WO2015170808A1 - 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 - Google Patents
전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 Download PDFInfo
- Publication number
- WO2015170808A1 WO2015170808A1 PCT/KR2014/010289 KR2014010289W WO2015170808A1 WO 2015170808 A1 WO2015170808 A1 WO 2015170808A1 KR 2014010289 W KR2014010289 W KR 2014010289W WO 2015170808 A1 WO2015170808 A1 WO 2015170808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- film layer
- porous film
- nanospheres
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
Definitions
- insoluble anodes which do not participate in the plating reaction in electrolytic processes such as electroplating, have been used in spite of their high price due to high capacity and uniform operation compared to soluble anodes. It is becoming a trend.
- FIG 1 is a schematic representation of the flow of the DSA manufacturing process according to the prior art, referring to Figure 1, after applying the Ir or Ru precursor in a liquid state on a titanium (Ti) positive electrode substrate, the electrode activity through drying and heat treatment IrO 2 or RuO 2 , the material, is coated on the titanium substrate.
- the electrode activity through drying and heat treatment IrO 2 or RuO 2 the material, is coated on the titanium substrate.
- the precursor coating and drying or heat treatment at high temperature are repeated to make the final desired thickness.
- the application and heat treatment process must be repeated 5 to 8 times, and more than 20 times.
- the use of expensive catalyst materials increases the problem of product price increase.
- Korean Patent Application No. 10-2007-7015579 discloses forming a porous layer made of a sintered body of spherical titanium (TiO 2 ) powder, and then forming an electrode active material layer from the surface of the porous layer.
- the durability and the use of expensive electrode active materials have been greatly reduced (see FIG. 2).
- the present invention has been made in view of the above problems, and to provide an insoluble anode having an efficient DSA structure by forming an electrode active material nanospheres in a porous film layer as a problem.
- Another object of the present invention is to provide a method for producing the insoluble anode.
- a positive electrode substrate made of a metal capable of anodizing
- a porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material
- the porous film layer is insoluble anode having a porous film layer containing an electrode active material nanospheres, characterized in that it comprises 60 to 90% by volume of the sintered powder of the metal, and 10 to 40% by volume of the electrode active material nanospheres. Is provided.
- the sintered body powder and the polymer nanospheres of the metal are coated and heat treated, followed by applying an electrode active material precursor to heat treatment.
- a method of manufacturing an insoluble anode having a porous film layer including an electrode active material nanosphere is provided.
- the insoluble anode according to the present invention due to the formation of a porous film layer containing the electrode active material nanospheres, can exhibit a significantly low resistivity (low resistivity) compared to the insoluble anode up to now.
- the electrode active material nanospheres can be provided not only by the electron path, but also include pores therein, can also be provided as an effective reaction site of the reactants so that the reactants can easily pass through the inside of the film layer is insoluble In addition to improving the efficiency of the anode, it can also contribute to the improvement of life.
- Figure 1 shows a schematic diagram showing the flow of the DSA manufacturing process according to the prior art.
- Figure 2 shows a DSA manufacturing process including a porous film layer according to the prior art.
- FIG 3 schematically shows an example of an insoluble anode of the present invention.
- Figure 4 schematically shows the effect of the electron passage or the reaction site according to the formation of the porous film layer containing the electrode active material nanospheres according to an embodiment of the present invention.
- 5A and 5B illustrate electron scanning microscope (SEM) analysis of different magnifications of the porous film layer including the electrode active material nanospheres and the surface of the porous film layer not including the electrode active material nanospheres according to an embodiment of the present invention. The picture is shown.
- substrate 20 sintered powder of metal
- electrode active material 40 polymer nanospheres
- Figure 3 shows an example of an insoluble anode according to the present invention
- the insoluble anode according to the present invention includes an electrode active material nanospheres in the porous film layer, the electrode active material is coated on the inner and outer surfaces of the porous film layer It is characterized by.
- a positive electrode substrate made of a metal capable of anodizing;
- a porous film layer comprising the sintered powder of the metal and the nanospheres of an electrode active material;
- an electrode active material coating layer formed on surfaces of the inside and outside of the porous film layer, wherein the porous film layer includes 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the electrode active material nanospheres.
- the insoluble anode of the present invention has a very large surface area (40 to 80 m 2 g -1 ) by forming a porous film layer from a sintered body powder of the same metal as the cathode substrate, so that even if a thin coating layer of the electrode active material is formed It has a much wider reaction place than when the electrode active material is applied in a two-dimensional planar shape, and further includes an electrode active material nanosphere when forming the porous film layer to have a relatively low resistance compared to the sintered powder of metal.
- a very large surface area 40 to 80 m 2 g -1
- the porous film layer includes a nanosphere filled with the inside of the electrode active material as shown in Figure 3 (a), or as shown in Figure 3 (b) an electrode containing pores in a portion It may include an active material nanospheres.
