EP0384505B1 - Procédé de revêtement en continu de fils et utilisation des fils ainsi obtenus - Google Patents

Procédé de revêtement en continu de fils et utilisation des fils ainsi obtenus Download PDF

Info

Publication number
EP0384505B1
EP0384505B1 EP90200246A EP90200246A EP0384505B1 EP 0384505 B1 EP0384505 B1 EP 0384505B1 EP 90200246 A EP90200246 A EP 90200246A EP 90200246 A EP90200246 A EP 90200246A EP 0384505 B1 EP0384505 B1 EP 0384505B1
Authority
EP
European Patent Office
Prior art keywords
wire
weight
parts
polyester
paints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90200246A
Other languages
German (de)
English (en)
Other versions
EP0384505A1 (fr
Inventor
Klaus-Wilhelm Lienert
Knut Von Loh
Hans-Joachim Reiser
Paul Mertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Lacroix und Kress GmbH
Original Assignee
Lackdraht Union GmbH
BASF Lacke und Farben AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lackdraht Union GmbH, BASF Lacke und Farben AG filed Critical Lackdraht Union GmbH
Publication of EP0384505A1 publication Critical patent/EP0384505A1/fr
Application granted granted Critical
Publication of EP0384505B1 publication Critical patent/EP0384505B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils

Definitions

  • the winding machines have to be adapted to the enamelled wire.
  • problems also arise in particular with thin wires (wire diameter ⁇ 0.35 mm) in that these fluorocarbon-based paints cannot be tinned. This means that the lacquer layer must be removed before soldering the wire, which causes considerable problems, especially with thin wires.
  • the high price of fluorocarbon resins is a significant economic disadvantage.
  • US Pat. No. 4,503,284 discloses semiconductor wires which consist of a metallic conductor core, an insulating lacquer layer applied to the conductor core and an electrically conductive layer applied to the insulating lacquer layer. These semiconductor wires are used to manufacture electromagnetic components. Compared to conventional wires that are only provided with an insulating layer, they offer the advantage that their use in the electromagnetic components suppresses the radio frequency interference signals that usually occur with rapidly changing voltages. Common wire enamels based on polyesters, polyamides, polyurethanes, polyamideimides and the like are used both for the production of the insulating layer and for the production of the conductive lacquer layer. used. To generate the electrical conductivity, 10 to 40% by weight, based on the weight of the hardened lacquer layer, of conductive and / or magnetic particles are added to the conductive lacquers.
  • the present invention was therefore based on the object of providing a method according to the preamble of the first claim, in which both the insulating varnish and the conductive varnish are applied to the most varied wire diameters, in particular also to thin wires (wire diameter ⁇ 0, 35 mm) can be applied and hardened bind.
  • the wires produced by this process should be suitable for use as winding wires for the production of, for example, coils, relays, contactors, motors and other electronic devices in which inductors and capacitors can be used.
  • polyesterimide resins used as component Aa are known and are described, for example, in DE-OS 14 45 263 and DE-OS 14 95 100.
  • the polyesterimides are prepared in a known manner by esterification of the polyhydric carboxylic acids with the polyhydric alcohols, optionally with the addition of oxycarboxylic acids , and using starting materials containing imide groups. Instead of the free acids and / or alcohols, their reactive derivatives can also be used.
  • Terephthalic acid is preferably used as the carboxylic acid component, and ethylene glycol, glycerol and tris-2-hydroxyethyl isocyanurate are preferably used as polyhydric alcohols, the latter being particularly preferred.
  • the starting materials containing imide groups can be obtained, for example, by reaction between compounds, one of which must have a five-membered, cyclic carboxylic anhydride group and at least one further functional group, while the other contains at least one further functional group in addition to a primary amino group.
  • These other functional groups bind primarily carboxyl groups or hydroxyl groups, but they can also be other primary amino groups or carboxylic anhydride groups.
  • Examples of compounds with a cyclic carboxylic acid anhydride grouping with a further functional group are, in particular, pyromellitic dianhydride and trimellitic anhydride.
  • aromatic carboxylic acid anhydrides are also possible, for example the naphthalene tetracarboxylic acid dianhydrides or dianhydrides of tetracarboxylic acids with two benzene nuclei in the molecule, in which the carboxyl groups are in the 3,3 ', 4- and 4'-positions.
  • Examples of compounds with a primary amino group and a further functional group are in particular diprimary diamines, e.g. B. ethylenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine and other aliphatic diprimary diamines.
  • diprimary diamines e.g. B. ethylenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine and other aliphatic diprimary diamines.
  • aromatic diprimary diamines such as benzidine, diaminodiphenylmethane, diaminodiphenyl ketone, sulfone, sulfoxide, ether and thioether, phenylenediamines, toluenediamines, xylylenediamines and also diamines with three benzene nuclei in the molecule, such as bis- (4) aminophenophenyl ⁇ , ⁇ '-p-xylene or bis (4-aminophenoxy) - 1,4-benzene, and finally cycloaliphatic diamines such as 4,4'-dicyclohexylmethane diamine.
  • aromatic diprimary diamines such as benzidine, diaminodiphenylmethane, diaminodiphenyl ketone, sulfone, sulfoxide, ether and thioether, phenylenediamines, toluenediamines, xy
  • Amino alcohol-containing compounds with a further functional group can also be used, for.
  • monoethanolamine or monopropanolamines furthermore amino carboxylic acids such as glycine, aminopropionic acids, aminocaproic acids or aminobenzoic acids.
  • Known transesterification catalysts are used to prepare the polyesterimide resins, for example heavy metal salts such as lead acetate, zinc acetate, organic titanates, cerium compounds and organic acids, such as, for. B. para-toluenesulfonic acid.
  • the same transesterification catalysts can be used as crosslinking catalysts in the curing of the polyesterimides - advantageously in a proportion of up to 3% by weight, based on the binder.
  • Solvents suitable for the production of the polyesterimide wire enamels are cresolic and non-cresolic organic solvents such as, for example, cresol, phenol, glycol ethers such as, for. B. methyl glycol, ethyl glycol, isopropyl glycol, butyl glycol, methyl diglycol, ethyl diglycol, butyl diglycol; Glycol ether esters, e.g. B. methyl glycol acetate, ethyl glycol acetate, butyl glycol acetate and 3-methoxy-n-butyl acetate; cyclic carbonates, such as B. propylene carbonate; cyclic esters such as B.
  • Aromatic solvents can also be used, if appropriate in combination with the solvents mentioned. Examples of such solvents are xylene, solvent naphtha®, toluene, ethylbenzene, cumene, heavy benzene, various Solvesso® and Shellsol® types and Deasol®. Furthermore, it is also possible to use aqueous polyesterimide solutions or dispersions in the process according to the invention. The water solubility or water dispersibility of the polyester imides is such. B.
  • polyester resins used as component Ab are also known and are described, for example, in US Pat. Nos. 3,342,780 and EP-B-144 281.
  • the polyesters are prepared in a known manner by esterifying polybasic carboxylic acids with polyhydric alcohols in the presence suitable catalysts. Instead of the free acid, its ester-forming derivatives can also be used.
  • Alcohols suitable for the production of the polyesters are, for example, ethylene glycol, propylene glycol 1,2 and 1,3, butanediol 1,2, 1,3 and 1,4, pentanediol 1,5, neopentyl glycol, diethylene glycol, triethylene glycol and Triplet like e.g. B. glycerol, trimethylolethane, trimethylolpropane and tris-2-hydroxyethyl isocyanurate. Mixtures of ethylene glycol and tris-2-hydroxyethyl isocyanurate are preferably used. The use of tris-2-hydroxyethyl isocyanurate leads to high softening temperatures of the lacquer layer.
  • Suitable carboxylic acids are for example phthalic acid, isophthalic acid, terephthalic acid and their esterifiable derivatives such as.
  • the corresponding acid halides of these compounds can also be used.
  • polyesters have a ratio of hydroxyl to carboxyl groups from 1.1: 1 to 2.0: 1, preferably from 1.15: 1 to 1.60: 1.
  • Catalysts suitable for the production of the polyesters which are used in amounts of 0.01 to 5% by weight, based on the feed mixture, are conventional esterification catalysts. Examples of suitable compounds have already been given in the description of the polyesterimides Aa.
  • Suitable solvents for the polyester Ab are also the solvents listed in the description of the polyester imides. At this point, reference is therefore made to pages 6 to 7 of this description for further details.
  • the viscosities of the 20 to 60% by weight solvent solutions of the polyesters are at 23 ° C. in the range from 40 to 12000 mPas.
  • the polyurethane-based Ac wire enamels used in the process according to the invention are also already known and are described, for example, in DE-OS 28 40 352 and DE-OS 25 45 912 described.
  • the wire enamels are produced in a known manner by dissolving a hydroxyl-containing polyester with an OH number of 100 to 450 mg KOH / g, preferably from 150 to 400 mg KOH / g and a blocked isocyanate adduct in a cresolic or non-cresolic solvent or solvent mixture.
  • the same structural components (polyol and polycarboxylic acid) and the same reaction conditions as in the production of the polyester wire enamels Ab can be used for the production of the hydroxyl-containing polyesters.
  • the isocyanate adducts are prepared by reacting a diisocyanate with a polyol, the amounts of these compounds being chosen so that the NCO: OH equivalent ratio is between 1: 2 and 9: 1.
  • the remaining free isocyanate groups of this adduct are reacted with a blocking agent.
  • the structure of the isocyanate adduct is advantageously carried out in a solvent which is inert to isocyanant groups and which readily dissolves the resulting polyurethane in the presence of a catalyst at temperatures from 30 to 120.degree.
  • diisocyanates examples include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, propylene diisocyanate, ethylethylene diisocyanate, 2,3-dimethylethylene diisocyanate, 1-methyltrimethylene diisocyanate, 1,3-cyclopentylene diisocyanate, 1,4-cyclohexylene diisocyanate diisocyanate, 1,2-diisocyanate diisocyanate, 1,2-diisocyanate diisocyanate, 1,2-diisocyanate diisocyanate, 1,2-cyclohexylene diisocyanate, 1,2-diisocyanate, 1,2-diisocyanate, 1,2-diisocyanate , 1,4-phenylene diisocyanate, 2,5-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-bi
  • Toluene diisocyanate and bis (4-isocyanatophenyl) methane are preferably used.
  • suitable polyols for adduct formation are trimethylolpropane, neopentyl glycol, glycerin, hexanetriol, pentaerythritol and glycols such as, for. B. ethylene glycol and propylene glycol.
  • Trimethylolpropane is preferably used.
  • An adduct of 1 mol of trimethylolpropane and 3 mol of tolylene diisocyanate and / or bis (4-isocyanatophenyl) methane is very particularly preferably used.
  • blocking agents are suitable for blocking the free isocyanate groups, but it must be ensured that deblocking only occurs at temperatures above 120 ° C.
  • suitable compounds are aliphatic, cycloaliphatic or aromatic alcohols such as. B. butanol, isobutanol, 2-ethylhexanol, cyclohexanol, cyclopentanol, benzyl alcohol, phenols, cresols; ⁇ -Hydroxykylether such as. B. methyl, ethyl, butyl glycol; Amines such as B. di-n-butylamine, di-n-hexylamine; Oximes such as B.
  • Suitable inert solvents are for example heterocyclic, aliphatic or aromatic hydrocarbons, ethers, esters and ketones such as. B.
  • N-methylpyrrolidone N-methylpyrrolidone, toluene, xylene, cresol, ethylbenzene, Solventnaphtha®, heavy benzene, various Solvesso® and Shellsol® types, Deasol®, methyldiglycol, ethyldiglycol, butyldiglycol, ethylene glycol dibutyl ether, ethylene glycol ethylacetyl ether, ethylene glycol ethyl diethyl ether, ethylene glycol diethyl ether, ethylene glycol ethyl diethyl ether, ethylene glycol diethyl ether, Methyl glycol acetate, ethyl glycol acetate, butyl glycol acetate and mixtures thereof.
  • the content of blocked isocyanate adduct in the wire enamel Ac is between 30 and 90% by weight, based on the sum of the blocked isocyanate adduct and the hydroxyl-containing polyester.
  • Wire enamels based on polyurethane are preferably used both as an insulating enamel and particularly as an electrically conductive enamel, especially when thin wires ( ⁇ ⁇ 0.35 mm) are to be coated.
  • Wire enamels based on polyurethane have the advantage that they are directly solderable / tinnable and that they have low viscosities with a high solids content. This is particularly advantageous with regard to high application speeds and with regard to the maximum amount of soot that can be incorporated.
  • Polyurethanes as conductive lacquers also have the advantage that, when they are coated on polyester or polyesterimide insulating lacquers, they can be removed simply by melting on part of the wire. This is e.g. B. then of importance if the Cu wire conductor is contacted without the conductive lacquer layer being connected.
  • the viscosities of 15 to 50% by weight solutions of the polyurethanes at 23 ° C. are in the range from 50 to 10,000 mPas.
  • the wire enamels Ad based on polyamideimide are also known and described, for example, in US Pat. No. 3,554,984, DE-OS 24 41 020, DE-OS 25 56 523, DE-AS 12 66 427 and DE-OS 19 56 512.
  • the polyamideimides are prepared in a known manner from polycarboxylic acids or their anhydrides, in which 2 carboxyl groups are in the vicinal position and which must have at least one further functional group, and from polyamines with at least one primary amino group capable of imide ring formation or from compounds with at least 2 Isocyanate groups.
  • the polyamideimides can also be obtained by reacting polyamides, polyisocyanates which contain at least 2 NCO groups and cyclic dicarboxylic anhydrides which contain at least one further group capable of condensation or addition.
  • the polyamideimides from diisocyanates or diamines and dicarboxylic acids if one of the components already contains the imide group.
  • a tricarboxylic acid anhydride can first be reacted with a diprimary diamine to give the corresponding diimidocarboxylic acid, which then reacts with a diisocyanate to give the polyamideimide.
  • Tricarboxylic acids or their anhydrides are preferably used for the preparation of the polyamideimides.
  • the corresponding aromatic tricarboxylic anhydrides such as. B. trimellitic anhydride, naphthalene tricarboxylic anhydrides, bisphenyltricarboxylic anhydrides and other tricarboxylic acids with 2 benzene nuclei in the molecule and 2 vicinal carboxyl groups, such as the examples listed in DE-OS 19 56 512.
  • Trimellitic anhydride is very particularly preferably used.
  • the diprimary diamines already described for the polyamidocarboxylic acids can be used as the amine component.
  • aromatic diamines which contain a thiadiazole ring such as, for. B. 2,5-bis (4-aminophenyl) -1,3,4-thiadiazole, 2,5-bis (3-aminophenyl) -1,3,4-thiadiazole, 2- (4-aminophenyl) - 5- (3-aminophenyl) -1,3,4-thiadiazole and mixtures of the different isomers.
  • Suitable diisocyanates for the preparation of the polyamideimides are aliphatic diisocyanates such as. B.
  • cycloaliphatic diisocyanates such as B. isophorone diisocyanate, ⁇ , ⁇ '-diisocyanate-1,4-dimethylcyclohexane, cyclohexane-1,3-, cyclohexane-1,4-, 1-methylcyclohexane-2,4- and dicyclohexylmethane-4,4'-diisocyanate; aromatic diisocyanates such as B. phenylene, tolylene, naphthalene and xylylene diisocyanate and substituted aromatic systems such as. B.
  • 4,4'-Diphenylmethane diisocyanate, 2,4- and 2,6-tolylene diisocyanate and hexamethylene diisocyanate are preferably used.
  • Suitable polyamides are those polyamides which by polycondensation of dicarboxylic acids or their derivatives with diamines or of aminocarboxylic acids and their derivatives, such as. B. lactams have been obtained.
  • polyamides may be mentioned by way of example: dimethylene succinic amide, pentamethylene pimelic acid amide, undecane methylene tridecanedicarboxylic acid amide, hexamethylene adipic acid amide, hexamethylene sebacic acid amide, polycaproic acid amide. Hexamethylene adipic acid amide and polycaproic acid amide are particularly preferred.
  • Suitable solvents are - as in the case of polyamidocarboxylic acids - those organic compounds whose functional groups do not react to a large extent with the starting materials and which dissolve at least 1 component, preferably both starting materials and the polyamideimide.
  • Examples are N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methylcaprolactam, dimethyl sulfoxide, N-methylpyrrolidone, tetramethylurea, pyridine, formamide, N- Methylformamide, N-acetylpyrrolidone, dimethyl sulfone, tetramethylene sulfone and hexamethyl phosphoramide.
  • soluble heavy metal salts such as. B. zinc octoate, cadmium octoate, tetraisopropyl titanate or tetrabutyl titanate in an amount of up to 3% by weight, based on the binder.
  • the viscosities of 20 to 40% by weight solutions of the polyamideimides are at 23 ° C. in the range from 800 to 3000 mPas.
  • the wire enamels Aa to Ad optionally contain customary auxiliaries and additives and leveling agents in customary amounts, preferably 0 to 10% by weight, based on the binder or based on the Sum of binder and hardener.
  • the solvent content of the wire enamels Aa to Ad is generally between 40 and 80% by weight, based on the overall formulation, but the solvent content depends on the lacquer viscosity to be set in each case.
  • the electrically conductive lacquers used in the second step of the process according to the invention likewise consist of the known wire enamels based on polyesterimide (wire enamel Aa), polyester (wire enamel Ab), polyurethane-based (wire enamel Ac) and polyamideimide-based (wire enamel ad) described above. .
  • electrically conductive carbon black and graphite are also added to these coatings. The amount of carbon black and graphite added depends on the binder base of the wire enamel. The addition of electrically conductive carbon black significantly reduces the tendency of graphite to sediment.
  • the graphite content can be increased significantly.
  • the amount of electrically conductive carbon black and graphite to be used also depends on the desired conductivity of the resulting coating.
  • the following additional quantities have proven themselves: a combination of 1 to 12 parts by weight, preferably 2 to 6 parts by weight, electrically conductive carbon black and 50 to 110 parts by weight, preferably 80 to 105 parts by weight of graphite, in each case based on 100 parts by weight of polyesterimide or polyester resin.
  • wire enamels based on polyamideimide the following additional quantities have proven their worth: a combination of 1 to 10 parts by weight, preferably 2 to 8 parts by weight, electrically conductive carbon black and 60 to 110 parts by weight, preferably 70 to 95 parts by weight, graphite, in each case based on 100 parts by weight of polyurethane resin.
  • any electrically conductive carbon black that can be wetted by the wire enamels Aa to Ad can be used.
  • the average particle size of the carbon black used should be such that smooth paint surfaces result. This means that the maximum average particle size of the carbon black used must be smaller than the dry film thickness of the conductive lacquer layer after a single application.
  • the graphite which can be used must also be wettable by the wire enamels Aa to Ad. In addition, a smooth paint film must result. Both the electrically conductive carbon black and the graphite used are known and are commercially available products.
  • This process has the advantage of a varnish with a high carbon black / graphite content, which can be varnished with a high application speed.
  • the wires obtained can be soldered directly.
  • the conductive varnishes based on polyurethane are coated on polyester or polyesterimide insulating varnishes, there is also the further advantage that the conductive varnish and the insulating varnish can be removed separately by selective melting.
  • a preferred embodiment of the method according to the invention is a method in which an insulating varnish is also applied to the electrically conductive layer and isolates the conductive layer from the outside.
  • the wire enamels based on polyesterimide, polyester, polyurethane and polyamideimide already described on pages 5 to 14 are suitable for this. For details, reference is therefore made to the description on this page.
  • Both the insulating and the electrically conductive lacquer are applied and hardened using conventional painting machines.
  • the required paint film thickness is built up by at least 1 to 10 individual orders, whereby each individual coat of paint is cured without bubbles before the next coat of paint is applied.
  • Conventional painting machines operate at a take-off speed of 5 to 180 m / min, depending on the binder base of the wire enamel and the thickness of the wire to be coated. Typical oven temperatures are between 300 ° C and 550 ° C. Such wire coating machines are known and therefore do not need to be explained in more detail here.
  • Wires produced by the method according to the invention are outstanding for use as winding wires for the production of various electronic components, such as, for. B. relays, coils, motors, etc. Since the wires according to the invention also have capacitive properties due to their construction (series capacitor), they are particularly well suited for the production of capacitively energy-storing windings, such as those e.g. B. are described in DE-OS 36 04 579. In many cases, such windings can replace the capacitor and coil where they interact.
  • the wires produced by the method according to the invention can, for example, due to the high elasticity of the conductive lacquer layer. B. stretched in the winding machine without the conductive layer tearing.
  • Another important advantage of the method according to the invention is that the conductivity of the conductive lacquer layer can be controlled within wide ranges via the content of electrically conductive carbon black and graphite, whereas this is not possible with a metallic layer. The invention is explained in more detail in the following exemplary embodiments. All parts and percentages are by weight unless expressly stated otherwise.
  • polyester imide By reacting 3.9 parts of ethylene glycol, 8.7 parts of dimethyl terephthalate, 10.2 parts of trishydroxyethyl isocyanurate (THEIC), 11.5 parts of trimellitic anhydride and 5.9 parts of 4,4'-diaminodiphenylmethane in the presence of 0.04 part of tetra- n-butyl titanate is a polyester imide.
  • This polyester imide is 56 parts Mixture of Kresol / Solventnaphtha® dissolved in a ratio of 2: 1 and mixed with 0.7%, based on the total recipe, of a commercially available titanium catalyst.
  • the wire enamel 2 obtained in this way has a solids content of 39% (1 h / 180 ° C.) at a viscosity of 800 mPas (23 ° C.).
  • the polyester is dissolved together with 2.0 parts of phenolic resin and 1.7 parts of catalyst in 41.5 parts of cresol and 8.6 parts of Solventnaphtha®.
  • the paint has a solids content of 40% (1 h / 180 ° C).
  • the polyamideimide is prepared by the method described in DE-AS 12 66 427 from 38.5 parts of trimellitic anhydride and 60.0 parts of diphenylmethane diisocyanate.
  • a 33% solution in N-methylpyrrolidone has a viscosity of 1500 mPas at 23 ° C.
  • a copper wire (diameter 0.14 mm) is coated on a tandem coating machine at 80 m / min. First, the wire enamel 1 is lacquered with 8 swipes and baked at 400 ° C. Then the conductive varnish 1 is painted with 3 swipes and baked at 250 ° to 350 ° C. The capacitance and resistance of the conductive lacquer layer were then measured from a 1 m long wire coated in this way. The results of these tests are shown in Table 1.
  • a copper wire (diameter 0.71 mm) is coated with the wire enamel 2 at a take-off speed of 28 m / min on a commercially available coating machine with 8 passes and baked at 500 to 520 ° C.
  • the conductive varnish 1 (which was also used in Example 1) is then applied to this wire enamel at a peeling speed of 24 m / min with 6 passes and baked at 460-480 ° C.
  • the resistance of the conductive lacquer layer and the capacitance were measured from a 1 m long wire coated in this way.
  • the conductive lacquer layer was applied at different speeds and the influence on the resistance of the resulting conductive lacquer layer and the capacity of the wire was examined. The results of these tests are shown in Table 1.
  • a wire coated with insulating varnish and conductive varnish is produced analogously to Example 2, the difference between Example 2 and the oven temperature being 420-460 ° C. both when the insulating varnish layer is curing and when the conductive varnish layer is curing.
  • a coated wire with the resistance and capacitance values given in Table 1 is obtained at a coating speed of 26 m / min.
  • the conductive lacquer 5 thus produced has a solids content of 55% (1 h 180 ° C.).
  • the conductive lacquer 5 is applied in a layer thickness of 35 ⁇ m onto a 1 mm Cu wire, coated with wire enamel 2 (dry film thickness 50 ⁇ m).
  • the conductive lacquer layer has a resistance of 960 k ⁇ / m (see also Table 1).
  • the conductive lacquer 6 is applied in a layer thickness of 45 ⁇ m on a 1 mm Cu wire that is insulated with the wire enamel 2 (dry film thickness 50 ⁇ m).
  • the conductive lacquer layer has a resistance of 970 k ⁇ / m (see also Table 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Road Signs Or Road Markings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (14)

  1. Procédé pour le revêtement en continu de fils métalliques, suivant lequel :
    (I) on forme une couche isolante, appliquée sans lacunes, continue, sur la surface du fil, en revêtant le fil tout d'abord par une laque isolante ; et
    (II) sur la couche isolante, on applique une autre couche conductrice de l'électricité, en revêtant le fil isolé, obtenu à l'étape de procédé (I), par une laque conductrice de l'électricité,
    caractérisé par le fait que :
    (A) on choisit la laque isolante, appliquée directement sur la surface du fil, dans le groupe constitué par :
    (a) les laques pour fils, à base de polyesterimide, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyesterimide, les indices d'hydroxyle des polyesterimides se situant dans la plage de 50 à 200 mg de KOH/g, et des solutions à 20 à 60% en poids des polyesterimides dans les solvants organiques à 23°C présentant des viscosités se situant dans la plage de 80 à 15 000 mPas ; ou
    (b) les laques pour fils, à base de polyester, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyester, les polyesters présentant un rapport des groupes hydroxyle aux groupes carboxyle de 1,1 à 2,0 : 1, et des solutions à 20 à 60% en poids des polyesters dans des solvants organiques à 23°C présentant des viscosités se situant dans la plage de 40 à 12 000 mPas ; ou
    (c) les laques pour fils, à base de polyuréthanne, se composant d'une solution dans un solvant d'un polyester contenant des groupes hydroxyle présentant un indice d'OH de 100 à 450 mg de KOH/g, et d'un produit d'addition, préparé dans un rapport d'équivalents NCO/OH de 1 : 2 à 9 : 1, de diisocyanate et de polyol, dont les groupes isocyanate libres sont totalement bloqués ; ou
    (d) des laques pour fils, à base de polyamideimide, se composant d'une solution dans un solvant d'un polyamideimide, des solutions à 20 à 40% en poids des polyamideimides à 23°C présentant des viscosités se situant dans la plage de 800 à 3 000 mPas ;
    (B) on choisit également la laque conductrice, appliquée sur le fil isolé, dans le groupe constitué par :
    (e) les laques pour fils (Aa), à base de polyesterimide, ou les laques pour fils (Ab), à base de polyester, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 12 parties en poids de noir de carbone conducteur de l'électricité et de 50 à 110 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyesterimide ou de polyester ; ou
    (f) les laques pour fils (Ac), à base de polyuréthanne, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 35 parties en poids de noir de carbone conducteur de l'électricité et de 2 à 115 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyuréthanne ; ou
    (g) les laques pour fils (Ad), à base de polyamideimide, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 10 parties en poids de noir de carbone conducteur de l'électricité et de 60 à 110 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyamideimide.
  2. Fil revêtu, se composant d'une âme conductrice métallique, d'une couche de laque isolante appliquée sur l'âme conductrice et d'une couche conductrice de l'électricité, appliquée sur la couche de laque isolante, caractérisé par le fait que
    (A) la laque isolante, appliquée directement sur la surface du fil, est choisie dans le groupe constitué par :
    (a) les laques pour fils, à base de polyesterimide, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyesterimide, les indices d'hydroxyle des polyesterimides se situant dans la plage de 50 à 200 mg de KOH/g, et des solutions à 20 à 60% en poids des polyesterimides dans les solvants organiques à 23°C présentant des viscosités se situant dans la plage de 80 à 15 000 mPas ; ou
    (b) les laques pour fils, à base de polyester, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyester, les polyesters présentant un rapport des groupes hydroxyle aux groupes carboxyle de 1,1 à 2,0 : 1, et des solutions à 20 à 60% en poids des polyesters dans des solvants organiques à 23°C présentant des viscosités se situant dans la plage de 40 à 12 000 mPas ; ou
    (c) les laques pour fils, à base de polyuréthanne, se composant d'une solution dans un solvant d'un polyester contenant des groupes hydroxyle présentant un indice d'OH de 100 à 450 mg de KOH/g, et d'un produit d'addition, préparé dans un rapport d'équivalents NCO/OH de 1 : 2 à 9 : 1, de diisocyanate et de polyol, dont les groupes isocyanate libres sont totalement bloqués ; ou
    (d) les laques pour fils, à base de polyamideimide, se composant d'une solution dans un solvant d'un polyamideimide, des solutions à 20 à 40% en poids des polyamideimides à 23°C présentant des viscosités se situant dans la plage de 800 à 3 000 mPas ;
    (B) la couche conductrice de l'électricité se compose d'une couche d'une laque conductrice de l'électricité, qui est également choisie dans le groupe constitué par :
    (e) les laques pour fils (Aa), à base de polyesterimide, ou les laques pour fils (Ab), à base de polyester, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 12 parties en poids de noir de carbone conducteur de l'électricité et de 50 à 110 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyesterimide ou de polyester ; ou
    (f) les laques pour fils (Ac), à base de polyuréthanne, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 35 parties en poids de noir de carbone conducteur de l'électricité et de 2 à 115 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyuréthanne ; ou
    (g) les laques pour fils (Ad), à base de polyamideimide, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 1 à 10 parties en poids de noir de carbone conducteur de l'électricité et de 60 à 110 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyamide-imide.
  3. Procédé ou fil selon l'une des revendications 1 ou 2, caractérisé par le fait que la laque conductrice de l'électricité est choisie dans le groupe constitué par :
    (e) les laques pour fils (Aa), à base de polyesterimide, ou les laques pour fils (Ab), à base de polyester, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 2 à 6 parties en poids de noir de carbone conducteur de l'électricité et de 80 à 105 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyesterimide ou de polyester ; ou
    (f) les laques pour fils (Ac), à base de polyuréthanne, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 5 à 8 parties en poids de noir de carbone conducteur de l'électricité et de 70 à 107 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyuréthanne ; ou
    (g) les laques pour fils (Ad), à base de polyamide-imide, la conductibilité électrique de ces laques pour fils étant engendrée par addition d'une combinaison de 2 à 8 parties en poids de noir de carbone conducteur de l'électricité et de 70 à 95 parties en poids de graphite, à chaque fois par rapport à 100 parties en poids de la résine de polyamideimide.
  4. Procédé ou fil selon l'une quelconque des revendications 1 à 3, caractérisé par le fait que la laque isolante, appliquée directement sur la surface du fil, et/ou la laque conductrice de l'électricité est une laque pour fils (Ac), à base de polyuréthanne, se composant d'une solution dans un solvant d'un polyester contenant des groupes hydroxyle présentant un indice d'OH de 150 à 500 mg de KOH/g, et d'un produit d'addition, préparé dans un rapport NCO/OH de 1 : 2 à 9 : 1, de diisocyanate et de triméthylolpropane, dont les groupes isocyanates libres sont totalement bloqués.
  5. Procédé ou fil selon l'une quelconque des revendications 1 à 4, caractérisé par le fait que, comme laque pour fils (Ab), à base de polyester, pour les laques isolantes et/ou les laques conductrices de l'électricité, on utilise des solutions de polyester qui présentent un rapport des groupes hydroxyle aux groupes carboxyle de 1,15 : 1 à 1,60 : 1.
  6. Procédé ou fil selon l'une quelconque des revendications 1 à 5, caractérisé par le fait qu'on utilise des polyesterimides contenant des groupes trishydroxyéthyl-isocyanurate comme laques pour fils (Aa), à base de polyesterimides pour les laques isolantes et/ou les laques conductrices de l'électricité.
  7. Procédé ou fil selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'on utilise un noir de carbone conducteur de l'électricité, dont la dimension moyenne des particules est inférieure à l'épaisseur du film à sec de la couche conductrice de l'électricité après une unique application.
  8. Procédé ou fil selon l'une quelconque des revendications 1 à 7, caractérisé par le fait que la laque de recouvrement (Ac), à base de polyuréthanne, contient un produit d'addition, préparé dans un rapport NCO/OH de 2 : 1, de diisocyanate et de triméthylolpropane, dont les groupes isocyanate libres sont totalement bloqués.
  9. Procédé ou fil selon l'une quelconque des revendications 1 à 8, caractérisé par le fait qu'on utilise des laques pour fils (Ac), à base de polyuréthanne, dans lesquelles les groupes isocyanate libres sont bloqués par du phénol et/ou du crésol.
  10. Procédé ou fil selon l'une quelconque des revendications 1 à 9, caractérisé par le fait qu'on utilise des laques pour fils (Ac), à base de polyuréthanne, dans lesquelles est utilisé, comme composant diisocyanate, du toluylène diisocyanate ou du bis(isocyanato-4 phényl)méthane.
  11. Procédé ou fil selon l'une quelconque des revendications 1 à 10, caractérisé par le fait qu'on utilise des polyesters contenant des groupes trishydroxyéthyl-isocyanurate comme laques pour fils (Ab), à base de polyester, pour les laques isolantes et/ou les laques conductrices de l'électricité.
  12. Procédé ou fil selon l'une quelconque des revendications 1 à 11, caractérisé par le fait que, sur la couche conductrice de l'électricité, on applique encore une fois une couche isolante, choisie dans le groupe constitué par les laques pour fils (Aa), à base de polyesterimide, les laques pour fils (Ab), à base de polyester, les laques pour fils (Ac), à base de polyuréthanne, ou les laques pour fils (Ad), à base de polyamideimide, qui isolent la couche conductrice sur l'extérieur.
  13. Utilisation des fils tels que définis à l'une quelconque des revendications 2 à 12 pour la fabrication de bobinages inductifs à accumulation d'énergie capacitive.
  14. Utilisation de fils revêtus, se composant d'une âme conductrice métallique, d'une couche de laque isolante, appliquée sur l'âme conductrice, et d'une couche conductrice de l'électricité, appliquée sur la couche de laque isolante, pour la fabrication de bobinages inductifs à accumulation d'énergie capacitive, caractérisée par le fait que
    (A) la laque isolante, appliquée directement sur la surface des fils, est choisie dans le groupe constitué par :
    (a) les laques pour fils, à base de polyesterimide, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyesterimide, les indices d'hydroxyle des polyesterimides se situant dans la plage de 50 à 200 mg de KOH/g, et des solutions à 20 à 60% en poids des polyesterimides dans des solvants organiques à 23°C présentant des viscosités se situant dans la plage de 80 à 15 000 mPas ; ou
    (b) les laques pour fils, à base de polyester, se composant d'une solution dans un solvant ou d'une solution aqueuse ou d'une dispersion aqueuse d'une résine de polyester, les polyesters présentant un rapport des groupes hydroxyle aux groupes carboxyle de 1,1 à 2,0 : 1, et des solutions à 20 à 60% en poids des polyesters dans des solvants organiques à 23°C présentant des viscosités se situant dans de 40 à 12 000 mPas ; ou
    (c) les laques pour fils, à base de polyuréthanne, se composant d'une solution dans un solvant d'un polyester contenant des groupes hydroxyle, présentant un indice d'OH de 100 à 450 mg de KOH/g, et d'un produit d'addition, préparé dans un rapport d'équivalents NCO/OH de 1 : 2 à 9 : 1, de diisocyanate et de polyol, dont les groupes isocyanate libres sont totalement bloqués ; ou
    (d) les laques pour fils, à base de polyamideimide, se composant d'une solution dans un solvant d'un polyamideimide, des solutions à 20 à 40% en poids des polyamideimides à 23°C présentant des viscosités se situant dans la plage de 800 à 3 000 mPas ;
    (B) la laque conductrice, appliquée sur le fil isolé, est également choisie dans le groupe constitué par :
    (e) les laques pour fils (Aa), à base de polyesterimide, ou les laques pour fils (Ab), à base de polyester, la conductibilité électrique de ces laques pour fils étant engendrée par addition de :
    (1) 2 à 20 parties en poids de noir de carbone conducteur de l'électricité pour 100 parties en poids de la résine de polyesterimide ou de polyester ; ou
    (2) 50 à 110 parties en poids de graphite pour 100 parties en poids de la résine de polyesterimide ou de polyester ; ou
    (f) des laques pour fils (Ac), à base de polyuréthanne, la conductibilité électrique de ces laques pour fils étant engendrée par addition de :
    (1) 5 à 50 parties en poids de noir de carbone conducteur de l'électricité pour 100 parties en poids de la résine de polyuréthanne ; ou
    (2) 2 à 40 parties en poids de graphite pour 100 parties en poids de la résine de polyuréthanne ; ou
    (g) les laques pour fils (Ad), à base de polyamideimide, la conductibilité électrique de ces laques pour fils étant engendrée par addition de :
    (1) 1 à 10 parties en poids de noir de carbone conducteur de l'électricité pour 100 parties en poids de la résine de polyamideimide ; ou
    (2) 60 à 110 parties en poids de graphite pour 100 parties en poids de la résine de polyamideimide.
EP90200246A 1989-02-21 1990-01-27 Procédé de revêtement en continu de fils et utilisation des fils ainsi obtenus Expired - Lifetime EP0384505B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3905287A DE3905287A1 (de) 1989-02-21 1989-02-21 Verfahren zum kontinuierlichen beschichten von draehten sowie die verwendung der so hergestellten draehte
DE3905287 1989-02-21

Publications (2)

Publication Number Publication Date
EP0384505A1 EP0384505A1 (fr) 1990-08-29
EP0384505B1 true EP0384505B1 (fr) 1993-04-28

Family

ID=6374587

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90902181A Pending EP0459994A1 (fr) 1989-02-21 1990-01-27 Procede de revetement en continu de fils metalliques et utilisation des fils metalliques ainsi obtenus
EP90200246A Expired - Lifetime EP0384505B1 (fr) 1989-02-21 1990-01-27 Procédé de revêtement en continu de fils et utilisation des fils ainsi obtenus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP90902181A Pending EP0459994A1 (fr) 1989-02-21 1990-01-27 Procede de revetement en continu de fils metalliques et utilisation des fils metalliques ainsi obtenus

Country Status (9)

Country Link
EP (2) EP0459994A1 (fr)
JP (1) JPH065605B2 (fr)
KR (1) KR960002488B1 (fr)
AT (1) ATE88831T1 (fr)
BR (1) BR9007146A (fr)
DE (2) DE3905287A1 (fr)
DK (1) DK0384505T3 (fr)
ES (1) ES2042191T3 (fr)
WO (1) WO1990010298A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315705A1 (en) * 2019-08-09 2022-10-06 Huntsman International Llc Polyester polyol comprising an imide moiety and methods of manufacture thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133546C2 (de) * 1991-10-10 2000-12-07 Mahle Gmbh Kolben-Zylinderanordnung eines Verbrennungsmotors
US6218624B1 (en) * 1994-07-05 2001-04-17 Belden Wire & Cable Company Coaxial cable
NL1010664C2 (nl) * 1998-11-27 2000-05-30 Belden Wire & Cable Bv Elektrische geleider.
DE10157604A1 (de) * 2001-11-26 2003-06-05 Schunk Italia S R L Kohlebürstenführung
DE10255374A1 (de) * 2002-11-27 2004-06-24 Siemens Ag Lagersystem für Ventilatoren und elektrische Maschinen
JP5108251B2 (ja) * 2006-04-26 2012-12-26 住友電気工業株式会社 絶縁電線およびこれを用いた電気コイル
JP2012129121A (ja) * 2010-12-16 2012-07-05 Mitsubishi Cable Ind Ltd 絶縁部材及びその製造方法
CN109545452B (zh) * 2017-08-01 2020-07-14 佛山市顺德区远诚电气有限公司 一种漆包线及其制备工艺
DE102018214554A1 (de) * 2018-08-28 2020-03-05 Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg Dichtigkeitsprüfung von Kraftfahrzeugkarosserien

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1495100B2 (de) 1961-11-02 1972-05-10 Dr. Beck & Co Ag, 2000 Hamburg Verfahren zur herstellung von polyesterimiden
DE1445263C3 (de) 1961-12-12 1979-12-13 Dr. Beck & Co Ag, 2000 Hamburg Verwendung von Polyesterimiden für die Einbrennisolierung auf elektrischen Leitern
US3660592A (en) * 1970-02-27 1972-05-02 Haveg Industries Inc Anti-corona electrical conductor
US4503284A (en) 1983-11-09 1985-03-05 Essex Group, Inc. RF Suppressing magnet wire
WO1987005147A1 (fr) * 1986-02-14 1987-08-27 Cornelius Lungu Composant electrique presentant des proprietes inductives et capacitives
DE3604579A1 (de) * 1986-02-14 1987-08-27 Cornelius Lungu Energiespeichernde induktive wicklung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315705A1 (en) * 2019-08-09 2022-10-06 Huntsman International Llc Polyester polyol comprising an imide moiety and methods of manufacture thereof

Also Published As

Publication number Publication date
EP0384505A1 (fr) 1990-08-29
DE3905287A1 (de) 1990-08-30
JPH065605B2 (ja) 1994-01-19
DE59001279D1 (de) 1993-06-03
KR920700459A (ko) 1992-02-19
EP0459994A1 (fr) 1991-12-11
KR960002488B1 (ko) 1996-02-17
JPH04500882A (ja) 1992-02-13
DK0384505T3 (da) 1993-08-02
BR9007146A (pt) 1991-10-22
WO1990010298A1 (fr) 1990-09-07
ES2042191T3 (es) 1993-12-01
ATE88831T1 (de) 1993-05-15

Similar Documents

Publication Publication Date Title
EP0813580B1 (fr) Produit d'enduction de fils metalliques et son procede de preparation
DE1925875A1 (de) Loesliche polymere UEberzugsverbindungen
EP1311588B1 (fr) Solution de resine de polyamidimide et son utilisation pour la production de vernis pour fils de fer
EP0384505B1 (fr) Procédé de revêtement en continu de fils et utilisation des fils ainsi obtenus
DE102009003512A1 (de) Umweltfreundlicher lötbarer Drahtlack
DE1795637C3 (de) Verwendung von Polyesterimiden für die Elektroisolierung
EP0502858B1 (fr) Vernis pour fils metalliques et procede pour l'enduction en continu de tels fils
WO1998006790A1 (fr) Email isolant contenant des polyester-imides et/ou des polyamide-imides avec des polyoxyalkylene-diamines comme constituants moleculaires
EP0823120B1 (fr) Formulation de vernis pour fils metalliques a lubrifiant interne
DE2840352A1 (de) Verfahren zur herstellung von elektrisch isolierenden, hochflexiblen und/oder loetfaehigen ueberzuegen
DE1266427B (de) Verfahren zur Herstellung von Lackueberzuegen auf Grundlage von Polyisocyanaten
EP0941273B1 (fr) Procede de preparation de polyester-imides contenant des groupes carboxyle et hydroxyle et leur utilisation dans des vernis pour fils de fer
DE3544548A1 (de) Verfahren zur herstellung lagerstabiler polyamidimidlacke und deren verwendung
DE2032075C3 (de) Mehrschichtisolierstoffe
DE69932293T2 (de) Isolierter draht
EP0688460B1 (fr) Agents etamables d'enrobage de fils et procede d'enrobage continu de fils
DE3118948A1 (de) "partiell imidisierte polylamidsaeure-polymere, diese enthaltende beschichtungszubereitungen und ihre verwendung"
DE102011003129B4 (de) Drahtlack-Zusammensetzung enthaltend Polyole auf Melamin-Basis, deren Verwendung und Verwendung eines Polyols auf Melamin-Basis
DE60125684T2 (de) Bindemittel für eine Beschichtungszusammensetzung für elektrische Leiter
DE2134479A1 (de) Verzweigte Amid-Imid-Ester-Polymere für Isolierungslacke
WO1997025724A1 (fr) Procede d'enduction de fils metalliques de bobinage et profiles
DE1957157A1 (de) Verfahren zur Herstellung von isolierenden,loetfaehigen UEberzuegen
DE102008004926A1 (de) Hochtemperaturbeständiger Elektroisolierlack
DE2460206C2 (de) Harzmischung auf Polyester- und Polyhydantoinbasis und ihre Verwendung
DE2413114A1 (de) Neue polyamid-ester-chinazolindion-2, 4-harze, ihre herstellung und ihre verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GR

17P Request for examination filed

Effective date: 19910204

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90902181.8/0459994 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 16.12.91.

17Q First examination report despatched

Effective date: 19920514

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LACKDRAHT UNION GMBH

Owner name: BASF LACKE + FARBEN AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 88831

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90902181.8/0459994 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 16.12.91.

REF Corresponds to:

Ref document number: 59001279

Country of ref document: DE

Date of ref document: 19930603

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930512

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3008655

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042191

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90200246.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19961224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970221

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980202

BERE Be: lapsed

Owner name: LACKDRAHT UNION G.M.B.H.

Effective date: 19980131

Owner name: BASF LACKE + FARBEN A.G.

Effective date: 19980131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000118

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000214

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010127

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

EUG Se: european patent has lapsed

Ref document number: 90200246.8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050127