has a multiplicity of cone-shaped elevations (5) on a base surface (4).
  • FIG. 2 shows an enlarged schematic representation of one of the cone-shaped deformations and clearly illustrates the drastic widening of the mesh structure of the textile material that occurs in the region of the deformation.
  • the network material according to the invention can of course also have other three-dimensional deformations. It is also quite possible that the surface of the original textile material is no longer retained in the three-dimensionally deformed network material according to the invention, if, for example, the material is deep-drawn by stamping from both sides of the textile surface, so that cup-shaped or cone-shaped parts are made in the material Formations alternately upwards and downwards occur at the bottom or when the original textile surface is pulled out from both sides into a zigzag surface by a plurality of narrow stamps extending in the same longitudinal direction and stabilized in this form.
  • the shrunk multi-yarn textile material is first impregnated with an above-mentioned resin suitable for increasing the strength.
  • the resins can be applied to the textile material in the customary manner by brushing, brushing, knife coating, slapping or, particularly advantageously, by dipping.
  • the resin-loaded fabric is then expediently squeezed onto the desired resin holder by a pair of squeeze rollers.
  • Thermoplastic resins are expediently applied in the form of solutions or preferably emulsions for the impregnation process.
  • Heat-curable resins (thermosets) are expediently in the commercially available form as highly concentrated aqueous solutions or dispersions.
  • thermoset the temperature of the deep-drawing device is set so that the flow area of the thermoset is reached.
  • the temperature of the deep-drawing device is regulated so that the impregnating resin can harden.
  • the temperature must be reduced below the melting point of the thermoplastics; for thermosets, the temperature of the Thermoformers generally remain unchanged because the thermosets harden even at elevated temperatures.
  • the deep-drawing device is kept closed until the stabilizing resin has hardened completely.
  • the thermoset can also be cured in a heating cabinet.
  • the resin is not required to stabilize the deep-drawn structure, but only for any additional reinforcement that may be required, the resin can also be applied after deep-drawing.
  • Another object of the present invention is a sheet-like sandwich molded body consisting of two outer solid cover layers which are connected to one another via a core consisting of the network material according to the invention described above.
  • the core material used for this purpose is the network material described above, which is particularly preferred for the production of sandwich structures and which has a multiplicity of elevations with flat plateau surfaces lying in one plane on a base area.
  • the connection between the plateau surfaces of the elevations or the bottom surfaces of the depressions of the core material according to the invention with the cover layers can be carried out by conventional lamination processes using adhesives, in particular cold or heat-curing adhesives, such as epoxy resins or thermosetting resins. Due to the large contact area between the core material and the cover layers, the bond proves to be extremely stable.
  • the sandwich moldings produced therewith have a surprisingly high compressive strength with extremely low weight.
  • the manufacturing process described above can be varied in that, as an alternative to the conventional impregnation of the fabric with resin, the deep-drawable textile material is processed together with a commercially available resin film.
  • a thermoformable textile material and one or more resin films are stacked on top of one another, the stack is thermoformed to the desired shape at a temperature at which the resin becomes flowable, and the temperature is then set such that the resin flows can and impregnates the textile material.
  • the resin films used in this process can also consist of thermoplastic or thermosetting resins. Thermosets, in particular those resins which cure at elevated temperature with crosslinking to give an infusible material of high rigidity, are also preferred here.
  • Suitable such resins which are also commercially available in the form of films, are e.g. B. unsaturated polyester resins (alkyd resins), mixtures of unsaturated polyesters with unsaturated monomeric compounds, such as. B. styrene, epoxy resins, phenolic resins or melamine resins.
  • B. unsaturated polyester resins alkyd resins
  • unsaturated monomeric compounds such as. B. styrene, epoxy resins, phenolic resins or melamine resins.
  • the resins in the form of films are also brought onto the market and applied in the uncrosslinked state, in which they are still meltable and flowable at elevated temperature.
  • the films of uncrosslinked resins to be used in the embodiment of the production process according to the invention for the network materials discussed here have a thickness of approximately 50 to 500 ⁇ m, preferably 100 to 500 ⁇ m and a basis weight of approximately 50 to 500 g / m2, preferably 100 to 500 g / m2. Using these resins in the specified film thickness achieves approximately the same resin impregnation as in the application of the liquid resin preparation described above by conventional impregnation.
  • the temperature at which the uncrosslinked resin melts is generally 100 to 250 ° C., preferably 140 to 200 ° C.
  • Textile fabrics which are made solely from the shrinking high-speed spinning yarn, show an uncontrolled stretching during deep drawing and the resulting serious fluctuations in strength.
  • the "multi-yarn textile materials” according to the invention do not result in fluctuations in strength.
  • the stretchable and shrinkable yarn type regulates the tightness of the textile material.
  • Their high level of shrinkage provides a good stretch reserve for deep drawing with a good mesh density. A high constructional stretch is therefore no longer of decisive importance when choosing a pattern.
  • Another advantage of the invention is that the shrunk multi-yarn textile material has an increased stability during possible impregnation and finishing steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Outer Garments And Coats (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Artificial Filaments (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Materials For Medical Uses (AREA)

Description

  • Die vorliegende Erfindung betrifft ein tiefziehfähiges flächenförmiges Textilmaterial und daraus hergestellte Netzwerkstoffe.
  • Ein Beispiel für die Verwendung derartiger Netzwerkstoffe in Form eines Sandwichformkörpers aus zwei festen Deckschichten und einem Kern aus einer durch Tiefziehen zu einer Näpfchenstruktur verformten und mit Kunstharz versehenen Maschenware beschreibt die EP-A-158 234.
  • Zur Herstellung derartiger tiefziehfähiger Flächengebilde wird in der DE-A-38 44 458 (HOE 88/F 386) ein Umwindegarn vorgeschlagen, aus einem Kerngarn geringer Stabilität und einem hochfesten Hüllgarn.
  • Die hohe Stabilität dieses Textilmaterials bei normaler Handhabung und in Ausrüstungsprozessen bei gleichzeitig sehr guter Tiefziehfestigkeit resultiert dabei aus dem speziellen Aufbau des Materials aus Umwindegarn. Bei normaler Handhabung und beispielsweise im Verlauf von Ausrüstungsprozessen werden alle auftretenden Dehnkräfte von dem Kernfaden des Umwindegarns aufgenommen, so daß eine hohe Formstabilität des Textilmaterials gewährleistet ist. WErden dagegen auf das Material im Verlauf eines Tiefziehvorgangs erheblich erhöhte Dehnkräfte ausgeübt, so treten in den zu verformenden Bereichen statistisch verteilt Risse der Kernfäden des Umwindegarns auf und geben eine entsprechende Länge des Hullfadens frei. Dieser Mechanismus ermöglicht im Verlauf des Tiefziehvorgangs eine erhebliche Flächenvergrößerung ohne Zerstörung des gesamten Flächenzusammenhalts.
  • Der geschilderte Mechanismus kann dadurch weiter unterstützt werden, daß man Kernfäden verwendet, die eine niedrigere Stabilität haben als die Hüllfilamente, d. h. der Kernfaden wird mit einem Garn umwunden, das der eigentliche Festigkeitsträger wird, aber im Umwindegarn noch eine deutlich größere Länge aufweist. Bei der Verformung des erfindungsgemäßen Flächengebildes wird der Kernfaden durch die mechanische Belastung, gegebenenfalls auch noch durch eine thermische Belastung und/oder durch den Einfluß von Chemikalien zerstört, das bisherige Umwindegarn wird gestreckt und übernimmt dann die tragende Funktion im Flächengebilde.
  • Trotz aller vorteilhafter Eigenschaften dieser Flächengebilde haftet ihnen der Nachteil an, daß Umwindegarne sehr aufwendig in der Herstellung sind.
  • Eine Aufgabe der vorliegenden Erfindung ist es, ein verformbares, z.B. tiefziehfähiges Textilmaterial zur Verfügung zu stellen, das mit geringem Aufwand herstellbar ist.
  • Das erfindungsgemäße verformbare Textilmaterial aus einem textilen Flächengebilde, wie z.B. einem Gewebe oder vorzugsweise einer Maschenware, das aus einer gleichmäßigen Mischung von zumindestens zwei verschiedenen Sorten von Garnen hergestellt ist, wobei mindestens eines der Garne einen Thermoschrumpf bei Kochtemperatur von mindestens 45 %, vorzugsweise mindestens 60 %, und mindestens eines der Garne einen Thermoschrumpf von höchstens 10 %, vorzugsweise höchstens 5 %, hat, und das Mengenverhältnis der ersten und der zweiten Garnsorte im Bereich von 80:20 bis 20:80 liegt.
  • Dieses, aus mindestens zwei Garnsorten hergestellte verformbare Textilmaterial soll im folgenden kurz als "Mehrgarn-Textilmaterial", "Mehrgarn-Gewebe" oder "Mehrgarn-Maschenware" bezeichnet werden.
  • Vorzugsweise liegen die Garne der ersten Sorte und der zweiten Sorte in den verformbaren Textilmaterialien in einem Mengenverhältnis von 60:40 bis 40:60 vor.
  • Garne der ersten Sorte haben in der Regel eine Höchstzugkraftdehnung von 80 bis 200 %. Bevorzugt als Garn der ersten Sorte mit einem Thermoschrumpf von mindestens 45 % ist ein teilorientiertes, unverstrecktes, sogenanntes Schnellspinngarn. Derartige Garne werden üblicherweise bei einer hohen Spinnabzugsgeschwindigkeit, die bei Polyestern bei ca. 2 000 bis 4 000 m/min. liegt, erhalten.
  • Als Garne der zweiten Sorte werden vorzugsweise Garne mit einer hohen Festigkeit, insbesondere solche mit einer Höchstzugkraft von über 50 cN/tex eingesetzt. Gut brauchbar als Garne der zweiten Sorte sind hochfeste Polyestergarne wie z.B. ®TREVIRA HOCHFEST der Fa. HOECHST AG.
  • Es ist weiterhin bevorzugt, wenn beide Garnsorten aus Polyester, insbesondere aus Polyethylenterephthalat, bestehen.
  • Erfindungsgemäß einzusetzende verformbare Gewebe können hergestellt werden indem man Kettfäden und/oder Schußfäden aus Garnen der beiden genannten Sorten in dem oben angegebenen Mengenverhältnis gleichmäßig mischt. Sollen Gewebe eingesetzt werden, so sind solche vorteilhaft, die eine möglichst hohe Verschiebefestigkeit haben.
  • Als bevorzugte, verformbare Maschenware eignen sich gleichermaßen Gestricke und Gewirke, insbesondere aber Kettwirkware.
  • Die zur Herstellung der erfindungsgemäß bevorzugt einzusetzenden Kettwirkware zu wählenden Bindungen und Festigkeitseinstellungen an den Kettenwirkmaschinen richten sich in erster Linie nach dem späteren Einsatzzweck des erfindungsgemäßen Netzwerkstoffs bzw. der gewünschten Tiefe der dreidimensionalen Ausformungen senkrecht zur Grundfläche des textilen Flächengebildes, beispielsweise der Näpfchentiefe.
  • Für gut dehnbare Qualitäten eigenen sich zweischienige Bindungen,bei denen das hochschrumpfende Garn in Legeschiene 1, das hochfeste Garn in Legeschiene 2 eingesetzt wird, z. B.
    • a. Doppeltrikot
      L1 = 1-0/1-2//
      L2 = 1-2/1-0//
    • b. Schlunglegung
      L1 = 0-0/1-2/0-0//
      L2 = 1-0/2-2/1-0//
  • Bei Näpfchenstrukturen für hohe Druckfestigkeit, d.h. für hohe Tragkraft, die im Gebrauch einer hohen Beanspruchung ausgesetzt sind, empfiehlt sich eine dreischienige Ware folgender Bindung:
    L1 = 1-2/0-0//
    L2 = 2-2/1-0//
    L3 = 3-4-/1-1//
  • In der Strickerei eignen sich Nadelzugmuster,bei denen die Einzelkomponenten getrennt oder zusammen dem System zugeführt werden, wobei die Zuführung bei zwei Fäden plattiert oder willkürlich sein kann. Es handelt sich um R/L-Konstruktionen,bei denen in einer Reihe Maschen und Henkel über eine oder zwei Nadeln gebildet werden können. Dabei kann auf Rundstrick-Single und auf doppelflächigen Rundstrickmaschinen gearbeitet werden.
  • Ebenso eignen sich Abwurfmuster, bei denen die Einzelkomponenten getrennt oder zusammen den maschenbildenden Elementen zugeführt werden. Es handelt sich um doppelflächige Konstruktionen auf Interlock- bzw. Kreuzschlauchbasis. Diese Flächengebilde werden auf doppelflächigen Rundstrickmaschinen hergestellt.
  • Zur Herstellung der erfindungsgemäßen verformbaren textilen Flächengebilde und der daraus herstellbaren Netzwerkstoffe wird also mittels an sich bekannter Verfahren zunächst ein "Mehrgarn-Textilmaterial" beispielsweise ein Mehrgarn-Gewebe oder vorzugsweise eine Mehrgarn-Maschenware erzeugt.
  • Dieses Mehrgarn-Textilmaterial läßt man anschließend in an sich bekannter Weise durch eine dosierte Wärmebehandlung, vorzugsweise im Bereich von 75 bis 100°C gezielt schrumpfen. Hierbei wird der lineare Schrumpf durch die Wahl der Schrumpftemperatur und der Wärmebehandlungsdauer so eingestellt, daß er zu dem gewünschten Ausmaß an Tiefziehfähigkeit des mehrschichtigen Textilmaterials führt. Auch dieses geschrumpfte, mehrschichtige textile Flächengebilde ist ein Gegenstand der vorliegenden Erfindung.
  • Das erhaltene geschrumpfte Mehrgarn-Textilmaterial, vorzugsweise die Maschenware, wird der Verformung zu der gewünschten dreidimensionalen Struktur unterworfen, vorzugsweise durch Tiefziehen in der aus der EP-A-158 234 bekannten Weise.
  • Hierbei wird der in der Schrumpfstufe des Herstellungsprozesses zugelassene Schrumpf im wesentlichen wieder herausgezogen. Die wenig schrumpfende, feste Komponente, deren Maschen aufgeschoben waren, wird wieder gestreckt, so daß die Maschenstege glattgezogen werden und für eine gute Druckfestigkeit garantieren.
  • Die zur gezielten Schrumpfung des Mehrgarn-Textilmaterials durchgeführte Wärmebehandlung läßt sich auch gut mit anderen ggfs. gewünschten, d.h. fakultativen Herstellungsschritten kombinieren.
  • Beispielsweise kann eine evtl. gewünschte Ausrüstung des Textilmaterials mit z. B. festigkeitsverstärkenden Harzen, Haftvermittlern für Kautschuk und dergleichen unter Temperaturbedingungen durchgeführt werden, bei denen der gewünschte Schrumpf eintritt.
  • Die nach der räumlichen Verformung vorzugsweise durch Tiefziehen erhaltenen Netzwerkstoffe (z. B. Näpfchenstrukturen) können, wie oben bereits erwähnt, ohne weitere Verstärkung für viele Zwecke eingesetzt werden, da sie bereits eine ausgezeichnet Formstabilität aufweisen. So können sie beispielsweise mit Beton oder Schäumen verfüllt werden. Sie können aber auch, falls eine besonders hohe Druckfestigkeit der Netzwerkstoffe selbst erwünscht ist, durch eine Harzimprägnierung des mehrschichtigen Textilmaterials zusätzlich verfestigt und formstabilisiert werden.
  • Die in den erfindungsgemäßen Netzwerkstoffen enthaltenen formstabilisierenden Harze können den verschiedenen bekannten thermoplastischen oder duroplastischen Harzgruppen entstammen, sofern ihre mechanischen Eigenschaften die Formstabilisierung der erfindungsgemäßen Netzwerkstoffe zulassen. Beispiele für geeignete thermoplastisch Harze sind Polyacrylate oder Polyvinylchlorid; bevorzugte Harze sind jedoch Duroplaste, wie z.B. Melamin- und insbesondere Phenolharze.
  • Die in den dreidimensional verformten, erfindungsgemäßen Netzwerkstoffen enthaltene Harzmenge ist auf das Gewicht des Textilmaterials vorzugsweise so abgestimmt, daß sich beim Tiefziehen des flächenförmigen Textilmaterials die Maschen zu einem filigranen Netzwerk öffnen. Geeignete Auflagenmengen liegen im Bereich von 50 bis 500, vorzugsweise 100 bis 300 g Harz/m² des unverstreckten Textilmaterials. Innerhalb dieser angegebenen Bereiche wird die Harzmenge noch zweckmäßig an das Quadratmetergewicht des tiefziehfähigen Textilmaterials angepaßt. So wird man bei Einsatz eines schweren Textilmaterials innerhalb der oberen Hälfte der angegebenen Bereiche arbeiten, bei leichten Textilmaterialien in der unteren Hälfte. Das ausschlaggebende Kriterium ist, wie oben angegeben, die Bedingung, daß sich beim Tiefziehvorgang die Maschen des Textilmaterials zu einem Netzwerk öffnen.
    Für spezielle Einsatzzwecke können auch höhere Harzmengen eingesetzt werden, so daß die Maschen durch Harzeinlagerung geschlossen werden.
  • Der erfindungsgemäße dreidimensional verformte Netzwerkstoff weist eine Vielzahl von Verformungen auf, die sich wenigstens in eine Richtung erstrecken, die eine Komponente senkrecht zur ursprünglichen Ebene des textilen Flächengebildes aufweist, aus dem der erfindungsgemäße Netzwerkstoff hergestellt wurde.
  • In einer besonders im Hinblick auf eine weitere Verwendung als Kernmaterial für die Herstellung von Sandwichstrukturen spezifizierten Ausführungsform, weist der erfindungsgemäße Netzwerkstoff auf einer Basisfläche in regelmäßiger Anordnung eine Vielzahl von Erhebungen auf. In einer weiteren Ausführungsform weist der erfindungsgemäße Netzwerkstoff auf der Ebene der ursprünglichen Basisfläche in regelmäßiger Anordnung eine Vielzahl von Erhebungen und Vertiefungen auf. Die Erhebungen und Vertiefungen können die Form von Näpfchen mit runder oder eckiger Basisfläche oder z.B. die Form von Stegen haben. Im Hinblick auf eine gute Haftung zwischen dem als Kernmaterial für Sandwichformkörper einzusetzenden erfindungsgemäßen Netzwerkstoff und den aufgebrachten Deckflächen ist es besonders vorteilhaft, wenn die Erhebungen oben ein flaches Plateau bzw. die Vertiefungen einen flachen Boden aufweisen. Besonders bevorzugt ist es auch, wenn die Plateauflächen der Erhebungen bzw. die Bodenflächen der Vertiefungen alle in einer Ebene und parallel zur Basisfläche liegen. Gleichfalls im Hinblick auf eine gute Haftung zwischen dem Kernmaterial und aufgebrachten Deckflächen ist es von Vorteil, wenn Zahl, Größe, Form und räumliche Anordnung der Verformungen pro Flächeneinheit des Flächengebildes so ausgewählt werden, daß das rechnerische Produkt aus den Flächengrößen der ursprünglichen Ebene und die Größe der Plateauflächen der Erhebungen bzw. der Bodenflächen der Vertiefungen möglichst groß wird.
  • Die Figur 1 veranschaulicht schematisch einen Abschnitt eines erfindungsgemäßen Netzwerkstoffs (3), der auf einer Basisfläche (4) eine Vielzahl von hütchenförmigen Erhebungen (5) aufweist.
  • Die Figur 2 zeigt in Vergrößerung die schematische Darstellung einer der hütchenförmigen Verformungen und veranschaulicht deutlich die im Bereich der Verformung auftretende drastische Erweiterung der Maschenstruktur des Textilmaterials.
  • Für andere Einsatzgebiete kann der erfindungsgemäße Netzwerkstoff selbstverständlich auch andere dreidimensionale Verformungen aufweisen. Es ist auch durchaus möglich, daß in dem erfindungsgemäßen dreidimensional verformten Netzwerkstoff die Fläche des ursprünglichen Textilmaterials überhaupt nicht mehr erhalten bleibt, wenn beispielsweise das Tiefziehen des Materials durch Stempel von beiden Seiten der Textilfläche her erfolgt, so daß in dem Material näpfchen- bzw. hütchenförmige Ausformungen abwechselnd nach oben und nach unten auftreten oder wenn die ursprüngliche Textilfläche durch eine Vielzahl schmaler, sich in der gleichen Längsrichtung erstreckenden Stempel von beiden Seiten zu einer Zickzackfläche ausgezogen und in dieser Form stabilisiert wird.
  • Zur Herstellung eines erfindungsgemäßen dreidimensional verformten, beharzten Netzwerkstoffs wird zunächst das geschrumpfte Mehrgarn-Textilmaterial mit einem zur Festigkeitssteigerung geeigneten obengenannten Harz imprägniert. Die Applikation der Harze auf das Textilmaterial kann in üblicher Weise durch Aufstreichen, Bürsten, Rakeln, Pflatschen oder besonders vorteilhaft durch Tauchen erfolgen. Das mit Harz beaufschlagte Gewebe wird anschließend zweckmäßigerweise durch ein Quetschwalzenpaar auf die gewünschte Harzaufnahme abgequetscht. Thermoplastische Harze werden für den Imprägniervorgang zweckmäßigerweise in Form von Lösungen oder vorzugsweise von Emulsionen aufgebracht. Hitzehärtbare Harze (Duroplaste) zweckmäßigerweise in der handelsüblichen Form als hochkonzentrierte wäßrige Lösungen oder Dispersionen.
  • Nach einer eventuellen Zwischentrocknung des harzimprägnierten Textilmaterials wird es dem Tiefziehprozeß bei erhöhter Temperatur unterworfen. Die Temperatur des Tiefziehens wird so gewählt, daß thermoplastische Harze aufgeschmolzen werden können und dabei die Fäden der Netzstruktur vollständig durchdringen. Das Gleiche gilt für Duroplaste; hier wird die Temperatur der Tiefzieheinrichtung so eingestellt, daß der Fließbereich des Duroplasts erreicht wird. Nach dem Schmelzen des Harzes wird die Temperatur der Tiefzieheinrichtung so geregelt, daß das Imprägnierharz erhärten kann. Bei Einsatz von Thermoplasten ist hierzu die Temperatur unter den Schmelzpunkt der Thermoplasten zu reduzieren; bei Duroplasten kann die Temperatur des Tiefziehgerätes in der Regel unverändert bleiben, weil die Aushärtung der Duroplasten auch bei erhöhter Temperatur erfolgt. Die Tiefzieheinrichtung wird so lange geschlossen gehalten, bis das stabilisierende Harz vollständig erhärtet ist. Alternativ kann bei Einsatz des erfindungsgemäßen mehrschichtigen Textilmaterials die Aushärtung des Duroplasten auch in einem Wärmeschrank erfolgen.
  • Da das Harz nicht zur Stabilisierung der tiefgezogenen Struktur erforderlich ist, sondern nur zu einer eventuell gewünschten zusätzlichen Verstärkung, kann die Harzausrüstung auch nach dem Tiefziehen erfolgen.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein flächenförmiger Sandwichformkörper bestehend aus zwei äußeren festen Deckschichten, die über einen Kern, bestehend aus dem oben beschriebenen erfindungsgemäßen Netzwerkstoff, miteinander verbunden sind. Als Kernmaterial wird hierzu der oben beschriebene, zur Herstellung von Sandwichstrukturen besonders bevorzugte Netzwerkstoff eingesetzt, welcher auf einer Grundfläche eine Vielzahl von Erhebungen mit flachen, in einer Ebene liegenden Plateauflächen aufweist. Die Verbindung zwischen den Plateauflächen der Erhebungen bzw. den Bodenflächen der Vertiefungen des erfindungsgemäßen Kernmaterials mit den Deckschichten kann durch übliche Laminierverfahren unter Verwendung von Klebstoffen, insbesondere von kalt- oder hitzehärtenden Klebstoffen, wie z.B. Epoxidharzen oder Duroplastharzen erfolgen. Aufgrund der großen Kontaktfläche zwischen dem Kernmaterial und den Deckschichten erweist sich die Verklebung als überaus stabil. Trotz der bevorzugten Filigranstruktur des erfindungsgemäßen Kernmaterials haben die damit hergestellten Sandwichformkörper eine überraschend hohe Druckfestigkeit bei extrem niedrigem Gewicht.
  • Das oben beschriebene Herstellungsverfahren läßt sich dadurch variieren, daß man, alternativ zur herkömmlichen Imprägnierung des Gewebes mit Harz, das tiefziehfähige Textilmaterial gemeinsam mit einer handelsüblichen Harzfolie verarbeitet. Bei dieser Methode werden eine oder mehrere Schichten eines tiefziehfähigen Textilmaterials und eine oder mehrere Harzfolien übereinander gestapelt, der Stapel bei einer Temperatur, bei der das Harz fließfähig wird, durch Tiefziehen in die gewünschte Form gebracht und danach die Temperatur so eingestellt, daß das Harz fließen kann und das Textilmaterial imprägniert. Die bei diesem Verfahren eingesetzten Harzfolien können ebenfalls aus thermoplastischen oder duroplastischen Harzen bestehen. Bevorzugt werden auch hier insbesondere Duroplaste, d.h. solche Harze, die bei erhöhter Temperatur unter Vernetzung zu einem unschmelzbaren Material hoher Steifigkeit aushärten. Bekannte derartig Harze, die auch in Form von Folien im Handel sind, sind z. B. ungesättigte Polyesterharze (Alkydharze), Mischungen aus ungesättigten Polyestern mit ungesättigten monomeren Verbindungen, wie z. B. Styrol, Epoxyharze, Phenolharze oder Melaminharze. Wie bereits oben beschrieben, werden auch die in Form von Folien vorliegenden Harze im unvernetzten Zustand, in welchem sie bei erhöhter Temperatur noch schmelzbar und fließfähig sind, in den Handel gebracht und appliziert. Die bei der hier besprochenen Ausführungsform des erfindungsgemäßen Herstellungsverfahrens der Netzwerkstoffe einzusetzenden Folien aus unvernetzten Harzen haben eine Stärke von etwa 50 bis 500 µm, vorzugsweise von 100 bis 500 µm und ein Flächengewicht von etwa 50 bis 500 g/m², vorzugsweise 100 bis 500 g/m². Man erreicht durch Einsatz dieser Harze in der angegebenen Folienstärke etwa die gleiche Harzimprägnierung, wie bei der weiter oben beschriebenen Applikation der flüssigen Harzzubereitung durch herkömmliches Imprägnieren.
  • Die Temperatur, bei der das Schmelzen des unvernetzten Harzes erfolgt, liegt in der Regel bei 100 bis 250°C, vorzugsweise bei 140 bis 200°C.
  • Textile Flächengebilde, die allein aus dem hochschrumpfenden Schnellspinngarn hergestellt werden, zeigen eine unkontrollierte Verstreckung beim Tiefziehen und daraus resultierende gravierende Festigkeitsschwankungen. Die erfindungsgemäßen "Mehrgarn-Textilmaterialien" ergeben dagegen keine Festigkeitsschwankungen.
  • Neben der stabilisierenden Wirkung im geschrumpften Mehrgarn-Textilmaterial regelt die dehnungs- und schrumpffähige Garnsorte die Dichtigkeit des Textilmaterials. Ihr hohes Schrumpfniveau gibt eine gute Dehnreserve für das Tiefziehen bei guter Maschendichte. Eine hohe Konstruktionsdehnung ist daher bei der Musterauswahl nicht mehr von entscheidender Bedeutung.
  • Ein weiterer Vorteil der Erfindung besteht darin, daß das geschrumpfte Mehrgarn-Textilmaterial eine erhöhte Stabilität bei eventuellen Imprägnier- und Ausrüstungsschritten hat.

Claims (13)

  1. Verformbares Textilmaterial, bestehend aus einem textilen Flächengebilde, dadurch gekennzeichnet, daß das Flächengebilde aus einer gleichmäßigen Mischung von zumindestens zwei verschiedenen Sorten von Garnen besteht, wobei mindestens eines der Garne einen Thermoschrumpf bei Kochtemperatur von mindestens 45 %, vorzugsweise mindestens 60 %, und mindestens eines der Garne einen Thermoschrumpf von höchstens 10 %, vorzugsweise höchstens 5 %, hat, und das Mengenverhältnis der ersten und der zweiten Garnsorte im Bereich von 80:20 bis 20:80 liegt.
  2. Verformbares Textilmaterial gemäß Anspruch 1, dadurch gekennzeichnet, daß das textile Flächengebilde eine Maschenware ist.
  3. Verformbares Textilmaterial gemäß mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß das Garn mit einem Thermoschrumpf von > 45 % ein Schnellspingarn ist.
  4. Verformbares Textilmaterial gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Garn mit einem Thermoschrumpf unter 10 % ein hochfestes Garn ist.
  5. Verformbares Textilmaterial gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Garne aus Polyester, vorzugsweise aus Polyethylenterephthalat bestehen.
  6. Verformbares Textilmaterial gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es in geschrumpften Zustand vorliegt.
  7. Verformbares Textilmaterial gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es mit einer Ausrüstung, vorzugsweise einer Harzausrüstung versehen ist.
  8. Dreidimensional verformter, formstabiler Netzwerkstoff auf der Basis eines verformbaren Textilmaterials, dadurch gekennzeichnet, daß das Textilmaterial eines der Ansprüche 1 bis 7 ist, der Netzwerkstoff eine maschenoffene dreidimensionale Netzstruktur bildet und daß die Verformungen sich wenigstens in eine Richtung erstrecken, die eine Komponente senkrecht zur ursprünglichen Ebene des Flächengebildes aufweist und die Verformungen die Gestalt von Näpfchen, Stegen oder dergleichen haben, die vorzugsweise jeweils eine neue Ebene besitzen, die parallel zur ursprünglichen Ebene des Flächengebildes verläuft.
  9. Verfahren zur Herstellung des verformbaren Textilmaterials des Anspruchs 1, dadurch gekennzeichnet, daß man mindestens zwei Garnsorten, wovon mindestens eines der Garne einen Thermoschrumpf bei Kochtemperatur von mindestens 45 %, vorzugsweise mindestens 60 %, und mindestens eines der Garne einen Thermoschrumpf von höchstens 10 %, vorzugsweise höchstens 5 %, hat, in an sich bekannter Weise zu einem textilen Flächengebilde verarbeitet, wobei die erste und die zweite Garnsorte in einem Mengenverhältnis von 80:20 bis 20:80 so verarbeitet werden, daß in der Fläche eine gleichmäßige Mischung der Garne erzielt wird.
  10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß die zwei Garnsorten zu einem Gewebe oder vorzugsweise zu einer Maschenware verarbeitet werden.
  11. Verfahren nach mindestens einem der Ansprüche 9 und 10, dadurch gekennzeichnet, daß die hergestellten textilen Flächengebilde bei erhöhter Temperatur, vorzugsweise zwischen 75 und 150°C geschrumpft werden.
  12. Verfahren zur Herstellung eines dreidimensional verformten, formstabilen Netzwerkstoffs, dadurch gekennzeichnet, daß man ein verformbares Textilmaterial der Ansprüche 1 bis 7 durch Tiefziehen oder ein analoges Formgebungsverfahren in der gewünschten Weise dreidimensional verformt.
  13. Sandwichformkörper aus einem Kernmaterial und zwei Deckplatten, dadurch gekennzeichnet, daß es als Kernmaterial den Netzwerkstoff des Anspruchs 8 enthält.
EP90113530A 1989-07-21 1990-07-14 Verformbares textiles Flächengebilde und daraus hergestellte Netzwerkstoffe Expired - Lifetime EP0411372B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3924150 1989-07-21
DE3924150A DE3924150A1 (de) 1989-07-21 1989-07-21 Verformbares textiles flaechengebilde und daraus hergestellte netzwerkstoffe

Publications (3)

Publication Number Publication Date
EP0411372A2 EP0411372A2 (de) 1991-02-06
EP0411372A3 EP0411372A3 (en) 1991-12-04
EP0411372B1 true EP0411372B1 (de) 1995-10-04

Family

ID=6385536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113530A Expired - Lifetime EP0411372B1 (de) 1989-07-21 1990-07-14 Verformbares textiles Flächengebilde und daraus hergestellte Netzwerkstoffe

Country Status (8)

Country Link
US (1) US5158821A (de)
EP (1) EP0411372B1 (de)
JP (1) JPH0359153A (de)
AT (1) ATE128741T1 (de)
DE (2) DE3924150A1 (de)
DK (1) DK0411372T3 (de)
ES (1) ES2078926T3 (de)
GR (1) GR3018070T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062264A1 (de) * 2004-12-23 2006-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauelement, insbesondere Wandverkleidung, und Verfahren zu dessen Herstellung

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3924178A1 (de) * 1989-07-21 1991-01-24 Hoechst Ag Kautschuk-verbundstoffe, insbesondere fahrzeugreifen, mit dreidimensionaler verstaerkungsstruktur
CH680994A5 (de) * 1989-07-31 1992-12-31 Tesch G H
IT1256928B (it) * 1992-08-06 1995-12-27 Sorin Biomedica Spa Procedimento per la realizzazione di protesi tessili, ad esempio protesi vascolari, e protesi tessile ottenibile con tale procedimento
US5360653A (en) * 1992-12-21 1994-11-01 Ackley Robert E Encapsulated foam pad
US6063473A (en) * 1993-02-26 2000-05-16 Xymid L.L.C. Abrasion-resistant composite sheet
US5545434A (en) * 1994-04-01 1996-08-13 Huarng; Hermes Method of making irregularly porous cloth
ZA963715B (en) * 1995-05-12 1996-11-20 Tensar Corp Bonded composite open mesh structural textiles
US5795835A (en) * 1995-08-28 1998-08-18 The Tensar Corporation Bonded composite knitted structural textiles
US5836715A (en) 1995-11-19 1998-11-17 Clark-Schwebel, Inc. Structural reinforcement member and method of utilizing the same to reinforce a product
US5833321A (en) * 1995-12-22 1998-11-10 Hoechst Celanese Corp Vehicle seat having high air circulation and materials used therein
US5731062A (en) * 1995-12-22 1998-03-24 Hoechst Celanese Corp Thermoplastic three-dimensional fiber network
US5882322A (en) * 1995-12-22 1999-03-16 Hoechst Celanese Corporation Medical casts and other orthopedic devices comprising thermoplastic three-dimensional fiber networks
EP0869723A1 (de) * 1995-12-22 1998-10-14 Hoechst Celanese Corporation Schuhe mit dreidimensionalen geformten fasern
US6174483B1 (en) 1997-05-07 2001-01-16 Hexcel Cs Corporation Laminate configuration for reinforcing glulam beams
US6306483B1 (en) 1997-06-19 2001-10-23 North Carolina State University Resilient three-dimensionally shaped fiber networks with improved comfort and aesthetic properties, improved method of making same and articles containing same
US5972477A (en) * 1997-06-23 1999-10-26 Hoechst Celanese Corporation Laminated fiber networks
US6141870A (en) 1997-08-04 2000-11-07 Peter K. Trzyna Method for making electrical device
US5851930A (en) * 1997-11-24 1998-12-22 Hoechst Celanese Corp. Rigid fiber network structures having improved post-yield dimensional recovery, method of making same, and articles incorporating same
US6403196B1 (en) * 1997-11-24 2002-06-11 North Carolina State University Rigid fiber network structures having improved post-yield dimensional recovery, method of making same, and articles incorporating same
US6554963B1 (en) 1998-11-02 2003-04-29 Albany International Corp. Embossed fabrics and method of making the same
US6231946B1 (en) 1999-01-15 2001-05-15 Gordon L. Brown, Jr. Structural reinforcement for use in a shoe sole
US7105716B2 (en) * 2003-12-31 2006-09-12 Kimberly-Clark Worldwide, Inc. Absorbent articles
DE602005008399D1 (de) * 2005-05-27 2008-09-04 Mondo Spa Elastische Unterlage für Bodenbeläge und dessen Herstellungsverfahren
JP2007301711A (ja) * 2006-05-11 2007-11-22 Urakami Gijutsu Kenkyusho:Kk 隅部に負圧吸着し且つそれに沿って移動可能な表面処理装置
US8800466B1 (en) 2010-06-23 2014-08-12 Navatek, Ltd. Inflatable watercraft with reinforced panels
DE102010027098B4 (de) 2010-07-14 2019-12-24 Natex Spitzen Gmbh & Co. Vorrichtung und Verfahren zur Herstellung eines beliebig geformten Gepäck-Rückhaltenetzes durch Thermofixierung
US9314994B2 (en) * 2012-03-21 2016-04-19 Kirsch Research And Development, Llc Pedestaled roof underlayment
IT201700004581A1 (it) * 2017-01-17 2018-07-17 Miles S P A Metodo di realizzazione di un manufatto tessile, in particolare un accessorio di abbigliamento, contenente filato termoretraibile e relativo accessorio di abbigliamento

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302327A (de) * 1963-02-20 1900-01-01
US3473576A (en) * 1967-12-14 1969-10-21 Procter & Gamble Weaving polyester fiber fabrics
JPS5432876A (en) * 1977-08-19 1979-03-10 Sanyo Kokusaku Pulp Co Method of preventing harmful effect by static electricity
JPS56330A (en) * 1979-06-15 1981-01-06 Teijin Ltd Original fiber for tire cord textile woof and tire cord textile
US4631098A (en) * 1983-01-06 1986-12-23 Raychem Limited Heat-recoverable article
JPS6017142A (ja) * 1983-07-04 1985-01-29 東レ株式会社 編織物
GB8408838D0 (en) * 1984-04-05 1984-05-16 Young D C Abrading material
DE3412846A1 (de) * 1984-04-05 1985-10-17 Hoechst Ag, 6230 Frankfurt Flaechenfoermiger sandwichformkoerper
US4761321A (en) * 1984-06-22 1988-08-02 Chicopee Corrugated woven fabric
GB2176511A (en) * 1985-06-15 1986-12-31 Guilford Kapwood Ltd Woven fabric and method for making same
US4857379A (en) * 1986-10-24 1989-08-15 Verseidag Industrietextilien Gmbh Sheetlike structure of fibers, especially as a reinforcement for plastics components
DE3729633A1 (de) * 1987-09-04 1989-03-16 Hoechst Ag Strukturwabe mit erhoehter druckfestigkeit, verfahren zu ihrer herstellung und daraus gefertigte flaechenfoermige sandwichformkoerper
DE3844458A1 (de) * 1988-12-31 1990-07-05 Hoechst Ag Tiefziehfaehiges textilmaterial und daraus hergestellte formkoerper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062264A1 (de) * 2004-12-23 2006-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauelement, insbesondere Wandverkleidung, und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
GR3018070T3 (en) 1996-02-29
US5158821A (en) 1992-10-27
ES2078926T3 (es) 1996-01-01
DE59009737D1 (de) 1995-11-09
EP0411372A3 (en) 1991-12-04
EP0411372A2 (de) 1991-02-06
ATE128741T1 (de) 1995-10-15
JPH0359153A (ja) 1991-03-14
DE3924150A1 (de) 1991-01-31
DK0411372T3 (da) 1996-02-12

Similar Documents

Publication Publication Date Title
EP0411372B1 (de) Verformbares textiles Flächengebilde und daraus hergestellte Netzwerkstoffe
DE3786858T3 (de) Verbundwerkstoff zum Verstärken von Dachbelägen, und Verfahren zum Herstellen solcher Verbundwerkstoffe.
DE68928158T2 (de) Verfahren zur Herstellen eines formbaren Verbundwerkstoffes
DE60105338T3 (de) Zwischen-Verbundstoff, dessen Herstellungsverfahren und dessen Verwendung als Formmaterial
DE69120099T2 (de) Thermoformbare Verbundfolie
EP0268838B1 (de) Flächengebilde aus Fasern, insbesondere als Verstärkungseinlage für Kunststoffteile
DE2927414A1 (de) Verstaerkungsgewebe fuer harzhaltige laminate
DE69003499T2 (de) Verformbare textilstruktur.
EP0512431A1 (de) Verfahren zur Herstellung eines dreidimensional verformten Textilmaterials und seine Verwendung
DE69106661T2 (de) Gewebter oder schussgewirkter Textilsupport für einbügelbaren Einlagestoff.
EP0717133A2 (de) Hybridgarn und daraus hergestelltes schrumpffähiges und geschrumpftes, permanent verformbares Textilmaterial, seine Herstellung und Verwendung
WO2020187371A1 (de) Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs
DE69003088T2 (de) Textiler Kern, Verfahren zur Herstellung davon mit solchem textilen Kern erhaltene Kompositware.
DE2843580A1 (de) Band mit oberflaechen-erhebungen und verfahren zu seiner herstellung
DE69130111T2 (de) Verfahren zur herstellung eines verbundwerkstoffes sowie verbundwerkstoff
DE10060379B4 (de) Verfahren zur Herstellung von multidirektionalen Faden- oder Fasergelegen
DE3874902T2 (de) Faserige struktur zum verstaerken eines verbundstoffes und verfahren zur herstellung dieser faserigen struktur.
DE4024510A1 (de) Tiefziehfaehiges textilmaterial und daraus hergestellte formkoerper
EP2036701B1 (de) Schichtstruktur sowie Verfahren und Vorrichtung zur Herstellung einer Schichtstruktur
DE69130297T2 (de) Flache poröse verbundstruktur und verfahren zu deren herstellung
EP0385432B1 (de) Verfahren zur Herstellung eines dreidimensional verformten, beharzten Textilmaterials und seine Verwendung
DE3729633A1 (de) Strukturwabe mit erhoehter druckfestigkeit, verfahren zu ihrer herstellung und daraus gefertigte flaechenfoermige sandwichformkoerper
EP0346826B1 (de) Verstärkungsmaterial für Duroplaste
DE4412376A1 (de) Halbzeug
DE3844458A1 (de) Tiefziehfaehiges textilmaterial und daraus hergestellte formkoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901221

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951004

REF Corresponds to:

Ref document number: 128741

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009737

Country of ref document: DE

Date of ref document: 19951109

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078926

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018070

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960715

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3018070

EUG Se: european patent has lapsed

Ref document number: 90113530.1

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- ARTEVA TECHNO

NLS Nl: assignments of ep-patents

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000703

Year of fee payment: 11

Ref country code: DK

Payment date: 20000703

Year of fee payment: 11

Ref country code: AT

Payment date: 20000703

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000704

Year of fee payment: 11

Ref country code: GB

Payment date: 20000704

Year of fee payment: 11

Ref country code: FR

Payment date: 20000704

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000706

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000816

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010714

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010714

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010714

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

BERE Be: lapsed

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19970811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040722

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201