- FIG. 4 illustrates a case where the porous film layer including the electrode active material nanospheres is formed and a case where the porous film layer including the electrode active material nanospheres is formed.
- the electrode active material In the case of not including the nanospheres (a), the movement of electrons has to pass through the sintered powder of the metal forming the porous film layer, so that the restrictions are many.
- a porous film layer including the electroactive material nanospheres is formed according to the present invention, the movement of electrons through the porous film layer is facilitated by the electrode active material.
- the role as the reaction site can be maximized.
- the anodized metal used in the positive electrode substrate may be selected from the group consisting of titanium, tantalum, zirconium, niobium, tungsten, or an alloy thereof.
- the shape and size of the anode substrate may be appropriately selected according to the shape and size of the insoluble anode to be manufactured.
- the porous film layer formed on the substrate is formed by including a sintered powder of the metal, wherein the sintered powder of the metal is not limited to its shape, such as spherical, irregular, but more preferably the electrode active material Spherical metal sintered powder is suitable in terms of permeability, adhesion to the anode substrate, and the like.
- the insoluble anode is suitable for forming a porous film layer with titania (TiO 2 ) nanopowder on the surface of the anode substrate made of titanium from the viewpoint of economical efficiency.
- the formation of a porous film layer made of a metal other than titanium on the surface of the anode substrate made of titanium may also be a highly economical anode depending on the kind of the metal capable of anodizing. In this case, a porous film layer made of tantalum is preferable.
- the thickness of the porous film layer is preferably 1 ⁇ 50 ⁇ m.
- the film layer thickness is too thin, the durability of the porous film layer and the amount of penetration of the electrode active material are insufficient, making it difficult to obtain a predetermined effect.
- the layer thickness thereof is too thick, the amount of sintered material used or the amount of permeation of the electrode active material increased more than necessary, resulting in deterioration of economic efficiency.
- the size of the sintered powder or the electroactive material nanospheres of the metal is important as other constituent requirements of the porous film layer.
- the electrode active material nanospheres are too small, the amount of sintered compact powder of the metal to be mixed increases, which increases more than necessary, thereby deteriorating economic efficiency.
- the size of the electrode active material nanospheres is too large, it is possible to reduce the amount of sintered powder of the mixed metal, but it is difficult to obtain the effect as the electron path and the effective reactant path and reaction site.
- the size of the electrode active material nanospheres is preferably 50 ⁇ 1000nm , 200-500 nm is especially preferable.
- the thickness of the porous film layer containing the metal sintered powder and the electrode active material nanospheres is preferably 1 ⁇ 50 ⁇ m, the metal sintered powder for forming the film of the thickness is also preferably 50 ⁇ 1000nm, 200-500 nm is especially preferable.
- the mixing ratio of the sintered compact powder of the metal and the electroactive material nanospheres is also important as another structural requirement of the porous film layer.
- the mixing ratio of the electrode active material nanospheres is small, the volume ratio of the sintered powder of the metal with high resistance becomes relatively large, which degrades the performance of the electrode, and serves as an electron path and a passage or reaction place for the reactants. It is difficult to maximize.
- the mixing ratio of the electrode active material nanospheres is large, the amount of introduction of the electrode active material increases more than necessary, thereby deteriorating economic efficiency.
- the size of the electrode active material nanospheres is large in determining the mixing ratio. Reducing the amount of the volume to be mixed, and as the size of the electrode active material nanospheres are smaller, increasing the amount of the volume to be mixed can maximize the effect. Therefore, preferably, the porous film layer preferably contains 60 to 90% by volume of the sintered compact powder of the metal and 10 to 40% by volume of the electrode active material nanospheres.
- the electroactive material is characterized in that at least one selected from platinum, nickel, palladium, ruthenium, osmium, rhodium, iridium and palladium.
- the insoluble anode may be prepared by applying and heat-treating an sintered powder of the metal and a polymer nanosphere on an anode substrate made of a metal capable of anodizing, and then applying an electrode active material precursor to heat treatment.
- 6 to 7 schematically illustrate the process for producing the insoluble anode of the present invention according to a preferred embodiment of the present invention.
- the anode substrate made of a metal capable of anodizing, the sintered body powder and the polymer nanospheres of the metal is coated and heat treated, and then the electrode active material precursor is prepared by applying a heat treatment,
- an anodized substrate made of a metal capable of anodizing is coated and heat-treated by applying the sintered powder of the metal and the polymer nanospheres. More specifically, the slurry is prepared from the sintered powder of the metal and coated on the cathode substrate. The slurry is coated onto the substrate by mixing the polymer further including polymer nanospheres during the preparation of the slurry, and the polymer is sintered by heat treatment. Will be removed by combustion.
- the polymer nanosphere is a polymer nanosphere made of at least one polymer selected from the group consisting of polystyrene (PS), polyvinyl chloride (PVC), polycarbonate (PC) and polymethyl methacrylate (PMMA). It features.
- PS polystyrene
- PVC polyvinyl chloride
- PC polycarbonate
- PMMA polymethyl methacrylate
- the sintering is preferably sintered at 400 ⁇ 600 °C so that the polymer nanospheres are burned and the sintered powder of the metal can be deposited on the anode substrate.
- an electrode active material precursor is applied and heat treated. More specifically, as the electrode active material precursor is applied, some or all of the electrode active material is introduced into the nanosphere from which the polymer is removed, as well as the surface of the sintered powder of the deposited metal. By heat treatment again in this state, a porous film layer including a sintered compact powder of the metal and the electrode active material nanospheres is formed, and an electrode active material coating layer is formed on the surfaces inside and outside the porous film layer.
- the electroactive material precursor may be introduced into the nanospheres from which the polymer is removed only when the liquid electrode active material precursor is allowed to stay in the nanosphere from which the polymer is removed.
- the liquid precursor can be introduced to stay in the nanospheres. More preferably, the diameter of the nanospheres is particularly preferably 200 to 500 nm.
- the electrode active material nanospheres are filled with an electrode active material such that pores are formed in a portion of the electrode active material nanospheres depending on the degree of introduction of the liquid electrode active material precursor (see FIG. 6). , The inside of the electrode active material is completely filled (FIG. 7), the electrode active material nanospheres can be formed.
- the porous film layer is 60 ⁇ sintered powder of the metal as described above It is preferable to contain 90% by volume, and 10-40% by volume of the electroactive material nanospheres.
- the thickness of the porous film layer is 1-50 ⁇ m in consideration of the durability of the porous film layer or the penetration amount of the electrode active material as described above, and the sintered body of the metal for forming the film having the thickness 50-1000 nm is also preferable, and 200-500 nm is especially preferable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 불용성 양극 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 양극산화가 가능한 금속으로 이루어진 양극기판; 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및 상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극 및 그 제조방법에 관한 것이다. 본 발명에 따른 불용성 양극은, 전극활성물질 나노스피어를 포함하는 다공성 필름층의 형성으로 인하여, 지금까지의 불용성 양극에 비하여 현저히 저 저항(low resistivity)을 나타낼 수 있고, 상기 전극활성물질 나노스피어가 전자통로 또는 반응물의 효과적인 반응장소로서 제공될 수 있어 반응물을 필름층 내부에 쉽게 통과시킬 수 있게 되어 불용성 양극의 효율 향상은 물론 수명 향상에도 기여할 수 있다.
Description
본 발명은 불용성 양극 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 양극 산화가 가능한 금속으로 이루어진 양극 기판에 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층을 형성하도록 하여, 전극활성물질 나노스피어에 의하여 전극의 저항을 낮추면서 반응장소 및 전자통로로서 제공될 수 있도록 하여 양극의 수명 및 기능을 향상시킨 불용성 양극 및 그 제조방법에 관한 것이다.
지금까지 가용성(soluble) 양극(anode) 대비 고용량 및 균일한 작업이 가능하다는 이유로 비싼 가격임에도 불구하고 전기 도금 등의 전해 공정에서 도금 반응에 관여하지 않는 불용성 양극이 종래부터 사용되고 있고, 그 사용이 증대되고 있는 추세이다.
종래부터 불용성 양극으로서 납 또는 납 합금이 다수 사용되어 왔지만 용출된 납에 의한 환경오염 및 막질의 저하 등의 문제가 있다. 이로 인해 납계 양극 대신 깨끗한 불용성 양극의 개발이 진행되고 있고, 이 중에서도 특히 티타늄(Ti)을 사용한 티탄계 양극이다.
티타늄(Ti) 양극기판에 이리듐(Ir) 혹은 루테늄(Ru) 산화물 같은 활성물질을 피복시킨 전극은 산소나 염소 발생에 대해 과전압이 비교적 낮으며 전극의 수명이 길어 Dimensionally Stable Anode(DSA)라는 이름으로 수용액에서 염소나 산소를 생산하기 위한 목적으로 널리 이용되고 있다.
도 1은 종래기술에 따른 DSA 제작 공정의 흐름을 모식화하여 나타낸 것으로, 도 1을 참고하면 티타늄(Ti) 양극기판 위에 액상상태의 Ir 또는 Ru 전구체를 도포한 후, 건조 및 열처리를 통해 전극활성물질인 IrO2 또는RuO2을 티타늄 기판위에 코팅하게 된다. 이 경우 필요한 두께를 한 번의 전구체 도포로 만들지 못하는 단점이 있어서, 전구체 도포와 건조 혹은 고온에서의 열처리를 반복해 최종 원하는 두께를 만드는 공정을 거치게 된다. 실제로 제품에 사용되는 수마이크로 ~ 50 ㎛두께의 전극활성물질층을 만들기 위해서는 5~8번, 많게는 20회 이상의 도포 및 열처리 공정을 반복해야만하기 때문에, 높은 두께의 전극활성물질층은 반복 작업에 의한 작업시간의 증대뿐만 아니라 고가의 촉매재료의 사용을 늘리게 되어 제품 가격 인상의 요인이 되는 문제점이 있다.
상기 문제점을 해결하기 위해서, 대한민국 특허출원 제10-2007-7015579호는 구상 티탄(TiO2) 분말의 소결체로 이루어진 다공질층을 형성시킨 후, 다공질층 표면으로부터 내부에 걸쳐서 전극 활성 물질층을 형성시킴으로써 내구성 향상과 고가의 전극 활성 물질 사용량을 크게 감소시킨 바 있다(도 2 참고).
그러나 상기 DSA 구조를 가진 제품의 성능은 인가된 전류값에 대해 제품의 저항으로 결정되는 전압값에 의해 결정되기 때문에 사용되는 재료의 저항값이 중요한 요소로 고려된다. 즉, 티타니아(TiO2)의 저항은 0.29~3 Wcm로 IrO2의 저항(약 30 mWcm)보다 훨씬 높고 실제 티타니아 분말로 이루어진 다공성 필름의 저항은 높은 계면장력으로 인해 티타니아 재료 자체 저항보다 훨씬 높아진다는 문제점이 있다.
이에 본 발명은 상기와 같은 문제점에 착안하여 안출된 것으로, 다공성 필름층에 전극활성물질 나노스피어를 형성하도록 하여 효율적인 DSA 구조를 갖는 불용성 양극을 제공하는 것을 그 해결과제로 한다.
또한 본 발명은 상기 불용성 양극의 제조방법을 제공하는 것을 다른 해결과제로 한다.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따르면,
양극산화가 가능한 금속으로 이루어진 양극기판;
상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및
상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고,
상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극이 제공된다.
또한 본 발명의 다른 측면에 따르면,
양극산화가 가능한 금속으로 이루어지는 양극 기판 상에, 상기 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리한 다음, 전극활성물질 전구체를 도포하여 열처리하여 제조되고,
상기 제조된 불용성 양극은, 양극산화가 가능한 금속으로 이루어진 양극기판; 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및 상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법이 제공된다.
상기 본 발명에 따른 불용성 양극은, 전극활성물질 나노스피어를 포함하는 다공성 필름층의 형성으로 인하여, 지금까지의 불용성 양극에 비하여 현저히 저 저항(low resistivity)을 나타낼 수 있다. 특히, 상기 전극활성물질 나노스피어는 전자통로로 제공될 수 있을 뿐만 아니라, 내부에 기공을 포함할 수 있어 반응물의 효과적인 반응장소로서도 제공될 수 있어 반응물을 필름층 내부에 쉽게 통과시킬 수 있게 되어 불용성 양극의 효율 향상은 물론 수명 향상에도 기여할 수 있다.
또한 본 발명의 방법에 따르면, 불용성 양극 제조시 전극활성물질의 필요 두께를 얻기 위한 반복적인 작업시간을 감소시킬 수 있게 되어 생산성 및 경제성을 향상시키는 효과가 있다.
도 1은 종래기술에 따른 DSA 제작 공정의 흐름을 나타낸 모식도를 나타내고 있다.
도 2는 종래기술에 따른 다공성 필름층을 포함하는 DSA 제작공정도를 나타낸 것이다.
도 3은 본 발명의 불용성 양극의 예를 모식도로 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 전극활성물질 나노스피어를 포함하는 다공성 필름층의 형성에 따른 전자통로 또는 반응장소로의 효과를 모식화하여 나타낸 것이다.
도 5a, 5b는 본 발명의 일 실시예에 따른 전극활성물질 나노스피어를 포함하는 다공성 필름층 및 전극활성물질 나노스피어를 포함하지 않는 다공성 필름층 표면의 배율을 달리한 전자주사현미경(SEM) 분석사진을 나타낸 것이다.
도 6, 도 7은 본 발명의 일 실시예에 따른 불용성 양극의 제조공정을 모식화하여 나타낸 것이다.
* 도면의 주요 부호
10: 기판 20: 금속의 소결체 분말
30: 전극활성물질 40: 고분자 나노스피어
50: 전극활성물질 나노스피어
이하 첨부한 도면들을 참조하여 본 발명의 불용성 양극 및 그 제조방법에 대한 내용을 자세히 설명하기로 한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
도 3은 본 발명에 따른 불용성 양극의 예를 모식도로 나타낸 것으로, 본 발명에 따른 불용성 양극은 다공성 필름층에 전극활성물질 나노스피어를 포함하고, 상기 다공성 필름층의 내외부 표면에 전극활성물질이 코팅된 것을 특징으로 한다.
따라서 본 발명의 일 측면에 따르면, 양극산화가 가능한 금속으로 이루어진 양극기판; 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및 상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고, 상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극이 제공된다.
상기 본 발명의 불용성 양극은 양극기판과 동일한 금속의 소결체 분말로 다공성 필름층을 형성함으로써 매우 큰 표면적(40~80 m2g-1)을 가지게 되므로, 얇은 두께의 전극활성물질 코팅층을 형성하더라도 종래 2차원 평면 형태로 전극활성물질을 적용한 경우에 비하여 훨씬 넓은 반응장소를 가지면서, 상기 다공성 필름층의 형성시 전극활성물질 나노스피어를 더 포함하도록 함으로써 금속의 소결체 분말에 비하여 상대적으로 낮은 저항을 갖게 되어 전극 성능의 저하를 방지하도록 한 특징이 있다.
이 때, 상기 다공성 필름층은 도 3(a)에 나타난 바와 같이 상기 전극활성물질로 내부가 가득 채워진 나노스피어를 포함하거나, 도 3(b)에 나타난 바와 같이 내부의 일부에 기공을 포함하는 전극활성물질 나노스피어를 포함할 수 있다.
관련하여, 도 4는 전극활성물질 나노스피어를 포함하지 않는 다공성 필름층의 형성된 경우와 상기 전극활성물질 나노스피어를 포함하는 다공성 필름층이 형성된 경우를 나타낸 것으로, 상기 도 4를 참고하면 전극활성물질 나노스피어를 포함하지 않는 경우(a)에는, 전자의 이동은 다공성 필름층을 형성하는 금속의 소결체 분말을 통과하여야 하므로 그 제약이 많게 된다. 반면, 본 발명에 따라 전극활성물질 나노스피어를 포함하는 다공성 필름층이 형성된 경우에는 전극활성물질에 의하여 다공성 필름층을 통과하는 전자의 이동이 용이하게 된다. 또한 상기 전극활성물질 나노스피어 내부의 일부에 기공을 포함하는 경우(c)에는 충분한 기공확보로 반응물의 통로로서의 역할 뿐만 아니라, 반응장소로서의 역할을 극대화할 수 있게 된다.
또한 본 발명에 있어서 상기 양극기판에 사용되는 양극산화가 가능한 금속은 티타늄, 탄탈늄, 지르코늄, 니오븀, 텅스텐, 또는 이들의 합금으로 이루어진 군에서 1종 이상 선택될 수 있다. 이 때, 상기 양극 기판의 형상 및 사이즈는 제조해야 할 불용성 양극의 형상 및 사이즈에 따라 적절하게 선택될 수 있다. 또한 상기 기판 상에 형성되는 다공성 필름층은, 금속의 소결체 분말을 포함하여 형성되는데 이 때 상기 금속의 소결체 분말은 구형(球形), 부정형 등 그 형상에 구애받지 않으나, 보다 바람직하게는 전극 활성 물질의 침투성, 양극 기판과의 밀착성 등의 점에서 구형의 금속 소결체 분말이 적합하다.
본 발명의 바람직한 실시예로서, 상기 불용성 양극은 티타늄으로 이루어진 양극 기판의 표면에, 티타니아(TiO2) 나노분말로 다공성 필름층을 형성하는 것이 경제성 등의 점에서 적합하다. 단, 티타늄으로 이루어진 양극 기판의 표면에, 티타늄 이외의 금속으로 이루어진 다공성 필름층을 형성한 것도, 상기 양극산화가 가능한 금속의 종류에 따라서는 상당히 경제성이 높은 양극으로 될 수 있다. 이 경우, 탄탈늄으로 이루어진 다공성 필름층이 바람직하다.
또한 상기 다공성 필름층의 두께는 1~50㎛가 바람직하다. 상기 필름층 두께가 지나치게 얇으면 다공질 필름층의 내구성이나 전극 활성 물질의 침투량이 부족하여, 소정의 효과를 수득하기 어렵게 된다. 반대로, 이의 층 두께가 지나치게 두꺼운 경우, 소결 물질의 사용량이나 전극 활성 물질의 침투량이 필요 이상으로 증대하여 경제성이 악화된다.
또한 상기 다공성 필름층의 다른 구성 요건으로서 상기 금속의 소결체 분말 또는 전극활성물질 나노스피어의 크기가 중요하다. 상기 전극활성물질 나노스피어가 지나치게 작으면 혼합되는 금속의 소결체 분말의 양이 많아져서 필요 이상으로 증대하여 경제성이 악화된다. 반대로 전극활성물질 나노스피어의 크기가 지나치게 크면 혼합되는 금속의 소결체 분말의 양을 줄일 수는 있으나, 전자통로와 효과적인 반응물 경로 및 반응 장소로서의 효과를 수득하기가 어렵게 된다. 따라서 상기 전극활성물질 나노스피어를 포함함에 따른 저 저항(low resistivity)의 전자통로와 효과적인 반응물 경로 및 반응장소로서의 역할을 수행하도록 하기 위해서는, 상기 전극활성물질 나노스피어의 크기는 50~1000nm가 바람직하고, 200~500nm가 특히 바람직하다.
또한 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층의 두께는 1~50㎛인 것이 바람직한 바, 상기 두께의 필름을 형성하기 위한 금속의 소결체 분말 역시 50~1000nm가 바람직하고, 200~500nm가 특히 바람직하다.
또한, 다공성 필름층의 다른 구성 요건으로서 금속의 소결체 분말과 전극활성물질 나노스피어의 혼합비도 중요하다. 이러한 전극활성물질 나노스피어의 혼합비율이 적으면, 저항이 높은 금속의 소결체 분말의 부피비율이 상대적으로 많아져서 전극의 성능을 떨어뜨리게 되고, 전자통로로서의 역할과 반응물의 통로 또는 반응장소로서의 역할을 극대화하기가 어렵게 된다. 반대로 상기 전극활성물질 나노스피어의 혼합비율이 많으면 상기 전극활성물질의 도입량이 필요이상으로 증대하여 경제성이 악화된다. 또한, 상술한 바와 같이 전극활성물질 나노스피어의 크기에 따라 전자통로, 효과적인 반응물 경로 또는 반응장소로서의 효과를 나타낼 수 있게 되므로, 상기 혼합비를 정함에 있어서 상기 전극활성물질 나노스피어의 크기가 클 경우에는 혼합되는 부피의 양을 줄이고, 상기 전극활성물질 나노스피어의 크기가 작아질수록 혼합되는 부피의 양을 늘리는 것이 효과를 극대화할 수 있게 된다. 따라서 바람직하게는 상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%로 포함하는 것이 적합하다.
또한 본 발명에 있어서, 상기 전극활성물질은 백금, 니켈, 팔라듐, 루테늄, 오스뮴, 로듐, 이리듐 및 팔라듐 중에서 선택되는 1종 이상인 것을 특징으로 한다.
또한 상기 불용성 양극은 양극산화가 가능한 금속으로 이루어지는 양극 기판 상에, 상기 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리한 다음, 전극활성물질 전구체를 도포하여 열처리함으로써, 제조될 수 있는바, 도 6 내지 도 7은 본 발명의 바람직한 실시예에 따라 상기 본 발명의 불용성 양극을 제조하는 공정을 모식화하여 나타낸 것이다.
따라서 본 발명의 다른 측면에 따르면, 양극산화가 가능한 금속으로 이루어지는 양극 기판 상에, 상기 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리한 다음, 전극활성물질 전구체를 도포하여 열처리하여 제조되고, 상기 제조된 불용성 양극은, 양극산화가 가능한 금속으로 이루어진 양극기판; 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및 상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법이 제공된다.
도 6 내지 도 7을 참고하면, 상기 다공성 필름층을 형성하기 위해 우선 양극 산화가 가능한 금속으로 이루어진 양극 기판에, 상기 금속의 소결체 분말 및 고분자 나노스피어를 도포하여 열처리한다. 보다 구체적으로 상기 금속의 소결체 분말로 슬러리를 제조하고, 이를 양극 기판에 도포하게 되는데 상기 슬러리의 제작시 고분자 나노스피어를 더 포함하여 혼합함으로써 상기 슬러리를 기판 상에 도포하고 열처리에 의하여 소결할 때 고분자는 연소하여 제거되게 된다.
이 때, 상기 고분자 나노스피어는 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리카보네이트(PC) 및 폴리메틸메타크릴레이트(PMMA)로 이루어지는 군으로부터 선택된 1종 이상의 고분자로 이루어진 고분자 나노스피어인 것을 특징으로 한다.
또한 바람직하게는 상기 소결은 고분자 나노스피어가 연소되고 금속의 소결체 분말이 양극 기판에 증착될 수 있도록 400~600℃에서 소결하는 것이 적합하다.
다음으로 전극활성물질 전구체를 도포하여 열처리한다. 보다 구체적으로 상기 전극활성물질 전구체가 도포되면서 상기 고분자가 제거된 나노스피어에 전극활성물질이 일부 또는 전부 도입됨은 물론, 증착된 금속의 소결체 분말의 표면에도 코팅된다. 이 상태에서 다시 열처리함으로써, 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층이 형성됨과 동시에, 상기 다공성 필름층 내외부의 표면에 전극활성물질 코팅층이 형성된다.
이 때, 상기 전극활성물질 나노스피어가 형성되기 위해서는 액상의 전극활성물질 전구체가 고분자가 제거된 나노스피어에 머물 수 있도록 하여야만 전극활성물질이 상기 고분자가 제거된 나노스피어에 도입될 수 있다. 이를 위해서는 특히 고분자가 제거된 스피어의 크기가 중요한 바 직경이 50~1000nm의 나노스피어일 때 상기 액상의 전구체가 나노스피어에 머물러서 도입될 수 있게 된다. 보다 바람직하게는 상기 나노스피어의 직경은 200~500nm가 특히 바람직하다.
또한 도 6 및 도 7을 참고하면, 상기 전극활성물질 나노스피어는, 상기 액상의 전극활성물질 전구체가 도입되는 정도에 따라 내부의 일부에 기공이 형성되도록 전극활성물질이 채워지거나(도 6 참고), 전극활성물질로 내부가 전부 채워져서(도 7) 전극활성물질 나노스피어가 형성될 수 있다.
또한, 상기 전극활성물질 나노스피어에 의하여 전극의 저항을 낮추면서도, 전자통로와 효과적인 반응물 경로 또는 반응장소로서의 역할을 수행하도록 하기 위해서는, 상술한 바와 같이 상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하는 것이 바람직하다.
이 때 보다 바람직하게는 상기 다공성 필름층의 두께는 상술한 바와 같이 다공질 필름층의 내구성이나 전극 활성 물질의 침투량을 고려하여 1~50㎛가 되도록 하고, 상기 두께의 필름을 형성하기 위한 금속의 소결체 분말 역시 50~1000nm가 바람직하고, 200~500nm가 특히 바람직하다.
이상과 같이 본 발명의 불용성 양극 및 그 제조방법에 관하여 한정된 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 도면에 국한되어 정해져서는 아니되며, 후술하는 특허 청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Claims (8)
- 양극산화가 가능한 금속으로 이루어진 양극기판;상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하고,상기 다공성 필름층은 상기 금속의 소결체 분말 60~90 부피%와, 전극활성물질 나노스피어 10~40 부피%를 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극.
- 제 1 항에 있어서,상기 전극활성물질 나노스피어는 내부의 일부에 기공을 포함하는 것을 특징으로 하는, 불용성 양극.
- 제 1 항에 있어서,상기 금속의 소결체 분말 또는 전극활성물질 나노스피어는 직경이 50~1000 nm인 것을 특징으로 하는, 불용성 양극.
- 제 1 항에 있어서,상기 다공성 필름층의 두께가 1~50 ㎛인 것을 특징으로 하는, 불용성 양극.
- 제 1 항에 있어서,상기 전극활성물질은 백금, 니켈, 팔라듐, 루테늄, 오스뮴, 로듐, 이리듐 및 팔라듐 중에서 선택되는 1종 이상인 것을 특징으로 하는, 불용성 양극.
- 양극산화가 가능한 금속으로 이루어지는 양극 기판 상에, 상기 금속의 소결체 분말과 고분자 나노스피어를 도포하고 열처리한 다음, 전극활성물질 전구체를 도포하여 열처리하여 제조되고,상기 제조된 불용성 양극은, 양극산화가 가능한 금속으로 이루어진 양극기판; 상기 금속의 소결체 분말과 전극활성물질 나노스피어를 포함하는 다공성 필름층; 및 상기 다공성 필름층 내외부의 표면에 형성된 전극활성물질 코팅층;을 포함하는 것을 특징으로 하는, 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극의 제조방법.
- 제 6 항에 있어서,상기 제조된 불용성 양극은 제1항 내지 제5항 중 어느 한 항에 따른 불용성 양극인 것을 특징으로 하는, 불용성 양극의 제조방법.
- 제 6 항에 있어서,상기 고분자 나노스피어는 폴리스티렌(PS), 폴리염화비닐(PVC), 폴리카보네이트(PC) 및 폴리메틸메타크릴레이트(PMMA)로 이루어지는 군으로부터 선택된 1종 이상의 고분자로 형성되는 것을 특징으로 하는, 불용성 양극의 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480076985.4A CN106068339B (zh) | 2014-05-07 | 2014-10-30 | 具有包括电极活性物质纳米球的多孔性薄膜层的不溶性阳极及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0054000 | 2014-05-07 | ||
KR1020140054000A KR101565844B1 (ko) | 2014-05-07 | 2014-05-07 | 불용성 양극 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170808A1 true WO2015170808A1 (ko) | 2015-11-12 |
Family
ID=54392643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/010289 WO2015170808A1 (ko) | 2014-05-07 | 2014-10-30 | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101565844B1 (ko) |
CN (1) | CN106068339B (ko) |
WO (1) | WO2015170808A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0407355A1 (en) * | 1989-06-07 | 1991-01-09 | Permelec Electrode Ltd | Insoluble electrode for electroplating and process for producing the same |
JP2000178791A (ja) * | 1998-12-11 | 2000-06-27 | Nikon Corp | 多孔質酸化チタン皮膜の製造方法 |
KR20070095932A (ko) * | 2005-01-07 | 2007-10-01 | 다이소 가부시키가이샤 | 불용성 양극 |
KR20110011001A (ko) * | 2009-07-27 | 2011-02-08 | 일진머티리얼즈 주식회사 | 불용성양극 및 그 제조방법 |
KR20120001896A (ko) * | 2010-06-30 | 2012-01-05 | 서강대학교산학협력단 | 염료감응 태양전지용 광전극, 그의 제조 방법, 및 그를 포함하는 염료감응 태양전지 |
-
2014
- 2014-05-07 KR KR1020140054000A patent/KR101565844B1/ko active IP Right Grant
- 2014-10-30 CN CN201480076985.4A patent/CN106068339B/zh active Active
- 2014-10-30 WO PCT/KR2014/010289 patent/WO2015170808A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0407355A1 (en) * | 1989-06-07 | 1991-01-09 | Permelec Electrode Ltd | Insoluble electrode for electroplating and process for producing the same |
JP2000178791A (ja) * | 1998-12-11 | 2000-06-27 | Nikon Corp | 多孔質酸化チタン皮膜の製造方法 |
KR20070095932A (ko) * | 2005-01-07 | 2007-10-01 | 다이소 가부시키가이샤 | 불용성 양극 |
KR20110011001A (ko) * | 2009-07-27 | 2011-02-08 | 일진머티리얼즈 주식회사 | 불용성양극 및 그 제조방법 |
KR20120001896A (ko) * | 2010-06-30 | 2012-01-05 | 서강대학교산학협력단 | 염료감응 태양전지용 광전극, 그의 제조 방법, 및 그를 포함하는 염료감응 태양전지 |
Also Published As
Publication number | Publication date |
---|---|
CN106068339A (zh) | 2016-11-02 |
CN106068339B (zh) | 2018-02-02 |
KR101565844B1 (ko) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning | |
KR920010101B1 (ko) | 산소발생용 전극 및 그 제조방법 | |
US3853739A (en) | Platinum group metal oxide coated electrodes | |
Abbasi et al. | An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+ Ta2O5 coating in an OER application | |
Zhao et al. | Study on the performance of an improved Ti/SnO 2–Sb 2 O 3/PbO 2 based on porous titanium substrate compared with planar titanium substrate | |
KR101707811B1 (ko) | 전해 분야를 위한 전극 | |
US20120103828A1 (en) | Electrode for electrolytic chlorine production | |
RU2326991C2 (ru) | Электрод для выделения газа и способ его изготовления | |
EP0169301A1 (de) | Verbundelektrode, Verfahren zu ihrer Herstellung und ihre Anwendung | |
Xu et al. | Preparation and characterization of a TiO 2-NT/SnO 2–Sb tubular porous electrode with long service lifetime for wastewater treatment process | |
CN1006647B (zh) | 耐用电解电极及其制造方法 | |
JP2006188742A (ja) | 不溶性陽極 | |
WO2015056981A1 (ko) | 오스뮴 또는 레늄 용해를 이용한 나노 다공성 금속 제조 방법 및 이의 나노 다공성 금속 | |
DE2220247B2 (de) | Sauerstoff-Anode | |
CN1006814B (zh) | 耐用电解电极及其制造方法 | |
US4443317A (en) | Electrode for electrolysis and process for its production | |
CN109576733B (zh) | 一种碳纤维负载的析氯催化电极的制备方法 | |
CN103774175B (zh) | 一种嵌入钌锆锡钛氧化物的活性涂层及其制备方法 | |
WO2015170808A1 (ko) | 전극활성물질 나노스피어를 포함한 다공성 필름층을 갖는 불용성 양극과 이의 제조방법 | |
CN1379703A (zh) | 催化粉末和用其制造的电极 | |
CN1291242A (zh) | 一种可用于碱金属氯酸盐制备的特殊阴极及其制造方法 | |
US4431686A (en) | Method for coating a porous electrode | |
KR100975433B1 (ko) | 마이크로 사이즈의 동공 전극 | |
JPH0257159B2 (ko) | ||
Kazimierska et al. | The fabrication of structurally multiordered polyaniline films and their application in electrochemical sensing and biosensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14891452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14891452 Country of ref document: EP Kind code of ref document: A1 |