EP0404206B1 - Resist compositions - Google Patents
Resist compositions Download PDFInfo
- Publication number
- EP0404206B1 EP0404206B1 EP90114926A EP90114926A EP0404206B1 EP 0404206 B1 EP0404206 B1 EP 0404206B1 EP 90114926 A EP90114926 A EP 90114926A EP 90114926 A EP90114926 A EP 90114926A EP 0404206 B1 EP0404206 B1 EP 0404206B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- resist composition
- photoinitiator
- composition
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/016—Diazonium salts or compounds
- G03F7/021—Macromolecular diazonium compounds; Macromolecular additives, e.g. binders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/106—Binder containing
- Y10S430/109—Polyester
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/106—Binder containing
- Y10S430/111—Polymer of unsaturated acid or ester
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/114—Initiator containing
- Y10S430/115—Cationic or anionic
Definitions
- This invention relates to positive working or negative working resist compositions.
- U.S. patent 3,984,253 discloses a sensitization of polyphthalaldehyde to UV, electron beam, and X-ray radiations by adding acid-generating compounds such as diazonium salts to provide positive images.
- U.S. patent 4,311,782 discloses a radiation-sensitive mixture which contains an acid-forming compound and a polymeric compound having recurrent orthocarboxylic acid ester groupings for the production of positive relief images.
- MIRP Modified Image Reversal Process
- U.S. patent 4,101,323 discloses a radiation-sensitive copying composition
- a radiation-sensitive copying composition comprising a compound (1) which splits-off an acid upon irradiation and a compound (2) having at least one group selected from the group consisting of a carboxylic ortho acid ester group and a carboxylic acid amide acetal group, which composition, upon irradiation, forms and exposure product having a higher solubility in a liquid developer than the non-irradiated composition.
- U.S. patent 3,779,778 discloses a photosolubilizable composition comprising
- a positive working and negative working resist composition comprising: a polymer having recurrent acid labile pendant groups and a photoinitiator which generates an acid upon exposure to radiation characterised in that the acid labile pendant groups are tertiary butyl esters of carboxylic acids or tertiary butyl carbonates of phenols, and wherein the photoinitiator is taken from the group consisting of unsubstituted and symmetrically or unsymmetrically substituted diaryliodonium or triarylsulfonium salts.
- the resist compositions of the present invention which are sensitive to ultraviolet (UV), electron beam or x-ray radiation with positive or negative resist tone upon proper choice of a developer are made by combining a polymer having recurrent acid labile pendant groups with a cationic photoinitiators such as diaryliodonium, or triarylsulfonium metal halides.
- a polymer having recurrent acid labile pendant groups with a cationic photoinitiators such as diaryliodonium, or triarylsulfonium metal halides.
- the polymer containing the initiator is coated as a thin film on a substrate. It is then baked under controlled conditions, exposed to radiation in an imagewise configuration, and postbaked under controlled conditions. In the portions of the films on which the radiation falls, the polymer recurrent acid labile pendant groups are cleaved to form polar recurring units and the exposed areas are selectively removed by treatment with an alkaline developer or polar solvents.
- the unexposed portions of the film are nonpolar, they are selectively removed by treatment with a nonpolar solvent.
- image reversal is extremely easily achieved by proper choice of a developer owing to the great difference in the solubility characteristics of the exposed and unexposed portions.
- the mechanism of the dissolution differentiation involved in the present invention completely differs from those of the prior art above. Whereas the prior art depends on crosslinking in the case of the negative tone or main chain degradation in the case of the positive tone, the present invention is concerned with the side chain cleavage.
- compositions employed are made sensitive to various wavelengths ranging from deep UV to visible light.
- absorption of diaryliodonium and triarylsulfonium salts does not extend about 300 nm, simple addition of an additional sensitizer component allows patterning at longer wavelengths ranging from mid UV to visible light.
- compositions covered under the present invention which contain recurring aromatic rings have another desirable property, namely, resistance to plasma and reactive ion etching.
- compositions of the present invention containing diaryliodonium or triarylsulfonium metal halides are particularly useful and advantageous when used with deep UV light (200-300 nm) exposure, because they are very sensitive to deep UV light and give very high resolution images with nearly vertical wall angles even in films thicker than 2 ⁇ .
- the most preferred photoinitiators are unsubstituted and symmetrically or unsymmetrically substituted diaryliodonium or triarylsulfonium salts.
- the most preferable gegenanions of the salts in the present invention are complex metal halides such as tetrafluoroborate, hexafluoroantimonate, hexafluoroarsenate, and hexafluorophosphate, but the invention is not limited to these gegenanions and photoinitiators.
- the amount of initiator used ranges from 1 to 100 w/w % to polymer.
- the preferred concentration range is from 5 to 50 ww %.
- the preferred polymers of the present invention are vinylic polymers containing recurrent pendant groups that undergo efficient acidolysis to produce products that are very different in polarity (Solubility) than their precursors.
- the invention is not limited to polymers obtained by vinylic addition polymerization.
- Other polymerizations such as condensation, polyaddition, and addition condensation can be employed to synthesize polymers useful in the present invention.
- the preferred acid labile pendant groups are tert-butylesters of carboxylic acides and tert-butylcarbonates of phenols but, it is understood that a wide range of acid labile groups are operative in the invention. These include trityl, benzyl, benzyhdryl modifications as well as others well known in the art.
- the most preferred polymers are poly(p-tert-butoxycarbonyloxy- ⁇ -methylstyrene), poly(p-tert-butoxycarbonyloxystyrene), poly(tert-butyl p-vinylbenzoate), poly(tert-butyl p-isopropenylphenyloxyacetate), and poly(tert-butyl methacrylate).
- diaryliodonium or triarylsulfonium salts to sensitize the compositions to longer wavelengths ranging from mid UV to visible light are polycyclic aromatics such as pyrene and perylene.
- Other dyes are also available that are operative sensitizers including the acridines.
- the invention is not limited to the use of any particular class of dyes.
- p-tert-Butoxycarbonyloxy- ⁇ -methylstyrene (3.000 g) was dried under high vacuum and dissolved in 10.0 mL of dry liquid sulfur dioxide distilled in vacuo into the polymerization ampoule to give a yellow solution.
- boron trifluoride etherate (0.02 mL, 1.2 mole % to the monomer) was introduced by distillation in vacuo .
- the mixture turbid, and after one hour at -65°C, a phase separation was observed. Then, almost the whole mass solidified.
- the ampoule was cut open and cold methanol was added at -65°C to provide the polymer as a white precipitate.
- the polymer was dissolved in dichloromethane, precipitated in methanol, purified by reprecipitation in methanol, and dried in vacuo at 38°C to provide 2.614 g (87.1%) of product with number average molecular weight of 46,900 (membrane osometry).
- p-tert-Butoxycarbonyloxystyrene (1.000 g) was dried under high vacuum and dissolved in 3.0 mL of dry liquid sulfur dioxide distilled in vacuo into the polymerization ampoule to give a yellow solution. With the solution frozen at liquid nitrogen temperature, boron trifluoride etherate (5 ⁇ L, 0.8 mole% to the monomer) was introduced by distillation in vacuo . The polymerization was carried out at -65°C for 27 hours. The ampoule was cut open and cold methanol was added at - 65 °C to provide the polymer as a white precipitate. The polymer was dissolved in chloroform, precipitated in methanol, purified by reprecipitation in methanol, and dried at 40°C to provide 0.901 g (90.1%) of product with number average molecular weight of 28,900 (GPC).
- the polymer is dissolved in diglyme or cyclohenanone at 20 w/v% of solids, to which is added the onium salt at 20 w/w% to the polymer.
- the solution is filtered through a 0.2 ⁇ teflon filter.
- a resist layer is formed from the solution by spin coating onto a silicon wafer.
- the coated film is baked at 90-100°C for 30 minutes.
- the films are then exposed through a quartz mask to UV radiation from an Oriel illuminator or a Hybrid Technology Group Model 345-10 Xe-Hg lamp, orimagewise exposed to 25 KeV scanning electron beam radiation or to x-radiation.
- the exposed films are heated at 90-100°C for 5-15 seconds.
- the exposed and heated films are then developed in agueous base or alcohol to provide high resolution positive tone images without loss of film thickness in the unexposed regions.
- the system can be easily made negative -working by development in a nonpolar solvent such a dichloromethane or mixtures of hexane and dichloromethane after exposure and baking.
- a nonpolar solvent such as a dichloromethane or mixtures of hexane and dichloromethane after exposure and baking.
- the sensitization to the longer wavelengths can be achieved by adding a small amount of pyrene or perylene to the resist solution above.
- Pyrene is effective to render the resist compositions containing diphenylliodonium salts sensitive to 313 nm radiation.
- Perylene is effective to render the resist compositions containing diphenyliodonium or triphenylsulfonium salts sensitive to 365, 404 and 436 nm radiation.
- Poly(p-tert-butoxycarbonyloxy- ⁇ -methylstyrene) (number average molecular weight 46,900) was dissolved in diglyme at 20 w/v% of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer.
- the resist film was spin coated from the solution onto silicon wafers at 3000 rpm to form a 0.6 ⁇ thick layer.
- the film was baked at 100°C for 30 minutes, and then exposed through a quartz mask to UV radiation at a dose of 5-10 mJ/cm 2 . After postbaking at 100°C for 5 seconds, high resolution positive images were obtained by development in agueous base for 60 seconds. Similarly, negative images were obtained by development in dichloromethane/hexane for 5-10 seconds.
- Poly(p-tert-butoxycarbonyloxy- ⁇ -methylstryene) (number average molecular weight of 46,900) was dissolved in cyclohexanone at 30 w/v% of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer.
- the resist film was spin coated from the filtered solution onto the silicon wafer at 2000 rpm to give a 2.4 ⁇ thick layer.
- the film was baked at 100°C for 30 minutes, and then exposed through a quartz mask to narrow bond width 254 nm UV radiation at a dose of 50 mJ/cm 2 . The exposed film was postbaked at 100°C for 15 seconds. High resolution positive images with nearly vertical wall angles were obtained by development in isopropanol for 30 seconds. Negative images were also obtained by development in dichloromethane for 30 seconds.
- Poly(p-tert-butoxycarbonyloxystyrene) (number average molecular weight of 21,600) was dissolved in a mixture of 1,1,2,2-tetrachloroethane and diglyme (5:1) at 3 w/v% of solids.
- Diphenyliodonium hexafluoroarsenate (20 w/w% to the polymer) and a small amount of perylene were added to the polymer solution.
- a one ⁇ thick film was cast from the solution onto a quartz wafer by spin coating at 2500 rpm. The film was baked at 100°C for 10 minutes, and exposed to narrow bandwidth 365 nm radiation at a dose of 25 mJ/cm 2 . After postbaking at 100°C for 2 minutes, the side groups were confirmed to be completely cleaved by UV and IR spectroscopy.
- Poly(p-tert-butoxycarbonyloxy- ⁇ -methylstyrene) (number average molecular weight of 46,900) was dissolved in diglyme at 20 w/v % of solids. Triphenylsulfonium hexafluoroarsenate (20 w/w% to the polymer) was added.
- the resist film was spin coated from the solution onto a silicon wafer at 3000 rpm to give a 0.6 ⁇ thick layer.
- the film was baked at 100°C for 30 minutes, and then exposed to 25 KeV scanning electron beam radiation at incident doses of 50,20, 10, and 5 ⁇ C/cm 2 to provide 4.0 to 0.25 ⁇ lines.
- the exposed film was postbaked at 100°C for 5 seconds, and developed in isopropanol to provide high resolution positive images. The image quality is good at 10 ⁇ C/cm 2 .
- Poly(tert-butyl methacrylate) synthesized by radical polymerization was dissolved in diglyme at 20 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer.
- the resist film was cast from the solution on a silicon wafer by spin coating at 3000 rpm to give a 0.6 ⁇ thick layer.
- the film was baked at 100°C for 30 minutes, and exposed through a quartz mask to UV radiation at a dose of 55 mJ/cm 2 .
- the exposed film was postbaked at 100°C for 20 seconds and developed in dichloromethane for 30 seconds to provide high resolution negative images.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Description
- This invention relates to positive working or negative working resist compositions.
- Cationic photopolymerization of vinyl and heterocyclic monomers, and photocrosslinking of polymers containing oxirane and thirane rings initiated by an acid generated via photolysis of onium salts are well known. U.S. patents 4,210,449 and 4,273,668 disclose the use of the onium salts as photoinitiators for cationic polymerization and cross linking.
- U.S. patent 3,984,253 discloses a sensitization of polyphthalaldehyde to UV, electron beam, and X-ray radiations by adding acid-generating compounds such as diazonium salts to provide positive images.
- U.S. patent 4,311,782 discloses a radiation-sensitive mixture which contains an acid-forming compound and a polymeric compound having recurrent orthocarboxylic acid ester groupings for the production of positive relief images.
- U.S. patent 4,104,070 describes a Modified Image Reversal Process (MIRP). The process, however, requires the addition of a third component and a flood exposure step.
- U.S. patent 4,101,323 discloses a radiation-sensitive copying composition comprising a compound (1) which splits-off an acid upon irradiation and a compound (2) having at least one group selected from the group consisting of a carboxylic ortho acid ester group and a carboxylic acid amide acetal group, which composition, upon irradiation, forms and exposure product having a higher solubility in a liquid developer than the non-irradiated composition.
- U.S. patent 3,779,778 discloses a photosolubilizable composition comprising
- a. a water-insoluble organic compound containing one or more acid-degradable linkages of the formula
- b. a photoinitiator comprising a photolyzable acid progenitor which is normally nonreactive but which, upon absorption of actinic radiation, is capable of generating an acid condition, said composition being rendered readily removable by a developing solution in an imagewise manner in areas exposed to actinic radiation, the unexposed areas remaining intact.
- According to the invention there is provided a positive working and negative working resist composition comprising: a polymer having recurrent acid labile pendant groups and a photoinitiator which generates an acid upon exposure to radiation characterised in that the acid labile pendant groups are tertiary butyl esters of carboxylic acids or tertiary butyl carbonates of phenols, and wherein the photoinitiator is taken from the group consisting of unsubstituted and symmetrically or unsymmetrically substituted diaryliodonium or triarylsulfonium salts.
- The resist compositions of the present invention which are sensitive to ultraviolet (UV), electron beam or x-ray radiation with positive or negative resist tone upon proper choice of a developer are made by combining a polymer having recurrent acid labile pendant groups with a cationic photoinitiators such as diaryliodonium, or triarylsulfonium metal halides. The polymer containing the initiator is coated as a thin film on a substrate. It is then baked under controlled conditions, exposed to radiation in an imagewise configuration, and postbaked under controlled conditions. In the portions of the films on which the radiation falls, the polymer recurrent acid labile pendant groups are cleaved to form polar recurring units and the exposed areas are selectively removed by treatment with an alkaline developer or polar solvents.
- Because the unexposed portions of the film are nonpolar, they are selectively removed by treatment with a nonpolar solvent. Thus, image reversal is extremely easily achieved by proper choice of a developer owing to the great difference in the solubility characteristics of the exposed and unexposed portions. The mechanism of the dissolution differentiation involved in the present invention completely differs from those of the prior art above. Whereas the prior art depends on crosslinking in the case of the negative tone or main chain degradation in the case of the positive tone, the present invention is concerned with the side chain cleavage.
- In a preferred variation of the present invention, the compositions employed are made sensitive to various wavelengths ranging from deep UV to visible light. In addition, although the absorption of diaryliodonium and triarylsulfonium salts does not extend about 300 nm, simple addition of an additional sensitizer component allows patterning at longer wavelengths ranging from mid UV to visible light.
- Compositions covered under the present invention which contain recurring aromatic rings have another desirable property, namely, resistance to plasma and reactive ion etching.
- Compositions of the present invention containing diaryliodonium or triarylsulfonium metal halides are particularly useful and advantageous when used with deep UV light (200-300 nm) exposure, because they are very sensitive to deep UV light and give very high resolution images with nearly vertical wall angles even in films thicker than 2µ.
- The most preferred photoinitiators are unsubstituted and symmetrically or unsymmetrically substituted diaryliodonium or triarylsulfonium salts. The most preferable gegenanions of the salts in the present invention are complex metal halides such as tetrafluoroborate, hexafluoroantimonate, hexafluoroarsenate, and hexafluorophosphate, but the invention is not limited to these gegenanions and photoinitiators. In the present invention, the amount of initiator used ranges from 1 to 100 w/w % to polymer. The preferred concentration range is from 5 to 50 ww %.
- The preferred polymers of the present invention are vinylic polymers containing recurrent pendant groups that undergo efficient acidolysis to produce products that are very different in polarity (Solubility) than their precursors. The invention, however, is not limited to polymers obtained by vinylic addition polymerization. Other polymerizations such as condensation, polyaddition, and addition condensation can be employed to synthesize polymers useful in the present invention.
- The preferred acid labile pendant groups are tert-butylesters of carboxylic acides and tert-butylcarbonates of phenols but, it is understood that a wide range of acid labile groups are operative in the invention. These include trityl, benzyl, benzyhdryl modifications as well as others well known in the art.
- The most preferred polymers are poly(p-tert-butoxycarbonyloxy-α-methylstyrene), poly(p-tert-butoxycarbonyloxystyrene), poly(tert-butyl p-vinylbenzoate), poly(tert-butyl p-isopropenylphenyloxyacetate), and poly(tert-butyl methacrylate).
- The preferred compounds used with diaryliodonium or triarylsulfonium salts to sensitize the compositions to longer wavelengths ranging from mid UV to visible light are polycyclic aromatics such as pyrene and perylene. Other dyes are also available that are operative sensitizers including the acridines. The invention is not limited to the use of any particular class of dyes.
- The following synthetic procedures describe the preferred method for making the preferred polymers. The synthesis of the photoinitiators has been well documented in the literature. The following procedure also describes the preferred process for using the present invention.
- A solution of 5.44 g of p-hydroxyacetophenone in 150 mL of dry tetrahydrofuran was treated with 4.48 g of potassium tert-butoxide. To the mixture were then added 10.02 g of di-tert-butyl dicarbonate in tetrahydrofuran. After stirring for one hour at room temperature, the reaction was poured into cold water, and the resulting mixture was extracted with ethyl acetate. After a standard work-up procedure, the solution was concentrated and the product crystallized on standing at room temperature (9.2 g, 97% yield). A suspension of 3.57 g of methyltriphenylphosphonium bromide in 50 mL of dry tetrahydrofuran was treated with 1.12 g of potassium tert-butoxide. After stirring for 30 minures, 2.36 g of p-tert-butoxycarbonyloxyacetophenone in 20 mL of tetrahydrofuran were added. After the work-up procedure, the organic layer was concentrated to yield a viscous material which was purified by high pressure liquid chromatography using hexane as eluent to give 1.55 g (66%) of pure p-tert-butoxycarbonyloxy-α-methylstyrene.
- A mixture of 5.64 g of p-hydroxy-α-methylstyrene, synthesized by base-catalyzed cleavage of 2,2-bis(p-hydroxyphenyl)propane, and 6.5 g of potassium tert-butoxide in 50 mL of dry tetrahydrofuran was stirred for 10 minutes, then a tetrahydrofuran solution of 12.7 g of di-tert-butyl dicarbonare was added. The resulting gelatinous mixture was mechanically stirred for 20 minutes, and then poured into cold water. After work-up, a crude product was obtained by evaporation of the extraction solvent (ethyl acetate). Purification was achieved by high pressure liquid chromatography with hexane as eluent to give 8.03 g (81%) of the pure p-tert-butoxycarbonyloxy-α-methylstyrene
- A solution of 21.7g of p-hydroxybenzaldehyde in dry THF was treated with 19.94g of potassium t-butoxide under a nitrogen atmosphere. After stirring for a few minutes at room temperature, 42.8g of di-t-butyldicarbonate were added and the mixture was stirred for another hour at room temperature. Thin layer chromatography showed that the reaction was complete and the mixture was poured into ice water. The product was extracted with ethyl acetate, washed with water and dried over magnesium sulfate. Evaporation of the solvent afforded 39g (99%) of a crude material which can be used directly for the preparation of p-t-Butoxycarbonyloxystyrene. Alternately, the product was purified by preparative HPLC to afford the pure material, p-t-Butoxycarbonyloxybenzaldehyde.
- A suspension of 34.1g of methylriphenylphosphonium bromide in 400mL of dry THF was treated with 10.7g of potassium t-butoxide under a nitrogen atmosphere. After stirring for 10 min at room temperature, the yellow solution was treated with a solution of 21.2g of p-t-butoxy-carbonyloxybenzaldehyde in 100 mL of dry THF. After stirring for one hour, the mixture was poured into cold water and extracted with ethyl acetate. The organic phase was washed, dried over magnesium sulfate and concentrated. The crude product was purified by preparative HPLC to yield 16.6g (79%) of pure p-t-Butoxycarbonyloxystyrene. Alternately, IIIc was purified by distillation under reduced pressure.
- p-tert-Butoxycarbonyloxy-α-methylstyrene (3.000 g) was dried under high vacuum and dissolved in 10.0 mL of dry liquid sulfur dioxide distilled in vacuo into the polymerization ampoule to give a yellow solution. With the monomer solution frozen at liquid nitrogen temperature, boron trifluoride etherate (0.02 mL, 1.2 mole % to the monomer) was introduced by distillation in vacuo. Upon thawing at -65°C, the mixture became turbid, and after one hour at -65°C, a phase separation was observed. Then, almost the whole mass solidified. After 26 hours, the ampoule was cut open and cold methanol was added at -65°C to provide the polymer as a white precipitate. The polymer was dissolved in dichloromethane, precipitated in methanol, purified by reprecipitation in methanol, and dried in vacuo at 38°C to provide 2.614 g (87.1%) of product with number average molecular weight of 46,900 (membrane osometry).
- Commercial poly(p-vinylphenol) was reacted under phase transfer conditions with di-tert-butyl dicarbonate and sodium carbonate. The resulting polymer was isolated from the organic phase by precipitation to provide greater than 90% yield of product showing the characteristic carbonyl absorbance of aryl alkyl carbonates.
- A solution of 5 g of p-t-butoxycarbonyloxystyrene in 5 mL of toluene containing 0.03g of AIBN was heated to 65-75° under nitrogen. The misture became very viscous overnight and, after being diluted with dichloromethane, the polymer was precipitated in petroleum ether. The white solid was washed with petroleum ether, then with methanol and dried. The polymer weighed 4.1g (82% yield) and has Mn = 43,000 (osmometry).
- p-tert-Butoxycarbonyloxystyrene (1.000 g) was dried under high vacuum and dissolved in 3.0 mL of dry liquid sulfur dioxide distilled in vacuo into the polymerization ampoule to give a yellow solution. With the solution frozen at liquid nitrogen temperature, boron trifluoride etherate (5 µL, 0.8 mole% to the monomer) was introduced by distillation in vacuo. The polymerization was carried out at -65°C for 27 hours. The ampoule was cut open and cold methanol was added at - 65 °C to provide the polymer as a white precipitate. The polymer was dissolved in chloroform, precipitated in methanol, purified by reprecipitation in methanol, and dried at 40°C to provide 0.901 g (90.1%) of product with number average molecular weight of 28,900 (GPC).
- In a typical experiment, the polymer is dissolved in diglyme or cyclohenanone at 20 w/v% of solids, to which is added the onium salt at 20 w/w% to the polymer.
- The solution is filtered through a 0.2 µ teflon filter. A resist layer is formed from the solution by spin coating onto a silicon wafer. The coated film is baked at 90-100°C for 30 minutes.
- The films are then exposed through a quartz mask to UV radiation from an Oriel illuminator or a Hybrid Technology Group Model 345-10 Xe-Hg lamp, orimagewise exposed to 25 KeV scanning electron beam radiation or to x-radiation.
- The exposed films are heated at 90-100°C for 5-15 seconds.
- The exposed and heated films are then developed in agueous base or alcohol to provide high resolution positive tone images without loss of film thickness in the unexposed regions.
- The system can be easily made negative-working by development in a nonpolar solvent such a dichloromethane or mixtures of hexane and dichloromethane after exposure and baking.
- The sensitization to the longer wavelengths can be achieved by adding a small amount of pyrene or perylene to the resist solution above. Pyrene is effective to render the resist compositions containing diphenylliodonium salts sensitive to 313 nm radiation. Perylene is effective to render the resist compositions containing diphenyliodonium or triphenylsulfonium salts sensitive to 365, 404 and 436 nm radiation.
- Poly(p-tert-butoxycarbonyloxy-α-methylstyrene) (number average molecular weight 46,900) was dissolved in diglyme at 20 w/v% of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer. The resist film was spin coated from the solution onto silicon wafers at 3000 rpm to form a 0.6 µ thick layer. The film was baked at 100°C for 30 minutes, and then exposed through a quartz mask to UV radiation at a dose of 5-10 mJ/cm2. After postbaking at 100°C for 5 seconds, high resolution positive images were obtained by development in agueous base for 60 seconds. Similarly, negative images were obtained by development in dichloromethane/hexane for 5-10 seconds.
- Poly(p-tert-butoxycarbonyloxy-α-methylstryene) (number average molecular weight of 46,900) was dissolved in cyclohexanone at 30 w/v% of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer. The resist film was spin coated from the filtered solution onto the silicon wafer at 2000 rpm to give a 2.4 µ thick layer. The film was baked at 100°C for 30 minutes, and then exposed through a quartz mask to narrow bond width 254 nm UV radiation at a dose of 50 mJ/cm2. The exposed film was postbaked at 100°C for 15 seconds. High resolution positive images with nearly vertical wall angles were obtained by development in isopropanol for 30 seconds. Negative images were also obtained by development in dichloromethane for 30 seconds.
- Poly(p-tert-butoxycarbonyloxystyrene) (number average molecular weight of 21,600) was dissolved in a mixture of 1,1,2,2-tetrachloroethane and diglyme (5:1) at 3 w/v% of solids. Diphenyliodonium hexafluoroarsenate (20 w/w% to the polymer) and a small amount of perylene were added to the polymer solution. A one µ thick film was cast from the solution onto a quartz wafer by spin coating at 2500 rpm. The film was baked at 100°C for 10 minutes, and exposed to narrow bandwidth 365 nm radiation at a dose of 25 mJ/cm2. After postbaking at 100°C for 2 minutes, the side groups were confirmed to be completely cleaved by UV and IR spectroscopy.
- Poly(p-tert-butoxycarbonyloxy-α-methylstyrene) (number average molecular weight of 46,900) was dissolved in diglyme at 20 w/v % of solids. Triphenylsulfonium hexafluoroarsenate (20 w/w% to the polymer) was added. The resist film was spin coated from the solution onto a silicon wafer at 3000 rpm to give a 0.6 µ thick layer. The film was baked at 100°C for 30 minutes, and then exposed to 25 KeV scanning electron beam radiation at incident doses of 50,20, 10, and 5 µC/cm2 to provide 4.0 to 0.25 µ lines. The exposed film was postbaked at 100°C for 5 seconds, and developed in isopropanol to provide high resolution positive images. The image quality is good at 10 µC/cm2.
- Poly(tert-butyl methacrylate) synthesized by radical polymerization was dissolved in diglyme at 20 w/v % of solids. Triphenylsulfonium hexafluoroarsenate was added at a loading of 20 w/w% to the polymer. The resist film was cast from the solution on a silicon wafer by spin coating at 3000 rpm to give a 0.6 µ thick layer. The film was baked at 100°C for 30 minutes, and exposed through a quartz mask to UV radiation at a dose of 55 mJ/cm2. The exposed film was postbaked at 100°C for 20 seconds and developed in dichloromethane for 30 seconds to provide high resolution negative images.
Claims (8)
- A resist composition comprising:a polymer and a photoinitiator which generates an acid upon exposure to radiation, the photoinitiator being present in from 1% to 100% by weight of said polymer, and the polymer having acid labile groups pendant from the polymer backbone;said resist composition being positive working when developed with alkaline developer or polar solvent to remove exposed areas of the composition and negative working when developed with a nonpolar solvent to remove unexposed areas of the composition; andwherein said photoinitiator is selected from the group consisting of unsubstituted diaryliodonium salts, symmetrically substituted diaryliodonium salts, or unsymmetrically substituted diaryliodonium salts.
- A resist composition comprising:a polymer and a photoinitiator which generates an acid upon exposure to radiation, the photoinitiator being present in from 1% to 100% by weight of said polymer, and the polymer having acid labile groups pendant from the polymer backbone;said resist composition being positive working when developed with alkaline developer or polar solvent to remove exposed areas of the composition and negative working when developed with a nonpolar solvent to remove unexposed areas of the composition; andwherein said photoinitiator is selected from the group consisting of unsubstituted triarylsulfonium salts, symmetrically substituted triarylsulfonium salts, or unsymmetrically substituted triarylsulfonium salts.
- A resist composition as claimed in claim 1 or Claim 2 which also contains a sensitizer that absorbs radiation and transfers energy to the photoinitiator.
- A resist composition as claimed in claim 3 wherein the sensitizer is a dye.
- A resist composition as claimed in claim 3 wherein the sensitizer is a polycyclic aromatic compound.
- A resist composition as claimed in claim 3 wherein the sensitizer is pyrene.
- A resist composition as claimed in claim 3 wherein the sensitizer is perylene.
- A resist composition as claimed in claim 1 or claim 2, wherein said photoinitiator is taken from the group consisting of symmetrically or unsymmetrically substituted diaryliodonium or triarylsulfonium.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/410,201 US4491628A (en) | 1982-08-23 | 1982-08-23 | Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone |
US410201 | 1982-08-23 | ||
EP83104285A EP0102450B1 (en) | 1982-08-23 | 1983-05-02 | Resist compositions |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83104285.8 Division | 1983-05-02 | ||
EP83104285A Division EP0102450B1 (en) | 1982-08-23 | 1983-05-02 | Resist compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0404206A2 EP0404206A2 (en) | 1990-12-27 |
EP0404206A3 EP0404206A3 (en) | 1991-02-27 |
EP0404206B1 true EP0404206B1 (en) | 1996-09-04 |
Family
ID=23623700
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90114926A Expired - Lifetime EP0404206B1 (en) | 1982-08-23 | 1983-05-02 | Resist compositions |
EP83104285A Expired EP0102450B1 (en) | 1982-08-23 | 1983-05-02 | Resist compositions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83104285A Expired EP0102450B1 (en) | 1982-08-23 | 1983-05-02 | Resist compositions |
Country Status (4)
Country | Link |
---|---|
US (1) | US4491628A (en) |
EP (2) | EP0404206B1 (en) |
JP (1) | JPS5945439A (en) |
DE (2) | DE3382401D1 (en) |
Families Citing this family (756)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4770977A (en) * | 1984-09-21 | 1988-09-13 | Commissariat A L'energie Atomique | Silicon-containing polymer and its use as a masking resin in a lithography process |
FR2570844B1 (en) * | 1984-09-21 | 1986-11-14 | Commissariat Energie Atomique | PHOTOSENSITIVE FILM BASED ON SILICON POLYMER AND ITS USE AS MASKING RESIN IN A LITHOGRAPHY PROCESS |
EP0199303B1 (en) * | 1985-04-18 | 1992-06-24 | Oki Electric Industry Company, Limited | Method of forming a photoresist pattern |
US4663269A (en) * | 1985-08-07 | 1987-05-05 | Polytechnic Institute Of New York | Method of forming highly sensitive photoresist film in the absence of water |
US5217840A (en) * | 1985-08-12 | 1993-06-08 | Hoechst Celanese Corporation | Image reversal negative working o-quinone diazide and cross-linking compound containing photoresist process with thermal curing treatment and element produced therefrom |
US4929536A (en) * | 1985-08-12 | 1990-05-29 | Hoechst Celanese Corporation | Image reversal negative working O-napthoquinone diazide and cross-linking compound containing photoresist process with thermal curing |
US5256522A (en) * | 1985-08-12 | 1993-10-26 | Hoechst Celanese Corporation | Image reversal negative working O-naphthoquinone diazide and cross-linking compound containing photoresist process with thermal curing |
US4603101A (en) * | 1985-09-27 | 1986-07-29 | General Electric Company | Photoresist compositions containing t-substituted organomethyl vinylaryl ether materials |
US4665006A (en) * | 1985-12-09 | 1987-05-12 | International Business Machines Corporation | Positive resist system having high resistance to oxygen reactive ion etching |
US4657845A (en) * | 1986-01-14 | 1987-04-14 | International Business Machines Corporation | Positive tone oxygen plasma developable photoresist |
US4968581A (en) * | 1986-02-24 | 1990-11-06 | Hoechst Celanese Corporation | High resolution photoresist of imide containing polymers |
US4837124A (en) * | 1986-02-24 | 1989-06-06 | Hoechst Celanese Corporation | High resolution photoresist of imide containing polymers |
US4912018A (en) * | 1986-02-24 | 1990-03-27 | Hoechst Celanese Corporation | High resolution photoresist based on imide containing polymers |
US4897336A (en) * | 1986-04-11 | 1990-01-30 | Chien James C W | Self-developing radiation sensitive resist with amorphous polymer having haloalkyl substitution derived from cycic ether |
US4689289A (en) * | 1986-04-30 | 1987-08-25 | General Electric Company | Block polymer compositions |
US5310619A (en) * | 1986-06-13 | 1994-05-10 | Microsi, Inc. | Resist compositions comprising a phenolic resin, an acid forming onium salt and a tert-butyl ester or tert-butyl carbonate which is acid-cleavable |
US5362607A (en) * | 1986-06-13 | 1994-11-08 | Microsi, Inc. | Method for making a patterned resist substrate composite |
DE3750275T3 (en) * | 1986-06-13 | 1998-10-01 | Microsi Inc | Lacquer composition and application. |
US4939070A (en) * | 1986-07-28 | 1990-07-03 | Brunsvold William R | Thermally stable photoresists with high sensitivity |
JPS6336240A (en) * | 1986-07-28 | 1988-02-16 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Resist material |
EP0264908B1 (en) * | 1986-10-23 | 1996-03-20 | International Business Machines Corporation | High sensitivity resists having autodecomposition temperatures greater than about 160 C |
US4931379A (en) * | 1986-10-23 | 1990-06-05 | International Business Machines Corporation | High sensitivity resists having autodecomposition temperatures greater than about 160° C. |
US4800152A (en) * | 1987-03-16 | 1989-01-24 | International Business Machines Corporation | Negative resist compositions |
US4965322A (en) * | 1987-04-06 | 1990-10-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Photosensitive and heat-sensitive polymers, process for producing the same and process for recording information using the same |
US4775609A (en) * | 1987-05-18 | 1988-10-04 | Hoescht Celanese Corporation | Image reversal |
US4808511A (en) * | 1987-05-19 | 1989-02-28 | International Business Machines Corporation | Vapor phase photoresist silylation process |
US4810613A (en) * | 1987-05-22 | 1989-03-07 | Hoechst Celanese Corporation | Blocked monomer and polymers therefrom for use as photoresists |
US4962171A (en) * | 1987-05-22 | 1990-10-09 | Hoechst Celanese Corporation | Blocked monomer and polymers therefrom for use as photoresists |
US5081001A (en) * | 1987-05-22 | 1992-01-14 | Hoechst Celanese Corporation | Blocked monomer and polymers therefrom for use as photoresists |
DE3721741A1 (en) * | 1987-07-01 | 1989-01-12 | Basf Ag | RADIATION-SENSITIVE MIXTURE FOR LIGHT-SENSITIVE COATING MATERIALS |
US4916247A (en) * | 1987-09-07 | 1990-04-10 | Ciba-Geigy Corporation | Organometal-containing compounds |
EP0307353A3 (en) * | 1987-09-07 | 1990-09-12 | Ciba-Geigy Ag | Organometal-containing polymers and their use |
