EP0407355A1 - Insoluble electrode for electroplating and process for producing the same - Google Patents
Insoluble electrode for electroplating and process for producing the same Download PDFInfo
- Publication number
- EP0407355A1 EP0407355A1 EP90830250A EP90830250A EP0407355A1 EP 0407355 A1 EP0407355 A1 EP 0407355A1 EP 90830250 A EP90830250 A EP 90830250A EP 90830250 A EP90830250 A EP 90830250A EP 0407355 A1 EP0407355 A1 EP 0407355A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- metal
- base
- anticorrosion
- insoluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000009713 electroplating Methods 0.000 title claims abstract description 17
- 230000008569 process Effects 0.000 title claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000013543 active substance Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910000978 Pb alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000914 Metallic fiber Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229910002835 Pt–Ir Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910006694 SnO2—Sb2O3 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
Definitions
- This invention relates to an electrode for electroplating and a process for producing the same. More particularly, it relates to an electrode having excellent durability as an anode for continuous plating of a steel plate which is conducted at a high current density, and a process for producing such an electrode.
- a demand for surface-treated steel sheeting has recently been increasing in various fields, such as automobiles and appliances. With this demand, the electroplating technique used for continuously coating the surface of a steel band has become increasingly important.
- JP-B-53-18167 the term “JP-B” as used herein means an “examined published Japanese patent application”
- JP-A-56-47597 the term “JP-A” as used herein means an "unexamined published Japanese patent application”
- an insoluble electrode in electroplating is expected to bring about various advantages, such as (1) a possibility of plating with various alloys, (2) improvement of productivity by increasing anode current density and increasing line speed, (3) improvement of quality by leveling current distribution, and (4) reduction in frequency of anode exchange.
- insoluble electrodes include lead electrodes, lead alloy electrodes, and platinum-plated electrodes.
- lead or lead alloy electrodes to be used for lead or lead alloy electroplating have insufficient insolubility, so that lead is gradually dissolved out, resulting in deterioration of plated product quality or formation of a large quantity of sludge. It is therefore necessary to use a large amount of an adsorbent for removing the dissolved lead ion.
- platinum coating of platinum-plated electrodes easily falls off upon use at a high current density, making the electrode useless in a short time.
- An object of this invention is to provide an insoluble electrode for electroplating which is free from the above-described disadvantages associated with conventional insoluble electrodes for electroplating, that is, which has sufficient durability even when used at a high current density.
- Another object of this invention is to provide a process for producing the above-described insoluble electrode for electroplating.
- the present invention provides an insoluble electrode for electroplating comprising a base having coated thereon an electrode active substance containing a platinum metal or an oxide thereof, said base comprising an anticorrosion-metal plate having joined thereon a porous anticorrosion-metal sheet.
- the base of the electrode according to the present invention comprises an anticorrosion-metal plate having joined thereon a porous anticorrosion-metal sheet.
- the anticorrosion-metal which can be used in the present invention is not particularly limited in kind, as long as it is usable as an electrode base. Suitable anticorrosion-metals include Ti, Ta, Nb, Zr, and alloys thereof, in view of their excellent anticorrosion properties and sufficient mechanical strength.
- the material of the porous anticorrosion metal sheet and that of the metal plate are usually the same, but may be different.
- the metal plate which is usually a non-porous flat plate but may be a curved plate, should have a sufficient thickness to maintain mechanical strength of the electrode and for electricity to sufficiently pass.
- the porous metal sheet which is joined to the metal plate functions to permit a large quantity of a gas evolved from the anode, such as oxygen, to escape, thereby preventing retention of bubbles.
- the porous metal sheet also functions to greatly increase the electrode surface area, to thereby reduce electrolytic voltage.
- Suitable porous metal sheets providing this effect include expanded metal, punched metal, wire sheet, and wire cord fabric, each having a porosity of from 5 to 90%.
- Metallic fiber laminated sheets, metallic fiber cloth, wire rolls, metallic felt, and porous sintered bodies of metals are also employable. If desired, taking strength and electricity quantity into consideration, a plurality of such porous sheets may be laminated.
- joining of the metal plate and the porous sheet is carried out by bolting, welding, or like technique. Taking it into consideration that a large electric current passes through the joining area, a welded joint having a small electrical resistance is preferred. An increase in electrolytic voltage and heat generation can be suppressed by forming a sufficient number or amount of welded joining area.
- the above-described base comprising the metal plate having joined thereon the porous metal sheet is then coated with an electrode active substance.
- the base Prior to coating, the base can be subjected to a surface treatment, such as nitriding treatment, boriding treatment, or carbonization treatment, to further improve anticorrosion properties.
- an intermediate layer comprising a conductive oxide containing an oxide of at least one metal selected from the group consisting of Ti, Zr, Nb, Sn, Sb, and Ta may be provided on the base.
- Such an intermediate layer can be formed by various means, such as those employable for coating of an electrode active substance on the base as hereinafter described.
- a pyrolysis method comprising applying a solution of a salt of the metallic component for the intermediate layer onto the base and calcining the salt to form an oxide layer is preferred.
- Electrode active substances containing a platinum metal or an oxide thereof exhibit excellent electrochemical characteristics and chemical resistance for use in insoluble electrodes for electroplating.
- suitable electrode active substances include at least one platinum metal, e.g., Ru, Rh, Pd, Ir, and Pt, platinum metal alloys, and platinum metal oxides.
- Composite substances comprising such a platinum metal, alloy or oxide and at least one of base metals, e.g., Ti, Zr, Nb, Ta, and Sn, or an oxide thereof may also be used. This being the case, the content of the platinum metal component in the composite substance is preferably 10% by weight or more, based on the elemental platinum content, to ensure satisfactory electrode activity.
- Methods for coating the electrode active substance on the base are not particularly restricted, and include various known methods for electrode coating, such as those described in JP-B-48-3954.
- a suitable method is a pyrolysis method in which a solution of the above-described electrode active substance metallic component or a salt thereof in an appropriate solvent is applied to the base by coating or dipping, and then calcined by heating in an oxidative, neutral or reductive atmosphere to form a coating layer. If desired, the coating procedure can be repeated to obtain a desired coating thickness.
- the thus produced electrode of the present invention when used for continuous plating on a steel plate, etc., exhibits higher anticorrosion and electrode activity than conventional insoluble electrodes, even at a high current density. Hence, it withstands use in various corrosive electrolytic solutions, thereby enjoying various advantages accompanying use of an insoluble electrode as set forth above.
- the electrode of the present invention has a composite structure in which a porous metal sheet is joined to a metal plate, it is possible to pass a higher electric current as compared with smooth plate electrodes, and bubbles generated on the electrode can satisfactorily escape. Further, since the bubbles, if any remains on the electrode, have a small thickness, an increase in electrolytic voltage due to resistance of the bubbles can be inhibited. Thus, the electrode of the invention brings about marked improvements in productivity of a plated steel plate and economy due to increased line speed, saving of electric power, and the like.
- the insoluble electrode according to the present invention is also applicable to other organic or inorganic electrolysis, surface treatment of metals, electrolytic winning, and the like.
- An expanded metal sheet made of pure titanium having a thickness of 0.1 mm, 0.3 mm, or 0.5 mm and a porosity of 50% was joined by welding to a commercially available titanium plate having a size of 100 mm x 100 mm x 5 mm (t) to prepare three kinds of bases. After degreasing with acetone, each base was washed successively with a pure oxalic acid solution and pure water, and then dried.
- a butanol solution containing iridium chloride and tantalum chloride at a molar ratio of 6/4 was coated on each of the bases with a brush, dried, and calcined in air at 550°C to prepare an electrode. The coating, drying and calcination operations were repeated until the iridium content in the coat reached 0.3 mg/cm2.
- Electrolysis was carried out in a model zinc plating bath described below in a non-mobile phase, using each of the resulting electrodes as an anode and mild steel sheet as a cathode, and the electrolytic voltage (bath voltage) was measured.
- Model Zinc Plating Bath Na2SO4: 100 g/l (NH4)2SO4: 100 g/l pH: 1.2 Temperature: 60°C Current Density: 200 A/cm2
- electrolysis was carried out in a 1M sulfuric acid aqueous solution at a current density of 2 A/cm2 using the electrode as an anode and a platinum plate as a cathode.
- the time required for the bath voltage to reach 10 V was taken as durability.
- a punched metal sheet made of titanium having a thickness of 0.5 mm, a pore diameter of 2 mm, and a porosity of 50% was joined to a titanium plate or a Ti-3Ta alloy (Ti-based alloy containing 3 wt% Ta, hereinafter the same) plate to prepare a Ti or Ti-3Ta base (Samples 1 and 3).
- An intermediate layer of a metallic oxide shown in Table 2 below was formed on a Ti or Ti-3Ta sheet to a thickness of 3 ⁇ m to prepare a Ti or Ti-3Ta base (Samples 2 and 4).
- An electrode active substance shown in Table 2 was coated on each of the bases to a thickness of 0.3 mg-Pt/cm2 to prepare an electrode, and durability of the resulting electrode was evaluated in the same manner as in Example 1.
- Electrodes were prepared in the same manner as for Samples 1 to 5, except that the base had no punched metal sheet, and evaluated in the same manner as in Example 1.
- the insoluble electrode for electroplating which comprises an anticorrosion-metal composite plate base having coated thereon an electrode active substance containing a platinum metal or an oxide thereof, exhibits excellent durability and makes it possible to reduce electrolytic voltage. Because of the composite structure of the base comprising a basic metal plate having joined thereon a porous metal sheet, the electrode permits operations at high current density and prevents an increase in voltage due to evolution of gases, thereby greatly improving productivity and saving electric power in electroplating.
- the durability of the electrode can be further enhanced by treating the surface of the base by nitriding, boriding, or carbonizing, or by providing an intermediate layer comprising a conductive oxide on the surface of the base.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP142980/89 | 1989-06-07 | ||
JP14298089A JPH0310099A (ja) | 1989-06-07 | 1989-06-07 | 電気メッキ用不溶性電極とその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0407355A1 true EP0407355A1 (en) | 1991-01-09 |
Family
ID=15328132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90830250A Withdrawn EP0407355A1 (en) | 1989-06-07 | 1990-06-01 | Insoluble electrode for electroplating and process for producing the same |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0407355A1 (enrdf_load_stackoverflow) |
JP (1) | JPH0310099A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2289690A (en) * | 1994-05-24 | 1995-11-29 | Permelec Electrode Ltd | Electrode structure comprising conductive substrate having detachable electro de secured by detachable fixing means with elastic conductive layer interposed |
GB2291070A (en) * | 1994-07-14 | 1996-01-17 | Permelec Electrode Ltd | Fixing electrode to electrode substrate by welding metal filled in a plurality of holes in the electrode to the electrode and the substrate |
EP1927682A1 (fr) * | 2006-11-30 | 2008-06-04 | Electro-Recherche | Anode pour dispositif d'électrodéposition de revêtements métalliques anticorrosion ou cosmétiques quelconque sur une pièce métallique |
US7943019B2 (en) * | 2005-01-07 | 2011-05-17 | Daiso Co., Ltd. | Insoluble electrode |
CN102320683A (zh) * | 2011-06-03 | 2012-01-18 | 大连海事大学 | 钛基锡锑铂氧化物电极材料及其制备方法 |
US20120091007A1 (en) * | 2009-05-07 | 2012-04-19 | Daiso Co., Ltd. | Anode for oxygen generation |
WO2015170808A1 (ko) * | 2014-05-07 | 2015-11-12 | 한국생산기술연구원 | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 |
WO2016182148A1 (ko) * | 2015-05-11 | 2016-11-17 | 한국생산기술연구원 | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극 및 이의 제조방법 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2510807Y2 (ja) * | 1989-09-26 | 1996-09-18 | ダイソー株式会社 | 電気メッキ用陽極 |
JP3124847B2 (ja) * | 1992-11-06 | 2001-01-15 | ペルメレック電極株式会社 | 金属箔の電解による製造方法 |
JP3124848B2 (ja) * | 1992-11-11 | 2001-01-15 | ペルメレック電極株式会社 | 金属箔の電解による製造方法 |
KR100683268B1 (ko) | 1998-09-08 | 2007-02-15 | 가부시키가이샤 에바라 세이사꾸쇼 | 기판도금장치 |
US6793794B2 (en) | 2000-05-05 | 2004-09-21 | Ebara Corporation | Substrate plating apparatus and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0271924A1 (en) * | 1986-12-19 | 1988-06-22 | De Nora Permelec S.P.A. | Permanent anode for high current density galvanizing processes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5428141A (en) * | 1977-08-04 | 1979-03-02 | Ricoh Co Ltd | Liquid developer for static latent image |
JPS6021232A (ja) * | 1983-07-18 | 1985-02-02 | Kaito Kagaku Kogyo Kk | プラスチツクフイルム製造装置 |
JPS62274087A (ja) * | 1986-05-22 | 1987-11-28 | Permelec Electrode Ltd | 耐久性を有する電解用電極及びその製造方法 |
-
1989
- 1989-06-07 JP JP14298089A patent/JPH0310099A/ja active Granted
-
1990
- 1990-06-01 EP EP90830250A patent/EP0407355A1/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0271924A1 (en) * | 1986-12-19 | 1988-06-22 | De Nora Permelec S.P.A. | Permanent anode for high current density galvanizing processes |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 414 (C-635)[3762], 13th September 1989; & JP-A-1 150 000 (NIPPON STEEL CORP.) 13-06-1989 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2289690A (en) * | 1994-05-24 | 1995-11-29 | Permelec Electrode Ltd | Electrode structure comprising conductive substrate having detachable electro de secured by detachable fixing means with elastic conductive layer interposed |
US5626730A (en) * | 1994-05-24 | 1997-05-06 | Permelec Electrode Ltd. | Electrode structure |
GB2291070A (en) * | 1994-07-14 | 1996-01-17 | Permelec Electrode Ltd | Fixing electrode to electrode substrate by welding metal filled in a plurality of holes in the electrode to the electrode and the substrate |
US7943019B2 (en) * | 2005-01-07 | 2011-05-17 | Daiso Co., Ltd. | Insoluble electrode |
EP1927682A1 (fr) * | 2006-11-30 | 2008-06-04 | Electro-Recherche | Anode pour dispositif d'électrodéposition de revêtements métalliques anticorrosion ou cosmétiques quelconque sur une pièce métallique |
FR2909390A1 (fr) * | 2006-11-30 | 2008-06-06 | Electro Rech Sarl | Anode pour dispositif d'electrodeposition de revetements metalliques anticorrosion ou cosmetique quelconque sur une piece metallique |
US20120091007A1 (en) * | 2009-05-07 | 2012-04-19 | Daiso Co., Ltd. | Anode for oxygen generation |
CN102320683A (zh) * | 2011-06-03 | 2012-01-18 | 大连海事大学 | 钛基锡锑铂氧化物电极材料及其制备方法 |
WO2015170808A1 (ko) * | 2014-05-07 | 2015-11-12 | 한국생산기술연구원 | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 |
CN106068339A (zh) * | 2014-05-07 | 2016-11-02 | 韩国生产技术研究院 | 具有包括电极活性物质纳米球的多孔性薄膜层的不溶性阳极及其制造方法 |
WO2016182148A1 (ko) * | 2015-05-11 | 2016-11-17 | 한국생산기술연구원 | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
JPH0575840B2 (enrdf_load_stackoverflow) | 1993-10-21 |
JPH0310099A (ja) | 1991-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5098546A (en) | Oxygen-generating electrode | |
US5156726A (en) | Oxygen-generating electrode and method for the preparation thereof | |
US4941953A (en) | Durable electrodes having a plated tinor tin oxide intermediate layer for electrolysis and process for producing the same | |
EP0046727A1 (en) | Improved anode with lead base and method of making same | |
EP0407355A1 (en) | Insoluble electrode for electroplating and process for producing the same | |
KR860000604B1 (ko) | 전해전극 및 그 제작공정 | |
JPH036232B2 (enrdf_load_stackoverflow) | ||
US4310391A (en) | Electrolytic gold plating | |
EP0389451A2 (en) | Durable electrode for use in electrolysis and process for producing the same | |
CA1256057A (en) | Process for electrolytic treatment of metal by liquid power feeding | |
CA1335496C (en) | Oxygen-generating electrode and method for the preparation thereof | |
KR910000916B1 (ko) | 금속 전해 처리 방법 | |
JPH02190491A (ja) | 電解用電極 | |
EP0475914B1 (en) | Anode for chromium plating and processes for producing and using the same | |
JP3621148B2 (ja) | 電解用電極及びその製造方法 | |
JP3653296B2 (ja) | 電解用電極及びその製造方法 | |
JP3463966B2 (ja) | 電解用電極の製造方法 | |
JPH0355558B2 (enrdf_load_stackoverflow) | ||
JP3832645B2 (ja) | 電解用電極及びその製造方法 | |
JPH073497A (ja) | 酸素発生用電極 | |
DE3344416C2 (enrdf_load_stackoverflow) | ||
JP3067606B2 (ja) | 酸素発生用陽極の製造方法 | |
JPH03260098A (ja) | 二酸化鉛被覆電極を用いる電解方法 | |
KR910002101B1 (ko) | 전해조용 금속양극 및 그 제조방법 | |
JPH0925591A (ja) | 電解用電極の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19910219 |
|
17Q | First examination report despatched |
Effective date: 19921208 |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APCB | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAPE |
|
APAB | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19961031 |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |