EP0411285B1 - Installation comportant un capteur inductif de rotation pour la commande, en particulier de l'instant d'allumage de moteurs à combustion - Google Patents

Installation comportant un capteur inductif de rotation pour la commande, en particulier de l'instant d'allumage de moteurs à combustion Download PDF

Info

Publication number
EP0411285B1
EP0411285B1 EP90111325A EP90111325A EP0411285B1 EP 0411285 B1 EP0411285 B1 EP 0411285B1 EP 90111325 A EP90111325 A EP 90111325A EP 90111325 A EP90111325 A EP 90111325A EP 0411285 B1 EP0411285 B1 EP 0411285B1
Authority
EP
European Patent Office
Prior art keywords
ignition
pulse
gap
coils
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90111325A
Other languages
German (de)
English (en)
Other versions
EP0411285A2 (fr
EP0411285A3 (en
Inventor
Werner Erhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pruefrex Elektro Apparatebau GmbH
Original Assignee
Pruefrex Elektro Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6385950&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0411285(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pruefrex Elektro Apparatebau GmbH filed Critical Pruefrex Elektro Apparatebau GmbH
Publication of EP0411285A2 publication Critical patent/EP0411285A2/fr
Publication of EP0411285A3 publication Critical patent/EP0411285A3/de
Application granted granted Critical
Publication of EP0411285B1 publication Critical patent/EP0411285B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to an inductive rotary encoder for controlling the ignition timing of internal combustion engines, with a coil penetrated by a permanent magnet and a yoke wheel rotated by a shaft, over the circumference of which protruding spaced tooth segments are moved past the magnetic poles for voltage induction, according to the first part of claim 1 the invention a method for ignition of internal combustion engines, in particular in lawn mowers, chainsaws or cut-off machines using such an encoder (cf. claim 2). Finally, the invention relates to a capacitor ignition arrangement with a rotary encoder of the type mentioned (cf. claim 7).
  • the electronic switch is switched through either by a third-party ignition pulse generator or by an internal ignition pulse generator, which, for example, generates the required ignition signal via a voltage divider, starting from the state of charge of the capacitor. It is common to control the ignition timing in accordance with the operating state of the internal combustion engine, in particular depending on its speed.
  • segment wheels coupled to the crankshaft of a gasoline engine is known; these are yoke wheels made of highly permeable, ferromagnetic material, with tooth segments projecting radially or axially evenly distributed over their circumference. The tooth segments interact with the pole pieces of a permanent magnet which is surrounded by a coil.
  • an additional magnetic pin or the like must be attached to the known yoke wheels in order to inform the unit triggering the ignition of the angular position of the yoke wheel.
  • An angular position detector for internal combustion engines is known (US-A-4 797 827) which has a toothed wheel which is coupled and toothed to the crankshaft, the row of teeth running in the circumferential direction having a tooth gap.
  • the coupling to the crankshaft is such that when this tooth gap moves past an electrical pulse-generating sensor, one of the cylinders of the internal combustion engine is at top dead center. Due to the inductive signaling, a downstream evaluation electronics can recognize its position in top dead center without additional Tregger elements on the toothed rotary encoder wheel and use it as a reference or reference point for an absolute angular position.
  • the object underlying the invention is raised to facilitate the derivation of said reference point from the encoder signals, and in particular to save hardware and / or computing time for the corresponding evaluation electronics.
  • two separate coils are each assigned to a magnetic pole, and the spacing of the coils and / or magnetic poles corresponds to the smaller control distance, which relates to more than just two tooth segments. In this way it is achieved that the voltage induced in the coils relative to each other approximately the constant phase shift have, ie the half waves overlap each other in a phase-locked manner.
  • tooth segments that is to say at least three tooth segments, are expediently provided.
  • nine tooth segments can be provided, between which there is a tangential control distance corresponding to an angle of 36 °, with one tooth segment being omitted in accordance with the above idea; as a result, there is a further spacing relating to only two tooth segments, corresponding to an angle of 72 °.
  • the ignition control take place in the starting phase with or after one of the tooth segments following the gap moves past the magnetic pole of the permanent magnet.
  • the third tooth segment has proven itself for triggering an ignition derived from the absolute yoke wheel rotational position.
  • a development of the method according to the invention consists in having the ignition control take place in the starting phase depending on the angular velocity measurement by means of two adjacent tooth segments.
  • the following sequence is provided for the specific embodiment of the method according to the invention: in the starting phase, the angular velocity is counted by means of the time period between the passage of the second and then the third tooth segment after the gap, and only when the counting result exceeds a certain threshold value , the ignition is triggered when the third tooth segment moves past the pole piece. From a speed of approximately 1,500 rpm, the angular speed is counted in the interval formed by the first and second tooth segments in accordance with the specific process sequence. At the same time, the ignition control in the area triggered between the second and the third tooth segment gap. This makes it possible to adjust the ignition early. At speeds above 5,000 rpm, the advance adjustment is expanded in such a way that the ignition can be controlled before the second tooth segment has moved past a (scanned) magnetic pole. This extreme early adjustment is possible because the speed fluctuations are low in this speed range.
  • induced voltage half-waves are tapped and fed to a capacitor connected to an ignition coil for charging it.
  • a discharge switch coupled to the capacitor which is expediently actuated by the above-mentioned ignition timing control, the capacitor can then be discharged at the desired point in time in accordance with an ignition map program.
  • the voltage waves of different, opposite polarities induced in the two coils each become a separate pulse shaper, the outputs of which open into a pulse evaluation part, which is completed with each complete pulse from the input pulses by means of a logic switch designed for recognizing, scanning and evaluating the tooth segment gap or the corresponding pulse gap Yoke wheel revolution generates a single pulse (per revolution); this corresponds to an absolute angular position of the Yoke wheels.
  • the pulse evaluation part can, for example, be dimensioned such that the individual pulse always occurs when the top dead center of the internal combustion engine has been reached. In any case, this single pulse can serve as an absolute reference point, from which the ignition timing can be specified by the control electronics depending on the state of the internal combustion engine and programmed operating characteristics.
  • the pulse evaluation part can be implemented by means of a microcomputer circuit with corresponding software or a hard-wired, digital switching mechanism.
  • the pulse evaluation part has a state-controlled or static memory element on the input side and a clock edge-controlled or dynamic memory element on the output side; the memory elements are expediently implemented as a flip-flop. They are arranged with one another in cascade or one behind the other, the input pulse signal based on the one of the two coils being used to take over control of the dynamic storage element on the output side and to reset both storage elements. The input pulse signal originating from the other coil is used to set the static storage element on the input side.
  • This circuit variant is primarily based on the above-mentioned design of the rotary encoder, in which the distance between the coils and / or magnetic poles corresponds to the smaller (control) distance, which relates to more than just two tooth segments. Then the half-waves derived from the separate coils overlap and those on them Schmitt trigger shaped pulses. If the gap on the circumference of the yoke wheel occurs on one of the magnetic poles, only one pulse is generated by one of the two coils, which serves to set the input-side storage element in a defined state. If subsequently only one pulse occurs from the other coil, the corresponding pulse can be driven to the output-side storage element to take over the output of the input-side storage element. If the next two tooth segments move past one magnetic pole at the same time, a pulse is generated in each coil again at the same time, and the storage elements are reset.
  • the individual pulse is fed to a total time counter for a complete revolution, and the output signal of the total time counter influences a pulse and delay generator linked to programmed ignition maps; Its output pulses then serve to control the discharge switch and, in connection therewith, to discharge the capacitor.
  • a desired, speed-dependent early adjustment of the ignition timing can be brought about if the ignition maps are encoded accordingly.
  • a switchover part implemented by hardware or software, which switches over according to the start-up phase and the normal operating phase under load, corresponding branches or curves can be traversed within the operating map, depending on the switchover state.
  • an additional switching element is interposed between the generator output and the discharge switch; This is controlled by a torque counter for speed measurement, which scans the chronological sequence of two adjacent tooth segments past the magnetic poles.
  • the control itself takes place as a function of one or more pre-programmed threshold values that correspond to the specified minimum speeds.
  • the rotary encoder 1 consists of a yoke wheel 2 and an ignition module 3.
  • the yoke wheel 2 is a with a (not shown) shaft
  • the internal combustion engine is coupled in a torsionally rigid manner and, in the example shown, has radially projecting tooth segments 41 to 49 distributed over its circumference.
  • the tooth segments have a regular tangential distance from one another corresponding to an angle of 36 °, which would result in a total of ten tooth segments if the circumference of the yoke wheel 2 were fully utilized.
  • a larger tooth segment gap 6 is formed corresponding to an angular distance of 72 ° by the tenth being omitted when the tooth segments are attached regularly.
  • Rectifier diodes DL1 and DL2 are used to measure the positive half-waves tapped at coils L1, L2 fed to the capacitor CL to charge it.
  • a free-wheeling diode DS is connected in parallel with a discharge switch Thy, in the exemplary embodiment shown a thyristor which is actuated by the output 10 of the ignition timing control 11.
  • the ignition timing control 11 can be implemented as a microcomputer or a customer-specific integrated circuit. It has one of the two coils L1, L2 assigned inputs 13 and 14, each of which is preceded by a rectifier diode DL3 or DL4 so that only the negative half-waves induced in the two coils L1, L2 are let through. Each of the two rectifier diodes DL3, DL4 is followed by an inverting pulse shaper IF1, IF2, which generates digitally processable pulses from the half-waves. For example, inverting Schmitt triggers (see FIG. 2) can be used for this.
  • the negative half-waves from the coils L1, L2 which are thereby formed into positive pulses D1, D2 are then passed into a pulse evaluation part 15, which generates an individual pulse per full revolution of the yoke wheel 2. Due to the configuration of the pulse evaluation part 15 according to the invention, this corresponds to a certain absolute angular position of the yoke wheel 2, in which the gap 6 is still opposite the pole shoe which is penetrated by the north pole magnetic field.
  • the individual pulse D3 is first fed to a function module 16 which serves to measure the speed n for an entire revolution, the measuring output 17 of which influences a pulse and delay time generator 18.
  • This functional module 18 is additionally with a memory module 19 with operating maps, the z. B. contain the machine speed n as parameters, functionally linked. Influenced by the speed measurement module 16 and by the operating map module 19, the pulse delay module 18 possibly generates actuation signals which are adjusted in advance and are supplied to the thyristor Thy, whereupon the latter switches on and thereby discharges the capacitor via the ignition coil LZ.
  • the ignition timing control 11 comprises a counter module 20 which determines the instantaneous speed or angular velocity on the basis of two adjacent toothed segments 41 to 49 and which, depending on the instantaneous angular velocity w, switches through the output 10 of the ignition timing control 11 or the pulse delay module 18 to the thyristor Thy by using its output 21 (shown in dashed lines) actuated a switching element 22 accordingly.
  • the counter module 20 additionally processes the individual pulse D3 at the output of the pulse evaluation module 15 and communicates with a further memory module 23 which contains threshold values sw corresponding to minimum angular velocities.
  • FIG. 2 shows the design of the pulse evaluation module 15 as hard-wired switching logic:
  • the negative half-waves tapped at each of the two coils L1, L2 are each fed to a Schmitt trigger ST1, ST2, which generates inverting positive pulses D1 and D2 (see the waveforms c) and d) in Fig. 3).
  • Pulse sequence D2 derived from the polarized magnetic field is supplied to the set input S1 of an RS flip-flop FF1 known per se.
  • An RC high-pass DG which consists of the capacitor C and the resistor R connected to ground, is preferably connected directly upstream of the reset input R1 as a differentiating element.
  • the complementary output Q1 of the RS flip-flop FF1 is connected directly to the data input D of a known D-flip-flop FF2 connected in cascade or series.
  • the reset input R2 of the D flip-flop FF2 is direct, and its clock input CL, which responds to positive edges, is indirectly connected via an inverting gate I to the output of the first Schmitt trigger ST1, which detects the negative half-waves of the coil through which the magnetic south pole passes L1 forms into impulses.
  • the output signal of the entire switching mechanism according to FIG. 2 is formed by the non-inverting output Q2 of the D flip-flop FF2, at which a single pulse is available per revolution of the yoke wheel 2 (cf. FIG. 1), as explained in more detail below .
  • the signal profiles a) and b) reflect the voltages induced in the coils L1, L2, the straight-line sections 24a, 24b, which run without a slope, being formed in the yoke wheel 2 due to the tooth segment gap 6 (cf. FIG. 1).
  • the signal curves c) - first pulse sequence D1 derived from the former coil L1 - and d) - second pulse sequence D2 derived from the second coil L2 - are derived from these induced vibrations by means of the Schmitt trigger ST1, ST2 (cf. FIG. 2) , the longer impulse-free sections 24c, 24d of the above, correspond to rectilinear sections 24a, 24b.
  • the RS flip-flop FF1 is set and the D flip-flop FF2 is reset.
  • Each rising, positive edge of the first pulse sequence D1 sets the clock input Cl of the D flip-flop FF2 to logic "0".
  • the differentiator DG generates corresponding needle-shaped short pulses D1.1 from the first pulse sequence D1, the length of which is dimensioned via the dimensioning of the RC high-pass filter such that the RS flip-flop FF1 is just being safely reset.
  • the inverting output Q1 of the RS flip-flop FF1 is then logic "1".
  • the subsequent rising positive edge of the second pulse sequence D2 sets the RS flip-flop FF1, which is accordingly set at time II.
  • the then falling edge of the second pulse sequence D2 has no effect.
  • the subsequent falling edge of the first pulse sequence D1 results in a rising edge or a positive pulse for the clock input C1 of the D flip-flop FF2 due to the interposed inverter I. This triggers the takeover of the level state at data input D of data flip-flop FF2 after its (non-inverting) output Q2. If data input D was previously at logic "0", output Q2 of data flip-flop FF2 does not change.
  • the subsequent pulse of the second pulse sequence D2 at time III has no effect.
  • the RS flip-flop FF1 was previously set and remains set.
  • the RS flip-flop FF1 is reset by the pulse train D1.1 generated by the differentiator DG. Now that the set pulse due to the second pulse train D2 is missing, the data input D of the D flip-flop is at logic "1". With the next falling edge of the pulse sequence D1 (cf. time V), data transfer at the input D is triggered via the inverter I at the clock input C1 of the D flip-flop FF2 and the D flip-flop FF2 is therefore set. This means the output level logically "1" at the output Q2, which forms the individual pulse D3 per revolution of the yoke wheel 2 (cf. g) in FIG. 3).
  • the function module 16 measuring the speed n for a complete revolution of the yoke wheel 2 executes a program branch 25 depending on the speed value: If the speed is below 1,500 rpm, branched into path 26, otherwise branched into path 27.
  • Path 26 is an instantaneous speed determination, e.g. B. between the second and third toothed segment (see, for example, reference numerals 42 and 43 in FIG. 1) after the toothed segment gap 6 of the yoke wheel 2, provided by the counter module determining the instantaneous angular velocity w on the basis of the second pulse signal D2 is carried out (cf. function block 28 in FIG. 4).
  • a query 31 is made as to whether the resulting speed n exceeds 5000 rpm.
  • the ignition is permitted in the interval formed by the first and second tooth segments after the gap (cf. tooth segments 41 and 42 in FIG. 1) in accordance with function block 32 with subsequent ignition block 30.
  • the ignition can, however, according to the stored operating map within the range of second and third tooth segment 42 and 43 defined interval are triggered.
  • the instantaneous angular speed w is determined or monitored in the interval defined by the first and second toothed segments 41, 42 after the gap 6 - cf. Function block 33.
  • the ignition 30 can therefore be advanced to the second tooth segment 42 within the interval defined by the second and third tooth segments 42 and 43 - cf. Function block 34.
  • the early adjustment 32, 34 takes place in each case as specified by the operating maps BKF stored in the memory module 19 (FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Claims (10)

  1. Capteur inductif de rotation (1) pour la commande de l'instant d'allumage de moteurs à combustion interne, comprenant une bobine (L1, L2) traversée par un aimant permanent (9), et une roue de culasse (2) mise en rotation par un arbre, et dont des segments de dents (41 à 49) répartis et espacés sur la périphérie et faisant saillie de celle-ci, sont déplacés devant les pôles magnétiques (N, S) pour induire une tension, des segments de dents (41 à 49) voisins dans la direction périphérique, présentant deux espacements (6, 39) de grandeur différente entre-eux, et l'espacement le plus grand correspondant à un manque de segment de dent (6), qui survient lors de la réalisation des segments de dents (41 à 49) de manière uniforme selon le plus petit espacement régulier (39), par suppression d'un segment de dent, caractérisé en ce que deux bobines (L1, L2) distinctes sont associées chacune respectivement à un pôle magnétique (N, S, 7, 8), et l'espacement des bobines (L1, L2) et/ou des pôles magnétiques (N, S, 7, 8) correspond à l'espacement régulier (39) plus petit, concernant un nombre plus important que seulement deux segments de dents (41 à 49).
  2. Procédé pour l'allumage de moteurs à combustion interne, notamment pour tondeuses à gazon, scies à moteur ou meuleuses de tronçonnage, caractérisé par l'emploi d'un capteur de rotation (1) selon la revendication 1, pour une commande d'instant d'allumage (11), par le fait que celle-ci dérive du capteur de rotation (1) des impulsions d'allumage (D2, D3) et, ainsi, a l'aide de diagrammes caractéristiques de fonctionnement (19, BFK) programmés, commande, le cas échéant en retard ou en avance, un organe de commutation (Thy), qui décharge un condensateur (CL) par l'intermédiaire d'un enroulement primaire d'une bobine d'allumage (LZ), la commande d'allumage ayant lieu dans la phase de démarrage, en-dessous d'une limite de vitesse de rotation (25), en fonction du déplacement du manque de segment de dent (6), formé par les segments de dents (41, 49) plus espacés de la roue de culasse (2), devant les deux bobines (L1, L2) ou bien les pôles magnétiques (N, S, 7, 8).
  3. Procédé selon la revendication 2, caractérisé en ce que dans la zone des vitesses de rotation de démarrage, indépendamment de fluctuations de la vitesse de rotation ou de fluctuations de la vitesse angulaire, l'allumage (30) a lieu toujours dans une position déterminée (35) de la roue à segments, et en ce qu'après avoir atteint une vitesse de rotation déterminée (31), l'instant d'allumage (30) est commandé en fonction de la vitesse de rotation.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que dans la phase de démarrage, la commande a lieu au moment ou après le mouvement devant le pôle magnétique, de l'un des segments de dents (41 à 49) succédant au manque de dent (6), de préférence du troisième segment de dent (43).
  5. Procédé selon la revendication 2, 3 ou 4, caractérisé en ce que dans la phase de démarrage, la commande d'allumage a lieu en fonction d'une mesure de vitesse angulaire (20, 28), au moyen de deux segments de dents voisins (42, 43).
  6. Procédé selon l'une des revendications 2 à 5, caractérisé en ce que dans la phase de démarrage, la vitesse angulaire (w) est comptée au moyen du second et du troisième segments de dent (42, 43) après le manque de dent (6), et lors de son dépassement d'une valeur de seuil (SW), la commande d'allumage (30) a lieu directement avec le troisième segment de dent (43) après le manque de dent (6), en ce qu'à partir d'une vitesse de rotation (n) d'au moins 1500 t/min, la vitesse angulaire (w) est comptée au moyen du premier et du second segment de dent (41, 42), et la commande d'allumage (30) a lieu en fonction du diagramme caractéristique d'exploitation (BKF), après le second et avant le quatrième segment de dent (42, 44), et en ce que lors d'une vitesse de rotation (n) au-delà de 5000 t/min, la commande d'allumage (30) est libérée avant le passage complètement terminé du second segment de dent (42) devant un pôle magnétique (N, S, 7, 8).
  7. Agencement d'allumage à condensateur, notamment pour la mise en oeuvre du procédé selon l'une des revendications 2 à 6, caractérisé par l'emploi d'un capteur de rotation (1) selon la revendication 1, par le fait que ses deux bobines (L1, L2) sont reliées, chacune, par l'intermédiaire d'un élément redresseur (DL1, DL2), avec un condensateur d'allumage (CL) relié à une bobine d'allumage (LZ), de sorte que ce condensateur peut être chargé au moyen des demi-ondes de tension, chaque fois de même polarité, induites dans les bobines (L1, L2), le condensateur d'allumage (CL) étant relié à un interrupteur de décharge (Thy) commandé par un programme de diagramme caractéristique d'allumage (BFK), et les demi-ondes de polarité opposée des deux bobines (L1, L2) du capteur de rotation (1) étant amenées à un formateur d'impulsions respectif (IF1, IF2), dont les sorties conduisent à une partie d'analyse d'impulsion (15), qui est réalisée à l'aide d'un circuit de commutation logique (FF1, FF2) conçu pour la reconnaissance, l'exploration et l'analyse du manque de dent (6) de la roue de culasse (2) du capteur de rotation, et donc du manque d'impulsion (24d) correspondant, de manière telle, qu'avec chaque tour de rotation complètement terminé (5) de la roue de culasse, il s'établit à la sortie de la partie d'analyse d'impulsion (15), une impulsion individuelle (D3) fondée sur le manque d'impulsion (24d) et correspondant à une position angulaire absolue de la roue de culasse (2).
  8. Agencement d'allumage selon la revendication 7, caractérisé en ce que le circuit de commutation de la partie d'analyse d'impulsion (15) présente, côté entrée, un élément de mémoire (FF1) à fonctionnement en niveau, et côté sortie, un élément de mémoire (FF2) à fonctionnement en transition de phase, qui sont agencés en cascade l'un avec l'autre, le signal d'entrée (D1), basé sur l'une des bobines (L1), servant pour la commande de réception (C1) de l'élément de mémoire côté sortie (FF2), et le signal d'entrée (D2), basé sur l'autre bobine (L2), servant l'établissement de l'élément de mémoire (FF1) côté entrée.
  9. Agencement d'allumage selon la revendication 7 ou 8, caractérisé en ce que l'impulsion individuelle (D3), par tour de la roue de culasse (2), est amenée à un compteur de temps total (16) pour un tour complet de la roue de culasse, et le signal de sortie (17) du compteur de temps total (16) influence un générateur d'impulsions et de retard (18) couplé à des diagrammes d'allumage programmés (BFK), et dont les impulsions de sortie (10) commandent l'interrupteur de décharge (Thy).
  10. Agencement d'allumage selon la revendication 9, caractérisé en ce qu'à la sortie de générateur (18, 10) et à l'interrupteur de décharge (Thy) est intercalé un élément de commutation (22), qui est commandé par un compteur de temps (20), pour la mesure de la vitesse angulaire instantanée (w), à l'aide de deux segments de dents (42, 43) voisins, en fonction de valeurs de seuil (SW) programmées correspondant à des vitesses de rotation minimales préallouées.
EP90111325A 1989-07-27 1990-06-15 Installation comportant un capteur inductif de rotation pour la commande, en particulier de l'instant d'allumage de moteurs à combustion Expired - Lifetime EP0411285B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3924843 1989-07-27
DE3924843A DE3924843A1 (de) 1989-07-27 1989-07-27 Verfahren und anordnung mit induktivem drehgeber zur steuerung, insbesondere des zuendzeitpunkts von brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0411285A2 EP0411285A2 (fr) 1991-02-06
EP0411285A3 EP0411285A3 (en) 1991-08-07
EP0411285B1 true EP0411285B1 (fr) 1995-02-01

Family

ID=6385950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90111325A Expired - Lifetime EP0411285B1 (fr) 1989-07-27 1990-06-15 Installation comportant un capteur inductif de rotation pour la commande, en particulier de l'instant d'allumage de moteurs à combustion

Country Status (3)

Country Link
US (1) US5046468A (fr)
EP (1) EP0411285B1 (fr)
DE (3) DE3924843A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549090A (en) * 1990-07-31 1996-08-27 Blount; David H. Electronic ignition system for combustion engines
US5184590A (en) * 1991-02-12 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Engine timing control apparatus
DE10107070A1 (de) * 2000-10-13 2002-04-25 Pruefrex Elektro Appbau Inh He Drehrichtungserkennung in einer Zündanlage einer Brennkraftmaschine
SE524754C2 (sv) * 2002-01-21 2004-09-28 Indexator Ab Rotator med vridlägesgivare samt förfarande för vridlägesbestämning vid en rotator
US7170284B2 (en) * 2002-02-13 2007-01-30 Hood Technology Corporation Blade detection sensor having an active cooling system
WO2003078830A1 (fr) * 2002-03-12 2003-09-25 R.E. Phelon Company, Inc. Allumage a decharge commande par processeur a angle d'allumage fixe au demarrage
WO2005059929A2 (fr) * 2003-12-12 2005-06-30 Xing-Xiang Li Appareil a tige magnetique et procede permettant de manipuler des particules magnetiques afin de detecter des analytes
US8176896B2 (en) * 2008-10-08 2012-05-15 GM Global Technology Operations LLC Target wheel position detection systems
US9845752B2 (en) 2010-09-29 2017-12-19 GM Global Technology Operations LLC Systems and methods for determining crankshaft position based indicated mean effective pressure (IMEP)
US8612124B2 (en) 2011-02-10 2013-12-17 GM Global Technology Operations LLC Variable valve lift mechanism fault detection systems and methods
US9127604B2 (en) 2011-08-23 2015-09-08 Richard Stephen Davis Control system and method for preventing stochastic pre-ignition in an engine
US9097196B2 (en) 2011-08-31 2015-08-04 GM Global Technology Operations LLC Stochastic pre-ignition detection systems and methods
US8776737B2 (en) 2012-01-06 2014-07-15 GM Global Technology Operations LLC Spark ignition to homogenous charge compression ignition transition control systems and methods
US9121362B2 (en) 2012-08-21 2015-09-01 Brian E. Betz Valvetrain fault indication systems and methods using knock sensing
US9133775B2 (en) 2012-08-21 2015-09-15 Brian E. Betz Valvetrain fault indication systems and methods using engine misfire
US8973429B2 (en) 2013-02-25 2015-03-10 GM Global Technology Operations LLC System and method for detecting stochastic pre-ignition
US9593941B2 (en) 2014-09-24 2017-03-14 Hood Technology Corporation Clearance detection system and method using frequency identification

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496920A (en) * 1968-03-06 1970-02-24 Motorola Inc Flywheel generator for charging the capacitor of a capacitor discharge ignition system
US3809040A (en) * 1968-09-09 1974-05-07 Phelon Co Inc Ignition triggering circuit with automatic advance
DE2723265A1 (de) * 1977-05-24 1978-12-07 Bosch Gmbh Robert Verfahren und einrichtung zum steuern von betriebsparameterabhaengigen vorgaengen
DE3032173A1 (de) * 1979-08-27 1981-03-12 Mitsubishi Denki K.K., Tokyo Magnetzuendeinrichtung.
DE3343853A1 (de) * 1983-12-03 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Zuendanlage fuer brennkraftmaschinen mit einem magnetgenerator
EP0197272A2 (fr) * 1985-02-21 1986-10-15 Honda Giken Kogyo Kabushiki Kaisha Méthode pour détecter la position angulaire du vilebrequin d'un moteur à combustion interne lors du démarrage
DE3608201A1 (de) * 1986-03-12 1987-09-17 Walter Stahl Mischer
US4797827A (en) * 1983-07-02 1989-01-10 Lucas Industries Public Limited Company Angular position detector

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1319022A (fr) * 1962-04-03 1963-02-22 Motorola Inc Système d'allumage à transistrons pour moteurs à combustion interne
JPS531442B1 (fr) * 1970-07-28 1978-01-19
JPS5427635A (en) * 1977-07-30 1979-03-01 Nippon Denso Co Ltd Non-contact igniter of internal combustion engine
JPS554518A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Crank angle detector of engines
JPS5584863A (en) * 1978-12-19 1980-06-26 Mitsubishi Electric Corp Magnetic sparking system
DE3006288A1 (de) * 1980-02-20 1981-08-27 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur zuendung von brennkraftmaschinen
DE3107937A1 (de) * 1980-03-03 1982-03-04 Mitsubishi Denki K.K., Tokyo Zuendzeit-steuereinrichtung fuer eine verbrennungskraftmaschine
SE443406B (sv) * 1983-04-15 1986-02-24 Electrolux Ab Tendanordning for forbrenningsmotor med magnetsystem
US4553426A (en) * 1984-05-23 1985-11-19 Motorola, Inc. Reference pulse verification circuit adaptable for engine control
US4610237A (en) * 1985-02-21 1986-09-09 Wedtech Corp. Ignition circuit, especially for magneto-triggered internal combustion engines
US4697570A (en) * 1985-02-21 1987-10-06 Wedtech Corp. Electronic ignition circuit with automatic control advance
DE3608321A1 (de) * 1986-03-13 1987-09-17 Pierburg Gmbh & Co Kg Einrichtung zum erfassen der zylinderbezogenen kurbelwellenstellung
DE3608740A1 (de) * 1986-03-15 1987-10-08 Prufrex Elektro App Kondensator-zuendanlage
JP2541949B2 (ja) * 1986-11-28 1996-10-09 本田技研工業株式会社 4サイクル内燃機関の点火時期制御装置
FR2617241B1 (fr) * 1987-06-26 1989-11-10 Renault Dispositif de detection d'anomalie de signal dans un systeme d'allumage-injection electronique
DE3817471C1 (en) * 1988-05-21 1989-11-23 Pruefrex-Elektro-Apparatebau Inh. Helga Mueller, Geb. Dutschke, 8501 Cadolzburg, De Capacitor ignition system for internal combustion engines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496920A (en) * 1968-03-06 1970-02-24 Motorola Inc Flywheel generator for charging the capacitor of a capacitor discharge ignition system
US3809040A (en) * 1968-09-09 1974-05-07 Phelon Co Inc Ignition triggering circuit with automatic advance
DE2723265A1 (de) * 1977-05-24 1978-12-07 Bosch Gmbh Robert Verfahren und einrichtung zum steuern von betriebsparameterabhaengigen vorgaengen
DE3032173A1 (de) * 1979-08-27 1981-03-12 Mitsubishi Denki K.K., Tokyo Magnetzuendeinrichtung.
US4797827A (en) * 1983-07-02 1989-01-10 Lucas Industries Public Limited Company Angular position detector
DE3343853A1 (de) * 1983-12-03 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Zuendanlage fuer brennkraftmaschinen mit einem magnetgenerator
EP0197272A2 (fr) * 1985-02-21 1986-10-15 Honda Giken Kogyo Kabushiki Kaisha Méthode pour détecter la position angulaire du vilebrequin d'un moteur à combustion interne lors du démarrage
DE3608201A1 (de) * 1986-03-12 1987-09-17 Walter Stahl Mischer

Also Published As

Publication number Publication date
EP0411285A2 (fr) 1991-02-06
DE9007308U1 (fr) 1990-12-20
DE59008399D1 (de) 1995-03-16
US5046468A (en) 1991-09-10
EP0411285A3 (en) 1991-08-07
DE3924843C2 (fr) 1993-04-22
DE3924843A1 (de) 1991-02-07

Similar Documents

Publication Publication Date Title
EP0411285B1 (fr) Installation comportant un capteur inductif de rotation pour la commande, en particulier de l'instant d'allumage de moteurs à combustion
DE2357061C2 (de) Einrichtung zur Abgabe von gleichmäßigen Impulsen bei bestimmten Winkelstellungen einer drehbaren Welle und zur Bildung von wenigstens einem Bezugssignal
EP0007984B1 (fr) Dispositif pour la commande de l'allumage et de l'injection de combustible dans des moteurs à combustion interne
EP0744807B1 (fr) Procédé de limitation du courant d'un moteur à courant continu, et moteur à courant continu pour mettre en oeuvre un tel procédé
DE2924590C2 (de) Vorrichtung zum Erfassen der Drehzahl und Winkellage einer rotierenden Welle
DE2624994A1 (de) Vorrichtung zur automatischen einstellung der vorzuendung im zuendsystem eines verbrennungsmotors
DE2644646C2 (de) Vorrichtung zur Erkennung eines oder mehrerer fehlender Impulse in einer sonst regelmäßigen Impulsfolge
DE3113092A1 (de) "schaltungsanordnung zur erzeugung eines drehfelds fuer eine als schwungradstarter fuer eine fahrzeug-brennkraftmaschine dienende drehstrom-synchronmaschine"
DE2511920A1 (de) Elektronische zuendzeitpunktverstelleinrichtung
DE10105693C2 (de) Hochauflösender Inkrementalpositionssensor mit Impulsschaltstrategie
EP0097826B1 (fr) Méthode pour commander un micro-calculateur
DE3608740C2 (fr)
DE2516353A1 (de) Steuersystem fuer die brennstoffeinspritzung bei einer brennkraftmaschine
DE3932075C2 (de) Verfahren zur Erkennung eines Bezugszylinders bei einer Mehrzylinder-Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE2512166A1 (de) Verfahren zum festlegen eines sich wiederholenden vorganges, insbesondere zuendvorganges, und vorrichtung zur durchfuehrung des verfahrens
DE2352941C2 (de) Verfahren und Einrichtung zur Auslösung eines Impulses innerhalb eines Verstellbereiches einer Antriebsmaschine
DE19513597C2 (de) Verfahren zur Zylindererkennung bei einer Brennkraftmaschine
DE2923425C2 (fr)
DE3234586C2 (de) Zündzeitpunkt-Steuerungsvorrichtung für Verbrennungsmotoren
DE3230233A1 (de) Zuendanlage fuer eine zweitaktmaschine
DE2850534A1 (de) Einrichtung, insbesondere zum steuern der zuend- und/oder kraftstoffeinspritzvorgaenge bei brennkraftmaschinen
DE2702208A1 (de) Verfahren und einrichtung zur ausloesung eines impulses innerhalb eines verstellbereiches
DE2827348C2 (de) Verfahren und Anordnung zur Störungsunterdrückung bei der Impulserfassung
DE2847522A1 (de) Induktiver geber und auswerteschaltung hierzu
DE3533529C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910712

17Q First examination report despatched

Effective date: 19930825

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950201

Ref country code: FR

Effective date: 19950201

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950201

REF Corresponds to:

Ref document number: 59008399

Country of ref document: DE

Date of ref document: 19950316

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950616

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950201

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FIRMA ANDREAS STIHL

Effective date: 19951031

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

EUG Se: european patent has lapsed

Ref document number: 90111325.8

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970626

Year of fee payment: 8

27C Opposition proceedings terminated

Effective date: 19970317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050615