DE3821585A1 (en) * | 1987-09-13 | 1989-03-23 | Hoechst Ag | POSITIVELY WORKING RADIATION-SENSITIVE MIXTURE AND PRODUCTION OF RADIATION-SENSITIVE RECORDING MATERIAL FOR HIGH-ENERGY RADIATION |
US4824758A (en) * | 1988-01-25 | 1989-04-25 | Hoechst Celanese Corp | Photoresist compositions based on acetoxystyrene copolymers |
US4996136A (en) * | 1988-02-25 | 1991-02-26 | At&T Bell Laboratories | Radiation sensitive materials and devices made therewith |
JP2540199B2 (en) * | 1988-02-25 | 1996-10-02 | アメリカン テレフォン アンド テレグラフ カムパニー | Device manufacturing method |
DE3812325A1 (en) * | 1988-04-14 | 1989-10-26 | Basf Ag | RADIATION-SENSITIVE MIXTURE FOR LIGHT-SENSITIVE COATING MATERIALS AND METHOD FOR PRODUCING RELIEF PATTERNS AND RELIEF IMAGES |
DE3817009A1 (en) * | 1988-05-19 | 1989-11-30 | Basf Ag | RADIATION SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF PATTERNS |
DE3817011A1 (en) * | 1988-05-19 | 1989-11-30 | Basf Ag | RADIATION-SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF PATTERNS |
DE3817010A1 (en) * | 1988-05-19 | 1989-11-30 | Basf Ag | RADIATION SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF PATTERNS |
JP2768692B2 (en) * | 1988-08-01 | 1998-06-25 | 株式会社日立製作所 | Radiation-sensitive composition and pattern forming method |
US5290666A (en) * | 1988-08-01 | 1994-03-01 | Hitachi, Ltd. | Method of forming a positive photoresist pattern utilizing contrast enhancement overlayer containing trifluoromethanesulfonic, methanesulfonic or trifluoromethaneacetic aromatic diazonium salt |
EP0366590B2 (en) * | 1988-10-28 | 2001-03-21 | International Business Machines Corporation | Highly sensitive positive photoresist compositions |
US6051659A (en) * | 1992-08-20 | 2000-04-18 | International Business Machines Corporation | Highly sensitive positive photoresist composition |
DE3837438A1 (en) * | 1988-11-04 | 1990-05-10 | Basf Ag | RADIATION-SENSITIVE MIXTURE |
DE3837513A1 (en) * | 1988-11-04 | 1990-05-10 | Basf Ag | RADIATION-SENSITIVE MIXTURE |
DE3902115A1 (en) * | 1989-01-25 | 1990-08-02 | Basf Ag | RADIATION-SENSITIVE POLYMERS |
DE3907953A1 (en) * | 1989-03-11 | 1990-09-13 | Hoechst Ag | RADIATIONMARKABLE MIXTURE AND RADIATION-SENSITIVE RECORDING MATERIAL MADE THEREFROM FOR HIGHERERGETIC RADIATION |
EP0388343B1 (en) * | 1989-03-14 | 1996-07-17 | International Business Machines Corporation | Chemically amplified photoresist |
JP2661671B2 (en) * | 1989-03-20 | 1997-10-08 | 株式会社日立製作所 | Pattern forming material and pattern forming method using the same |
US5391465A (en) * | 1989-06-20 | 1995-02-21 | Rohm And Haas Company | Method of using selected photoactive compounds in high resolution, acid hardening photoresists with near ultraviolet radiation wherein the photoresist comprise conventional deep UV photoacid generators |
DE69029104T2 (en) | 1989-07-12 | 1997-03-20 | Fuji Photo Film Co Ltd | Polysiloxanes and positive working resist |
US5220037A (en) * | 1989-07-22 | 1993-06-15 | Basf Aktiengesellschaft | Sulfonium salts and use thereof |
DE3924298A1 (en) * | 1989-07-22 | 1991-02-07 | Basf Ag | NEW SULPHONIUM SALTS AND THEIR USE |
DE3927632A1 (en) * | 1989-08-22 | 1991-02-28 | Basf Ag | IMPLEMENTATION PRODUCT, METHOD FOR THE PRODUCTION THEREOF AND THE RADIATION-SENSITIVE MATERIAL THEREFORE RECEIVED |
DE3930087A1 (en) * | 1989-09-09 | 1991-03-14 | Hoechst Ag | POSITIVELY WORKING RADIATION-SENSITIVE MIXTURE AND PRODUCTION OF RADIATION-SENSITIVE RECORDING MATERIAL THEREOF |
DE3930086A1 (en) * | 1989-09-09 | 1991-03-21 | Hoechst Ag | POSITIVELY WORKING RADIATION-SENSITIVE MIXTURE AND PRODUCTION OF RADIATION-SENSITIVE RECORDING MATERIAL THEREOF |
DE3930584A1 (en) * | 1989-09-13 | 1991-03-14 | Basf Ag | OFFSET PRINTING PLATE PRODUCED ON ELECTROPHOTOGRAPHIC WAY WITH HYDROPHILIC CONCRETE AREAS AND OLEOPHILIC UNCOVERAGE AREAS |
DE3935875A1 (en) * | 1989-10-27 | 1991-05-02 | Basf Ag | RADIATION-SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF PATTERNS |
US5023164A (en) * | 1989-10-23 | 1991-06-11 | International Business Machines Corporation | Highly sensitive dry developable deep UV photoresist |
DE3940965A1 (en) * | 1989-12-12 | 1991-06-13 | Basf Ag | RADIATION-SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF STRUCTURES |
CA2051400A1 (en) * | 1989-12-15 | 1991-06-16 | Alan R. Browne | Autodeposition emulsion for selectively protecting metallic surfaces |
US5216135A (en) | 1990-01-30 | 1993-06-01 | Wako Pure Chemical Industries, Ltd. | Diazodisulfones |
EP0440374B1 (en) * | 1990-01-30 | 1997-04-16 | Wako Pure Chemical Industries Ltd | Chemical amplified resist material |
JPH03223858A (en) * | 1990-01-30 | 1991-10-02 | Matsushita Electric Ind Co Ltd | Formation of pattern |
DE4005212A1 (en) * | 1990-02-20 | 1991-08-22 | Basf Ag | Radiation-sensitive mixt. for prodn. of photoresist - contains alkali-soluble binder, onium salt of strong acid and 2,2-di:substd. benz-1,3-dioxolane as solubility inhibitor |
DE4007924A1 (en) * | 1990-03-13 | 1991-09-19 | Basf Ag | Radiation-sensitive mixt., esp. for positive photoresists - contains phenolic resin binder in which 30-70 per cent of hydroxyl gps. are protected, esp. by 2-tetra:hydro-pyranyl or -furanyl gps. |
JP2661317B2 (en) * | 1990-03-27 | 1997-10-08 | 松下電器産業株式会社 | Pattern formation method |
JP2632066B2 (en) * | 1990-04-06 | 1997-07-16 | 富士写真フイルム株式会社 | Positive image forming method |
US4985332A (en) * | 1990-04-10 | 1991-01-15 | E. I. Du Pont De Nemours And Company | Resist material with carbazole diazonium salt acid generator and process for use |
US5206317A (en) * | 1990-04-10 | 1993-04-27 | E. I. Du Pont De Nemours And Company | Resist material and process for use |
US5120629A (en) * | 1990-04-10 | 1992-06-09 | E. I. Du Pont De Nemours And Company | Positive-working photosensitive electrostatic master |
US5212047A (en) * | 1990-04-10 | 1993-05-18 | E. I. Du Pont De Nemours And Company | Resist material and process for use |
US5145764A (en) * | 1990-04-10 | 1992-09-08 | E. I. Du Pont De Nemours And Company | Positive working resist compositions process of exposing, stripping developing |
US5120633A (en) * | 1990-04-10 | 1992-06-09 | E. I. Du Pont De Nemours And Company | Resist material for use in thick film resists |
US5252427A (en) * | 1990-04-10 | 1993-10-12 | E. I. Du Pont De Nemours And Company | Positive photoresist compositions |
US5219711A (en) * | 1990-04-10 | 1993-06-15 | E. I. Du Pont De Nemours And Company | Positive image formation utilizing resist material with carbazole diazonium salt acid generator |
US5077174A (en) * | 1990-04-10 | 1991-12-31 | E. I. Du Pont De Nemours And Company | Positive working dry film element having a layer of resist composition |
US5262281A (en) * | 1990-04-10 | 1993-11-16 | E. I. Du Pont De Nemours And Company | Resist material for use in thick film resists |
EP0451311B1 (en) * | 1990-04-12 | 1999-03-10 | Siemens Aktiengesellschaft | Process for obtaining a resist pattern |
US5045431A (en) * | 1990-04-24 | 1991-09-03 | International Business Machines Corporation | Dry film, aqueous processable photoresist compositions |
JP2648804B2 (en) * | 1990-04-24 | 1997-09-03 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Dry film type aqueous processable photoresist composition |
JP2648805B2 (en) * | 1990-04-24 | 1997-09-03 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Aqueous-processable photoresist composition for liquid application |
DE59010396D1 (en) * | 1990-04-27 | 1996-08-01 | Siemens Ag | Process for producing a resist structure |
JP2645384B2 (en) * | 1990-05-21 | 1997-08-25 | 日本ペイント株式会社 | Positive photosensitive resin composition |
EP0464614B1 (en) * | 1990-06-25 | 1999-09-29 | Matsushita Electronics Corporation | A composition having sensitivity to light or radiation |
DE69130594T2 (en) * | 1990-06-29 | 1999-05-06 | Fujitsu Ltd., Kawasaki, Kanagawa | Process for creating a pattern |
JPH0488346A (en) * | 1990-07-31 | 1992-03-23 | Nippon Paint Co Ltd | Resist composition |
US5066566A (en) * | 1990-07-31 | 1991-11-19 | At&T Bell Laboratories | Resist materials |
US5229244A (en) * | 1990-08-08 | 1993-07-20 | E. I. Du Pont De Nemours And Company | Dry processible photosensitive composition including photo-acid generator and optically clear polymer (co-polymer) blend that becomes tacky upon exposure to actinic radiation |
EP0476865A1 (en) * | 1990-08-31 | 1992-03-25 | Wako Pure Chemical Industries Ltd | Resist material and process for forming pattern using the same |
KR920008537A (en) * | 1990-10-19 | 1992-05-28 | 원본미기재 | Resist composition |
JPH04158363A (en) * | 1990-10-22 | 1992-06-01 | Mitsubishi Electric Corp | Pattern forming resist material |
US5082965A (en) * | 1990-10-29 | 1992-01-21 | E. I. Du Pont De Nemours And Company | Process for preparation of alkoxycarbonyloxystyrene |
US5256809A (en) * | 1990-11-16 | 1993-10-26 | Hoechst Celanese Corporation | Method for preparing a salt of 4-hydroxystyrene and for preparing 4-tertiary-butoxycarbonyloxystyrene therefrom |
US5241098A (en) * | 1990-11-16 | 1993-08-31 | Hoechst Celanese Corporation | Method for preparing a salt of 4-hydroxystyrene and for preparing 4-tertiary-butoxycarbonyloxystyrene therefrom |
US5304690A (en) * | 1990-11-16 | 1994-04-19 | Hoechst Celanese Corporation | Process for the preparation of salts of 4-hydroxystyrene |
JPH04184345A (en) * | 1990-11-19 | 1992-07-01 | Fujitsu Ltd | Formation of resist pattern |
JP3031421B2 (en) * | 1990-11-28 | 2000-04-10 | 信越化学工業株式会社 | Chemically amplified positive resist material |
EP0494383B1 (en) * | 1990-12-20 | 1996-08-14 | Siemens Aktiengesellschaft | photoresist |
EP0492253B1 (en) * | 1990-12-20 | 1997-04-23 | Siemens Aktiengesellschaft | Photolithographic process |
ES2090218T3 (en) * | 1990-12-20 | 1996-10-16 | Siemens Ag | PHOTOLITHOGRAPHIC STRUCTURAL GENERATION. |
ES2076450T3 (en) * | 1990-12-20 | 1995-11-01 | Siemens Ag | MIXED POLYMERS. |
JP2968349B2 (en) * | 1991-02-01 | 1999-10-25 | 日本ペイント株式会社 | Method for manufacturing multicolor display device |
JPH04253939A (en) * | 1991-02-05 | 1992-09-09 | Shin Etsu Chem Co Ltd | Synthesis of para-tertiary butoxycarbonyloxystyrene |
US5219788A (en) * | 1991-02-25 | 1993-06-15 | Ibm Corporation | Bilayer metallization cap for photolithography |
US5851736A (en) * | 1991-03-05 | 1998-12-22 | Nitto Denko Corporation | Heat-resistant photoresist composition, photosensitive substrate, and process for forming heat-resistant positive or negative pattern |
DE4214363C2 (en) * | 1991-04-30 | 1998-01-29 | Toshiba Kawasaki Kk | Radiation sensitive mixture to form patterns |
JP2707164B2 (en) * | 1991-05-28 | 1998-01-28 | 信越化学工業株式会社 | Resist material |
JPH04350657A (en) * | 1991-05-28 | 1992-12-04 | Shin Etsu Chem Co Ltd | Resist material |
JPH04359906A (en) * | 1991-06-07 | 1992-12-14 | Shin Etsu Chem Co Ltd | Poly(p-t-butoxycarbonyloxystyrene) and its production |
JP3030672B2 (en) * | 1991-06-18 | 2000-04-10 | 和光純薬工業株式会社 | New resist material and pattern forming method |
DE4120172A1 (en) * | 1991-06-19 | 1992-12-24 | Hoechst Ag | RADIATION-SENSITIVE MIXTURE THAT CONTAINS NEW POLYMERS AS BINDERS WITH UNITS OF AMIDES OF (ALPHA), (BETA) -UNSATURATED CARBONIC ACIDS |
JP2655369B2 (en) * | 1991-06-28 | 1997-09-17 | 富士写真フイルム株式会社 | Photosensitive composition |
DE4124029A1 (en) * | 1991-07-19 | 1993-01-21 | Hoechst Ag | METHOD FOR PRODUCING ORGANIC COMPOUNDS CARRYING TERT.-BUTYLOXYCARBONYL GROUPS |
DE4124028A1 (en) * | 1991-07-19 | 1993-01-21 | Hoechst Ag | METHOD FOR PRODUCING N-TERT.-BUTOXYCARBONYL MALEIMIDE |
EP0524759A1 (en) * | 1991-07-23 | 1993-01-27 | AT&T Corp. | Device fabrication process |
US5250395A (en) * | 1991-07-25 | 1993-10-05 | International Business Machines Corporation | Process for imaging of photoresist including treatment of the photoresist with an organometallic compound |
DE4126409A1 (en) * | 1991-08-09 | 1993-02-11 | Hoechst Ag | RADIATION-SENSITIVE MIXTURE WITH A POLYMERIC BINDING AGENT WITH UNITS OF (ALPHA) - (BETA) - UNSETTED CARBONIC ACIDS |
US5506088A (en) * | 1991-09-17 | 1996-04-09 | Fujitsu Limited | Chemically amplified resist composition and process for forming resist pattern using same |
US5258257A (en) * | 1991-09-23 | 1993-11-02 | Shipley Company Inc. | Radiation sensitive compositions comprising polymer having acid labile groups |
US5439582A (en) * | 1991-10-02 | 1995-08-08 | Nippon Paint Co., Ltd. | Process for producing multicolor display |
EP0537524A1 (en) * | 1991-10-17 | 1993-04-21 | Shipley Company Inc. | Radiation sensitive compositions and methods |
JP2964107B2 (en) * | 1991-11-11 | 1999-10-18 | 日本電信電話株式会社 | Positive resist material |
US5229256A (en) * | 1991-12-06 | 1993-07-20 | International Business Machines Corporation | Process for generating positive-tone photoresist image |
DE69218393T2 (en) * | 1991-12-16 | 1997-10-16 | Matsushita Electric Ind Co Ltd | Resist material |
DE4202845A1 (en) * | 1992-01-31 | 1993-08-05 | Basf Ag | RADIATION-SENSITIVE MIXTURE |
US5342734A (en) * | 1992-02-25 | 1994-08-30 | Morton International, Inc. | Deep UV sensitive photoresist resistant to latent image decay |
JP2694097B2 (en) * | 1992-03-03 | 1997-12-24 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Antireflection coating composition |
JP2559192B2 (en) * | 1992-04-07 | 1996-12-04 | インターナショナル・ビジネス・マシーンズ・コーポレイション | An improved method for producing carbonates of hydroxyaromatic compounds. |
TW304235B (en) * | 1992-04-29 | 1997-05-01 | Ocg Microelectronic Materials | |
US5550004A (en) * | 1992-05-06 | 1996-08-27 | Ocg Microelectronic Materials, Inc. | Chemically amplified radiation-sensitive composition |
US5384229A (en) * | 1992-05-07 | 1995-01-24 | Shipley Company Inc. | Photoimageable compositions for electrodeposition |
US5587274A (en) * | 1992-06-19 | 1996-12-24 | Nippon Paint Co., Ltd. | Resist composition |
JP3202792B2 (en) * | 1992-06-19 | 2001-08-27 | 日本ペイント株式会社 | Resist composition |
US6111133A (en) * | 1992-09-23 | 2000-08-29 | Lucent Technologies Inc. | Process for preparing substituted styrenes |
US5319142A (en) * | 1992-10-06 | 1994-06-07 | Hoechst Celanese Corporation | Process for preparing substituted and unsubstituted arylalkylamines |
US5480748A (en) * | 1992-10-21 | 1996-01-02 | International Business Machines Corporation | Protection of aluminum metallization against chemical attack during photoresist development |
EP0698230A1 (en) * | 1992-10-29 | 1996-02-28 | International Business Machines Corporation | Chemically amplified photoresist |
JP2688168B2 (en) | 1992-11-03 | 1997-12-08 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Photoresist image forming process |
EP0605089B1 (en) * | 1992-11-03 | 1999-01-07 | International Business Machines Corporation | Photoresist composition |
JP2654339B2 (en) * | 1992-11-24 | 1997-09-17 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Photosensitive resist composition and method for forming resist image on substrate |
US5395734A (en) * | 1992-11-30 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Shoot and run printing materials |
DE59306590D1 (en) * | 1992-12-04 | 1997-07-03 | Ocg Microelectronic Materials | Positive photoresist with improved process properties |
DE4242051A1 (en) * | 1992-12-14 | 1994-06-16 | Hoechst Ag | N, N-disubstituted sulfonamides and the radiation-sensitive mixture produced with them |
DE4242050A1 (en) * | 1992-12-14 | 1994-06-16 | Hoechst Ag | Polymers with N, N-disubstituted sulfonamide side groups and their use |
US5372912A (en) * | 1992-12-31 | 1994-12-13 | International Business Machines Corporation | Radiation-sensitive resist composition and process for its use |
JPH06214395A (en) * | 1993-01-18 | 1994-08-05 | Sumitomo Chem Co Ltd | Positive type photoresist composition |
EP0608983B1 (en) * | 1993-01-25 | 1997-11-12 | AT&T Corp. | A process for controlled deprotection of polymers and a process for fabricating a device utilizing partially deprotected resist polymers |
KR100355254B1 (en) * | 1993-02-15 | 2003-03-31 | Clariant Finance Bvi Ltd | Positive type radiation-sensitive mixture |
US5314782A (en) * | 1993-03-05 | 1994-05-24 | Morton International, Inc. | Deep UV sensitive resistant to latent image decay comprising a diazonaphthoquinone sulfonate of a nitrobenzyl derivative |
US5308744A (en) * | 1993-03-05 | 1994-05-03 | Morton International, Inc. | Source of photochemically generated acids from diazonaphthoquinone sulfonates of nitrobenzyl derivatives |
US6703181B1 (en) | 1993-03-12 | 2004-03-09 | Kabushiki Kaisha Toshiba | Photosensitive composition having uniform concentration distribution of components and pattern formation method using the same |
US5496678A (en) * | 1993-04-16 | 1996-03-05 | Kansai Paint Co., Ltd. | Photosensitive compositions containing a polymer with carboxyl and hydroxyphenyl groups, a compound with multiple ethylenic unsaturation and a photo-acid generator |
JP3339157B2 (en) * | 1993-05-31 | 2002-10-28 | ソニー株式会社 | Photosensitive composition and pattern forming method |
JPH07140666A (en) * | 1993-06-04 | 1995-06-02 | Internatl Business Mach Corp <Ibm> | Micro-lithographic resist composition, acid instability compound, formation of micro-lithographic relief image and acid sensitive polymer composition |
JP3297199B2 (en) * | 1993-09-14 | 2002-07-02 | 株式会社東芝 | Resist composition |
US5744281A (en) * | 1993-09-14 | 1998-04-28 | Kabushiki Kaisha Toshiba | Resist composition for forming a pattern and method of forming a pattern wherein the composition 4-phenylpyridine as an additive |
JP3353258B2 (en) * | 1993-10-26 | 2002-12-03 | 富士通株式会社 | Deep UV resist |
US5688628A (en) * | 1993-11-11 | 1997-11-18 | Nippon Zeon Co., Ltd. | Resist composition |
EP0653681B1 (en) * | 1993-11-17 | 2000-09-13 | AT&T Corp. | A process for device fabrication using an energy sensitive composition |
JP3203995B2 (en) * | 1993-12-24 | 2001-09-04 | ジェイエスアール株式会社 | Radiation-sensitive resin composition |
JP3271728B2 (en) * | 1994-02-14 | 2002-04-08 | 日本電信電話株式会社 | Positive resist composition |
US5486267A (en) * | 1994-02-28 | 1996-01-23 | International Business Machines Corporation | Method for applying photoresist |
US5597868A (en) * | 1994-03-04 | 1997-01-28 | Massachusetts Institute Of Technology | Polymeric anti-reflective compounds |
US5663035A (en) * | 1994-04-13 | 1997-09-02 | Hoechst Japan Limited | Radiation-sensitive mixture comprising a basic iodonium compound |
US5736296A (en) * | 1994-04-25 | 1998-04-07 | Tokyo Ohka Kogyo Co., Ltd. | Positive resist composition comprising a mixture of two polyhydroxystyrenes having different acid cleavable groups and an acid generating compound |
DE4414897A1 (en) * | 1994-04-28 | 1995-11-02 | Hoechst Ag | Aromatic diazonium salts and their use in radiation-sensitive mixtures |
DE4414896A1 (en) * | 1994-04-28 | 1995-11-02 | Hoechst Ag | Positive working radiation sensitive mixture |
WO1995032455A1 (en) * | 1994-05-25 | 1995-11-30 | Siemens Aktiengesellschaft | Dry-developable positive resist |
US5580694A (en) | 1994-06-27 | 1996-12-03 | International Business Machines Corporation | Photoresist composition with androstane and process for its use |
JP3033443B2 (en) | 1994-06-29 | 2000-04-17 | 信越化学工業株式会社 | Anti-reflective coating material |
US5561216A (en) * | 1994-07-01 | 1996-10-01 | University Of North Carolina At Chapel Hill | Late transition metal catalysts for the CO- and terpolymerization of olefin and alkyne monomers with carbon monoxide |
US5558971A (en) | 1994-09-02 | 1996-09-24 | Wako Pure Chemical Industries, Ltd. | Resist material |
US5863705A (en) * | 1994-09-12 | 1999-01-26 | Siemens Aktiengesellschaft | Photolithographic pattern generation |
JPH08110638A (en) | 1994-10-13 | 1996-04-30 | Hitachi Chem Co Ltd | Photosensitive resin composition and production of resist image |
WO1996012216A1 (en) * | 1994-10-13 | 1996-04-25 | Nippon Zeon Co., Ltd. | Resist composition |
JP3585277B2 (en) * | 1994-12-05 | 2004-11-04 | 本州化学工業株式会社 | Method for producing styrene derivative |
JP3198845B2 (en) * | 1994-12-05 | 2001-08-13 | 信越化学工業株式会社 | Chemically amplified positive resist material |
US5663036A (en) * | 1994-12-13 | 1997-09-02 | International Business Machines Corporation | Microlithographic structure with an underlayer film comprising a thermolyzed azide |
DE4444669A1 (en) * | 1994-12-15 | 1996-06-20 | Hoechst Ag | Radiation sensitive mixture |
JP3277114B2 (en) * | 1995-02-17 | 2002-04-22 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method of producing negative tone resist image |
KR100293130B1 (en) * | 1995-04-12 | 2001-09-17 | 카나가와 치히로 | Polymer compound and chemically amplified positive resist material |
JPH0954437A (en) | 1995-06-05 | 1997-02-25 | Fuji Photo Film Co Ltd | Chemical amplification type positive resist composition |
JP3046225B2 (en) * | 1995-06-15 | 2000-05-29 | 東京応化工業株式会社 | Coating solution for forming positive resist film |
US5922810A (en) * | 1995-07-31 | 1999-07-13 | Fmc Corporation | Deprotection of protected functional polymers |
KR0178475B1 (en) * | 1995-09-14 | 1999-03-20 | 윤덕용 | Novel n-vynyl lactam derivatives & their polymers |
US5863699A (en) * | 1995-10-12 | 1999-01-26 | Kabushiki Kaisha Toshiba | Photo-sensitive composition |
US6391512B1 (en) * | 1995-10-20 | 2002-05-21 | Konica Corporation | Image forming material and image forming method |
JP3073149B2 (en) * | 1995-10-30 | 2000-08-07 | 東京応化工業株式会社 | Positive resist composition |
TW477913B (en) * | 1995-11-02 | 2002-03-01 | Shinetsu Chemical Co | Sulfonium salts and chemically amplified positive resist compositions |
KR100191126B1 (en) | 1995-11-28 | 1999-06-15 | 윤덕용 | Vinyl-4-t-butoxycarbonyloxybenzal-vinylacetate-copolymer, vinyl-4-t-butoxycarbonyloxybenzal-vinyl-4-hydroxybenzal-vinylalkohol-vinylacetate copolymers and their production |
US5585220A (en) * | 1995-12-01 | 1996-12-17 | International Business Machines Corporation | Resist composition with radiation sensitive acid generator |
US6165673A (en) * | 1995-12-01 | 2000-12-26 | International Business Machines Corporation | Resist composition with radiation sensitive acid generator |
US5879856A (en) * | 1995-12-05 | 1999-03-09 | Shipley Company, L.L.C. | Chemically amplified positive photoresists |
ATE244904T1 (en) | 1995-12-21 | 2003-07-15 | Wako Pure Chem Ind Ltd | POLYMER COMPOSITION AND RECIST MATERIAL |
KR19990076735A (en) | 1996-01-26 | 1999-10-15 | 나카노 카쯔히코 | Resist composition |
JP3591672B2 (en) | 1996-02-05 | 2004-11-24 | 富士写真フイルム株式会社 | Positive photosensitive composition |
JP3804138B2 (en) | 1996-02-09 | 2006-08-02 | Jsr株式会社 | Radiation sensitive resin composition for ArF excimer laser irradiation |
ATE199985T1 (en) | 1996-02-09 | 2001-04-15 | Wako Pure Chem Ind Ltd | POLYMER AND RESIST MATERIAL |
JP3962432B2 (en) * | 1996-03-07 | 2007-08-22 | 住友ベークライト株式会社 | Photoresist composition comprising a polycyclic polymer having acid labile pendant groups |
US6232417B1 (en) | 1996-03-07 | 2001-05-15 | The B. F. Goodrich Company | Photoresist compositions comprising polycyclic polymers with acid labile pendant groups |
TW394850B (en) * | 1996-03-07 | 2000-06-21 | Clariant Finance Bvi Ltd | Bottom antireflective coatings through refractive index modification by anomalous dispersion |
TW337591B (en) * | 1996-04-15 | 1998-08-01 | Shinetsu Chem Ind Co | Anti-reflection coating material |
KR0183901B1 (en) * | 1996-07-03 | 1999-04-01 | 삼성전자 주식회사 | Resist composition |
JP3808140B2 (en) * | 1996-09-10 | 2006-08-09 | Azエレクトロニックマテリアルズ株式会社 | Hydroxystyrene polymers protected with novel acid-sensitive groups and radiation-sensitive materials containing them |
US6090526A (en) * | 1996-09-13 | 2000-07-18 | Shipley Company, L.L.C. | Polymers and photoresist compositions |
US5876899A (en) * | 1996-09-18 | 1999-03-02 | Shipley Company, L.L.C. | Photoresist compositions |
US5733714A (en) * | 1996-09-30 | 1998-03-31 | Clariant Finance (Bvi) Limited | Antireflective coating for photoresist compositions |
JP3297324B2 (en) * | 1996-10-30 | 2002-07-02 | 富士通株式会社 | Resist composition, method for forming resist pattern, and method for manufacturing semiconductor device |
KR100211548B1 (en) * | 1996-12-20 | 1999-08-02 | 김영환 | Photosensitive copolymer for deep uv and producing method thereof |
KR100197673B1 (en) | 1996-12-20 | 1999-06-15 | Hyundai Electronics Ind | Copolymers containing n-vinyllactam derivatives, preparation methods thereof and photoresists therefrom |
KR100220951B1 (en) * | 1996-12-20 | 1999-09-15 | 김영환 | Vinyl 4-tetrahydropyraniloxybenzal-vinyl 4-hydroxybenzal-vinyltetrahydropyranil ether-vinyl acetate copolymer |
KR100265597B1 (en) * | 1996-12-30 | 2000-09-15 | 김영환 | Arf photosensitive resin and manufacturing method thereof |
US6808859B1 (en) * | 1996-12-31 | 2004-10-26 | Hyundai Electronics Industries Co., Ltd. | ArF photoresist copolymers |
KR100225956B1 (en) * | 1997-01-10 | 1999-10-15 | 김영환 | Arf photoresist introducing amine |
US6103445A (en) * | 1997-03-07 | 2000-08-15 | Board Of Regents, The University Of Texas System | Photoresist compositions comprising norbornene derivative polymers with acid labile groups |
US6117345A (en) * | 1997-04-02 | 2000-09-12 | United Microelectronics Corp. | High density plasma chemical vapor deposition process |
US5981145A (en) * | 1997-04-30 | 1999-11-09 | Clariant Finance (Bvi) Limited | Light absorbing polymers |
US5994430A (en) * | 1997-04-30 | 1999-11-30 | Clariant Finance Bvi) Limited | Antireflective coating compositions for photoresist compositions and use thereof |
US5958654A (en) * | 1997-08-25 | 1999-09-28 | Lucent Technologies Inc. | Lithographic process and energy-sensitive material for use therein |
US6077643A (en) * | 1997-08-28 | 2000-06-20 | Shipley Company, L.L.C. | Polymers and photoresist compositions |
US7026093B2 (en) * | 1997-08-28 | 2006-04-11 | Shipley Company, L.L.C. | Photoresist compositions |
US7482107B2 (en) * | 1997-08-28 | 2009-01-27 | Shipley Company, L.L.C. | Photoresist composition |
KR100489576B1 (en) * | 1997-10-08 | 2005-12-21 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Resist material and pattern formation method |
KR19990036901A (en) | 1997-10-08 | 1999-05-25 | 카나가와 치히로 | Polystyrene Polymer Compound, Chemically Amplified Positive Resist Material and Pattern Forming Method |
KR100254472B1 (en) * | 1997-11-01 | 2000-05-01 | 김영환 | New maleimide and alicyclic olefin monomer |
KR100252546B1 (en) * | 1997-11-01 | 2000-04-15 | 김영환 | Polymer resin and method for preparing the same |
US6057083A (en) | 1997-11-04 | 2000-05-02 | Shipley Company, L.L.C. | Polymers and photoresist compositions |
KR100321080B1 (en) | 1997-12-29 | 2002-11-22 | 주식회사 하이닉스반도체 | Copolymer resin, method for preparing the same, and photoresist using the same |
KR100520148B1 (en) | 1997-12-31 | 2006-05-12 | 주식회사 하이닉스반도체 | Novel bicycloalkene derivatives and photoresist polymers using the same and photoresist compositions containing the polymers |
KR100354871B1 (en) | 1997-12-31 | 2003-03-10 | 주식회사 하이닉스반도체 | Copolymer resin, method for producing the same, and photoresist using the same |
KR100313150B1 (en) * | 1997-12-31 | 2001-12-28 | 박종섭 | Lithocholylacidyl(meth)acrylate monomer and copolymer resin having the monomer and photoresist using the resin |
US6165674A (en) * | 1998-01-15 | 2000-12-26 | Shipley Company, L.L.C. | Polymers and photoresist compositions for short wavelength imaging |
US6190839B1 (en) | 1998-01-15 | 2001-02-20 | Shipley Company, L.L.C. | High conformality antireflective coating compositions |
US6037097A (en) * | 1998-01-27 | 2000-03-14 | International Business Machines Corporation | E-beam application to mask making using new improved KRS resist system |
EP2045275B1 (en) | 1998-02-23 | 2012-01-25 | Sumitomo Bakelite Co., Ltd. | Polycyclic resist compositions with increased etch resistance |
US6103447A (en) | 1998-02-25 | 2000-08-15 | International Business Machines Corp. | Approach to formulating irradiation sensitive positive resists |
US6303263B1 (en) | 1998-02-25 | 2001-10-16 | International Business Machines Machines | Irradiation sensitive positive-tone resists using polymers containing two acid sensitive protecting groups |
US6146806A (en) | 1998-04-06 | 2000-11-14 | Nec Corporation | Negative photoresist composition using polymer having 1,2-diol structure and process for forming pattern using the same |
DE69941227D1 (en) | 1998-04-06 | 2009-09-17 | Fujifilm Corp | Photosensitive resin composition |
KR100252062B1 (en) * | 1998-04-20 | 2000-06-01 | 윤종용 | Polymer mixture for use in photoresist, photoresist composition having thereof and preparation method thereof |
KR100252061B1 (en) * | 1998-04-20 | 2000-06-01 | 윤종용 | Polymer for use in photoresist, photoresist composition having thereof and preparation method thereof |
US6074800A (en) * | 1998-04-23 | 2000-06-13 | International Business Machines Corporation | Photo acid generator compounds, photo resists, and method for improving bias |
DE59908549D1 (en) * | 1998-04-24 | 2004-03-25 | Infineon Technologies Ag | Radiation sensitive mixture and its use |
KR19990081722A (en) | 1998-04-30 | 1999-11-15 | 김영환 | Carboxyl group-containing alicyclic derivatives and preparation method thereof |
KR100376983B1 (en) | 1998-04-30 | 2003-08-02 | 주식회사 하이닉스반도체 | Photoresist polymer and method for forming micropattern by using the same |
US6759483B2 (en) | 1998-05-05 | 2004-07-06 | Chemfirst Electronic Materials L.P. | Preparation of homo-, co- and terpolymers of substituted styrenes |
KR100261224B1 (en) | 1998-05-07 | 2000-09-01 | 윤종용 | Si-containing polymers and chemically amplified resists comprising the same |
TW457277B (en) * | 1998-05-11 | 2001-10-01 | Shinetsu Chemical Co | Ester compounds, polymers, resist composition and patterning process |
TWI232855B (en) * | 1998-05-19 | 2005-05-21 | Jsr Corp | Diazodisulfone compound and radiation-sensitive resin composition |
KR100287175B1 (en) * | 1998-05-20 | 2001-09-22 | 윤종용 | Dissolution inhibitor of chemically amplified photoresist and chemically amplified photoresist composition comprising the inhibitor |
JP3175697B2 (en) * | 1998-06-18 | 2001-06-11 | 日本電気株式会社 | Chemically amplified photoresist |
TW444027B (en) | 1998-06-30 | 2001-07-01 | Ind Tech Res Inst | Ring-opened polymer prepared from pericyclic olefin and photosensitive composition containing the polymer |
US6103456A (en) * | 1998-07-22 | 2000-08-15 | Siemens Aktiengesellschaft | Prevention of photoresist poisoning from dielectric antireflective coating in semiconductor fabrication |
KR100403325B1 (en) | 1998-07-27 | 2004-03-24 | 주식회사 하이닉스반도체 | Photoresist Polymers and Photoresist Compositions Using the Same |
US6093517A (en) * | 1998-07-31 | 2000-07-25 | International Business Machines Corporation | Calixarenes for use as dissolution inhibitors in lithographic photoresist compositions |
KR20000015014A (en) | 1998-08-26 | 2000-03-15 | 김영환 | New photoresist monomer, polymer, and photoresist compound |
JP3587743B2 (en) | 1998-08-26 | 2004-11-10 | 株式会社ハイニックスセミコンダクター | A photoresist monomer and a method for producing the same, a photoresist copolymer and a method for producing the same, a photoresist composition, a method for forming a photoresist pattern, and a semiconductor device. |
US6569971B2 (en) * | 1998-08-27 | 2003-05-27 | Hyundai Electronics Industries Co., Ltd. | Polymers for photoresist and photoresist compositions using the same |
US6136501A (en) * | 1998-08-28 | 2000-10-24 | Shipley Company, L.L.C. | Polymers and photoresist compositions comprising same |
US6127089A (en) * | 1998-08-28 | 2000-10-03 | Advanced Micro Devices, Inc. | Interconnect structure with low k dielectric materials and method of making the same with single and dual damascene techniques |
JP3120402B2 (en) | 1998-09-03 | 2000-12-25 | インターナショナル・ビジネス・マシーンズ・コーポレ−ション | Photoresist composition containing passivated aromatic amine compound |
KR100504644B1 (en) * | 1998-10-29 | 2005-08-04 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Positive Resist Materials |
WO2000026973A1 (en) | 1998-11-02 | 2000-05-11 | Presstek, Inc. | Transparent conductive oxides for plastic flat panel displays |
US6114085A (en) * | 1998-11-18 | 2000-09-05 | Clariant Finance (Bvi) Limited | Antireflective composition for a deep ultraviolet photoresist |
US6770413B1 (en) | 1999-01-12 | 2004-08-03 | Shipley Company, L.L.C. | Hydroxyphenyl copolymers and photoresists comprising same |
JP3680920B2 (en) | 1999-02-25 | 2005-08-10 | 信越化学工業株式会社 | Novel ester compound, polymer compound, resist material, and pattern forming method |
KR100314761B1 (en) | 1999-03-03 | 2001-11-17 | 윤덕용 | Polymer Using Norbornene Monomers with Derivatives of Cholic acid, Deoxycholic acid or Lithocholic acid and Photoresist Composition Containing thereof |
US6455223B1 (en) | 1999-03-26 | 2002-09-24 | Shin-Etsu Chemical Co., Ltd. | Resist compositions and patterning process |
TWI226339B (en) | 1999-03-26 | 2005-01-11 | Shinetsu Chemical Co | High molecular weight compound and the method to prepare the same |
KR100320773B1 (en) | 1999-05-31 | 2002-01-17 | 윤종용 | photoresist compositions |
US6187506B1 (en) | 1999-08-05 | 2001-02-13 | Clariant Finance (Bvi) Limited | Antireflective coating for photoresist compositions |
US6461789B1 (en) | 1999-08-25 | 2002-10-08 | Shin-Etsu Chemical Co., Ltd. | Polymers, chemical amplification resist compositions and patterning process |
TWI289568B (en) | 1999-08-30 | 2007-11-11 | Shinetsu Chemical Co | Polymer compound, resist material, and pattern formation method |
US6638684B2 (en) | 1999-08-31 | 2003-10-28 | Tokyo Ohka Kogyo Co., Ltd. | Photosensitive laminate, process for forming resist pattern using same and positive resist composition |
KR100308423B1 (en) | 1999-09-07 | 2001-09-26 | 주식회사 동진쎄미켐 | Polymer for chemically amplified resist and resists using this polymer |
US6369279B1 (en) | 1999-09-08 | 2002-04-09 | Shin-Etsu Chemical Co., Ltd. | Styrene derivatives |
TW527363B (en) | 1999-09-08 | 2003-04-11 | Shinetsu Chemical Co | Polymers, chemical amplification resist compositions and patterning process |
JP3969909B2 (en) | 1999-09-27 | 2007-09-05 | 富士フイルム株式会社 | Positive photoresist composition |
KR100549160B1 (en) | 1999-10-13 | 2006-02-03 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Polymers, Chemical Amplification Resist Compositions and Patterning Process |
US6333436B1 (en) | 1999-10-13 | 2001-12-25 | Shin-Etsu Chemical Co., Ltd. | Styrene derivatives |
TWI269940B (en) * | 1999-10-29 | 2007-01-01 | Shinetsu Chemical Co | Resist composition |
JP3755571B2 (en) | 1999-11-12 | 2006-03-15 | 信越化学工業株式会社 | Chemically amplified positive resist material and pattern forming method |
US6365322B1 (en) | 1999-12-07 | 2002-04-02 | Clariant Finance (Bvi) Limited | Photoresist composition for deep UV radiation |
JP3963624B2 (en) | 1999-12-22 | 2007-08-22 | 富士フイルム株式会社 | Positive photoresist composition for deep ultraviolet exposure |
US6509138B2 (en) | 2000-01-12 | 2003-01-21 | Semiconductor Research Corporation | Solventless, resistless direct dielectric patterning |
TWI225184B (en) * | 2000-01-17 | 2004-12-11 | Shinetsu Chemical Co | Chemical amplification type resist composition |
US6623907B2 (en) | 2000-02-04 | 2003-09-23 | Jsr Corporation | Radiation-sensitive resin composition |
US6835524B2 (en) | 2000-02-16 | 2004-12-28 | Shin-Etsu Chemical Co., Ltd. | Polymers, chemical amplification resist compositions and patterning process |
US6579658B2 (en) | 2000-02-17 | 2003-06-17 | Shin-Etsu Chemical Co., Ltd. | Polymers, resist compositions and patterning process |
DE10008843A1 (en) | 2000-02-25 | 2001-09-06 | Beiersdorf Ag | Cross-linked polyacrylate, useful as an adhesive, preferably an adhesive tape, is prepared by UV radiation of a polymer mixture of polyacrylate copolymers in the presence of a cationic photoinitiator. |
US6783914B1 (en) | 2000-02-25 | 2004-08-31 | Massachusetts Institute Of Technology | Encapsulated inorganic resists |
DE10008840A1 (en) | 2000-02-25 | 2001-09-06 | Beiersdorf Ag | Structured polyacrylate, used e.g. as hot-melt adhesive for chip production, obtained by UV-induced crosslinking of acrylic copolymer with tert-butyl acrylate units, e.g. by irradiation through mask |
US6538086B1 (en) | 2000-02-28 | 2003-03-25 | Industrial Technology Research Institute | Polymer with a pericyclic protective group and resist composition containing the same |
JP4806486B2 (en) * | 2000-02-28 | 2011-11-02 | 日東電工株式会社 | Ultraviolet crosslinking adhesive composition and method for producing the same, and adhesive sheet and method for producing the same |
KR100674073B1 (en) | 2000-03-07 | 2007-01-26 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Chemical Amplification, Positive Resist Compositions |
KR100536540B1 (en) | 2000-03-07 | 2005-12-14 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Chemical Amplification, Positive Resist Compositions |
US6737214B2 (en) | 2000-03-09 | 2004-05-18 | Shin-Etsu Chemical Co., Ltd. | Chemical amplification resist compositions |
US7122288B2 (en) | 2000-03-28 | 2006-10-17 | Fujitsu Limited | Negative resist composition, a method for forming a resist pattern thereof, and a method for fabricating a semiconductor device |
JP2003531401A (en) | 2000-04-17 | 2003-10-21 | イェール・ユニヴァーシティ | Measuring method of diffusion of photogenerated catalyst in chemically amplified resist |
KR100582630B1 (en) * | 2000-04-20 | 2006-05-23 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Novel Ester Compounds, Polymers, Resist Compositions and Patterning Process |
US6692883B2 (en) | 2000-04-21 | 2004-02-17 | Fuji Photo Film Co., Ltd. | Positive photoresist composition |
KR100660513B1 (en) | 2000-04-27 | 2006-12-22 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Polymer, Chemically Amplified Resist Composition and Patterning Process |
JP4768103B2 (en) * | 2000-06-06 | 2011-09-07 | 日東電工株式会社 | Adhesive composition, its adhesive sheet and method for producing them |
JP4576737B2 (en) | 2000-06-09 | 2010-11-10 | Jsr株式会社 | Radiation sensitive resin composition |
DE60138930D1 (en) * | 2000-06-15 | 2009-07-16 | 3M Innovative Properties Co | Micro manufacturing process for organic optical components |
US7118845B2 (en) * | 2000-06-15 | 2006-10-10 | 3M Innovative Properties Company | Multiphoton photochemical process and articles preparable thereby |
US7265161B2 (en) * | 2002-10-02 | 2007-09-04 | 3M Innovative Properties Company | Multi-photon reactive compositions with inorganic particles and method for fabricating structures |
US6852766B1 (en) | 2000-06-15 | 2005-02-08 | 3M Innovative Properties Company | Multiphoton photosensitization system |
JP2004503928A (en) * | 2000-06-15 | 2004-02-05 | スリーエム イノベイティブ プロパティズ カンパニー | Multi-directional photoreaction absorption method |
US7026103B2 (en) * | 2000-06-15 | 2006-04-11 | 3M Innovative Properties Company | Multicolor imaging using multiphoton photochemical processes |
WO2001096958A2 (en) * | 2000-06-15 | 2001-12-20 | 3M Innovative Properties Company | Process for producing microfluidic articles |
US7014988B2 (en) * | 2000-06-15 | 2006-03-21 | 3M Innovative Properties Company | Multiphoton curing to provide encapsulated optical elements |
ATE440308T1 (en) * | 2000-06-15 | 2009-09-15 | 3M Innovative Properties Co | METHOD AND APPARATUS FOR ACHIEVEING REPEATED MULTIPHOTON ABSORPTION |
US6593431B2 (en) | 2000-06-27 | 2003-07-15 | Chemfirst Electronic Materials Lp | Purification means |
US6787611B2 (en) * | 2000-06-27 | 2004-09-07 | Chemfirst Electronic Materials L.P. | Purification means |
US6447980B1 (en) | 2000-07-19 | 2002-09-10 | Clariant Finance (Bvi) Limited | Photoresist composition for deep UV and process thereof |
JP3712047B2 (en) | 2000-08-14 | 2005-11-02 | 信越化学工業株式会社 | Resist material and pattern forming method |
TW588221B (en) | 2000-09-07 | 2004-05-21 | Shinetsu Chemical Co | Polymers, resist compositions and patterning process |
TW565747B (en) | 2000-09-07 | 2003-12-11 | Shinetsu Chemical Co | Polymers, resist compositions and patterning process |
TW594410B (en) | 2000-09-07 | 2004-06-21 | Shinetsu Chemical Co | Resist compositions and patterning process |
EP1204001B1 (en) | 2000-11-01 | 2013-09-11 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
US6749988B2 (en) | 2000-11-29 | 2004-06-15 | Shin-Etsu Chemical Co., Ltd. | Amine compounds, resist compositions and patterning process |
JP4768115B2 (en) * | 2000-12-01 | 2011-09-07 | 日東電工株式会社 | Ultraviolet crosslinking adhesive composition and method for producing the same, and adhesive sheet and method for producing the same |
ATE394707T1 (en) | 2000-12-04 | 2008-05-15 | Ciba Holding Inc | ONIUM SALTS AND THEIR USE AS LATEN ACIDS |
US6743564B2 (en) | 2000-12-07 | 2004-06-01 | Shin-Etsu Chemical Co., Ltd. | Amine compounds, resist compositions and patterning process |
US6835804B2 (en) | 2000-12-07 | 2004-12-28 | Shin-Etsu Chemical Co., Ltd. | Preparation of polymer, and resist composition using the polymer |
US7261992B2 (en) * | 2000-12-21 | 2007-08-28 | International Business Machines Corporation | Fluorinated silsesquioxane polymers and use thereof in lithographic photoresist compositions |
JP4697827B2 (en) * | 2001-01-30 | 2011-06-08 | 三菱レイヨン株式会社 | Method for purifying chemically amplified resist resin and chemically amplified resist resin |
JP3962893B2 (en) | 2001-02-09 | 2007-08-22 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
US6905555B2 (en) | 2001-02-15 | 2005-06-14 | Micell Technologies, Inc. | Methods for transferring supercritical fluids in microelectronic and other industrial processes |
US6562146B1 (en) | 2001-02-15 | 2003-05-13 | Micell Technologies, Inc. | Processes for cleaning and drying microelectronic structures using liquid or supercritical carbon dioxide |
US6596093B2 (en) | 2001-02-15 | 2003-07-22 | Micell Technologies, Inc. | Methods for cleaning microelectronic structures with cyclical phase modulation |
US6641678B2 (en) | 2001-02-15 | 2003-11-04 | Micell Technologies, Inc. | Methods for cleaning microelectronic structures with aqueous carbon dioxide systems |
US6613157B2 (en) | 2001-02-15 | 2003-09-02 | Micell Technologies, Inc. | Methods for removing particles from microelectronic structures |
US6602351B2 (en) | 2001-02-15 | 2003-08-05 | Micell Technologies, Inc. | Methods for the control of contaminants following carbon dioxide cleaning of microelectronic structures |
TWI300790B (en) | 2001-02-28 | 2008-09-11 | Shinetsu Chemical Co | Polymers, Resist Compositions and Patterning Process |
TWI245774B (en) | 2001-03-01 | 2005-12-21 | Shinetsu Chemical Co | Silicon-containing polymer, resist composition and patterning process |
JP2002278053A (en) | 2001-03-16 | 2002-09-27 | Fuji Photo Film Co Ltd | Positive type photoresist composition |
KR100749494B1 (en) | 2001-04-03 | 2007-08-14 | 삼성에스디아이 주식회사 | Polymer for chemical amplification negative photoresist and photoresist composition |
KR20030076225A (en) | 2001-04-04 | 2003-09-26 | 아치 스페셜티 케미칼즈, 인코포레이티드 | Silicon-containing acetal protected polymers and photoresists compositions thereof |
TW588032B (en) * | 2001-04-23 | 2004-05-21 | Shinetsu Chemical Co | New tertiary amine compound having ester structure and method for producing the same |
JP3988517B2 (en) | 2001-04-27 | 2007-10-10 | Jsr株式会社 | Radiation sensitive resin composition |
US6936398B2 (en) | 2001-05-09 | 2005-08-30 | Massachusetts Institute Of Technology | Resist with reduced line edge roughness |
US6686429B2 (en) | 2001-05-11 | 2004-02-03 | Clariant Finance (Bvi) Limited | Polymer suitable for photoresist compositions |
US6737215B2 (en) | 2001-05-11 | 2004-05-18 | Clariant Finance (Bvi) Ltd | Photoresist composition for deep ultraviolet lithography |
TWI245043B (en) | 2001-06-25 | 2005-12-11 | Shinetsu Chemical Co | Novel ester compounds |
TW574607B (en) | 2001-06-25 | 2004-02-01 | Shinetsu Chemical Co | Polymers, resist compositions and patterning process |
TW584786B (en) | 2001-06-25 | 2004-04-21 | Shinetsu Chemical Co | Polymers, resist compositions and patterning process |
JP3891257B2 (en) | 2001-06-25 | 2007-03-14 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
DE10131489B4 (en) * | 2001-06-29 | 2007-04-12 | Infineon Technologies Ag | Negative resist process with simultaneous development and chemical amplification of resist structures |
DE10131488B4 (en) * | 2001-06-29 | 2006-01-19 | Infineon Technologies Ag | Process for the chemical amplification of photoresists in the UV range |
DE10131667B4 (en) | 2001-06-29 | 2007-05-31 | Infineon Technologies Ag | Negative resist process with simultaneous development and silylation |
DE10131487B4 (en) * | 2001-06-29 | 2005-11-24 | Infineon Technologies Ag | Negative resist process with simultaneous development and aromatization of resist structures |
DE10142590A1 (en) * | 2001-08-31 | 2003-04-03 | Infineon Technologies Ag | Production of resist structures used in semiconductor industry comprises applying a resist film on a substrate, forming a resist structure with bars from the film, and removing reinforced sections |
US6673514B2 (en) | 2001-09-07 | 2004-01-06 | Kodak Polychrome Graphics Llc | Imagable articles and compositions, and their use |
TW574614B (en) * | 2001-09-27 | 2004-02-01 | Shinetsu Chemical Co | Chemically amplified resist compositions and patterning process |
JP2003107707A (en) * | 2001-09-28 | 2003-04-09 | Clariant (Japan) Kk | Chemically amplifying positive radiation sensitive resin composition |
DE10147953B4 (en) | 2001-09-28 | 2007-06-06 | Infineon Technologies Ag | CARL for Bioelectronics: Substrate connection via insulating layer |
JP3821217B2 (en) * | 2001-10-30 | 2006-09-13 | 信越化学工業株式会社 | Resist material and pattern forming method |
DE10153497B4 (en) * | 2001-10-31 | 2006-04-06 | Infineon Technologies Ag | Process for the silylation of photoresists in the UV range |
DE10153496B4 (en) * | 2001-10-31 | 2007-01-04 | Infineon Technologies Ag | Process for the aromatization and cycloaliphatization of photoresists in the UV range |
JP3890365B2 (en) | 2001-11-01 | 2007-03-07 | 富士フイルム株式会社 | Positive resist composition |
US6723488B2 (en) | 2001-11-07 | 2004-04-20 | Clariant Finance (Bvi) Ltd | Photoresist composition for deep UV radiation containing an additive |
JP3901997B2 (en) * | 2001-11-27 | 2007-04-04 | 富士通株式会社 | Resist material, resist pattern and manufacturing method thereof, and semiconductor device and manufacturing method thereof |
JP4522628B2 (en) | 2001-11-28 | 2010-08-11 | 信越化学工業株式会社 | New ester compounds |
DE60218342T2 (en) * | 2001-12-12 | 2007-10-31 | Sumitomo Bakelite Co., Ltd. | POLYMERIC COMPOSITIONS AND ITS USES |
JP3874092B2 (en) * | 2001-12-26 | 2007-01-31 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
US6750266B2 (en) * | 2001-12-28 | 2004-06-15 | 3M Innovative Properties Company | Multiphoton photosensitization system |
US7070914B2 (en) * | 2002-01-09 | 2006-07-04 | Az Electronic Materials Usa Corp. | Process for producing an image using a first minimum bottom antireflective coating composition |
US6800416B2 (en) | 2002-01-09 | 2004-10-05 | Clariant Finance (Bvi) Ltd. | Negative deep ultraviolet photoresist |
US6844131B2 (en) | 2002-01-09 | 2005-01-18 | Clariant Finance (Bvi) Limited | Positive-working photoimageable bottom antireflective coating |
JP3877605B2 (en) * | 2002-02-08 | 2007-02-07 | 信越化学工業株式会社 | Negative resist material and pattern forming method using the same |
AU2003219824A1 (en) * | 2002-02-21 | 2003-09-09 | Honeywell International Inc. | Fluorinated molecules and methods of making and using same |
TW200304042A (en) | 2002-02-22 | 2003-09-16 | Jsr Corp | Radiation-sensitive resin composition |
DE10208786B4 (en) * | 2002-02-28 | 2006-02-09 | Infineon Technologies Ag | Process for the modification of resist structures and resist layers from aqueous phase |
US6916592B2 (en) * | 2002-03-25 | 2005-07-12 | Shin-Etsu Chemical Co., Ltd. | Esters, polymers, resist compositions and patterning process |
US6872514B2 (en) * | 2002-03-25 | 2005-03-29 | Shin-Etsu Chemical Co., Ltd. | Polymers, resist compositions and patterning process |
TWI304412B (en) * | 2002-03-26 | 2008-12-21 | Shinetsu Chemical Co | Polymers, resist compositions andpatterning process |
US20030190818A1 (en) * | 2002-04-03 | 2003-10-09 | Ruben Carbonell | Enhanced processing of performance films using high-diffusivity penetrants |
US6866983B2 (en) * | 2002-04-05 | 2005-03-15 | Shin-Etsu Chemical Co., Ltd. | Resist compositions and patterning process |
JP3856122B2 (en) * | 2002-04-05 | 2006-12-13 | 信越化学工業株式会社 | Resist material and pattern forming method |
US6864324B2 (en) | 2002-04-19 | 2005-03-08 | Chem First Electronic Materials L.P. | Anhydrous, liquid phase process for preparing hydroxyl containing polymers of enhanced purity |
US7232638B2 (en) * | 2002-05-02 | 2007-06-19 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process |
JP2006511628A (en) * | 2002-05-07 | 2006-04-06 | ハネウェル・インターナショナル・インコーポレーテッド | Fluorinated polymer |
US20030235775A1 (en) * | 2002-06-13 | 2003-12-25 | Munirathna Padmanaban | Photoresist composition for deep ultraviolet lithography comprising a mixture of photoactive compounds |
JP4139948B2 (en) | 2002-06-28 | 2008-08-27 | 日本電気株式会社 | Unsaturated monomer, polymer, chemically amplified resist composition, and pattern forming method |
JP3912512B2 (en) * | 2002-07-02 | 2007-05-09 | 信越化学工業株式会社 | Silicon-containing polymer compound, resist material, and pattern forming method |
US6919161B2 (en) * | 2002-07-02 | 2005-07-19 | Shin-Etsu Chemical Co., Ltd. | Silicon-containing polymer, resist composition and patterning process |
JP3844069B2 (en) * | 2002-07-04 | 2006-11-08 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP2004043732A (en) * | 2002-07-15 | 2004-02-12 | Three M Innovative Properties Co | Foaming adhesive composition |
JP2004059844A (en) * | 2002-07-31 | 2004-02-26 | Central Glass Co Ltd | Fluorine-containing polymer compound |
JP3912516B2 (en) * | 2002-08-09 | 2007-05-09 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
US20040067435A1 (en) | 2002-09-17 | 2004-04-08 | Fuji Photo Film Co., Ltd. | Image forming material |
JP4371206B2 (en) | 2002-09-30 | 2009-11-25 | 信越化学工業株式会社 | Ester compound, polymer compound, resist material, and pattern forming method |
US7232650B2 (en) * | 2002-10-02 | 2007-06-19 | 3M Innovative Properties Company | Planar inorganic device |
JP3900276B2 (en) * | 2002-10-25 | 2007-04-04 | 信越化学工業株式会社 | Resist material and pattern forming method |
KR100961317B1 (en) | 2002-10-29 | 2010-06-04 | 제이에스알 가부시끼가이샤 | Radiation-sensitive resin composition |
US20040091813A1 (en) * | 2002-11-05 | 2004-05-13 | Honeywell International Inc. | Fluorinated polymers |
US7264913B2 (en) * | 2002-11-21 | 2007-09-04 | Az Electronic Materials Usa Corp. | Antireflective compositions for photoresists |
US7217492B2 (en) | 2002-12-25 | 2007-05-15 | Jsr Corporation | Onium salt compound and radiation-sensitive resin composition |
TWI252374B (en) * | 2003-01-30 | 2006-04-01 | Shinetsu Chemical Co | Polymer, resist composition and patterning process |
JP4240202B2 (en) * | 2003-02-10 | 2009-03-18 | 信越化学工業株式会社 | Polymer compound having sulfonate group, resist material, and pattern forming method |
JP4133399B2 (en) * | 2003-02-10 | 2008-08-13 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
JP4222850B2 (en) | 2003-02-10 | 2009-02-12 | Spansion Japan株式会社 | Radiation-sensitive resin composition, method for producing the same, and method for producing a semiconductor device using the same |
TWI349831B (en) | 2003-02-20 | 2011-10-01 | Maruzen Petrochem Co Ltd | Resist polymer and method for producing the polymer |
US7422836B2 (en) * | 2003-02-20 | 2008-09-09 | Promerus Llc | Dissolution rate modifiers for photoresist compositions |
US20040166434A1 (en) * | 2003-02-21 | 2004-08-26 | Dammel Ralph R. | Photoresist composition for deep ultraviolet lithography |
TWI344966B (en) | 2003-03-10 | 2011-07-11 | Maruzen Petrochem Co Ltd | Novel thiol compound, copolymer and method for producing the copolymer |
WO2004102162A2 (en) * | 2003-03-21 | 2004-11-25 | The Regents Of The University Of California | Inorganic oxides comprising multiple surface-bound functional groups |
JP4068006B2 (en) * | 2003-05-07 | 2008-03-26 | 信越化学工業株式会社 | Method for forming fine contact holes using thermal flow process |
US7834113B2 (en) * | 2003-05-08 | 2010-11-16 | E. I. Du Pont De Nemours And Company | Photoresist compositions and processes for preparing the same |
JP4009852B2 (en) | 2003-05-21 | 2007-11-21 | 信越化学工業株式会社 | Basic compound, resist material, and pattern forming method |
JP4081677B2 (en) | 2003-05-21 | 2008-04-30 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP4029288B2 (en) | 2003-05-21 | 2008-01-09 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP3981830B2 (en) * | 2003-05-26 | 2007-09-26 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP4114064B2 (en) * | 2003-05-27 | 2008-07-09 | 信越化学工業株式会社 | Silicon-containing polymer compound, resist material, and pattern forming method |
JP2004354417A (en) * | 2003-05-27 | 2004-12-16 | Shin Etsu Chem Co Ltd | Positive resist material and pattern forming method using the same |
JP4360844B2 (en) * | 2003-06-16 | 2009-11-11 | 富士フイルム株式会社 | Positive resist composition |
JP4088784B2 (en) * | 2003-06-19 | 2008-05-21 | 信越化学工業株式会社 | Method for producing polymer compound and resist material |
US7090963B2 (en) * | 2003-06-25 | 2006-08-15 | International Business Machines Corporation | Process for forming features of 50 nm or less half-pitch with chemically amplified resist imaging |
JP4085034B2 (en) * | 2003-07-17 | 2008-04-30 | 信越化学工業株式会社 | Compound, polymer compound, resist material, and pattern forming method |
KR101036793B1 (en) * | 2003-07-18 | 2011-05-25 | 오지 세이시 가부시키가이샤 | Foamed product in a sheet form and method for production thereof |
KR100527411B1 (en) * | 2003-08-23 | 2005-11-09 | 한국과학기술원 | Noble Monomers, Polymers and Photoresist Materials with 7,7-Dimethyloxepan-2-one Group and Method for Patterning |
JP4013063B2 (en) * | 2003-08-26 | 2007-11-28 | 信越化学工業株式会社 | Resist material and pattern forming method |
US7166418B2 (en) * | 2003-09-03 | 2007-01-23 | Matsushita Electric Industrial Co., Ltd. | Sulfonamide compound, polymer compound, resist material and pattern formation method |
JP2005099683A (en) * | 2003-09-05 | 2005-04-14 | Tokyo Ohka Kogyo Co Ltd | Positive photoresist composition and method for forming resist pattern by using the same |
US7060775B2 (en) * | 2003-10-02 | 2006-06-13 | Matsushita Electronic Industrial Co., Ltd. | Polymer compound, resist material and pattern formation method |
US7169530B2 (en) * | 2003-10-02 | 2007-01-30 | Matsushita Electric Industrial Co., Ltd. | Polymer compound, resist material and pattern formation method |
US7232641B2 (en) * | 2003-10-08 | 2007-06-19 | Shin-Etsu Chemical Co., Ltd. | Polymerizable compound, polymer, positive-resist composition, and patterning process using the same |
TWI286555B (en) * | 2003-10-23 | 2007-09-11 | Shinetsu Chemical Co | Polymers, resist compositions and patterning process |
JP4235810B2 (en) * | 2003-10-23 | 2009-03-11 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
JP4355917B2 (en) * | 2003-10-29 | 2009-11-04 | 信越化学工業株式会社 | Nitrogen-containing organic compound, resist material, and pattern forming method |
JP3759526B2 (en) | 2003-10-30 | 2006-03-29 | 丸善石油化学株式会社 | Method for producing copolymer for semiconductor lithography |
US7276324B2 (en) * | 2003-11-14 | 2007-10-02 | Shin-Etsu Chemical Co., Ltd. | Nitrogen-containing organic compound, resist composition and patterning process |
CN100392444C (en) * | 2003-12-05 | 2008-06-04 | 3M创新有限公司 | Method for producing photon crystal and controllable defect therein |
US20050124712A1 (en) * | 2003-12-05 | 2005-06-09 | 3M Innovative Properties Company | Process for producing photonic crystals |
US7189491B2 (en) * | 2003-12-11 | 2007-03-13 | Az Electronic Materials Usa Corp. | Photoresist composition for deep UV and process thereof |
JP4525912B2 (en) * | 2004-01-30 | 2010-08-18 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
JP2005220274A (en) * | 2004-02-09 | 2005-08-18 | Shin Etsu Chem Co Ltd | Polymer compound, resist material and method for pattern formation |
US7473512B2 (en) * | 2004-03-09 | 2009-01-06 | Az Electronic Materials Usa Corp. | Process of imaging a deep ultraviolet photoresist with a top coating and materials thereof |
JP4199687B2 (en) | 2004-03-17 | 2008-12-17 | 富士フイルム株式会社 | Planographic printing plate precursor |
US20050214674A1 (en) * | 2004-03-25 | 2005-09-29 | Yu Sui | Positive-working photoimageable bottom antireflective coating |
US7081511B2 (en) * | 2004-04-05 | 2006-07-25 | Az Electronic Materials Usa Corp. | Process for making polyesters |
US7060416B2 (en) * | 2004-04-08 | 2006-06-13 | Eastman Kodak Company | Positive-working, thermally sensitive imageable element |
KR100942627B1 (en) * | 2004-04-09 | 2010-02-17 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Positive Resist Composition and Patterning Process |
US7255973B2 (en) * | 2004-04-09 | 2007-08-14 | Shin-Etsu Chemical Co., Ltd. | Positive resist compositions and patterning process |
JP4557159B2 (en) * | 2004-04-15 | 2010-10-06 | 信越化学工業株式会社 | Chemically amplified positive resist material and pattern forming method using the same |
JP4502115B2 (en) * | 2004-04-23 | 2010-07-14 | 信越化学工業株式会社 | Nitrogen-containing organic compound, chemically amplified resist material, and pattern forming method |
KR100887202B1 (en) * | 2004-04-27 | 2009-03-06 | 도오꾜오까고오교 가부시끼가이샤 | Resist protecting film forming material for immersion exposure process and resist pattern forming method using the protecting film |
JP4360264B2 (en) * | 2004-04-30 | 2009-11-11 | Jsr株式会社 | Positive radiation sensitive resin composition |
JP3978215B2 (en) * | 2004-05-25 | 2007-09-19 | 松下電器産業株式会社 | Resist material and pattern forming method |
JP3978217B2 (en) * | 2004-05-27 | 2007-09-19 | 松下電器産業株式会社 | Resist material and pattern forming method |
JP3978216B2 (en) * | 2004-05-27 | 2007-09-19 | 松下電器産業株式会社 | Resist material and pattern forming method |
JP2005344009A (en) * | 2004-06-03 | 2005-12-15 | Shin Etsu Chem Co Ltd | Polymer for resist material, method for producing the same and chemically amplified positive type resist material |
JP4606136B2 (en) * | 2004-06-09 | 2011-01-05 | 富士通株式会社 | Multilayer body, resist pattern forming method, manufacturing method of device having finely processed pattern |
JP2006011054A (en) * | 2004-06-25 | 2006-01-12 | Shin Etsu Chem Co Ltd | Rinsing solution and method for forming resist pattern using same |
JP2006021396A (en) | 2004-07-07 | 2006-01-26 | Fuji Photo Film Co Ltd | Original lithographic printing plate and lithographic printing method |
US7146909B2 (en) | 2004-07-20 | 2006-12-12 | Fuji Photo Film Co., Ltd. | Image forming material |
JP4368267B2 (en) * | 2004-07-30 | 2009-11-18 | 東京応化工業株式会社 | Resist protective film forming material and resist pattern forming method using the same |
US7507521B2 (en) * | 2004-08-09 | 2009-03-24 | Intel Corporation | Silicon based optically degraded arc for lithographic patterning |
US20060057501A1 (en) * | 2004-09-15 | 2006-03-16 | Hengpeng Wu | Antireflective compositions for photoresists |
US7691556B2 (en) * | 2004-09-15 | 2010-04-06 | Az Electronic Materials Usa Corp. | Antireflective compositions for photoresists |
JP4368282B2 (en) | 2004-09-24 | 2009-11-18 | 富士フイルム株式会社 | Positive resist composition and pattern forming method using the same |
JP4404734B2 (en) | 2004-09-27 | 2010-01-27 | 富士フイルム株式会社 | Planographic printing plate precursor |
JP4544085B2 (en) * | 2004-09-28 | 2010-09-15 | Jsr株式会社 | Positive radiation sensitive resin composition |
US7687225B2 (en) * | 2004-09-29 | 2010-03-30 | Intel Corporation | Optical coatings |
JP4431888B2 (en) | 2004-10-28 | 2010-03-17 | 信越化学工業株式会社 | Fluorine-containing polymerizable compound, method for producing the same, polymer compound obtained from the compound, resist material, and pattern forming method using the same |
US7537879B2 (en) | 2004-11-22 | 2009-05-26 | Az Electronic Materials Usa Corp. | Photoresist composition for deep UV and process thereof |
KR100966197B1 (en) | 2004-12-03 | 2010-06-25 | 제이에스알 가부시끼가이샤 | Composition for forming antireflection film, layered product, and method of forming resist pattern |
JP4789599B2 (en) | 2004-12-06 | 2011-10-12 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | Photoresist composition |
US20060150846A1 (en) | 2004-12-13 | 2006-07-13 | Fuji Photo Film Co. Ltd | Lithographic printing method |
JP2006181838A (en) | 2004-12-27 | 2006-07-13 | Fuji Photo Film Co Ltd | Original plate of lithographic printing plate |
US20070299176A1 (en) * | 2005-01-28 | 2007-12-27 | Markley Thomas J | Photodefinable low dielectric constant material and method for making and using same |
US7867779B2 (en) | 2005-02-03 | 2011-01-11 | Air Products And Chemicals, Inc. | System and method comprising same for measurement and/or analysis of particles in gas stream |
JP4506968B2 (en) * | 2005-02-04 | 2010-07-21 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
EP1691238A3 (en) | 2005-02-05 | 2009-01-21 | Rohm and Haas Electronic Materials, L.L.C. | Coating compositions for use with an overcoated photoresist |
JP4474296B2 (en) | 2005-02-09 | 2010-06-02 | 富士フイルム株式会社 | Planographic printing plate precursor |
US20060177772A1 (en) * | 2005-02-10 | 2006-08-10 | Abdallah David J | Process of imaging a photoresist with multiple antireflective coatings |
JP2006225476A (en) * | 2005-02-16 | 2006-08-31 | Shin Etsu Chem Co Ltd | Positive type resist material and pattern formation method |
US7541131B2 (en) * | 2005-02-18 | 2009-06-02 | Fujifilm Corporation | Resist composition, compound for use in the resist composition and pattern forming method using the resist composition |
US20060188812A1 (en) * | 2005-02-21 | 2006-08-24 | Tomoki Nagai | Phenolic hydroxyl group-containing copolymer and radiation-sensitive resin composition |
US7255056B2 (en) * | 2005-03-04 | 2007-08-14 | Lockheed Martin Corporation | Stable, high-speed marine vessel |
JP4595606B2 (en) * | 2005-03-17 | 2010-12-08 | Jsr株式会社 | Antireflection film forming composition, laminate, and resist pattern forming method |
JP4404792B2 (en) | 2005-03-22 | 2010-01-27 | 富士フイルム株式会社 | Planographic printing plate precursor |
JP4770244B2 (en) * | 2005-04-11 | 2011-09-14 | Jsr株式会社 | Onium salt, radiation-sensitive acid generator and positive radiation-sensitive resin composition using the same |
JP4810862B2 (en) * | 2005-04-11 | 2011-11-09 | Jsr株式会社 | Onium salt, radiation-sensitive acid generator and positive radiation-sensitive resin composition using the same |
JP4731200B2 (en) | 2005-05-10 | 2011-07-20 | 丸善石油化学株式会社 | Method for producing copolymer for semiconductor lithography |
JP2006328003A (en) * | 2005-05-27 | 2006-12-07 | Shin Etsu Chem Co Ltd | New polymerizable ester compound |
JP4687878B2 (en) * | 2005-05-27 | 2011-05-25 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method |
US7521170B2 (en) * | 2005-07-12 | 2009-04-21 | Az Electronic Materials Usa Corp. | Photoactive compounds |
JP4815270B2 (en) | 2005-08-18 | 2011-11-16 | 富士フイルム株式会社 | Method and apparatus for producing a lithographic printing plate |
JP4759343B2 (en) | 2005-08-19 | 2011-08-31 | 富士フイルム株式会社 | Planographic printing plate precursor and planographic printing method |
EP1762895B1 (en) | 2005-08-29 | 2016-02-24 | Rohm and Haas Electronic Materials, L.L.C. | Antireflective Hard Mask Compositions |
US20070065756A1 (en) * | 2005-09-16 | 2007-03-22 | Quantiscript Inc., Universite De Sherbrooke | High sensitivity electron beam resist processing |
JP4697443B2 (en) * | 2005-09-21 | 2011-06-08 | 信越化学工業株式会社 | Positive resist material and pattern forming method using the same |
WO2007047379A2 (en) * | 2005-10-12 | 2007-04-26 | Sundance Enterprises | Fluidized positioning and protection system |
JP4671035B2 (en) * | 2005-10-14 | 2011-04-13 | 信越化学工業株式会社 | Chemically amplified resist material and pattern forming method |
JP4488230B2 (en) * | 2005-10-31 | 2010-06-23 | 信越化学工業株式会社 | Resist polymer, resist material and pattern forming method |
US7553905B2 (en) * | 2005-10-31 | 2009-06-30 | Az Electronic Materials Usa Corp. | Anti-reflective coatings |
JP4582331B2 (en) * | 2005-11-08 | 2010-11-17 | 信越化学工業株式会社 | Resist material and pattern forming method |
US7629106B2 (en) * | 2005-11-16 | 2009-12-08 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process using the same |
JP4614089B2 (en) * | 2005-11-17 | 2011-01-19 | 信越化学工業株式会社 | Negative resist material and pattern forming method |
TWI512402B (en) | 2005-11-25 | 2015-12-11 | Jsr Corp | Sensitive radiation linear resin composition |
JP4831307B2 (en) | 2005-12-02 | 2011-12-07 | 信越化学工業株式会社 | Novel ester compound, polymer compound, resist material and pattern forming method |
US7583444B1 (en) * | 2005-12-21 | 2009-09-01 | 3M Innovative Properties Company | Process for making microlens arrays and masterforms |
US7893410B2 (en) * | 2005-12-21 | 2011-02-22 | 3M Innovative Properties Company | Method and apparatus for processing multiphoton curable photoreactive compositions |
EP1829942B1 (en) | 2006-02-28 | 2012-09-26 | Rohm and Haas Electronic Materials, L.L.C. | Coating compositions for use with an overcoated photoresist |
US7491483B2 (en) * | 2006-03-06 | 2009-02-17 | Shin-Etsu Chemical Co., Ltd. | Polymers, positive resist compositions and patterning process |
JP5100115B2 (en) * | 2006-03-16 | 2012-12-19 | 東洋合成工業株式会社 | Sulfonium salt and acid generator |
US8858807B2 (en) * | 2006-03-24 | 2014-10-14 | 3M Innovative Properties Company | Process for making microneedles, microneedle arrays, masters, and replication tools |
US7771913B2 (en) * | 2006-04-04 | 2010-08-10 | Shin-Etsu Chemical Co., Ltd. | Resist composition and patterning process using the same |
US7300741B2 (en) * | 2006-04-25 | 2007-11-27 | International Business Machines Corporation | Advanced chemically amplified resist for sub 30 nm dense feature resolution |
JP2009537870A (en) | 2006-05-18 | 2009-10-29 | スリーエム イノベイティブ プロパティズ カンパニー | Method for manufacturing light guide with extraction structure and light guide manufactured by the method |
JP5030474B2 (en) | 2006-05-18 | 2012-09-19 | 丸善石油化学株式会社 | Resin composition for semiconductor lithography |
US7704670B2 (en) * | 2006-06-22 | 2010-04-27 | Az Electronic Materials Usa Corp. | High silicon-content thin film thermosets |
US20070298349A1 (en) * | 2006-06-22 | 2007-12-27 | Ruzhi Zhang | Antireflective Coating Compositions Comprising Siloxane Polymer |
KR101265352B1 (en) * | 2006-07-06 | 2013-05-20 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Ester compounds and their preparation, polymers, resist compositions and patterning process |
JP4784753B2 (en) * | 2006-07-06 | 2011-10-05 | 信越化学工業株式会社 | Polymerizable ester compound, polymer, resist material and pattern forming method |
US7638262B2 (en) | 2006-08-10 | 2009-12-29 | Az Electronic Materials Usa Corp. | Antireflective composition for photoresists |
US7416834B2 (en) * | 2006-09-27 | 2008-08-26 | Az Electronic Materials Usa Corp. | Antireflective coating compositions |
JP5183903B2 (en) * | 2006-10-13 | 2013-04-17 | 信越化学工業株式会社 | Polymer compound, resist material, and pattern forming method using the same |
US7666575B2 (en) * | 2006-10-18 | 2010-02-23 | Az Electronic Materials Usa Corp | Antireflective coating compositions |
JP4784760B2 (en) * | 2006-10-20 | 2011-10-05 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP2008106084A (en) * | 2006-10-23 | 2008-05-08 | Maruzen Petrochem Co Ltd | Copolymer and composition for semiconductor lithography and method for producing the same copolymer |
JP4803377B2 (en) * | 2006-10-25 | 2011-10-26 | 信越化学工業株式会社 | Resist material and pattern forming method |
JP4355011B2 (en) * | 2006-11-07 | 2009-10-28 | 丸善石油化学株式会社 | Copolymer and composition for immersion lithography |
TWI416253B (en) | 2006-11-10 | 2013-11-21 | Jsr Corp | Radiation-sensitive resin compositions |
US7956142B2 (en) * | 2006-11-10 | 2011-06-07 | Jsr Corporation | Polymerizable sulfonic acid onium salt and resin |
JP5588095B2 (en) * | 2006-12-06 | 2014-09-10 | 丸善石油化学株式会社 | Copolymer for semiconductor lithography and method for producing the same |
TW200836002A (en) * | 2006-12-19 | 2008-09-01 | Cheil Ind Inc | Photosensitive resin composition and organic insulating film produced using the same |
WO2008078410A1 (en) | 2006-12-22 | 2008-07-03 | Maruzen Petrochemical Co., Ltd. | Process for producing polymer for semiconductor lithography |
US8530148B2 (en) * | 2006-12-25 | 2013-09-10 | Fujifilm Corporation | Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method |
JP4554665B2 (en) | 2006-12-25 | 2010-09-29 | 富士フイルム株式会社 | PATTERN FORMATION METHOD, POSITIVE RESIST COMPOSITION FOR MULTIPLE DEVELOPMENT USED FOR THE PATTERN FORMATION METHOD, NEGATIVE DEVELOPMENT SOLUTION USED FOR THE PATTERN FORMATION METHOD, AND NEGATIVE DEVELOPMENT RINSE SOLUTION USED FOR THE PATTERN FORMATION METHOD |
JP5277203B2 (en) * | 2006-12-25 | 2013-08-28 | 富士フイルム株式会社 | PATTERN FORMATION METHOD, POSITIVE RESIST COMPOSITION FOR MULTIPLE DEVELOPMENT USED FOR THE PATTERN FORMATION METHOD, NEGATIVE DEVELOPMENT SOLUTION USED FOR THE PATTERN FORMATION METHOD, AND NEGATIVE DEVELOPMENT RINS |
US8637229B2 (en) * | 2006-12-25 | 2014-01-28 | Fujifilm Corporation | Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method |
US7824844B2 (en) * | 2007-01-19 | 2010-11-02 | Az Electronic Materials Usa Corp. | Solvent mixtures for antireflective coating compositions for photoresists |
US7875408B2 (en) | 2007-01-25 | 2011-01-25 | International Business Machines Corporation | Bleachable materials for lithography |
TWI374478B (en) | 2007-02-13 | 2012-10-11 | Rohm & Haas Elect Mat | Electronic device manufacture |
US8026040B2 (en) * | 2007-02-20 | 2011-09-27 | Az Electronic Materials Usa Corp. | Silicone coating composition |
US7736837B2 (en) * | 2007-02-20 | 2010-06-15 | Az Electronic Materials Usa Corp. | Antireflective coating composition based on silicon polymer |
US20100093969A1 (en) * | 2007-02-26 | 2010-04-15 | Ruzhi Zhang | Process for making siloxane polymers |
JP5060986B2 (en) * | 2007-02-27 | 2012-10-31 | 富士フイルム株式会社 | Positive resist composition and pattern forming method |
JP2008208266A (en) | 2007-02-27 | 2008-09-11 | Fujifilm Corp | Ink composition, inkjet recording method, printed material, method for producing planographic printing plate, and planographic printing plate |
WO2008104881A1 (en) | 2007-02-27 | 2008-09-04 | Az Electronic Materials Usa Corp. | Silicon-based antifrelective coating compositions |
JP4843710B2 (en) * | 2007-03-20 | 2011-12-21 | 富士通株式会社 | Conductive antireflection film forming material, conductive antireflection film forming method, resist pattern forming method, semiconductor device, and magnetic head |
JP2008233660A (en) | 2007-03-22 | 2008-10-02 | Fujifilm Corp | Automatic development device for immersion type lithographic printing plate and method thereof |
ATE471812T1 (en) | 2007-03-23 | 2010-07-15 | Fujifilm Corp | NEGATIVE LITHOGRAPHIC PRINTING PLATE PRECURSOR AND LITHOGRAPHIC PRINTING PROCESS THEREFROM |
JP4860525B2 (en) | 2007-03-27 | 2012-01-25 | 富士フイルム株式会社 | Curable composition and planographic printing plate precursor |
US8182975B2 (en) * | 2007-03-28 | 2012-05-22 | Fujifilm Corporation | Positive resist composition and pattern forming method using the same |
JP5030638B2 (en) | 2007-03-29 | 2012-09-19 | 富士フイルム株式会社 | Color filter and manufacturing method thereof |
EP1974914B1 (en) | 2007-03-29 | 2014-02-26 | FUJIFILM Corporation | Method of preparing lithographic printing plate |
EP1975702B1 (en) | 2007-03-29 | 2013-07-24 | FUJIFILM Corporation | Colored photocurable composition for solid state image pick-up device, color filter and method for production thereof, and solid state image pick-up device |
US7498116B2 (en) * | 2007-03-30 | 2009-03-03 | Fujifilm Corporation | Resist composition and pattern formation method using the same |
JP5159141B2 (en) | 2007-03-30 | 2013-03-06 | 富士フイルム株式会社 | Ink composition, inkjet recording method, printed matter, lithographic printing plate preparation method |
EP1975706A3 (en) | 2007-03-30 | 2010-03-03 | FUJIFILM Corporation | Lithographic printing plate precursor |
EP1975710B1 (en) | 2007-03-30 | 2013-10-23 | FUJIFILM Corporation | Plate-making method of lithographic printing plate precursor |
TWI391788B (en) | 2007-04-06 | 2013-04-01 | 羅門哈斯電子材料有限公司 | Coating compositions |
US8034547B2 (en) * | 2007-04-13 | 2011-10-11 | Fujifilm Corporation | Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method |
EP2138898B1 (en) | 2007-04-13 | 2014-05-21 | FUJIFILM Corporation | Method for pattern formation, and use of resist composition in said method |
US8603733B2 (en) | 2007-04-13 | 2013-12-10 | Fujifilm Corporation | Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method |
US20080264672A1 (en) * | 2007-04-26 | 2008-10-30 | Air Products And Chemicals, Inc. | Photoimprintable Low Dielectric Constant Material and Method for Making and Using Same |
WO2008140119A1 (en) * | 2007-05-15 | 2008-11-20 | Fujifilm Corporation | Method for pattern formation |
US8476001B2 (en) | 2007-05-15 | 2013-07-02 | Fujifilm Corporation | Pattern forming method |
US20080284039A1 (en) * | 2007-05-18 | 2008-11-20 | International Business Machines Corporation | Interconnect structures with ternary patterned features generated from two lithographic processes |
US8017296B2 (en) * | 2007-05-22 | 2011-09-13 | Az Electronic Materials Usa Corp. | Antireflective coating composition comprising fused aromatic rings |
JP4590431B2 (en) * | 2007-06-12 | 2010-12-01 | 富士フイルム株式会社 | Pattern formation method |
US8632942B2 (en) | 2007-06-12 | 2014-01-21 | Fujifilm Corporation | Method of forming patterns |
KR20100017783A (en) * | 2007-06-12 | 2010-02-16 | 후지필름 가부시키가이샤 | Resist composition for negative working-type development, and method for pattern formation using the resist composition |
JP4617337B2 (en) * | 2007-06-12 | 2011-01-26 | 富士フイルム株式会社 | Pattern formation method |
US8617794B2 (en) | 2007-06-12 | 2013-12-31 | Fujifilm Corporation | Method of forming patterns |
EP2006738B1 (en) | 2007-06-21 | 2017-09-06 | Fujifilm Corporation | Lithographic printing plate precursor |
EP2006091B1 (en) | 2007-06-22 | 2010-12-08 | FUJIFILM Corporation | Lithographic printing plate precursor and plate making method |
JP5213375B2 (en) | 2007-07-13 | 2013-06-19 | 富士フイルム株式会社 | Pigment dispersion, curable composition, color filter using the same, and solid-state imaging device |
US20090035704A1 (en) * | 2007-08-03 | 2009-02-05 | Hong Zhuang | Underlayer Coating Composition Based on a Crosslinkable Polymer |
US20090042148A1 (en) * | 2007-08-06 | 2009-02-12 | Munirathna Padmanaban | Photoresist Composition for Deep UV and Process Thereof |
CN101772735B (en) * | 2007-08-09 | 2012-09-26 | Jsr株式会社 | Radiation-sensitive resin composition |
US20090042133A1 (en) * | 2007-08-10 | 2009-02-12 | Zhong Xiang | Antireflective Coating Composition |
CN101795840B (en) * | 2007-09-06 | 2013-08-07 | 3M创新有限公司 | Methods of forming molds and methods of forming articles using said molds |
CN101796443A (en) | 2007-09-06 | 2010-08-04 | 3M创新有限公司 | Lightguides having light extraction structures providing regional control of light output |
WO2009032815A1 (en) * | 2007-09-06 | 2009-03-12 | 3M Innovative Properties Company | Tool for making microstructured articles |
JP5089303B2 (en) * | 2007-09-13 | 2012-12-05 | 三菱レイヨン株式会社 | Chemical amplification resist resin |
JP2009083106A (en) | 2007-09-27 | 2009-04-23 | Fujifilm Corp | Lithographic printing plate surface protective agent and plate making method for lithographic printing plate |
JP2009085984A (en) | 2007-09-27 | 2009-04-23 | Fujifilm Corp | Planographic printing plate precursor |
JP4890403B2 (en) | 2007-09-27 | 2012-03-07 | 富士フイルム株式会社 | Planographic printing plate precursor |
JP4951454B2 (en) | 2007-09-28 | 2012-06-13 | 富士フイルム株式会社 | How to create a lithographic printing plate |
EP2042311A1 (en) | 2007-09-28 | 2009-04-01 | FUJIFILM Corporation | Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method |
JP5244518B2 (en) | 2007-09-28 | 2013-07-24 | 富士フイルム株式会社 | Planographic printing plate precursor and lithographic printing plate preparation method |
JP5055077B2 (en) | 2007-09-28 | 2012-10-24 | 富士フイルム株式会社 | Image forming method and planographic printing plate precursor |
JP4790682B2 (en) | 2007-09-28 | 2011-10-12 | 富士フイルム株式会社 | Planographic printing plate precursor |
JP4911469B2 (en) * | 2007-09-28 | 2012-04-04 | 富士フイルム株式会社 | Resist composition and pattern forming method using the same |
JP5039492B2 (en) * | 2007-09-28 | 2012-10-03 | 富士フイルム株式会社 | Positive resist composition and pattern forming method using the same |
JP5002399B2 (en) | 2007-09-28 | 2012-08-15 | 富士フイルム株式会社 | Processing method of lithographic printing plate precursor |
JP5039493B2 (en) * | 2007-09-28 | 2012-10-03 | 富士フイルム株式会社 | Positive resist composition and pattern forming method using the same |
JP4994175B2 (en) | 2007-09-28 | 2012-08-08 | 富士フイルム株式会社 | Planographic printing plate precursor and method for producing copolymer used therefor |
EP2208100B8 (en) * | 2007-10-11 | 2017-08-16 | 3M Innovative Properties Company | Chromatic confocal sensor |
US8088548B2 (en) * | 2007-10-23 | 2012-01-03 | Az Electronic Materials Usa Corp. | Bottom antireflective coating compositions |
JP2009199061A (en) | 2007-11-12 | 2009-09-03 | Rohm & Haas Electronic Materials Llc | Coating compositions for use with overcoated photoresist |
WO2009063824A1 (en) | 2007-11-14 | 2009-05-22 | Fujifilm Corporation | Method of drying coating film and process for producing lithographic printing plate precursor |
US8039201B2 (en) * | 2007-11-21 | 2011-10-18 | Az Electronic Materials Usa Corp. | Antireflective coating composition and process thereof |
US7858287B2 (en) * | 2007-11-30 | 2010-12-28 | Hyogo Prefecture | Photosensitive resin, and photosensitive composition |
JP2009139852A (en) | 2007-12-10 | 2009-06-25 | Fujifilm Corp | Method of preparing lithographic printing plate and lithographic printing plate precursor |
US8455846B2 (en) * | 2007-12-12 | 2013-06-04 | 3M Innovative Properties Company | Method for making structures with improved edge definition |
US20090162800A1 (en) * | 2007-12-20 | 2009-06-25 | David Abdallah | Process for Imaging a Photoresist Coated over an Antireflective Coating |
JP5066452B2 (en) | 2008-01-09 | 2012-11-07 | 富士フイルム株式会社 | Development processing method for lithographic printing plate |
JP2009186997A (en) | 2008-01-11 | 2009-08-20 | Fujifilm Corp | Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method |
JP5155677B2 (en) | 2008-01-22 | 2013-03-06 | 富士フイルム株式会社 | Planographic printing plate precursor and its plate making method |
TWI452419B (en) * | 2008-01-28 | 2014-09-11 | Az Electronic Mat Ip Japan Kk | Fine pattern mask, process for producing the same, and process for forming fine pattern by using the same |
JP2009184188A (en) | 2008-02-05 | 2009-08-20 | Fujifilm Corp | Lithographic printing original plate and printing method |
US8605256B2 (en) * | 2008-02-26 | 2013-12-10 | 3M Innovative Properties Company | Multi-photon exposure system |
JP5175582B2 (en) | 2008-03-10 | 2013-04-03 | 富士フイルム株式会社 | Preparation method of lithographic printing plate |
JP2009214428A (en) | 2008-03-11 | 2009-09-24 | Fujifilm Corp | Original plate of lithographic printing plate and lithographic printing method |
JP4940174B2 (en) | 2008-03-21 | 2012-05-30 | 富士フイルム株式会社 | Automatic development equipment for lithographic printing plates |
JP2009229771A (en) | 2008-03-21 | 2009-10-08 | Fujifilm Corp | Automatic developing method for lithographic printing plate |
JP2009236355A (en) | 2008-03-26 | 2009-10-15 | Fujifilm Corp | Drying method and device |
US7989144B2 (en) * | 2008-04-01 | 2011-08-02 | Az Electronic Materials Usa Corp | Antireflective coating composition |
US20090253081A1 (en) * | 2008-04-02 | 2009-10-08 | David Abdallah | Process for Shrinking Dimensions Between Photoresist Pattern Comprising a Pattern Hardening Step |
US20090253080A1 (en) * | 2008-04-02 | 2009-10-08 | Dammel Ralph R | Photoresist Image-Forming Process Using Double Patterning |
JP5164640B2 (en) | 2008-04-02 | 2013-03-21 | 富士フイルム株式会社 | Planographic printing plate precursor |
US7932018B2 (en) * | 2008-05-06 | 2011-04-26 | Az Electronic Materials Usa Corp. | Antireflective coating composition |
IL196690A0 (en) * | 2008-05-29 | 2011-08-01 | Plasan Sasa Ltd | Interchangeable door |
US8329387B2 (en) | 2008-07-08 | 2012-12-11 | Az Electronic Materials Usa Corp. | Antireflective coating compositions |
US8221965B2 (en) * | 2008-07-08 | 2012-07-17 | Az Electronic Materials Usa Corp. | Antireflective coating compositions |
JP5364444B2 (en) * | 2008-07-15 | 2013-12-11 | 東京応化工業株式会社 | Resist composition, resist pattern forming method, compound, acid generator |
US20100040838A1 (en) * | 2008-08-15 | 2010-02-18 | Abdallah David J | Hardmask Process for Forming a Reverse Tone Image |
JP5183380B2 (en) | 2008-09-09 | 2013-04-17 | 富士フイルム株式会社 | Photosensitive lithographic printing plate precursor for infrared laser |
US20100092894A1 (en) * | 2008-10-14 | 2010-04-15 | Weihong Liu | Bottom Antireflective Coating Compositions |
JP5591465B2 (en) | 2008-10-30 | 2014-09-17 | 丸善石油化学株式会社 | Method for producing copolymer solution for semiconductor lithography having uniform concentration |
US8455176B2 (en) * | 2008-11-12 | 2013-06-04 | Az Electronic Materials Usa Corp. | Coating composition |
US20100119980A1 (en) * | 2008-11-13 | 2010-05-13 | Rahman M Dalil | Antireflective Coating Composition Comprising Fused Aromatic Rings |
US20100119979A1 (en) * | 2008-11-13 | 2010-05-13 | Rahman M Dalil | Antireflective Coating Composition Comprising Fused Aromatic Rings |
JP4753056B2 (en) * | 2008-11-28 | 2011-08-17 | 信越化学工業株式会社 | Acetal compound, method for producing the same, polymer compound, resist material, and pattern forming method |
US20100136477A1 (en) | 2008-12-01 | 2010-06-03 | Ng Edward W | Photosensitive Composition |
EP2216683B1 (en) | 2009-02-08 | 2018-11-14 | Rohm and Haas Electronic Materials, L.L.C. | Substrates coated with an antireflective composition and a photoresist |
EP2216684B1 (en) | 2009-02-08 | 2015-10-07 | Rohm and Haas Electronic Materials LLC | Method of forming a photoresist image comprising an undercoat layer |
US8084186B2 (en) * | 2009-02-10 | 2011-12-27 | Az Electronic Materials Usa Corp. | Hardmask process for forming a reverse tone image using polysilazane |
US20100203450A1 (en) | 2009-02-11 | 2010-08-12 | International Business Machines Corporation | Photoresist compositions and methods of use |
JP5537920B2 (en) | 2009-03-26 | 2014-07-02 | 富士フイルム株式会社 | Actinic ray-sensitive or radiation-sensitive resin composition, resist film using the same, and pattern formation method |
WO2010117102A1 (en) | 2009-04-09 | 2010-10-14 | 서강대학교 산학협력단 | Method for aligning colloidal crystals as single crystals |
KR20120012792A (en) | 2009-04-15 | 2012-02-10 | 제이에스알 가부시끼가이샤 | Radiation-sensitive resin composition, polymer used therein, and compound used therein |
US8501383B2 (en) | 2009-05-20 | 2013-08-06 | Rohm And Haas Electronic Materials Llc | Coating compositions for use with an overcoated photoresist |
US9244352B2 (en) | 2009-05-20 | 2016-01-26 | Rohm And Haas Electronic Materials, Llc | Coating compositions for use with an overcoated photoresist |
US20100316949A1 (en) * | 2009-06-10 | 2010-12-16 | Rahman M Dalil | Spin On Organic Antireflective Coating Composition Comprising Polymer with Fused Aromatic Rings |
US8883407B2 (en) | 2009-06-12 | 2014-11-11 | Rohm And Haas Electronic Materials Llc | Coating compositions suitable for use with an overcoated photoresist |
CN102804065B (en) | 2009-06-16 | 2014-07-16 | Jsr株式会社 | Radiation-sensitive resin composition |
CN101930173B (en) | 2009-06-22 | 2014-05-14 | 罗门哈斯电子材料有限公司 | Photoacid generators and photoresists comprising same |
US9057951B2 (en) | 2009-08-26 | 2015-06-16 | International Business Machines Corporation | Chemically amplified photoresist composition and process for its use |
KR101758398B1 (en) | 2009-09-11 | 2017-07-14 | 제이에스알 가부시끼가이샤 | Radiation-sensitive composition and novel compound |
US8883401B2 (en) | 2009-09-24 | 2014-11-11 | Fujifilm Corporation | Lithographic printing original plate |
US8632948B2 (en) * | 2009-09-30 | 2014-01-21 | Az Electronic Materials Usa Corp. | Positive-working photoimageable bottom antireflective coating |
US8551686B2 (en) * | 2009-10-30 | 2013-10-08 | Az Electronic Materials Usa Corp. | Antireflective composition for photoresists |
TWI477495B (en) | 2009-12-10 | 2015-03-21 | 羅門哈斯電子材料有限公司 | Photoacid generators and photoresists comprising same |
KR101806155B1 (en) | 2009-12-10 | 2017-12-07 | 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 | Cholate photoacid generators and photoresists comprising same |
KR101857467B1 (en) | 2009-12-14 | 2018-06-28 | 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 | Sulfonyl photoacid generators and photoresists comprising same |
US8815754B2 (en) | 2009-12-15 | 2014-08-26 | Rohm And Haas Electronics Materials Llc | Photoresists and methods for use thereof |
TWI605310B (en) | 2009-12-15 | 2017-11-11 | 羅門哈斯電子材料有限公司 | Photoresists and methods for use thereof |
JP2011186432A (en) | 2009-12-15 | 2011-09-22 | Rohm & Haas Electronic Materials Llc | Photoresist and method for using the same |
US8821978B2 (en) | 2009-12-18 | 2014-09-02 | International Business Machines Corporation | Methods of directed self-assembly and layered structures formed therefrom |
US8623458B2 (en) | 2009-12-18 | 2014-01-07 | International Business Machines Corporation | Methods of directed self-assembly, and layered structures formed therefrom |
WO2011077993A1 (en) | 2009-12-22 | 2011-06-30 | Jsr株式会社 | Radiation-sensitive composition |
US8486609B2 (en) | 2009-12-23 | 2013-07-16 | Az Electronic Materials Usa Corp. | Antireflective coating composition and process thereof |
WO2011083872A1 (en) * | 2010-01-08 | 2011-07-14 | Fujifilm Corporation | Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition and resist film |
US8927190B2 (en) | 2010-01-25 | 2015-01-06 | Rohm And Haas Electronic Materials Llc | Photoresist comprising nitrogen-containing compound |
US8507192B2 (en) * | 2010-02-18 | 2013-08-13 | Az Electronic Materials Usa Corp. | Antireflective compositions and methods of using same |
US9223209B2 (en) | 2010-02-19 | 2015-12-29 | International Business Machines Corporation | Sulfonamide-containing photoresist compositions and methods of use |
JP5969171B2 (en) | 2010-03-31 | 2016-08-17 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | Photoacid generator and photoresist containing the same |
EP2383611A3 (en) | 2010-04-27 | 2012-01-25 | Rohm and Haas Electronic Materials LLC | Photoacid generators and photoresists comprising same |
US9261780B2 (en) | 2010-05-20 | 2016-02-16 | Jsr Corporation | Radiation-sensitive resin composition, method for forming resist pattern, and polymer and compound |
US8445181B2 (en) | 2010-06-03 | 2013-05-21 | Az Electronic Materials Usa Corp. | Antireflective coating composition and process thereof |
US8852848B2 (en) | 2010-07-28 | 2014-10-07 | Z Electronic Materials USA Corp. | Composition for coating over a photoresist pattern |
WO2012023374A1 (en) | 2010-08-17 | 2012-02-23 | Jsr株式会社 | Radiation-sensitive composition and novel compound |
JP5729114B2 (en) | 2010-08-19 | 2015-06-03 | Jsr株式会社 | Radiation sensitive resin composition, pattern forming method, polymer and compound |
KR101881600B1 (en) | 2010-08-19 | 2018-07-24 | 제이에스알 가부시끼가이샤 | Radiation-sensitive resin composition, pattern forming method, polymer and compound |
US8580479B2 (en) | 2010-11-03 | 2013-11-12 | Empire Technology Development, Llc | Lithography using photoresist with photoinitiator and photoinhibitor |
US20120122029A1 (en) | 2010-11-11 | 2012-05-17 | Takanori Kudo | Underlayer Developable Coating Compositions and Processes Thereof |
JP5754444B2 (en) | 2010-11-26 | 2015-07-29 | Jsr株式会社 | Radiation sensitive composition |
JP5690703B2 (en) * | 2010-11-30 | 2015-03-25 | 富士フイルム株式会社 | Negative pattern forming method and resist pattern |
WO2012090959A1 (en) | 2010-12-28 | 2012-07-05 | Jsr株式会社 | Radiation-sensitive resin composition and compound |
EP2472327A1 (en) | 2010-12-30 | 2012-07-04 | Rohm and Haas Electronic Materials LLC | Photoresists and methods for use thereof |
EP2472329B1 (en) | 2010-12-31 | 2013-06-05 | Rohm and Haas Electronic Materials LLC | Coating compositions for use with an overcoated photoresist |
EP2472328B1 (en) | 2010-12-31 | 2013-06-19 | Rohm and Haas Electronic Materials LLC | Coating compositions for use with an overcoated photoresist |
WO2012106512A2 (en) | 2011-02-02 | 2012-08-09 | 3M Innovative Properties Company | Nozzle and method of making same |
KR20140007833A (en) | 2011-02-04 | 2014-01-20 | 제이에스알 가부시끼가이샤 | Photoresist composition |
US8465902B2 (en) | 2011-02-08 | 2013-06-18 | Az Electronic Materials Usa Corp. | Underlayer coating composition and processes thereof |
JP5386527B2 (en) * | 2011-02-18 | 2014-01-15 | 富士フイルム株式会社 | Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition, and resist film |
US8906590B2 (en) | 2011-03-30 | 2014-12-09 | Az Electronic Materials Usa Corp. | Antireflective coating composition and process thereof |
JP5786426B2 (en) | 2011-04-11 | 2015-09-30 | Jsr株式会社 | Photoresist composition and resist pattern forming method |
US9599895B2 (en) | 2011-04-12 | 2017-03-21 | Empire Technology Development Llc | Lithography using photoresist with photoinitiator and photoinhibitor |
JP5772717B2 (en) * | 2011-05-30 | 2015-09-02 | 信越化学工業株式会社 | Pattern formation method |
US8623589B2 (en) | 2011-06-06 | 2014-01-07 | Az Electronic Materials Usa Corp. | Bottom antireflective coating compositions and processes thereof |
CN103608726B (en) | 2011-06-08 | 2016-11-09 | 3M创新有限公司 | Comprise the photoresist of the nano-particle of polymer mooring |
US8568958B2 (en) | 2011-06-21 | 2013-10-29 | Az Electronic Materials Usa Corp. | Underlayer composition and process thereof |
JP5889568B2 (en) | 2011-08-11 | 2016-03-22 | メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH | Composition for forming tungsten oxide film and method for producing tungsten oxide film using the same |
JP6028732B2 (en) | 2011-08-16 | 2016-11-16 | Jsr株式会社 | Photoresist composition |
JP2013225094A (en) | 2011-10-07 | 2013-10-31 | Jsr Corp | Photoresist composition and method for forming resist pattern |
US20130108956A1 (en) | 2011-11-01 | 2013-05-02 | Az Electronic Materials Usa Corp. | Nanocomposite positive photosensitive composition and use thereof |
US20130105440A1 (en) | 2011-11-01 | 2013-05-02 | Az Electronic Materials Usa Corp. | Nanocomposite negative photosensitive composition and use thereof |
US9962430B2 (en) | 2012-02-15 | 2018-05-08 | Chirhoclin, Inc. | Methods for treating pain associated with chronic pancreatitis |
US8968586B2 (en) | 2012-02-15 | 2015-03-03 | Jsr Corporation | Pattern-forming method |
WO2013134104A2 (en) | 2012-03-08 | 2013-09-12 | Microchem Corp. | Photoimageable compositions and processes for fabrication of relief patterns on low surface energy substrates |
KR102070058B1 (en) | 2012-03-19 | 2020-01-30 | 제이에스알 가부시끼가이샤 | Photoresist composition, compound and method for producing same |
WO2013141222A1 (en) | 2012-03-19 | 2013-09-26 | Jsr株式会社 | Resist pattern forming method and photoresist composition |
JP5490168B2 (en) | 2012-03-23 | 2014-05-14 | 富士フイルム株式会社 | Planographic printing plate precursor and lithographic printing plate preparation method |
JP5512730B2 (en) | 2012-03-30 | 2014-06-04 | 富士フイルム株式会社 | Preparation method of lithographic printing plate |
JP6019677B2 (en) | 2012-04-02 | 2016-11-02 | Jsr株式会社 | Photoresist composition and resist pattern forming method |
US8846295B2 (en) | 2012-04-27 | 2014-09-30 | International Business Machines Corporation | Photoresist composition containing a protected hydroxyl group for negative development and pattern forming method using thereof |
US11406718B2 (en) | 2012-05-29 | 2022-08-09 | Chirhoclin, Inc. | Methods of detecting pancreobiliary ductal leaks |
US9170494B2 (en) | 2012-06-19 | 2015-10-27 | Az Electronic Materials (Luxembourg) S.A.R.L. | Antireflective compositions and methods of using same |
US8906592B2 (en) | 2012-08-01 | 2014-12-09 | Az Electronic Materials (Luxembourg) S.A.R.L. | Antireflective coating composition and process thereof |
JP5764589B2 (en) * | 2012-10-31 | 2015-08-19 | 富士フイルム株式会社 | Container for organic processing liquid for patterning chemically amplified resist film, pattern formation method using the same, and method for manufacturing electronic device |
JP5982442B2 (en) * | 2012-10-31 | 2016-08-31 | 富士フイルム株式会社 | Organic processing liquid for patterning chemically amplified resist film, pattern formation method using the same, and electronic device manufacturing method |
US9315636B2 (en) | 2012-12-07 | 2016-04-19 | Az Electronic Materials (Luxembourg) S.A.R.L. | Stable metal compounds, their compositions and methods |
US20150060113A1 (en) | 2013-01-22 | 2015-03-05 | Yongcai Wang | Photocurable composition, article, and method of use |
US9017934B2 (en) | 2013-03-08 | 2015-04-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist defect reduction system and method |
US9354521B2 (en) | 2013-03-12 | 2016-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist system and method |
US8932799B2 (en) | 2013-03-12 | 2015-01-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist system and method |
US9245751B2 (en) | 2013-03-12 | 2016-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-reflective layer and method |
US9110376B2 (en) | 2013-03-12 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist system and method |
US9256128B2 (en) | 2013-03-12 | 2016-02-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for manufacturing semiconductor device |
US9502231B2 (en) | 2013-03-12 | 2016-11-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist layer and method |
US9543147B2 (en) | 2013-03-12 | 2017-01-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist and method of manufacture |
US9175173B2 (en) | 2013-03-12 | 2015-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Unlocking layer and method |
US9117881B2 (en) | 2013-03-15 | 2015-08-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Conductive line system and process |
WO2014171429A1 (en) | 2013-04-17 | 2014-10-23 | Jsr株式会社 | Production method for semiconductor element and ion implantation method |
US9291909B2 (en) | 2013-05-17 | 2016-03-22 | Az Electronic Materials (Luxembourg) S.A.R.L. | Composition comprising a polymeric thermal acid generator and processes thereof |
US9152051B2 (en) | 2013-06-13 | 2015-10-06 | Az Electronics Materials (Luxembourg) S.A.R.L. | Antireflective coating composition and process thereof |
US9201305B2 (en) | 2013-06-28 | 2015-12-01 | Az Electronic Materials (Luxembourg) S.A.R.L. | Spin-on compositions of soluble metal oxide carboxylates and methods of their use |
JP6292059B2 (en) | 2013-08-13 | 2018-03-14 | Jsr株式会社 | Substrate processing method |
US9341945B2 (en) | 2013-08-22 | 2016-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist and method of formation and use |
US9296922B2 (en) | 2013-08-30 | 2016-03-29 | Az Electronic Materials (Luxembourg) S.A.R.L. | Stable metal compounds as hardmasks and filling materials, their compositions and methods of use |
US20150110867A1 (en) | 2013-10-23 | 2015-04-23 | Lawrence Livermore National Security, Llc | Techniques for release of material into an environment |
US9005854B1 (en) | 2013-11-05 | 2015-04-14 | Eastman Kodak Company | Electroless plating method using halide |
US9023560B1 (en) | 2013-11-05 | 2015-05-05 | Eastman Kodak Company | Electroless plating method using non-reducing agent |
US8936890B1 (en) | 2013-11-05 | 2015-01-20 | Eastman Kodak Company | Electroless plating method |
US9128378B2 (en) | 2013-11-05 | 2015-09-08 | Eastman Kodak Company | Forming conductive metal patterns with reactive polymers |
US9122161B2 (en) | 2013-11-05 | 2015-09-01 | Eastman Kodak Company | Electroless plating method using bleaching |
US10036953B2 (en) | 2013-11-08 | 2018-07-31 | Taiwan Semiconductor Manufacturing Company | Photoresist system and method |
US9155201B2 (en) | 2013-12-03 | 2015-10-06 | Eastman Kodak Company | Preparation of articles with conductive micro-wire pattern |
US10095113B2 (en) | 2013-12-06 | 2018-10-09 | Taiwan Semiconductor Manufacturing Company | Photoresist and method |
US9761449B2 (en) | 2013-12-30 | 2017-09-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Gap filling materials and methods |
US9418836B2 (en) | 2014-01-14 | 2016-08-16 | Az Electronic Materials (Luxembourg) S.A.R.L. | Polyoxometalate and heteropolyoxometalate compositions and methods for their use |
US9409793B2 (en) | 2014-01-14 | 2016-08-09 | Az Electronic Materials (Luxembourg) S.A.R.L. | Spin coatable metallic hard mask compositions and processes thereof |
US9599896B2 (en) | 2014-03-14 | 2017-03-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist system and method |
US9274426B2 (en) | 2014-04-29 | 2016-03-01 | Az Electronic Materials (Luxembourg) S.A.R.L. | Antireflective coating compositions and processes thereof |
US9581908B2 (en) | 2014-05-16 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photoresist and method |
JP6405772B2 (en) * | 2014-07-31 | 2018-10-17 | 住友化学株式会社 | Composition and organic thin film transistor using the same |
JP6363431B2 (en) | 2014-08-27 | 2018-07-25 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US9499698B2 (en) | 2015-02-11 | 2016-11-22 | Az Electronic Materials (Luxembourg)S.A.R.L. | Metal hardmask composition and processes for forming fine patterns on semiconductor substrates |
US10241409B2 (en) | 2015-12-22 | 2019-03-26 | AZ Electronic Materials (Luxembourg) S.à.r.l. | Materials containing metal oxides, processes for making same, and processes for using same |
JP7008075B2 (en) | 2016-12-21 | 2022-01-25 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Composition of spin-on material containing metal oxide nanoparticles and organic polymer |
WO2019048393A1 (en) | 2017-09-06 | 2019-03-14 | AZ Electronic Materials (Luxembourg) S.à.r.l. | Spin-on inorganic oxide containing composition useful as hard masks and filling materials with improved thermal stability |
WO2020016389A1 (en) | 2018-07-19 | 2020-01-23 | Lintfield Limited | Thioxanthone derivatives, composition comprising the same and pattern forming method comprising said composition |
GB202000736D0 (en) | 2020-01-17 | 2020-03-04 | Lintfield Ltd | Modified thioxanthone photoinitators |
US11744878B2 (en) | 2020-08-19 | 2023-09-05 | Chirhoclin, Inc. | Methods for treatment of COVID-19 syndrome |
TW202302514A (en) | 2021-05-06 | 2023-01-16 | 德商馬克專利公司 | Spin on metal-organic formulations |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB844039A (en) * | 1959-02-20 | 1960-08-10 | Kalle & Co Ag | Improvements in or relating to photo-mechanical reproduction |
US3515552A (en) * | 1966-09-16 | 1970-06-02 | Minnesota Mining & Mfg | Light-sensitive imaging sheet and method of using |
US3536489A (en) * | 1966-09-16 | 1970-10-27 | Minnesota Mining & Mfg | Heterocyclic iminoaromatic-halogen containing photoinitiator light sensitive compositions |
US3782939A (en) * | 1972-02-09 | 1974-01-01 | Mining And Mfg Co | Dry positive-acting photoresist |
US3779778A (en) * | 1972-02-09 | 1973-12-18 | Minnesota Mining & Mfg | Photosolubilizable compositions and elements |
US4210449A (en) * | 1972-10-16 | 1980-07-01 | American Can Company | Radiation sensitive composition comprising copolymer of glycidyl methacrylate and allyl glycidyl ether and diazonium salt of complex halogenide |
US3859099A (en) * | 1972-12-22 | 1975-01-07 | Eastman Kodak Co | Positive plate incorporating diazoquinone |
CA1005673A (en) * | 1972-12-22 | 1977-02-22 | Constantine C. Petropoulos | Positive printing plate incorporating diazoquinone |
US3984253A (en) * | 1974-04-22 | 1976-10-05 | Eastman Kodak Company | Imaging processes and elements therefor |
CH621416A5 (en) * | 1975-03-27 | 1981-01-30 | Hoechst Ag | |
DE2529054C2 (en) * | 1975-06-30 | 1982-04-29 | Ibm Deutschland Gmbh, 7000 Stuttgart | Process for the production of a resist image which is negative for the original |
US4193799A (en) * | 1976-07-09 | 1980-03-18 | General Electric Company | Method of making printing plates and printed circuit |
JPS5381116A (en) * | 1976-12-25 | 1978-07-18 | Agency Of Ind Science & Technol | Radiation sensitive polymer and its working method |
DE2718254C3 (en) * | 1977-04-25 | 1980-04-10 | Hoechst Ag, 6000 Frankfurt | Radiation-sensitive copying paste |
US4273668A (en) * | 1977-09-14 | 1981-06-16 | General Electric Company | Arylsulfonium salt-solvent mixtures |
US4250053A (en) * | 1979-05-21 | 1981-02-10 | Minnesota Mining And Manufacturing Company | Sensitized aromatic iodonium or aromatic sulfonium salt photoinitiator systems |
DE2928636A1 (en) * | 1979-07-16 | 1981-02-12 | Hoechst Ag | RADIATION-SENSITIVE MIXTURE AND METHOD FOR PRODUCING RELIEF IMAGES |
JPS5629232A (en) * | 1979-08-16 | 1981-03-24 | Fujitsu Ltd | Pattern forming material |
JPS5639539A (en) * | 1979-09-07 | 1981-04-15 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Pattern forming method |
NL8101200A (en) * | 1981-03-12 | 1982-10-01 | Philips Nv | METHOD FOR APPLYING A RESIST MATERIAL TO A CARRIER AND RESIST MATERIAL |
JPS5868743A (en) * | 1981-10-21 | 1983-04-23 | Hitachi Ltd | Radation sensitive organic polymer material |
-
1982
- 1982-08-23 US US06/410,201 patent/US4491628A/en not_active Expired - Lifetime
-
1983
- 1983-05-02 EP EP90114926A patent/EP0404206B1/en not_active Expired - Lifetime
- 1983-05-02 DE DE8383104285T patent/DE3382401D1/en not_active Expired - Fee Related
- 1983-05-02 DE DE3382809T patent/DE3382809T2/en not_active Expired - Fee Related
- 1983-05-02 EP EP83104285A patent/EP0102450B1/en not_active Expired
- 1983-06-20 JP JP58109463A patent/JPS5945439A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
EP0404206A3 (en) | 1991-02-27 |
EP0404206A2 (en) | 1990-12-27 |
DE3382809T2 (en) | 1997-04-03 |
EP0102450A2 (en) | 1984-03-14 |
JPH0227660B2 (en) | 1990-06-19 |
EP0102450B1 (en) | 1991-09-04 |
US4491628A (en) | 1985-01-01 |
JPS5945439A (en) | 1984-03-14 |
DE3382809D1 (en) | 1996-10-10 |
EP0102450A3 (en) | 1986-10-15 |
DE3382401D1 (en) | 1991-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0404206B1 (en) | Resist compositions | |
EP0836119B1 (en) | Chemically amplified resist composition | |
JP2562178B2 (en) | Radiation-sensitive mixture for photosensitive layer forming material | |
US4939070A (en) | Thermally stable photoresists with high sensitivity | |
US4603101A (en) | Photoresist compositions containing t-substituted organomethyl vinylaryl ether materials | |
JP4056208B2 (en) | Photosensitive polymer having protecting group containing aromatic ring of condensed ring and resist composition containing the same | |
US5075199A (en) | Radiation sensitive mixture and production of relief patterns | |
EP0254853B1 (en) | Lithographic method employing thermally stable photoresists with high sensitivity forming a hydogen-bonded network | |
CA1334059C (en) | Radiation sensitive mixture and production of relief patterns | |
US6103845A (en) | Chemically amplified resist polymers | |
JP2000029215A (en) | New polymer and photoresist composition | |
US6235448B1 (en) | Photoresist monomers, polymers thereof, and photoresist compositions containing the same | |
EP0264908A2 (en) | High sensitivity resists having autodecomposition temperatures greater than about 160 C | |
US6143466A (en) | Chemically amplified photoresist composition | |
US6258508B1 (en) | Polymer using norbornene monomers with derivatives of cholic acid, deoxycholic acid or lithocholic acid and use thereof | |
KR100546105B1 (en) | Novel Photoresist Polymers and Photoresist Compositions Containing the Same | |
US6737217B2 (en) | Photoresist monomers containing fluorine-substituted benzylcarboxylate and photoresist polymers comprising the same | |
US6653047B2 (en) | Photoresist monomers containing fluorine-substituted benzylcarboxylate and photoresist polymers comprising the same | |
US5356740A (en) | Radiation-sensitive compositions | |
US5302488A (en) | Radiation-sensitive polymers containing naphthoquinone-2-diazide-4-sulfonyl groups and their use in a positive working recording material | |
US7208260B2 (en) | Cross-linking monomers for photoresist, and process for preparing photoresist polymers using the same | |
US6492088B1 (en) | Photoresist monomers polymers thereof and photoresist compositions containing the same | |
KR100732284B1 (en) | Novel photoresist monomer, polymer thereof and photoresist composition containing it | |
KR0183950B1 (en) | Chemically amplified resist composition | |
US6720129B2 (en) | Maleimide-photoresist polymers containing fluorine and photoresist compositions comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 102450 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19911018 |
|
17Q | First examination report despatched |
Effective date: 19950831 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 102450 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3382809 Country of ref document: DE Date of ref document: 19961010 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990610 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020501 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020516 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20030501 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |