CN109576733B - 一种碳纤维负载的析氯催化电极的制备方法 - Google Patents

一种碳纤维负载的析氯催化电极的制备方法 Download PDF

Info

Publication number
CN109576733B
CN109576733B CN201811399920.XA CN201811399920A CN109576733B CN 109576733 B CN109576733 B CN 109576733B CN 201811399920 A CN201811399920 A CN 201811399920A CN 109576733 B CN109576733 B CN 109576733B
Authority
CN
China
Prior art keywords
sno
electrode
carbon fiber
tio
chlorine evolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811399920.XA
Other languages
English (en)
Other versions
CN109576733A (zh
Inventor
王孝广
张芳芳
唐宾
李晋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811399920.XA priority Critical patent/CN109576733B/zh
Publication of CN109576733A publication Critical patent/CN109576733A/zh
Application granted granted Critical
Publication of CN109576733B publication Critical patent/CN109576733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及电化学催化析氯领域,公开了一种碳纤维负载析氯催化电极的制备方法;技术方案为:以CF作为工作电极,RuCl3的酸性水溶液作为电解液,电沉积后进行退火处理,所述的电沉积为:施加恒定电流5‑20 mA•cm‑2,电沉积时间为1‑2h,制备出析氯催化电极:RuO2/CF;所述的CF为碳纤维布;本发明以CF作为载体,用水热和电沉积的方法制备催化电极,可提高贵金属氧化物的负载量及利用率;使催化效果显著提升,减少活性物质的脱落,并且有效地减少了电极表面的裂纹,使电极的电催化活性显著提高。

Description

一种碳纤维负载的析氯催化电极的制备方法
技术领域
本发明涉及电化学催化析氯领域,尤其涉及一种碳纤维负载的析氯催化电极的制备方法。
背景技术
电解饱和食盐(NaCl)水制取 Cl2和 NaOH,是最大规模的水溶液电解工业。伴随着氯碱生产工艺的发展及国民经济对氯、碱需求量的增加,氯碱工业使用的阳极材料也在不断更新,电解食盐水的发展史印证了的电极材料发展史。
钛阳极一般称之为DSA(Dimensionally Stability Anode),即尺寸形状稳定型阳极,钛阳极最早用于氯碱生产中,经过各国工程技术人员的努力,现已广泛用于化工、环保、水电解、水处理、电冶金、电镀、金属箔生产、有机电合成、电渗析、阴极保护等行业中。最早应用于工业的金属氧化物电极是RuO2-TiO2/Ti阳极,但是RuO2-TiO2/Ti电极寿命较短,不适用于强酸和大电流的工作状态,并且金属钌的价格昂贵,为了适应生产发展的需要,人们对阳极的涂层配方以及制备工艺做了进一步的研究,开发了RuO2-IrO2-TiO2/Ti、RuO2-SnO2-TiO2/Ti、RuO2-IrO2-SnO2-TiO2/Ti、RuO2-IrO2-SnO2-Co3O4-TiO2/Ti等三元、四元、五元涂层配方,还有的在涂层与基体之间添加了中间层。目前工业上生产所使用的电极大多是由热分解法所生产的,这种方法生产的DSA电极在使用一段时间后,由于氧化物涂层剥落、活性物质溶解,造成电极表面活性位点的损失,致使DSA上析氯电位增加,当析氯反应电位十分接近析氧反应电位时,电极反应的选择性显著下降,不仅使产氯效率降低,而且伴随着析氧反应的增加,从而在基体与涂层界面间形成TiO2钝化膜,进而导致失活现象的发生。因此,设计、制备具有高活性和稳定性的阳极催化剂仍是电解水及氯碱工业发展所面临的主要难题之一。
发明内容
本发明克服现有技术存在的不足,提供一种提高析氯反应效率的碳纤维负载的催化电极的制备方法。本发明是通过如下技术方案实现的。
一种碳纤维负载的析氯催化电极的制备方法,包括步骤:以CF作为工作电极,RuCl3的酸性水溶液作为电解液,电沉积后进行退火处理,所述的电沉积为:施加恒定电流5-20 mA·cm-2,电沉积时间为1-2h,制备出析氯催化电极:RuO2/CF;所述的CF为碳纤维布。
进一步的包括以下步骤:
a)配制SnO2前驱体溶液,将CF与SnO2前驱体溶液放入反应釜中进行水热反应,反应完成,将负载有SnO2的CF退火处理,得到SnO2/CF。
b)以SnO2/CF作为工作电极,RuCl3的酸性水溶液作为电解液,电沉积后进行退火处理,制备出析氯催化电极:RuO2/SnO2/CF。
进一步的,包括以下步骤:
a)配制SnO2前驱体溶液,将CF与SnO2前驱体溶液放入反应釜中进行水热反应,反应完成,将负载有SnO2的CF退火处理,得到SnO2/CF。
b)配制TiO2前驱体溶液,并将SnO2/CF与TiO2前驱体溶液放入反应釜中进行水热反应,反应完成,将负载有TiO2和SnO2的CF退火处理,得到TiO2/SnO2/CF。
c)以TiO2/SnO2/CF作为工作电极,RuCl3的酸性水溶液作为电解液,电沉积后进行退火处理,制备出析氯催化电极:RuO2/TiO2/SnO2/CF。
以上所述的CF经过预处理得到,所述的预处理是将碳纤维布在丙酮、乙醇、超纯水超声各0.1-1h。
以上所述的电沉积,以Pt片作为辅助电极,Ag|AgCl作为参比电极进行电沉积,电沉积在50℃水浴加热条件下进行。
以上所述的RuCl3的酸性水溶液由RuCl3·xH2O 0.5-10mmol、H2SO4 0.5-10mL 、H3BO3 0.5-10g 和超纯水20-200mL组成。
所述的将电沉积后的电极进行退火处理的退火温度为500-600℃,退火时间为4-6h。
以上所述的电沉积采用的是阴极沉积法。
所述SnO2前驱体溶液由SnCl2·2H2O 0.5-4mmol 、Na3C6H5O7·2H2O 2-8mmol、超纯水5-40mL和乙醇5-40mL组成,所述的CF与SnO2前驱体溶液进行水热反应的温度为50-250℃,反应时间为2-20h,负载有SnO2的CF在管式炉中的退火条件是退火温度400-450℃、退火时间1-3h。
所述TiO2前驱体溶液由钛酸四丁酯 0.1-1mL、HCl 2-20mL 和超纯水 2-20mL 组成,TiO2前驱体溶液与SnO2/CF水热反应的条件是50-250℃、0.5-4h,负载有SnO2和TiO2的CF在管式炉中的退火条件是500-600℃、1-3h。
本发明采用CF作为基体,与钛片相比,其不仅具备良好的导电性,而且可以有效地提高催化电极的比表面积,从而增大活性位点的数量,大大提高析氯反应的效率。运用水热的和电沉积相结合的方法制备催化电极,可以使金属氧化物与基体的吸附更加牢固,减少活性物质的脱落,并且有效地减少了电极表面的裂纹,使电极的电催化活性显著提高。
根据析氯机理:
Figure DEST_PATH_IMAGE001
Cl-放电生成的Cl进一步在其阳极上氧化生成吸Cl +,后者与Cl-反应生成Cl2,并认为(2)有可能是控制步骤。
以传统的Ru-Ti氧化物阳极涂层为例,说该反应的析氯机理。在正电场的影响下,施主杂质Ru的电子会趋向阳极,导致Ru成了正电中心,另外金红石TiO2与施主RuO2所形成的固溶体中仍然有氧缺陷。阴离子的缺位则能够让点阵格子形成空位,进而导致此处聚集正电荷,Ru的活性中心不断加强。因为阳离子的掺杂及阴离子缺位的双重结果,产生了形成于固溶体结构中的缺陷吸附位,也就是产生了吸附溶液中Cl-的Ru4+正电中心:
Figure 820339DEST_PATH_IMAGE002
又由于RuO2中的Ru有未满d轨道或者或叫做“d带空穴”(Ru的外层电子构型是4d75s1,因为d轨道有5个,会占有10个电子方为满带,而实际上仅仅是7个电子,所以叫作“d带空穴”)。没有满的d轨道有很强的容纳外来电子的弗米能级的能力,能够和反应式(4)中吸附的一些Cl-原子(3s23p5)中未满的p电子配对,在Ru4+的影响下,该配对的p电子会更偏向到Ru的活性中心:
Figure DEST_PATH_IMAGE003
在阳极上Cl+(吸附)受到排斥,极易和电解液中的氯离子进行解吸附:
Figure DEST_PATH_IMAGE004
因为未满d轨道有容纳Cl(吸附)的p电子的能级,和活性中心Ru4+对p电子的吸引,催化了(5)反应的进行,导致吸附和解吸附同时发生。所以Ru-Ti阳极涂层的催化作用实际来自于组分Ru及氧缺陷。因此,为了增加阳极的使用寿命和活性,就一定要让金红石型的TiO2结点位置上掺杂Ru与间隙位置氧缺位。在能形成固溶体的范围内,调整涂液中各组分比例,使涂层形成含尽可能多Ru组分的金红石结构。在RuO2中,O/Ru的原子比是1.7而非2,RuO2也呈现出一种缺氧性质,因而其析氯催化活性很强。本发明选择以Ru、 Sn 和Ti作为析氯用金属是为了在RuO2高催化性能的基础上添加TiO2和SnO2体现其协同作用,以达到更好的催化活效果。
本发明相对于现有技术所产生的有益效果为。
本发明以CF作为载体,用水热和电沉积的方法制备催化电极,由于CF具有良好的导电性并且是三维立体结构,可大大提高载体的比表面积,从而提高贵金属氧化物的负载量及利用率。本发明采用水热和电沉积的的方法制备不同成分的催化电极,旨在提高其协同作用,使催化效果显著提升,并且是用水热和电沉积的方法制备的催化电极可以使金属氧化物与基体的吸附更加牢固,减少活性物质的脱落,并且有效地减少了电极表面的裂纹,使电极的电催化活性显著提高。
附图说明
图1是经过预处理后的CF的扫描电镜(SEM)照片。
图2是CF负载SnO2的扫描电镜(SEM)照片。
图3是CF负载TiO2和SnO2的扫描电镜(SEM)照片。
图4是实施例1中制备的CF负载RuO2的扫描电镜(SEM)照片。
图5是实施例1中制备的CF负载RuO2的X射线衍射图谱。
图6是实施例2中制备的CF负载SnO2和RuO2的扫描电镜(SEM)照片。
图7是实施例2中制备的CF负载SnO2和RuO2的X射线衍射图谱。
图8是实施例3中制备的CF负载TiO2、SnO2和RuO2的扫描电镜(SEM)照片。
图9是实施例3中制备的CF负载TiO2、SnO2和RuO2的X射线衍射图谱。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,结合实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。下面结合实施例及附图详细说明本发明的技术方案,但保护范围不被此限制。
实施例1
一种CF负载的RuO2的制备方法按照如下步骤进行:
1)将CF进行预处理,丙酮、乙醇、超纯水超声各30min,室温下自然风干备用。
2)采用三电极体系,分别以CF、Pt片和Ag/AgCl作为工作电极、辅助电极和参比电极,5mmol/L的RuCl3的酸性水溶液作为电解液,50℃水浴加热,采用阴极沉积法,施加恒定的工作电流20mA·cm-2,电沉积时间为1h,并将电沉积后的电极在管式炉中500℃退火5h,最后制备出CF负载的RuO2纳米颗粒。通过扫描电镜(SEM)观察发现CF上均匀的负载了一层纳米颗粒,见附图4;X射线衍射(XRD)分析发现,样品中有RuO2相和Ru相,见附图5。
实施例2
一种CF负载的RuO2/SnO2的制备方法按照如下步骤进行:
1)将CF进行预处理,丙酮、乙醇、超纯水超声各30min,室温下自然风干备用;
2)配制SnO2前驱体溶液,SnCl2·2H2O 2.5mmol 、Na3C6H5O7·2H2O 5mmol、超纯水20mL、乙醇 20mL,将CF与SnO2前驱体溶液放入反应釜中180℃水热反应8h,反应完成,将负载有SnO2的CF置于管式炉中400℃退火2h。
3)采用三电极体系,分别以SnO2/CF、Pt片和Ag/AgCl作为工作电极、辅助电极和参比电极,5mmol/L的RuCl3的酸性水溶液作为电解液,50℃水浴加热,采用阴极沉积法,施加恒定的工作电流20mA cm-2,电沉积时间为1h,并将电沉积后的电极在管式炉中500℃退火5h,最终制备出RuO2/SnO2/CF纳米结构。通过扫描电镜(SEM)观察发现在SnO2纳米颗粒表面均匀的负载了一层纳米小颗粒,见附图6;X射线衍射(XRD)分析发现,样品中有的SnO2、RuO2、Ru三种相,见附图7 。
实施例3
一种CF负载的RuO2/TiO2/SnO2的制备方法按照如下步骤进行:
1)将CF进行预处理,丙酮、乙醇、超纯水超声各30min,室温下自然风干备用;
2)配制SnO2前驱体溶液,SnCl2·2H2O 2.5mmol、Na3C6H5O7·2H2O 5mmol、超纯水20mL、乙醇20mL,将CF与SnO2前驱体溶液放入反应釜中180℃水热反应8h,反应完成,将负载有SnO2的CF置于管式炉中400℃退火2h。
3)配制TiO2前驱体溶液,钛酸四丁酯 0.5mL、HCl 12mL、超纯水 12mL,并将SnO2/CF与TiO2前驱体溶液放入反应釜中180℃水热反应2h,反应完成,将负载有TiO2和SnO2的CF置于管式炉中500℃退火2h。
4)采用三电极体系,分别以TiO2/SnO2/CF、Pt片和Ag/AgCl作为工作电极、辅助电极和参比电极,5mmol/L的RuCl3的酸性水溶液作为电解液,50℃水浴加热,采用阴极沉积法,施加恒定的工作电流20mA cm-2,电沉积时间为1h,并将电沉积后的电极在管式炉中500℃退火5h,最终制备出RuO2/TiO2/SnO2/CF纳米结构。通过扫描电镜(SEM)观察发现在SnO2纳米颗粒表面均匀的生长出一层TiO2纳米线,在纳米线的顶端均匀的覆盖着一层纳米小颗粒,见附图8;X射线衍射(XRD)分析发现,样品中有的TiO2、SnO2、RuO2、Ru四种相,见附图9。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (8)

1.一种碳纤维负载的析氯催化电极的制备方法,其特征在于,包括步骤:
a)配制SnO2前驱体溶液,以CF作为工作电极,将CF与SnO2前驱体溶液放入反应釜中进行水热反应,反应完成,将负载有SnO2的CF退火处理,得到SnO2/CF;
b)配制TiO2前驱体溶液,并将SnO2/CF与TiO2前驱体溶液放入反应釜中进行水热反应,反应完成,将负载有TiO2和SnO2的CF退火处理,得到TiO2/SnO2/CF;
c)以TiO2/SnO2/CF作为工作电极,RuCl3的酸性水溶液作为电解液,电沉积后进行退火处理,制备出析氯催化电极:RuO2/TiO2/SnO2/CF;所述的电沉积为:施加恒定电流密度5-20mA·cm-2,电沉积时间为1-2h;所述的CF为碳纤维布。
2.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,所述的CF经过预处理得到,所述的预处理是将碳纤维布在丙酮、乙醇、超纯水超声各0.1-1h。
3.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,Pt片作为辅助电极,Ag|AgCl作为参比电极进行电沉积,电沉积在50℃水浴加热条件下进行。
4.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,RuCl3的酸性水溶液由RuCl3·xH2O 0.5-10mmol、H2SO4 0.5-10mL 、H3BO3 0.5-10g 和超纯水20-200mL组成。
5.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,所述的将电沉积后的电极进行退火处理的退火温度为500-600℃,退火时间为4-6h。
6.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,所述的电沉积采用的是阴极沉积法。
7.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,所述SnO2前驱体溶液由SnCl2·2H2O 0.5-4mmol 、Na3C6H5O7·2H2O 2-8mmol、超纯水5-40mL和乙醇5-40mL组成,所述的CF与SnO2前驱体溶液进行水热反应的温度为50-250℃,反应时间为2-20h,负载有SnO2的CF在管式炉中的退火条件是退火温度400-450℃、退火时间1-3h。
8.根据权利要求1所述的一种碳纤维负载的析氯催化电极的制备方法,其特征在于,TiO2前驱体溶液由钛酸四丁酯 0.1-1mL、HCl 2-20mL 和超纯水 2-20mL 组成,TiO2前驱体溶液与SnO2/CF水热反应的条件是50-250℃、0.5-4h,负载有SnO2和TiO2的CF在管式炉中的退火条件是500-600℃、1-3h。
CN201811399920.XA 2018-11-22 2018-11-22 一种碳纤维负载的析氯催化电极的制备方法 Active CN109576733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811399920.XA CN109576733B (zh) 2018-11-22 2018-11-22 一种碳纤维负载的析氯催化电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811399920.XA CN109576733B (zh) 2018-11-22 2018-11-22 一种碳纤维负载的析氯催化电极的制备方法

Publications (2)

Publication Number Publication Date
CN109576733A CN109576733A (zh) 2019-04-05
CN109576733B true CN109576733B (zh) 2020-10-27

Family

ID=65923452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811399920.XA Active CN109576733B (zh) 2018-11-22 2018-11-22 一种碳纤维负载的析氯催化电极的制备方法

Country Status (1)

Country Link
CN (1) CN109576733B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724990B (zh) * 2019-09-23 2020-09-04 中国地质大学(武汉) 一种电镀银碳纤维电极及其制备方法
CN113562812B (zh) * 2021-07-01 2022-11-22 河北科技大学 一种处理高氯有机废水的复合电极的制备方法及应用
CN113603191B (zh) * 2021-08-23 2022-11-01 中国科学院生态环境研究中心 一种金属钌基电极及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2408951C (en) * 2002-10-18 2008-12-16 Kvaerner Canada Inc. Mediated hydrohalic acid electrolysis
KR100894481B1 (ko) * 2007-04-16 2009-04-22 한국과학기술연구원 초극세 탄소 섬유에 축적한 금속산화물로 이루어진슈퍼커패시터용 전극 및 그 제조 방법
CN100506703C (zh) * 2007-04-18 2009-07-01 大连理工大学 一种制备二氧化钛、二氧化锡及其掺杂复合纤维材料的方法
CN101462045B (zh) * 2007-12-18 2012-01-25 比亚迪股份有限公司 一种二氧化锡和碳的复合材料及其制备方法
CN101665276B (zh) * 2009-09-23 2011-04-20 王万寿 复合活性炭纤维极板
DE102013202144A1 (de) * 2013-02-08 2014-08-14 Bayer Materialscience Ag Elektrokatalysator, Elektrodenbeschichtung und Elektrode zur Herstellung von Chlor
CN104498989B (zh) * 2014-12-29 2017-05-24 甘肃银光聚银化工有限公司 一种电解槽和电解含水氢卤酸制备卤素气体的方法
CN108179624B (zh) * 2017-12-29 2021-07-02 西北大学 一种MoS2-SnO2-碳纤维复合材料及其制备方法

Also Published As

Publication number Publication date
CN109576733A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Zhao et al. Study on the performance of an improved Ti/SnO 2–Sb 2 O 3/PbO 2 based on porous titanium substrate compared with planar titanium substrate
JP4346070B2 (ja) 水素発生用電極
EP2757179B1 (en) Chlorine-generating positive electrode
JP4916040B1 (ja) 電解採取用陽極および該陽極を用いた電解採取法
EP0218706B1 (en) Electrodes for use in electrochemical processes and method for preparing the same
JP5518900B2 (ja) 水又はアルカリ金属化合物の水溶液の電気分解用の陰極、アルカリ金属塩化物の電気分解用電解槽、及び水又はアルカリ金属化合物の水溶液の電気分解用の陰極の製造方法
CN109576733B (zh) 一种碳纤维负载的析氯催化电极的制备方法
US20040031692A1 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US20170067172A1 (en) Catalyst coating and process for production thereof
Shestakova et al. Novel Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics
Chen et al. Controllable preparation of Ti/TiO2-NTs/PbO2–CNTs–MnO2 layered composite materials with excellent electrocatalytic activity for the OER in acidic media
CN101230468B (zh) 一种网孔状纳米结构锰系氧化物镀层及其制备方法
Lee et al. Ultrathin multilayer Sb-SnO2/IrTaOx/TiO2 nanotube arrays as anodes for the selective oxidation of chloride ions
Hosseini et al. The use of silica in IrO2-based DSA type electrode: An efficient approach to construct cost-effective, potent electrodes for oxygen evolution reaction
CN112723490A (zh) 一种碳纳米管改性的二氧化铅电极及其制备方法和应用
CN112090436A (zh) 一种镍基催化剂、制备方法及应用
JP2006527794A (ja) 電極
Becerril-Estrada et al. Effects of heat treatment temperature on the morphology, composition, and electrocatalytic properties of electrodeposited NiB thin films towards OER
JP2019119930A (ja) 塩素発生用電極
WO2013005252A1 (ja) 電気分解用電極及びその作製方法、並びに電気分解装置
Ivanov et al. Platinized titanium dioxide electrodes for methanol oxidation and photo-oxidation
CN103981541A (zh) 一种非贵金属氧化物涂层电极的制备方法
CN109234760B (zh) 一种活性阴极及其制备方法和应用
CN109504987B (zh) 一种用于电解锰的钛基复合阳极及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant